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Abstract

We unveil a mechanism for generating oscillations with arbitrary multiplets
of the period of a given external drive, in long-range interacting quantum
many-particle spin systems. These oscillations break discrete time translation
symmetry as in time crystals, but they are understood via two intertwined
stroboscopic effects similar to the aliasing resulting from video taping a single
fast rotating helicopter blade. The first effect is similar to a single blade ap-
pearing as multiple blades due to a frame rate that is in resonance with the
frequency of the helicopter blades’ rotation; the second is akin to the optical
appearance of the helicopter blades moving in reverse direction. Analogously
to other dynamically stabilized states in interacting quantum many-body sys-
tems, this stroboscopic aliasing is robust to detuning and excursions from a
chosen set of driving parameters, and it offers a novel route for engineering
dynamical n-tuplets in long-range quantum simulators, with potential appli-
cations to spin squeezing generation and entangled state preparation.

1 Introduction

The field of dynamical stabilization has a long tradition tracing back to the Kapitza
pendulum in the mid 60s [1]: a rigid rod can be stabilized in an inverted position by
parametrically driving its suspension point with a tuned oscillation amplitude and at high
frequency. The working principle of a dynamically stabilized upside-down pendulum is
the building block for realizing periodic motion in atomic physics, plasma physics and in
the theory of dynamical control in cybernetical physics. Periodic drives are a versatile
tool that can be employed to stabilize systems in configurations prohibited at equilibrium.
Applications in the quantum domain range from cold atoms to trapped ions [2–9]: a drive
with large amplitude and fast frequency can stabilize an entire band of excitations, turning
the dynamics of a collective mode from a runaway trajectory into a periodic orbit. In this
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work, we propose a flexible route to engineer periodic dynamical responses characterized
by arbitrary integer fractions of the period of the drive, relevant for a broad class of
quantum many-body simulators.

Periodic dynamics in isolated many-particle systems, can be also found in the absence
of an external drive. Examples range from quantum ’scars’ [10–14] to the dynamical
confinement of correlations [15–21] and encompass the role of dynamical symmetries [22–
26] in evoking persistent temporal oscillations. The quest for time translation breaking
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Figure 1: [Color Online] The top left figure shows the classical stroboscopic dynamics for
an n = 1 resonance with (t1, t2) = (2.1, 0.005). The black line shows the H1 trajectory
with period τ = nt1. In the region labeled “Forward” the stroboscopic dynamics appear
to move forward along this trajectory (analogous behaviour holds for the region labeled
“Backward”). This apparent reversal of motion is equivalent to the stroboscopic aliasing
effect observed when the frame rate of a camera is faster than the rotation rate of a
helicopter blade. The top right figure shows example of an n = 2 resonance with (t1, t2) =
(1.1, 0.05), and it contains an inset of the exact stroboscopic quantum dynamics that
displays the n = 2 subharmonic response. The cartoon depicts an example of stroboscopic
aliasing effects that occurs when the frame rate of the camera is n = 3 − |ε| times the
rotation rate of the blade.

in periodically driven quantum systems [27–29] has recently morphed into the search for
quantum time crystals [30–33]. A discrete time crystal (DTC) occurs when the discrete
time translation symmetry of a periodically driven system is spontaneously broken into a
smaller symmetry subgroup. One of the earliest identified examples of DTC occurs when a
BEC bounces on a mirror that is driven at a resonance of a single particle trajectory [34–36]
and illustrates the role of interactions in breaking discrete time translation symmetry.
In this example, a 1D BEC is trapped between an infinite barrier on the right and a
linear ramp potential on the left. The linear ramp potential is driven at a frequency ω
and the BEC oscillates at a frequency ω/2 [34] by rolling up and down the ramp and
bouncing off the wall. The now iconic example [37, 38] of DTC occurs when the spins
of a disordered interacting spin chain are flipped at periodic intervals, and their local
magnetization oscillates with a period twice the one of the spin flips. In this model, the
stability of the time crystalline behaviour is provided by the extensive set of quasi-local
integrals of motion which are characteristic of many-body localized phases occurring at
strong disorder [39]. Since original experiments in trapped atomic ions and in nitrogen-
vacancy centers [40,41], many other mechanisms for time crystals have been proposed [42–

2



SciPost Physics Submission

53] and observed [54–58]. In all of these systems, the periodic dynamics are split into two
parts: the natural dynamics of a system that possesses a Zn symmetry, and a kick process
that sequentially switches among the n symmetry sectors. An n-period DTC (or ‘n-tuplets
dynamics’) occurs since it takes n of such kick processes to bring the system back to its
original configuration [59].

