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Abstract

We study symmetry principles associated with the approximately conserved
enstrophy current, responsible for the inverse energy cascade in non relativistic
2+1 dimensional turbulence. We do so by identifying the accidental symmetry
associated with enstrophy current conservation in a recently realized effective
action principle for hydrodynamics. Our analysis deals with both relativistic
and non relativistic effective actions and their associated symmetries.
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1 Introduction

Non relativistic incompressible fluid flow in two spatial dimensions supports an approxi-
mately conserved enstrophy charge whose existence plays a crucial role in generating the
inverse energy cascade of turbulent flow [1]. Planar, non relativistic and compressible flow
also supports an approximately conserved enstrophy charge as long as the equation of
state is barotropic (the pressure is a function of the mass, or particle number density),
see, e.g., [2]. Likewise, an approximately conserved enstrophy charge was shown to be
present in relativistic and conformal invariant fluid flow in 2 + 1 dimensions [3].

Charges which are conserved under the equations of motion are tied, via Noether’s
theorem, to symmetries of the underlying action. Thus, it stands to reason that there exists
an approximate symmetry responsible for the approximate conservation of enstrophy. The
goal of this work is to identify the symmetry associated with enstrophy conservation in
relativistic and non relativistic fluid flows using a recently discovered action principle for
fluids [4–6]. (See also [7–19].)

In local theories charge conservation follows from current conservation. It is interesting
to contrast the approximate conservation of the enstrophy current with the behavior of
the entropy current. Recall that the entropy current is given by Jµs = suµ +O(∂) where
s is the entropy density, uµ is the velocity field (uµ = γ(1, vi) in a relativistic setting
and the same with γ = 1 in a non relativistic one), and O(∂) denotes corrections which
include derivatives of hydrodynamic variables. The entropy current is conserved in the
absence of dissipative terms and its divergence is positive semi-definite otherwise. Thus,
at leading order in a derivative expansion one may view the entropy current as being
approximately conserved in the sense that ∂µJ

µ
s = O(∂2) under the equations of motion.

That is to say, the leading order contribution to the entropy current is of zeroth order in
a derivative expansion, but, under the equations of motion, its divergence is second order.
The approximate conservation of the enstrophy current is of a similar type. As we will
see shortly, the enstrophy current is second order in derivatives but, under the equations
of motion, its divergence is fourth order. The analogy between the enstrophy current and
the entropy current may run deeper than a comparison of their approximate conservation
at leading order. In planar, non relativistic, incompressible flow the enstrophy charge is
conserved in the absence of dissipation but its time derivative is negative semi-definite
once dissipation comes into play.

Be that as it may, it is possible to identify the symmetry principle responsible for
the conservation of the entropy current in the absence of dissipative terms using the
hydrodynamic effective action [20–24]. In fact, one can identify the mechanism responsible
for its full non conservation for generic, dissipative, fluids [9, 14, 15]. This raises the hope
that a similar construction may be generated in order to better understand the enstrophy
current. In this work we take a first step in this direction and find the symmetry associated
with enstrophy conservation at leading order in the derivative expansion. Along the way
we provide a rudimentary construction of the effective action for Galilean fluids, offering a
slightly different perspective on it than the recent comprehensive work of [25]. In addition,
we identify an enstrophy current in generic relativistic fluids, generalizing the result of [3].
We will not discuss negativity of enstrophy production in a relativistic setting but will
comment on its possible realization where relevant.

Our work is organized as follows. In Section 2 we discuss the structure of the rela-
tivistic and Galilean enstrophy currents. Our result for the relativistic enstrophy current
generalizes that of [3], relevant for an uncharged conformal fluid, while our expression
for the non relativistic enstrophy current has been cast in a manifestly covariant form by
using the Newton-Cartan formalism. In Section 3 we discuss how a conserved enstrophy
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current arises as a Noether current of an effective action for fluid dynamics in 2+1 dimen-
sions for both relativistic and Galilean fluid flows. We end with an outlook and discussion
in Section 4. A review of the traditional approach to the construction of the enstrophy
charge and a summary of Newton-Cartan geometry and its relation to Galilean invariant
hydrodynamics have been relegated to the appendices.

2 The enstrophy current

In 2+1 dimensional incompressible non relativistic fluid flow the enstrophy charge is given
by

W =
1

2

∫
√
g ωijω

ijd2x , (1)

where ωij is the vorticity two form

ωij = ∂ivj − ∂jvi , (2)

with vi the velocity of a fluid element. The argument that W is time independent in the
absence of dissipation and negative semidefinite otherwise can be found in any textbook on
hydrodynamics, e.g., [26]. We present the canonical derivation of this result in appendix
A for completeness.

The total enstrophy W in (1) may be interpreted as a volume integral over an enstrophy
density which may be thought of as the zero component of an enstrophy current,

jµ(1) = ωijω
ijuµG (3)

with
uµG = (1, ~v) . (4)

The reason for the parenthetical (1) in (3) will become clear presently. The subscript G
in (4) stands for Galilean, to be distinguished from its Lorentzian counterpart which we
will introduce shortly. The enstrophy current jµ(1) satisfies ∇µjµ(1) = 0 at leading order in

a derivative expansion and ∇µjµ(1) ≤ 0 otherwise.
To be somewhat more precise, there exists not one, but a family of enstrophy currents

usually written in the form
jµ(n) = (ωijω

ij)nuµG , (5)

with n a positive integer. As was the case for jµ(1), ∇µj
µ
(n) = 0 at leading order in the

derivative expansion, and, as long as n > 0, ∇µjµ(n) ≤ 0 in the presence of dissipation.

While non-standard, it is straightforward to argue that the currents (5) can be replaced
with

jµh = h(ωijω
ij)uµG (6)

where h is a monotonically increasing function of its argument; one finds that ∇µjµh ≤ 0
with a strict equality once the viscosity is set to zero.

Slightly less familiar is the family of conserved enstrophy currents associated with non
relativistic, inviscid, compressible, and barotropic fluids,

jµG =
g(s/ρ)

s2n−1

(
ωijω

ij
)n
uµG . (7)

Here, ρ is the particle number density, s the entropy density, and g an arbitrary function.
The barotropic condition states that P = P (ρ) where P is the pressure. Note that in
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incompressible flow the particle number density and the entropy density are constant so
that (3) takes the same form as (7) in its regime of validity. The expression (7) can be
replaced by

jµGh = h(s/ρ, ωijω
ij/s2)suµG. (8)

Following standard conventions we will, throughout this work, consider the version of the
enstrophy current given in (7). Where relevant we will comment on the alternate form
jµGh mentioned above.