In this work we show how to engineer dynamics with arbitrary n-tuplets that are
not distinguished by the sectors of a Zn symmetry. Differently from time crystals, their
stability emerges as a cooperative effect between the natural dynamics and the kick process.
Subharmonic response with any value of n can be generated provided that the kick period
is in resonance with the nth harmonic of a collective mode, and this collective mode remains
stable, though deformed, during the kicked process. This results in stroboscopic dynamics
which display period-n oscillations between n emergent dynamical fixed points.

By considering the kick akin to the sampling performed by a video camera, we iden-
tify this subharmonic response as similar to a type of stroboscopic aliasing that occurs
when filming a single blade helicopter: when the helicopter blade is rotating at the nth

subharmonic frequency of the camera’s frame rate, its video will appear to have n blades.
Unlike the sampling performed by the camera, the kick acts on the many-body system
increasing or decreasing the frequency of the system. This results in another stroboscopic
aliasing effect in which the apparent n stationary blade appear to slowly move forward
or backwards depending on if the blade frequency was increased or decreased (cf. with
Fig. 1). We show (in Section 2) that for a general class of kicks, both forward and back-
ward aliasing appears and generates a set of n stroboscopic fixed points that stabilize the
subharmonic response. Stroboscopic aliasing produces also a set of n unstable dynamical
fixed points which we argue could be used for generating spin squeezing and entangled
states.

Like the subharmonic response of the many body localized DTC, the stroboscopic alias-
ing subharmonic response is stable to quantum fluctuations and many body perturbations.
Unlike the DTC, the subharmonic response discussed here is also stable to dissipation and
strong interactions, both of which destroy many body localization and the stability it pro-
vides for the DTC. Finally, unlike previously identified subharmonic responses that are
stable at large interactions [43], stroboscopic aliasing does not require a symmetry present
in the dynamics. These aspects of the stroboscopic aliasing subharmonic response are
discussed in Section 3.

2 Stroboscopic Aliasing.

2.1 Model

We consider a long-range interacting Ising model [60–64] in which for m cycles the unitary
evolution operator, U(m) = (U1U2)

m, is applied to the state of the system. Here U1

and U2 correspond to quantum evolutions at two different couplings strengths, resulting
effectively in a periodic kick of the interactions. We define Ua as a unitary generated by
the following hamiltonian

Ha = −
N∑
k=1

σxk +
Λa

2N1−α

N∑
k,j=1

σzkσ
z
j

|k − j|α
, (1)

where N is the number of spin-halfs, ~σk, which live on a one dimensional lattice, and the
unitaries are evolved for different times t1 and t2 and for different interaction strengths Λ1

and Λ2 (i.e. Ua = eitaHa , with a = 1, 2). The Kac rescaling factor with N1−α is to ensure
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Figure 2: Stroboscopic classical Poincaré section (top) and exact stroboscopic quantum
dynamics (bottom) for N = 500, Λ1 = 10, Λ2 = 0: with (t1, t2) = (0.35, 0.2) (left), and
(0.3, 0.1) (right). The color (brightness) in the top plots distinguishes the initial state.
The top plot depicts the emergent classical fixed points for n = 6 (left), and n = 3 (right).
In the bottom plots, we show the n = 6 and n = 3 subharmonic oscillations due to U1

moving between the different emergent fixed points. |J | is plotted to illustrate that the
fixed points stabilize the system against quantum dephasing. In the top left Poincaré plot,
we have also highlighted the n unstable fixed points that generically occur in addition to
the stable fixed points.

the extensivity of the hamiltonian in the thermodynamic limit [65]. The subharmonic
response emerges when t1 is in resonance with a collective mode of H1 and t2 � t1.
Focusing our attention to this limit, we will refer to U2 as the kick.

The emergent subharmonic response is most clearly explained in the α = 0 infinite
range limit in which the model reduces to the Lipkin-Meshkov-Glick (LMG) model [66–68].
In the large N limit, dynamics reduce to the motion of the collective magnetization Jα =
1
N

∑
i σ

α
i [69]. In the LMG model, each of the N spins interact with all the others

with the same ferromagnetic coupling strength. Such permutational symmetry allows
for efficient quantum many body simulations of the model, and admits an exact mean-
field solution in the thermodynamic limit. Furthermore, the model represents an instance
of solvable quantum phase transition in an all-to-all connected spin model, between a
paramagnet and a ferromagnet, upon decreasing the value of the transverse field along
x̂ (cf. Eq. (1)) below a critical point. The exact mean-field solvability of the problem
permits restricting dynamics to a few classical variables. This results from the all-to-all
nature of the interaction combined with the classical nature of the collective spin when
its length grows for N → ∞. The phase space of the collective mode (or magnetisation)
has conjugate variables given by z (the projection of the spin onto the z axis) and by the
phase φ of the spin in the x-y plane.