An uncharged, inviscid, relativistic, conformal fluid in 2 + 1 dimensions also possesses
a conserved enstrophy current given by

Jµconformal =
Ω2

ε2/3
uµ (9)

with ε the energy density, uµ a relativistic velocity field and Ω2 = ΩµνΩµν where Ωµν =
∇µ
(
ε1/3uν

)
− ∇ν

(
ε1/3uµ

)
. See [3]. In what follows we will generalize this result. In

particular, we will argue that, in the presence of a U(1) global symmetry, one can write a
conserved enstrophy current for generic fluids of the form

Jµ =
g(s/ρ)

s2n−1
(Ω2)nuµ (10)

with
Ωµν = ∂µ

(
Tf
(µ
T

)
uν

)
− ∂ν

(
Tf
(µ
T

)
uµ

)
. (11)

Here, T is the temperature, µ the chemical potential, ρ a U(1) charge density, and f an
arbitrary function of its argument. The current Jµ is conserved as long as the pressure, P ,
satisfies P (T, µ) = p(Tf(µ/T )). In the presence of an external electric field, f becomes
linear in µ, and Ωµν in (11) receives a contribution linear in the field strength, (see (26)).
As was the case for the Galilean enstrophy current one may replace the family of conserved
currents (10) with

Jµh = h(s/ρ,Ω2/s2)suµ . (12)

2.1 The relativistic enstrophy current

Recall that the dynamical fields of hydrodynamic theory can be chosen to be the tem-
perature T , a velocity field uµ satisfying uµu

µ = −1, and a chemical potential µ if a
conserved charge is present. The energy momentum tensor and other conserved currents
of the theory can be expressed in terms of the dynamical fields and their derivatives. This
description is usually made manifest in terms of a derivative expansion. For instance,

Tµν = ε(T, µ)uµuν + P (T, µ) (gµν + uµuν) +O(∂) ,

Jµc = ρ(T, µ)uµ +O(∂) .
(13)

Here, ε(T, µ), P (T, µ) and ρ(T, µ) are functions of the temperature and chemical potential
which, in equilibrium, reduce to the energy density, pressure and charge density respec-
tively. The entropy density s(T, µ) and charge density ρ(T, µ) satisfy

s =

(
∂P

∂T

)
µ

, ρ =

(
∂P

∂µ

)
T

, (14)

and
ε+ P = sT + ρµ . (15)
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In the inviscid limit, energy-momentum and charge current conservation,∇µTµν = F νµJc µ
and ∇µJµc = 0, lead to the equations of motion E = 0, E′ = 0, and Eµ = 0 with

E = −∇µ(suµ) ,

Eµ =
(P + ε)

T
(Pαµ ∂αT + Taµ)− ρVµ ,

E′ = −∇µ (ρuµ) .

(16)

Here aµ = uα∇αuµ is the acceleration, Pαβ = gαβ + uαuβ is a projection matrix and

Vµ = Fµνu
ν − TP νµ∂ν

(µ
T

)
, (17)

with Fµν an external field strength.
Suppose we find a closed two-form Ωµνdx

µdxν which is orthogonal to the velocity field,
Ωµνu

ν = 0, (at least under the equations of motion). Such a two-form satisfies

LuΩµν = 0 (18)

under the equations of motion, with Lu the Lie derivative in the uµ direction. Using (18)
and

∇µuα =
1

2
σµα +

1

2
ωµα +

1

d
ΘPµα − uµaα , (19)

where d is the number of spatial dimensions and

1

2
σµν =

1

2
Pµ

αPν
β (∇αuβ +∇βuα)− 1

d
Pµν∇αuα ,

ωµν = Pµ
αPν

β (∇αuβ −∇βuα) ,

Θ = ∇αuα ,

(20)

we find that under the equations of motion

Ωµν∇α (uαΩµν) = Ωµνσν
αΩαµ + Θ Ω2

(
1− 2

d

)
. (21)

In two spatial dimensions, the right-hand-side of (21) vanishes. That the first term is
zero follows by denoting

σν
αΩαµ + Ων

ασαµ = ενµρu
ρσ ,

Ωµν = εµνρu
ρω ,

(22)

where εµνρ is the Levi-Civita tensor, and noting that

σ ∝ εµνρuρσναεαµλuλω = 0 . (23)

Thus, in two spatial dimensions, and after imposing the equations of motion,

Ωµν∇α (uαΩµν) = 0 . (24)

It is now straightforward to argue that Jµ given in (10) is conserved for any value of n
under the equations of motion. Note that if n < 0, then Jµ is ill defined in equilibrium.
Also, Jµ = suµ coincides with the (inviscid) entropy current for n = 0 and g = 1. Likewise,
Jµ = ρuµ coincides with the charge current for n = 0 and g = s/ρ. The first term on
the right-hand side of (21) bears a striking similarity to the vortex stretching term of non
relativistic incompressible flow (see equation (96) in appendix A). Therefore, it is sensible
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to identify Jµ of (10) with n = 1 and g = 1 with the enstrophy current and Jµ with larger
n with its higher moments.

Using (24) one can also show that the current Jµh defined in (12) is also conserved
under the equations of motion. It is also possible to generalize (10) to fluids with multiple

U(1) charges whereby Jµ = g
(
s
ρ1
. . . s

ρn

)
(Ω2)n

s2n−1u
µ, with ρi the various charge densities,

is conserved. One might be tempted to construct an additional conserved current by
contracting (24) with εµνρuρ to generate

JµH = H(s/ρ,$/s)suµ (25a)

with
$ = uρε

µνρΩµν . (25b)

It is straightforward to show that Ω2 = 1
2$

2+O(E) implying that JµH and Jµh are equivalent
under the equations of motion.

The enstrophy current (10) was derived on the premise that a closed two-form Ω =
Ωµνdx

µdxν , satisfying Ωµνu
ν = 0 is available. To find it, let us start with the most general

exact two-form which is first order in derivatives

Ωµν = ∂µ (Tf(T, ν)uν)− ∂ν (Tf(T, ν)uµ) + θFµν , (26)

where θ is a constant, ν = µ/T and f is an arbitrary function of its variables. A somewhat
lengthy computation yields

Ωµνu
ν = − fT

P + ε
Eµ+

(
fρT

P + ε
− ∂f

∂ν

)
TPαµ ∂αν−T

∂f

∂T
Pαµ ∂αT−

(
fρT

P + ε
− θ
)
Fµνu

ν . (27)

In order for the penultimate term on the right-hand side of (27) to vanish we need
that

∂f

∂T
= 0 . (28)

Solving for both (28) and the requirement that the second term on the right-hand-side of
(27) vanish, we find that the equation of state must take the form

P (T, µ) = p(Tf(µ/T )) . (29)

Requiring that (27) vanishes under the equations of motion implies, in addition, that

f(ν) = θν + θ0 (30)

with θ0 an integration constant.
Let us summarize our findings. In the presence of an external electromagnetic field, a

charged fluid must have an equation of state of the form (29) with (30) in order to possess
a conserved enstrophy current. In the absence of an electromagnetic field, we must satisfy
the somewhat less restrictive condition, (29), in order for Jµ of (10) to be conserved. Note
that a charged conformal fluid and any neutral fluid will automatically have an equation
of state of the form (29) and therefore possess a conserved enstrophy current (10).

2.2 The Galilean enstrophy current

The conserved enstrophy current for Galilean fluids can be constructed by borrowing
the techniques used to construct the relativistic enstrophy current. A key feature of the
construction of the relativistic enstrophy current was the existence of a closed two-form
Ωµνdx

µdxν which was orthogonal to the velocity field under the equations of motion.
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With this two-form at hand, and the decomposition (19), we were lead to (21) from which
enstrophy conservation in 2 + 1 dimensions followed.

To construct such a Galilean invariant two-form, and consequently a conserved enstro-
phy current, we use the Newton-Cartan formalism which allows one to couple a Galilean
invariant theory to a background spacetime in a covariant way. Galilean boost invariance
is ensured by requiring a certain “Milne invariance” of the background geometry. We sum-
marize this and other salient features of the Newton-Cartan geometry in appendix B.1.
Briefly, Newton-Cartan geometry is characterized by a spatial metric hµν , two timelike
vectors nµ and n̄µ such that hµνnµ = 0 and nµn̄

µ = 1, and a gauge field Aµ. From these
data one constructs an inverse metric h̄µν and a projection Pµν via (106b). Fluid dynam-
ics in a background Newton-Cartan geometry can be described by introducing a timelike
Galilean velocity field uµG which satisfies uµGnµ = 1. We briefly review hydrodynamics in
a Newton-Cartan geometry in appendix B.2. The interested reader is referred to [27] for
a detailed exposition.

In a generic Newton-Cartan background geometry the equivalent of the decomposition
(19) is

∇̃µuνG =
1

2
σµ

ν +
1

2
ωµ

ν +
2

d
P̃ νµΘ + nµa

ν , (31)

with the combinations

σµ
ν = h̃µαP̃

ν
β

(
∇̃αuβG + ∇̃βuαG

)
− 2

d
P̃ νµΘ ,

ωµ
ν = h̃µαP̃

ν
β

(
∇̃αuβG − ∇̃

βuαG

)
,

aν = uαG∇̃αuνG ,
Θ = ∇̃µuµG .

(32)

Here, h̃µν and P̃µν are given in (118), ∇̃µ is the Milne invariant covariant derivative
constructed in (119), ∇̃α = hαβ∇̃β and in obtaining (32) we made repeated use of ∇̃µhαβ =
0 together with nµ∇̃αuµG = 0. The latter follows from the requirement that ∇̃µnν = 0. It is
important to keep in mind that in the Newton-Cartan formalism the Christoffel connection
has torsion, see (119). Following [27], we have chosen it to be timelike.

Using the Cartan formula LuΩµν = 0, we find that, under the equations of motion,

Ωαβ∇̃µ(uµGΩαβ) = −ΩαβΩαµσ
µ
β + ΘΩ2

(
1− 2

d

)
− 2ΩαβT̃ ναµu

µ
GΩνβ , (33)

where T̃µαβ is the torsion tensor, and we have defined

Ωµν = hµαhνβΩαβ , Ω2 = ΩµνΩµν . (34)

Since torsion is timelike, T̃µαβ = −uµGF
(n)
αβ , c.f., (119), the last term on the right-hand-side

of (33) vanishes under the equations of motion,

−2ΩαβT̃ ναµu
µ
GΩνβ = 2ΩαβF (n)

αµ u
µ
G (uνGΩνβ) = 0 . (35)

Thus, (33) reduces to

Ωαβ∇̃µ(uµGΩαβ) = −ΩαβΩαµσ
µ
β + ΘΩ2

(
1− 2

d

)
. (36)

7



SciPost Physics Submission

Equation (36) is the Galilean equivalent of (21): the last term on its right clearly vanishes
in d = 2 spatial dimensions. The first term on the right-hand-side of (36) is a vortex
stretching term which, as we will now show, also vanishes in d = 2 spatial dimensions.
Let us work in a coordinate system where, locally, uµG = (1, 0). In this coordinate system

we have Ωαµ = δiαδ
j
µεij ω with εij the Levi-Civita tensor and ω a real number. It is now

straightforward to compute

ΩµαΩµβ =
1

2
Ω2P̃αβ (37)

from which
ΩαβΩαµσ

µ
β = 0 (38)

follows.
Using (36), we find that in 2+1 dimensions and under the equations of motion

(∇̃µ − G̃µ)JµG = 0 , (39)

where G̃µ was defined in (124) and JµG is given by

JµG = g
(ρ
s

) (Ω2)n

s2n−1
uµG . (40)

Equation (40) is a covariant version of (7). In obtaining (39) we repeatedly used the fact
that G̃µuµG = 0 and ∇̃αhµν = 0.1 As in the relativistic case, conservation of

JµGh = h(s/ρ,Ω2/s2)suµG (41)

also follows from (36). Moreover, contraction of (36) with εµνρnρ leads to a conserved
JµGH = H(s/ρ,$/s)suµG where $ = nρε

µνρΩµν . Since Ω2 = 1
2$

2 + O(E), JµGh and JµGH
are equivalent up to terms proportional to the equations of motion.

It remains to find a closed and velocity orthogonal Ωµν . The most general U(1) and
Milne invariant closed two-form Ωµν that can be constructed using the Newton-Cartan
data is given by

Ωµν = F̃µν + ∂µ(qnν)− ∂ν(qnµ) , (42)

(up to a multiplicative constant which we set to 1 without loss of generality) where q is a
generic function of the entropy density, s, and particle number density, ρ, and F̃µν is the
Milne invariant field strength defined in (114). Contracting one of the indices of (42) with
the velocity field and using the equations of motion (125) we find

Ωµνu
ν
G =

(
1

ρ

∂P

∂ρ
+
∂q

∂ρ

)
P̃αµ ∂αρ+

(
1

ρ

∂P

∂s
+
∂q

∂s

)
P̃αµ ∂αs+

(
q +

(P + ε)

ρ

)
F (n)
µν u

ν
G . (43)

In the absence of torsion, F
(n)
µν = ∂µnν − ∂νnµ = 0, we find that the right-hand-side of

(43) vanishes for an equation of state of the form

P = P (ρ) (44)

and

q = −
∫

1
∂P
∂µ

∂P

∂ρ
dρ = −µ+ c0(T ) . (45)

1If the torsion tensor is not timelike then G̃µuµG 6= 0. Nevertheless, it is possible to show that the
enstrophy current (40) is conserved, in the sense of (39), as long as a closed two-form Ωµνdx

µdxν orthogonal
to the velocity field exists.
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In the presence of torsion we need to require, in addition, that

ρ = ρ(µ+ c(T )) (46)

(where c0(T ) = −Tc′(T )).
So far we have considered generic flows. In the context of fluid flow at low velocities it

is also interesting to consider subsonic flow where the fluid becomes incompressible, see,
e.g., [28]. In this limit the particle number density becomes constant, so that the equations
of motion reduce to the incompressible Navier-Stokes equations. Put differently, incom-
pressible flow can be thought of as a particular class of solutions to the equations of motion
where the particle number density, and consequently the entropy density, are constant,
and the pressure becomes an independent function of the coordinates. In torsionless, in-
compressible flow, equation (43) is automatically satisfied for an arbitrary choice of q. In
the presence of torsion we must require q = −(P + ε)/ρ.