2.2 Subharmonic response

We now briefly recall the dynamical stability properties of such classical phase space,
which will be relevant for the mechanism of stroboscopic aliasing at the centre of this
work. The non-linear classical dynamics of H1 are integrable and can display a separatrix
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for strong enough Λ1. When t1 and t2 are large compared to the inverse of the spin
coupling strengths, the classical dynamics has a chaotic structure in the same universality
class as the standard map [70]. When t2 is small, most of the integrable trajectories of H1

remain unchanged except for when the kick frequency is in resonance with a harmonic of
a trajectory of H1; in this case, t1 ≈ τ/n, where τ is the period of a trajectory of H1.

When this condition is met for an integer n > 1, the dynamics display persistent
subharmonic oscillations, and a few instances are shown in Fig. 1 and Fig. 2 (with Λ1 = 10
and Λ2 = 0). To understand why these oscillations occur and to assess their stability, we
will first work in the limit Λ2 = 0, and turn our attention to the first plot of Fig. 1
where we have shown a set of U(m) stroboscopic trajectories near an emergent fixed point
with a n = 1 resonance. There we have also plotted the resonant (n = 1) trajectory of
H1 in black. Since t1 = τ(E), U1 completes one period of the trajectory and evolves a
spin initialized on this trajectory back to its initial point. Thus, ignoring for the moment
1/N quantum corrections (see [71] and the footnote 1), we can approximate U1 ≈ 1 for
initial states on this resonant trajectory. Similarly, when initial states start on an H1

trajectory with period slightly less than t1, they appear to move slightly forward along
the trajectory by a time t1 − τ . Again, we can approximate U1(t1) ≈ U1(t1 − τ) when U1

acts in this region of phase space. Similarly when t1 < τ , the state appears to move slightly
backwards by a time τ − t1 and we can approximate U1(t1) ≈ U †1(τ − t1). This inspires
us to label the trajectories with τ < t1 as ‘forward’ trajectories and the trajectories with
τ > t1 as ‘backward’ trajectories. This apparent forward and backward motion is the
same stroboscopic aliasing effect that occurs when video taping a helicopter blade with a
frame rate similar to the rotation frequency.

We now consider the action of the U2 kick. For Λ2 = 0, the kick is a Jx rotation, and
in the region of phase space shown in the first plot of Fig. 1, a Jx rotation increases z and
keeps φ approximately constant. Therefore, when z > 0 a spin on a forward trajectory
is kicked towards the backward trajectories, while when z < 0, a spin on a backwards
trajectory is kicked towards the forward trajectories. Thus, in this region of phase space,
the interplay of stroboscopic aliasing and the kick causes the spin to switch back and forth
between the forward and backward trajectories and creates a new stroboscopic fixed point.

When the resonance condition occurs for n > 1 a similar description holds up to a
few subtleties. First, U1 only completes a fraction (1/n) of a trajectory. Therefore, we
should define the forward and backward trajectories based off the classical trajectories of
the unitary, U ′1 = (U1U2)

n−1U1. In the perturbative limit of small t2, the classical periods
and trajectories of U ′1 will only be slightly shifted from the LMG trajectories, and we
can follow similar arguments as above. The dynamics defined by U ′(m) = (U ′1U2)

m will
then have a similar fixed point structure and trajectories as shown in Fig. 1, but will only
capture the dynamics when looking every n steps of U . Looking at every step, we see
that U will shift the fixed point and resonant trajectories of U ′ to n different U ′ fixed
points in phase space before returning to the original U ′ fixed point. This shows that, at
the resonances, there must be n stroboscopic fixed points of the U ′ dynamics, and this
is confirmed in Fig. 2. Since these are fixed points of the U ′ dynamics, the U dynamics
display a period-n oscillation due to U moving the spin between the n different fixed points
of U ′. In the analogy to stroboscopic aliasing, this subharmonic response is similar to a
filmed single blade helicopter apparently showing multiple n blades when the frame rate
1/t1 is n times the frequency of the helicopter 1/τ .

In addition to the n stroboscopic stable fixed points, a set of n unstable fixed points

1The commutation relations between the angular momentum components of the collective magnetiza-
tion, vanish as 1/N for large N ; when restored, they reintroduce subleading quantum effects on top of the
classical motion of the collective mode.
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also occur (See Fig. 2). These unstable fixed points separate the trajectories around the
stable stroboscopic aliasing fixed points from each other and from the regular off-resonant
dynamics. In the conclusion we speculate that these unstable fixed points could be used
for squeezing and generation of entangled states.