To relate the covariant expressions (40), (42) and (44) to (5) and (7) we take the
flat, torsionless, spacetime limit of (40) defined in (126). The enstrophy current JµG in
(40) reduces to (7). For incompressible flow, the particle number density, and therefore
the entropy density become constant in which case (40) reduces to (5) up to an overall
constant.

3 Enstrophy from symmetry

As stated in the introduction, it stands to reason that the enstrophy current of hydro-
dynamics is a result of an emergent symmetry of the theory. In what follows, we will
use a recently developed formalism which allows one to construct an effective action for
hydrodynamics [4–6] in order to identify the symmetry associated with enstrophy conser-
vation. We will start with the relativistic enstrophy current for which the effective action
has been studied in detail and then move on to the non relativistic theory where some
extra ingredients are necessary in order to construct the effective action and derive the
symmetry associated with (approximate) enstrophy conservation.

3.1 Relativistic enstrophy from symmetry

An effective action for an ideal charged fluid can be written in terms of a set of dynamical
fields Xµ(σ) and C(σ),

Seff (Xµ , C; βi, Λβ, gµν , Aµ) =

∫ √
−|gij |P (T, µ)dd+1σ . (47)

The function Xµ(σ) may be thought of as a dynamical Eulerian coordinate specifying the
location of the fluid in a target space and C(σ) an equivalent function specifying its phase
under a global U(1) symmetry. The parameters βi and Λβ specify the configuration of the
fluid in the far past, and gµν and Aµ specify the metric and U(1) flavor field of the target
space where the fluid resides. The fields gij , T and µ are defined via

gij(X) = ∂iX
µ∂jX

νgµν(X) , βigijβ
j = −T−2 ,

µ

T
= βi (∂iX

µAµ(X) + ∂iC) + Λβ

(48)
and P is a real function. By computing the stress tensor one finds that P can be identified
with the pressure, T with the temperature and µ with the chemical potential. Other
actions for ideal or inviscid fluids can be found in [29–34]. We have chosen (47) since by

9



SciPost Physics Submission

doubling the fields (and adding appropriate ghosts) the action can be extended to include
non dissipative fluids. We refer the reader to [35] for an extensive discussion.

We claim that the following transformation of the dynamical fields

δXµ =
1

Ts2
Ω2uµ − 2

sp′2
EµΘ− 4

sp′
PµβΩβαa

α +
4

p′
Pµβ∇α

(
1

s
Ωα

β

)
δC =

µ

Ts2
Ω2 −AαδXα ,

(49)

is a symmetry of the action in 2 + 1 dimensions. Here uµ = ∂iX
µβiT , and the remaining

objects are related to uµ, T , µ and P as in section 2. For instance, p′ is the derivative of p
with respect to its argument (see (29)). Further, the symmetry (49) leads to a conserved
current

J ′µ =
Ω2

s
uµ +

4

sp′
ΩµνEν (50)

which we may identify with the enstrophy current (10) with g = 1 and n = 1 once the
equations of motion are satisfied. We will generalize (49) and the associated (50) to obtain
the class of currents (10) shortly.

To see that (49) is indeed a symmetry and leads to (50) let us consider a generic vari-
ation δXµ and δC of the action. The equations of motion for δXµ are energy-momentum
conservation in the target space and the equation of motion for δC is current conservation.
Thus,

δXSeff = −
∫
dd+1σ

√
−|gij |

(
(∇µTµν − FνµJc µ +Aν∇µJµc ) δXν+∇µJµc δC+

(
total

derivative

))
.

(51)
If the transformations δXµ and δC are a symmetry of the action, then δXSeff = 0
independently of the equations of motion. Therefore, if δXµ and δC are symmetries,

(∇µTµν − FνµJc µ +Aν∇µJµc ) δXν +∇µJµc δC = ∇µSµ (52)

with Sµ a local current. The symmetries which will generate the enstrophy current should
lead to Sµ = Jµ up to possible extra terms proportional to the equations of motion. Using
the expression for Jµ in (10) with g = 1 and n = 1 we find

∇µJµ =
1

s2
EΩ2 − 2

sp′2
(EαEα)Θ +

4

sp′
Ωαβa

αEβ +
4

p′
∇α
(

1

s
Ωαβ

)
Eβ − 4∇α

(
ΩαβEβ
p′s

)
.

(53)
Inserting (53) into (52) and solving for δXµ and δC will give us transformations which can
not be written in terms of positive powers of the equations of motion or their derivatives.
To remedy this, we use Sµ = J ′µ which leads to

(Eα − TEuα − TµE′uα)δXα − E′(AαδXα + δC) =

+
1

s2
EΩ2 − 2

sp′2
(EαEα)Θ +

4

sp′
Ωαβa

αEβ +
4

p′
∇α
(

1

s
Ωαβ

)
Eβ .

(54)

(Note that covariance of (54) is ensured due to δC → −δXα∂αΛ under gauge transforma-
tions.) One can check that the δXµ and δC given in (49) satisfy (54).

Symmetries associated with conserved currents constructed from higher powers of Ω2

as in (10), can be obtained in a similar fashion. Using Sµ = Jµ + O(E) in (52) we find

10
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that

δXµ =
(2n− 1)g

Ts2n
(Ω2)nuµ − g′

Ts2n−1ρ
(Ω2)nuµ − 2ng

s2n−1p′2
(Ω2)n−1EµΘ

− 4ng

s2n−1p′
(Ω2)n−1PµβΩβαaα +

4n

p′
Pµβ∇α

( g

s2n−1
(Ω2)n−1Ωαβ

)
,

δC =
(2n− 1)µg

Ts2n
(Ω2)n − µg′

Ts2n−1ρ
(Ω2)n − g′

s2(n−1)ρ2
(Ω2)n −AαδXα ,

(55)

leads to the conserved current

J ′µ = g

(
s

ρ

)
(Ω2)n

s2n−1
uµ + g

(
s

ρ

)
4n

s2n−1p′
(Ω2)n−1ΩµνEν . (56)

For n = 1 and g = 1 we recover (49) and (50) as expected. For completeness we note that

δXµ =
1

T

(
2ḣ

s2
Ω2 − s

ρ
h′ − h

)
uµ − 4ḣ

sp′
PµαΩαβa

β − 2ḣ

sp′2
ΘEµ +

4

p′
Pµβ∇α

(
ḣ

s
Ωαβ

)
,

δC =
µ

T

(
2ḣ

s2
Ω2 − s

ρ
h′ − h

)
− s2

ρ2
h′ −AαδXα

(57)

generate Jµh as defined in (12). In (57) we have defined h′ and ḣ to be the derivatives with
respect to the first and second argument of h respectively.

Unfortunately, neither (49) nor (55) nor (57) seem to provide a physically meaningful
insight into the symmetry responsible for enstrophy conservation. The simplest expression
we were able to extract from (55) is

δXα =
1√
2

4

p′
εαβρuβaρ , δC = −AαδXα , (58)

(up to the equations of motion), obtained by setting n = 1/2 and g = 1. The transfor-

mation (58) is associated with J ′µH = 1√
2

(
$uµ + 2

p′ ε
µαβEαuβ

)
obtained from (25) with

H = 1√
2
$/s. It is unclear whether the divergence of the latter current is sign definite.

So far we have worked with a Lagrange description of the fluid. It is possible to relate
the symmetry (49) to a symmetry of the Eulerian degrees of freedom, uµ, T and µ. This
symmetry can be easily found by considering the pushforwards of the initial state data
through the dynamical degrees of freedom Xµ and C,

βµ = ∂iX
µβi(σ(X)) , Λ̄β = Λβ(σ(X)) + βµ∂µC(σ(X)) (59)

which, under a change δXµ and δC, transform as

δβµ =− LδXβµ , δΛ̄β = −LδXΛ̄β + βµ∂µδC , (60)

where LδX is the Lie derivative in the δXµ direction with δXµ and δC defined in (49).
Using (60) and the definitions of the Eulerian variables in the target space

T =
1√

−βµβνgµν
, uµ = Tβµ , µ = uµAµ + Λ̄β , (61)

the symmetry (49), or more generally (55), acts on the conventional degrees of freedom as

δuµ =− TPµν LδXβν , δT = −T 2uνLδXβν ,
δµ =− µTuνLδXβν − TAνLδXβν − TLδXΛ̄β + uµ∂µδC ,

(62)

while it is inert on the target space sources

δgµν = 0 , δAµ = 0 . (63)

11
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3.2 Galilean enstrophy from symmetry

The procedure described in the previous section for obtaining the symmetry which gen-
erates the relativistic enstrophy current can be readily generalized to Galilean invariant
systems. In what follows we first describe the ingredients required to construct an effective
action for Galilean invariant fluids and then proceed to identify the symmetry associated
with approximate conservation of enstrophy.

3.2.1 A Galilean effective action for hydrodynamics

A Schwinger-Keldysh effective action for Galilean fluids can be constructed from a higher
dimensional relativistic one by equipping the latter with a null Killing vector [36]. This
procedure was carried out in detail in [25]. Here, we will use an alternate construction
similar to the one used to formulate the Schwinger-Keldysh effective action for relativistic
fluids, or any infrared action for that matter. Namely, we identify the symmetries and
dynamical fields associated with the fluid and then construct the most general action
compatible with those symmetries. Since a full construction of the Schwinger-Keldysh
effective action for Galilean fluids is available in [25] and since the various conceptual
hurdles for constructing effective actions for fluids were described in detail in [4–19], we
will be somewhat sparse in our exposition.

In a Newton-Cartan background geometry, the effective action should be invariant
under coordinate reparameterizations, xµ → xµ + ξµ, the U(1) gauge symmetry with
parameter Λ, and Milne boosts with parameter ψν . When acting on the the Newton-
Cartan data, these transformations take the form

δχnµ = Lξnµ ,
δχh

µν = Lξhµν ,
δχn̄

µ = Lξn̄µ + hµνψν ,

δχAµ = LξAµ + ∂µΛ + P νµψν −
1

2
nµψ

2 ,

δχh̄µν = Lξh̄µν −
(
nµP

λ
ν + nνP

λ
µ

)
ψλ + nµnνψ

2 ,

(64)

where ψ2 = ψνψρh
νρ and δχ denotes a target space coordinate reparameterization, a U(1)

gauge transformation and a Milne transformation. The inverse metric h̄µν is defined in
(106b).

The dynamical fields of the Galilean invariant effective action for fluid dynamics are
given by the coordinates Xµ(σ) and a phase C(σ). As is the case for relativistic fluid dy-
namics, the Xµ fields parameterize worldlines of fluid elements. They provide a mapping
between a parameter space specified by the coordinate σi which we refer to as a worldvol-
ume and the space where the fluid elements live in, which we refer to as the target space.
Similarly, C(σ) is the field that captures the local phase of each fluid element. The astute
reader will note that in addition to Xµ(σ) and C(σ), one may have included a field φµ(σ)
which maps Milne transformations from the target space to the worldvolume. Worldvol-
ume quantities which are not Milne invariant could then be rendered as such by modifying
them with appropriate factors of φµ(σ). As we shall see shortly all worldvolume quantities
are explicitly Milne invariant so that φµ(σ) will not appear in the effective action.

The dynamical variables are bifundamental fields and as such transform under the
target space symmetries as well as under the corresponding symmetries induced on the
worldvolume: worldvolume reparameterizations labeled by ξ̂i, worldvolume U(1) gauge

12
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transformations with parameter Λ̂, and worldvolume Milne boosts parameterized by ψ̂i,

δ(χ,χ̂)X
µ(σ) = −ξµ(X(σ)) + ξ̂i(σ)∂iX

µ(σ) ,

δ(χ,χ̂)C(σ) = −Λ(X(σ)) + Λ̂(σ) + Lξ̂C(σ) ,
(65)

with δχ̂ denoting worldvolume transformations. Had we added φµ(σ), we would have
found

δ(χ,χ̂)φµ(σ) = −P νµ (X(σ))ψν(X(σ)) + P νµ (X(σ))(∂iX
ν)−1ψ̂i(σ) + ξ̂i(σ)∂iφµ(σ)− Lξφµ(σ)

(66)
As should be clear from (65), δXµ and δC are both invariant under worldvolume Milne
transformations.

In addition to the dynamical fields, the effective action will depend on the initial
state data which specifies the equilibrium state of the system in the infinite past. This
consists of a timelike Killing vector, βi(σ), specifying the initial velocity and temperature,
a gauge Killing parameter, Λβ(σ), associated with the initial chemical potential, and a
Milne boost one-form ψiβ(σ). Since the system is in equilibrium in the infinite past the
mapping between the target space and worldvolume is trivial. Thus,

δβnµ(t = −∞) = 0 , δβh
µν(t = −∞) = 0 , δβn̄

µ(t = −∞) = 0 , δβAµ(t = −∞) = 0 ,
(67)

where δβ collectively denotes a worldvolume transformation given in (72) with parameters

{βi,Λβ, ψβi }. Worldvolume coordinate reparameterizations and U(1) gauge transforma-
tions acting on the initial data take the form:2

δχ̂β
i = Lξ̂β

i ,

δχ̂Λβ = Lξ̂Λβ − β
i∂iΛ̂ ,

δχ̂ψ
β
i = Lξ̂ψ

β
i − Lβψ̂i + ψ̂i .

(68)

Notice that βi and Λβ are invariant under Milne boosts while ψβi transforms non trivially
under it.

The local effective action for Galilean fluids, Seff , is constructed from worldvolume
and target space invariant combinations of the dynamical fields and initial state data. In
practice, it is convenient to define the target space invariant quantities

ni(σ) = ∂iX
µnµ(X) ,

hij(σ) = (∂iX
µ)−1(∂jX

ν)−1hµν(X) ,

Ãi(σ) = ∂iX
µÃµ(X) + ∂iC ,

h̃ij(σ) = ∂iX
µ∂jX

ν h̃µν(X) ,

(69)

where the tilde’d quantities

Ãµ =Aµ + uGµ −
1

2
nµu

2
G ,

h̃µν =h̄µν − uGµnν − uGνnµ + nµnνu
2
G ,

(70)

2Note that it is always possible to choose a gauge where the parameters specifying the initial data are
fixed. A common choice is the static gauge where βi = b(1,~0), with b a constant, Λβ = 0 and ψβi = 0.
As a result worldvolume transformations of the initial data will be restricted to a subset preserving the
static gauge. We refrain from choosing a gauge in order to retain an explicitly covariant formulation of
the action.

13



SciPost Physics Submission

with

uµG(X) =
1

βini
βj∂jX

µ , uGµ = h̄µνu
ν
G , u2

G = uGµu
µ
G , (71)

are Milne invariant. Note that had we not used the target space Milne invariant variables
Ãµ and h̃µν in (69), we would have been forced to use φµ to ensure target space Milne
invariance of Ãi and h̃ij . It is the absence of φµ on the right-hand-side of (69) that ensures
that it does not appear in the effective action. It is straightforward to show that the target
space invariant combinations (69) transform under worldvolume reparameterizations and
U(1) gauge transformations induced by the transformations of the dynamical fields (65)
as

δχ̂ni = Lξ̂ni ,

δχ̂h
ij = Lξ̂h

ij ,

δχ̂Ãi = Lξ̂Ãi + ∂iΛ̂ ,

δχ̂h̃ij = Lξ̂h̃ij ,

(72)

and are invariant under worldvolume Milne boosts.
The symmetries on the worldvolume can be maintained by requiring the action to be

a scalar that depends only on U(1) gauge invariant and Milne invariant quantities. At
leading order in derivatives, the unique scalar invariants are

T =
1

βini
, µ = TβiÃi + TΛβ (73)

corresponding respectively to the temperature and the chemical potential. Keeping all
the symmetries intact, we find that the most general effective action for Galilean fluids at
leading order in derivatives is

Seff =

∫
dd+1σ

√
γ P (T, µ) , (74)

where the measure is given by the (Milne invariant) determinant of γij = ∂iX
µ∂jX

ν h̄µν +
ninj and P is a generic function of the temperature T and chemical potential µ.

To get a feel for this formulation of Galilean hydrodynamics let us derive the equations
of motion for (ideal) Galilean fluids by varying the effective action with respect to the
dynamical variables. A generic variation of the effective action (74) is given by

δSeff =

∫
dd+1σ

√
γ

(
P

1
√
γ
δ
√
γ + s δT + ρ δµ

)
(75)

where we have defined

s =

(
∂P

∂T

)
µ

and ρ =

(
∂P

∂µ

)
T

. (76)

In order to write the variations specified in (75) in terms of variations of the dynamical
variables, we first use (73) to write

δT = −TuiGδni ,
δµ = uiGδÃi − µuiGδni ,

1
√
γ
δ
√
γ =

1√
γ̃
δ
√
γ̃ = uiGδni +

1

2
γ̃ijδh̃ij ,

(77)
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where we have defined uiG = Tβi and

γ̃ij = ninj + h̃ij , γ̃ij = uiGu
j
G + hij . (78)

To derive the last expression in (77) we have used

δh̃ij = P̃ ikP̃
j
l δh̄kl−(uGi−niu2

G)P̃ kj δnk−(uGj−nju2
G)P̃ ki δnk , δuiG = −uiGukGδnk , (79)

with u2
G = uGiu

i
G and P̃ ij = hikh̃kj = δij − uiGnj . In writing the generic variations in (77)

we have not included variations with respect to the initial state data βi and Λβ since they
do not depend on the dynamical variables.

Next, consider

δni = ∂iX
µLδXnµ ,

δÃi = ∂iX
µLδXÃµ + ∂iδC ,

δh̃ij = ∂iX
µ∂jX

ν h̃µν

(80)

where LδX is the Lie derivative along δXµ. Inserting (80) into (77) and then into (75) we
find

δSeff = −
∫
dd+1σ

√
γ

((
Eµ + (TE + µE′)nρ

)
δXρ − E′

(
δC + ÃρδX

ρ
))

(81)

up to total derivatives. In writing (81) we have repeatedly used the relation

1
√
γ
∂µ(
√
γ V µ) = (∇µ − Gµ)V µ = (∇̃µ − G̃µ)V µ (82)

with G̃µ defined in (124). Satisfyingly, the expressions for E, E′ and Eµ coincide with
those in (125). We reproduce them here for convenience,

Eµ = P̃αµ ∂αP − ρF̃µαuαG + (P + ε)F (n)
µα u

α
G ,

E = −(∇̃µ − G̃µ)(s uµG) ,

E′ = −(∇̃µ − G̃µ)(ρ uµG) .

3.2.2 Extracting the Galilean enstrophy from symmetry

The transformations of δXµ and δC which generate the symmetry associated with enstro-
phy conservation must satisfy

(Eµ + (TE + µE′)nµ)δXµ − E′(δC + ÃρδX
ρ) = (∇̃µ − G̃µ)Sµ , (83)

with
Sµ = JµG +O(E) . (84)

In 2+1 dimensions the expression in (33) reduces to

Ωαβ∇̃µ(uµGΩαβ) = −2Ωµν∇̃µ
(

1

ρ
Eν

)
+ 2ΩµνF (n)

µρ u
ρ

(
1

ρ
Eν

)
, (85)

and conservation of the enstrophy current defined in (40) reads

(∇̃µ − G̃µ)JµG =
(2n− 1)g

s2n
(Ω2)nE +

g′

ρ s2n−1

(
s

ρ
E′ − E

)
(Ω2)n

− 4ng

s2n−1
(Ω2)n−1Ωαβ∇̃α

(
1

ρ
Eβ

)
+

4ng

s2n−1ρ
(Ω2)n−1ΩαβF (n)

αµ u
µ
GEβ .

(86)
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Defining

J ′µG = JµG +
4ng

s2n−1ρ
(Ω2)n−1ΩµβEβ , (87)

we find

(∇̃µ − G̃µ)J ′µG =
(2n− 1)g

s2n
(Ω2)nE +

g′

ρ s2n−1

(
s

ρ
E′ − E

)
(Ω2)n

+
1

ρ
Eβ∇̃α

(
4ng

s2n−1
(Ω2)n−1Ωαβ

)
+

4ng

s2n−1ρ
(Ω2)n−1ΩαβF (n)

αµ u
µ
GEβ .

(88)

It is now straightforward to show that

δXµ =
1

T

(2n− 1)g

s2n
(Ω2)nuµG −

g′

Tρ s2n−1
(Ω2)nuµG

+
1

ρ
P̃µβ ∇̃α

(
4ng

s2n−1
(Ω2)n−1Ωαβ

)
+

4ng

s2n−1ρ
(Ω2)n−1ΩαµF (n)

αν u
ν
G ,

δC =
µ

T

(2n− 1)g

s2n
(Ω2)n − µ

T

g′

ρ s2n−1
(Ω2)n − g′

ρ2 s2n−2
(Ω2)n − ÃρδXρ

(89)

satisfy the condition (83) with Sµ given by J ′µG , defined in (87). For completeness we note
that

δXµ =
1

T

(
2ḣ

s2
Ω2 − s

ρ
h′ − h

)
uµG +

4

ρ
P̃µβ∇̃α

(
ḣ

s
Ωαβ

)
+

4ḣ

sρ
P̃µβΩαβF (n)

αν u
ν
G

δC =
µ

T

(
2ḣ

s2
Ω2 − s

ρ
h′ − h

)
− s2

ρ2
h′ − ÃαδXα

(90)

lead to the conservation of JµGh defined in (41).

4 Conclusions

In this work we used the recently discovered effective action for hydrodynamics to deter-
mine the approximate symmetry responsible for the approximately conserved enstrophy
current in 2 + 1 dimensional relativistic and Galilean flow. In the process of our analysis,
we have identified a mechanism which allows for the construction of the enstrophy current
and used it to generalize previously known results regarding its form.

The mechanism we identified for constructing the enstrophy current relies on the ex-
istence of a closed two-form Ωµνdx

µdxν orthogonal to the velocity field, Ωµνu
ν = 0, at

least under the equations of motion. Once such a two-form is available the existence of the
enstrophy current is guaranteed. We believe that this mechanism can be used to construct
an enstrophy current for fluid flows which are not relativistic or Galilean. Fluid dynamics
in the absence of boost invariance has been studied recently in [37–39] and may be relevant
to a variety of physical systems, see, e.g., [40].

Our current analysis neglected dissipation, which, in the Galilean case, leads to a non
trivial but sign definite change in enstrophy charge over time. This fact, together with
conservation of energy, is a key ingredient in the argument leading to the inverse energy
cascade in turbulent flow (see Appendix A). It is not known whether a relativistic enstro-
phy current whose divergence is sign (semi-)definite exists. In order to study this problem
one would start with Jµ in (10) (setting, say, n = 1) and consider O(∂3) corrections to
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it such that its divergence is sign (semi-)definite up to O(∂4). The existence of a rela-
tivistic enstrophy current with a sign (semi-)definite divergence may have implications for
relativistic turbulence in 2 + 1 dimensions.

In the context of holography, the existence of an enstrophy current for conformal 2 + 1
dimensional fluid flow implies its dual manifestation in asymptotically AdS4 black brane
geometries. More precisely, as is the case for entropy, one may expect that asymptotically
AdS4 black branes possess a geometric quantity that captures enstrophy conservation in
the boundary theory. There are several approaches to this problem in the literature [41–43]
which may serve as an excellent starting point for fully addressing this issue.
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A The non relativistic enstrophy charge

As discussed in the main text it is straightforward to argue that the enstrophy is conserved
in inviscid 2 + 1 dimensional incompressible flow. Consider the Navier-Stokes equation for
incompressible fluids in the absence of random forces

∂t~v + ~v · ~∇~v + ~∇P =
1

R
∇2~v ,

~∇ · ~v = 0 ,
(91)

where R is the Reynolds number, P is the pressure, and ~v is the velocity field. We start
by making two observations. By dotting the Navier Stokes equation into ~v we find that

1

2
∂tv

2 +
1

2
~∇ ·
(
~vv2
)

+ ~∇ (~vP ) =
1

R

(
−1

2
ωijω

ij +∇j
(
vi∇jvi − vi∇ivj

))
(92)

where
v2 = ~v · ~v , ωij = ∂ivj − ∂jvi , (93)

and we have used the incompressibility condition. Integrating (92) we find

∂tE = − 1

R
W (94)

where

E =
1

2

∫
√
g v2ddx, and W =

1

2

∫
√
g ωijω

ijddx (95)

are referred to as the total energy and the total enstrophy respectively. In obtaining
(94) we have assumed that the fluid is on a manifold without a boundary. We will not
consider manifolds with boundaries in the remainder of this work. When R−1 = 0 then,
unsurprisingly, energy is conserved.

To understand the role of enstrophy in establishing the dynamics of the theory, let us
consider the equation of motion for ωij . By taking a derivative of (91) we obtain

∂tωij +∇k
(
vkωij

)
+

1

2

(
ωikσ

k
j + σikω

k
j

)
=

1

R
∇2ωij (96)
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where
σij = ∇ivj +∇jvi . (97)

The third term from the left is referred to as a ‘vortex stretching’ term and it vanishes in
2 spatial dimensions. Indeed, let

ωikσ
k
j + σikω

k
j = εijs (98)

and also
ωij = εijω . (99)

Then,
s ∝ εijωikσkj = ωεijεikσ

k
j = σjj = 0 (100)

where the last equality follows from the incompressibility condition. The enstrophy pro-
duction equation reads

∂tW =

∫
√
g ωjiω

i
kσ

kjddx− 1

R
P (101)

where P is the Palinstrophy,

P =

∫
√
g∇kωij∇kωijddx . (102)

In the presence of the vortex stretching term the rate of change of W is not sign
definite. In this case experimental results and indirect theoretical arguments lead to

lim
R−1→0

W

R
= e0 (103)

where e0 is a constant. With some work, (see, e.g., [44]) one can show that (103) leads
to the Kolmogorov energy cascade in turbulent flow. Once the vortex stretching term is
absent, it is easy to show that ∂tW ≤ 0. Since the enstrophy is a positive quantity, it can
not diverge if it were initially finite and (103) is no longer valid. Instead one finds, via
(94), that energy will be conserved at large Reynolds number leading, eventually, to an
inverse energy cascade (and also a direct enstrophy cascade) in two dimensional turbulent
flow.

We also note in passing that higher moments of the enstrophy are also monotonically
decreasing and conserved when R−1 = 0, viz.

∂t

∫
√
g
(
ωijω

ij
)n
d2x = − n

R

∫
√
g
(
ωijω

ij
)n−1∇kωij∇kωijd2x . (104)

whenever n > 0. Alternately,

∂t

∫
√
g h
(
ωijω

ij
)
d2x = − 1

R

∫
√
g h′

(
ωijω

ij
)
∇kωij∇kωijd2x . (105)

is negative as long as h is a monotonically increasing function.

B Newton-Cartan geometry and hydrodynamics

Galilean invariant dynamics in a curved background, and Galilean invariant hydrodynam-
ics in particular, is properly described by Newton-Cartan geometry. In what follows we
will briefly summarize key elements of the Newton-Cartan formalism developed in [45] and
then use it to recast Galilean hydrodynamics in a manifestly covariant form. See [27].
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B.1 Newton-Cartan geometry

In d+ 1 spacetime dimensions, the independent Newton-Cartan background data can be
taken to be the set (nµ, h

µν , Aµ, n̄
µ), where nµ is a nowhere vanishing one-form which

defines the local time direction, hµν is a rank d positive semi-definite symmetric tensor
which satisfies hµνnµ = 0 and can be seen as defining the (inverse) spatial metric, Aµ is a
U(1) gauge field associated with the conservation of particle number, and n̄µ is related to
nµ via

n̄µnµ = 1. (106a)

Based on the Newton-Cartan data, one can define a positive-definite spacetime metric γµν

(and its inverse γµν), a rank d (spatial) metric h̄µν and a projector Pµν via

γµν = n̄µn̄ν + hµν , h̄µν = γµν − nµnν , Pµν = hµρh̄νρ = δµν − n̄µnν . (106b)

Note that h̄µν n̄
ν = 0 and Pµν n̄

ν = Pµνnµ = 0.
In Newton-Cartan theory different choices of n̄µ are equivalent. This is a result of the

requirement that the underlying theory is Galilean invariant. In practice, we require that
the action is invariant under a transformation n̄µ → n̄′µ obtained via

n̄′µ = n̄µ + hµνψν (107)

with ψν a transverse one-form, ψν n̄
ν = 0. The transformation (107) is referred to as a

Milne boost. The action of Milne boosts on the metric and gauge field is given by

h̄′µν = h̄µν − (nµP
ρ
ν + nνP

ρ
µ)ψρ + nµnνh

αβψαψβ ,

A′µ = Aµ + P νµψν −
1

2
nµh

νρψνψρ ,
(108)

with hµν and nµ invariant. Invariance under Milne transformations is a key requirement
used to construct Galilean invariant theories in a curved background.

The covariant measure appearing in spacetime integrals is dd+1x
√
γ, where γ =

det(γµν), which can be shown to be Milne invariant. The derivative that reduces to a
boundary term under the integral is given by the combination

(∇µ − Gµ)V µ =
1
√
γ
∂µ(
√
γ V µ) , (109)

where we have defined
Gµ = Tαµα = −F (n)

µα n̄
α (110)

with
F (n)
µν = ∂µnν − ∂νnµ . (111)

A covariant derivative ∇µ can be constructed by requiring compatibility with the
Newton-Cartan data,

∇µnν = 0 , ∇µhαβ = 0 , (112)

and restricting the torsion to be timelike, h̄λρT
λ
µν = 0,

Γλµν = n̄λ∂νnµ +
1

2
hλρ

(
∂µh̄νρ + ∂ν h̄µρ − ∂ρh̄µν

)
+

1

2
hλρ (nµFνρ + nνFµρ) ,

T λµν = Γλµν − Γλνµ = −n̄λF (n)
µν ,

(113)

where we have defined the field strength

Fµν = ∂µAν − ∂νAµ (114)
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and we used the conventions

∇µV α
β = ∂µV

α
β + ΓαρµV

ρ
β − ΓρβµV

α
ρ . (115)

Our construction closely follows that of [45]. A more general analysis can be found in [46].
The connection (113) is not Milne invariant. Unfortunately, using only the Newton-Cartan
data it is not possible to construct a connection that is both Milne invariant and gauge
invariant, see [45]. As we will see shortly, when discussing the hydrodynamic theory, one
can use the velocity field as additional data in order to construct Milne and U(1) invariant
connections, see [27].

B.2 Fluids on a Newton-Cartan background

Let us now consider a fluid in a curved Newton-Cartan background geometry. Following
[27], we equip our theory with a Milne-invariant timelike velocity vector field uµG normalized
such that uµGnµ = 1. We also define the lower index counterpart of uµG and its norm as

uGµ = h̄µνu
ν
G , u2

G = uGµu
µ
G (116)

which transform under Milne boosts as

u′Gµ = uGµ − P νµψν + nµh
νρ(ψνψρ − uGνψρ) ,

(u′G)2 = u2
G + hµνψµψν − 2hµνuGµψν .

(117)

With these quantities at hand, it is straightforward to construct the Milne invariant com-
binations

h̃µν = h̄µν − (uGµnν + uGνnµ) + u2
Gnµnν ,

Ãµ = Aµ + uGµ −
1

2
nµu

2
G ,

P̃µν = hµρh̃ρν = δµν − uµGnν ,

(118)

which satisfy h̃µνu
ν
G = 0 and P̃µνu

ν
G = P̃µνnµ = 0.

Using the velocity field uµG we can define a Milne and U(1) gauge invariant connection
compatible with the Newton-Cartan data

Γ̃λµν = uλG∂νnµ +
1

2
hλρ

(
∂µh̃νρ + ∂ν h̃µρ − ∂ρh̃µν

)
+

1

2
hλρ

(
nµF̃νρ + nνF̃µρ

)
,

T̃ λµν = Γ̃λµν − Γ̃λνµ = −uλGF (n)
µν ,

(119)

where we have defined the field strength

F̃µν = ∂µÃν − ∂νÃµ . (120)

The constitutive relations for Galilean fluids at leading order in a derivative expansion
for the Milne-invariant stress-energy tensor T µν , energy current Eµ and particle number
current Jµc are

T µν = P hµν + ρ uµGu
ν
G +O(∂) ,

Eµ = ε uµG +O(∂) ,

Jµc = ρ uµG +O(∂) ,

(121)

where P is the pressure function, ρ is the particle number density, and ε is the energy
density. All these quantities are generic functions of the (Milne-invariant) temperature,
T , and chemical potential, µ, and satisfy the thermodynamic relations

ε = Ts+ µρ− P , dε = Tds+ µdρ (122)
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where s is the entropy density.
The equations of motion for Galilean fluids in a curved Newton-Cartan background

are captured by the conservation of the stress-energy tensor and currents

(∇̃ν − G̃ν)T µν =− hµρF (n)
ρν Eν ,

(∇̃µ − 2G̃µ)Eµ =− 1

2

(
h̃ρµT µν∇̃νuρG + h̃ρνT µν∇̃µuρG

)
,

(∇̃µ − G̃µ)Jµc =0 .

(123)

Here,
G̃µ = T̃αµα = −F (n)

µα u
α
G , (124)

and ∇̃µ is the covariant derivative defined with the Milne invariant connection (119).
See [27]. The leading order equations of motion for Galilean fluids can be obtained by
inserting the expressions (121) in (123). After some massaging, one can rewrite these
equations in the form Eµ = 0, E = 0, and E′ = 0, where

Eµ = P̃αµ ∂αP − ρF̃µαuαG + (P + ε)F (n)
µα u

α
G ,

Ẽ = −(∇̃µ − G̃µ)(s uµG) ,

Ẽ′ = −(∇̃µ − G̃µ)(ρ uµG) .

(125)

By taking the flat spacetime limit

nµ = (1, 0) , hµν = δijδµi δ
ν
j , uµG = (1, vi) , Aµ = 0 , (126)

where vi is the usual fluid velocity in Cartesian coordinates and i = 1, . . . d label the
spatial coordinates, equations (125) reduce to the conventional Euler equation, continuity
equation and entropy conservation.
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