Figure 3: In this figure we demonstrate the stability of the n = 2 stroboscopic aliasing
subharmonic oscillations to variation of hamiltonian parameters. The two panels are for
α = 0 and are computed using exact quantum dynamics. They show the order parameter
maxf Jy(f) discussed in the text as a function of Λ2, t2(left) and t1 and the initial phase
φ (right). In these plots, the brightest yellow corresponds to Jy(f) = 1, while the darkest
blue to Jy(f) = 0.

3 Stability

3.1 Stability to quantum fluctuations

. Unlike the stroboscopic aliasing that occurs while filming helicopters, the stroboscopic
aliasing subharmonic response is actively stabilized by the interplay between aliasing and
kicking, and it does persist when the drive parameters are slightly detuned. First, we
discuss the stability of stroboscopic aliasing to the accumulation of quantum fluctuations
in the course of long-time dynamics. In the bare LMG model H1, fluctuations lead to
the collapse of periodic oscillations [72], while in the exact [73] numerical calculations, we
find that such collapse does not occur for the aliasing subharmonic response. This can
be understood in a semiclassical picture where quantum fluctuations are captured by a
quantum diffusion process that spreads the wave function along the conservative classical
trajectory [74]. Collapse of periodic oscillations occurs when the diffusion process reaches
a steady state with the wave function completely spread out along the periodic trajectory
performed by the classical dynamics.

For the stroboscopic aliasing subharmonic response, the steady state contains an oscil-
lation that moves the spin between the n dynamical fixed points. These oscillations remain
quantum because the wave function remains localized around these fixed points. Quali-
tatively, this is expected by regarding quantum corrections as quantum jumps that move
the spin off of its classical trajectory. In the large N limit, these jumps are exponentially
suppressed [74], and so they can only move a spin within the well of an emergent fixed
point, but not between them. Thus, we expect that quantum corrections cannot spread
the state between the different stable emergent fixed points and that the subharmonic
response to be robust to quantum fluctuations. This is confirmed by the stability of the
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subharmonic response after m = 500 oscillations, and the dynamics of |J |2 =
∑

α 〈Jα〉
2,

which shows that spins move along the surface of the Bloch sphere (See Fig. 2).
Therefore, one should expect the stroboscopic aliasing subharmonic response to be

stable to variations in ta and Λa as long as they only deform the emergent fixed point
structure. To test the extent of this stability, we focus on the n = 2 case shown in Fig. 1
and work with an initial state completely polarized along the Jy direction. As shown
in the same figure, the subharmonic response is observed in oscillations of Jy between
1 and −1. We therefore use the Fourier spectrum, Jy(f) = 1

M

∑
n=1 e

−ifnJy(n) of the
y component of the spin to asses the stability of the stroboscopic aliasing subharmonic
response. When oscillations are stable for long times, the discrete Fourier spectrum, Jy(f)
will be singularly peaked around f = π. Thus, similar to [49], we take maxf Jy(f) as our
order parameter for the n = 2 stroboscopic aliasing oscillation phase.

A phase diagram of this order parameter in the t2 and Λ2 parameter space is shown
in Fig 3. The pronounced stability to variation in Λ2 reflects the fact that any U2 that
connects the forward and backward trajectories in this region of phase space is sufficient
to stabilize the fixed point there. When t2 becomes large, the majority of the resonant
trajectories around the fixed points become chaotic and the phase is destroyed. Fig 3 also
shows that the phase is stable to variations in t1. This is because there is a continuum of
periods with τ = 2t1 which can be in resonance with U1.

3.2 Stability to many body quantum fluctuations

Up to now, we have discussed the limit of α = 0 in the hamiltonian (1). In this case,
dynamics are well approximated by the motion of a single large spin, and the evolved states
are constrained to a Hilbert space where the spins at different sites are indistinguishable by
permutation symmetry. This Hilbert space has only N states and does not fully reflect the
many body nature of a realistic experiment. Furthermore, several exactly solvable mean-
field limits can encounter severe modifications when higher-point cumulants can build as
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Figure 4: In this figure we demonstrate the stability of the n = 2 stroboscopic aliasing
subharmonic oscillations to many body perturbations. The figure shows the order param-
eter maxf Jy(f) as a function of α for a few values of N . The insets show Jy(t) at the
points indicated by the arrows. Simulations are preformed using the DTWA and evolve
an initial state polarized in the ŷ direction under the hamiltonian (1) in one dimension.
We evolve for m = 500 periods and compute Jy(f) over this time window.
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a result of genuine many-body interactions. This is of particular importance in view of
assessing the stability of the novel dynamical regime discussed so far, and for extensions
to trapped ions experiments, where the long-range nature of the spin-spin interactions is
unavoidably present. We therefore study the robustness of the subharmonic response at
finite α. We use the Discrete Truncated Wigner Approximation (DTWA) which yields
accurate results in long-range interacting models [75–81]. DTWA evolves the dynamics
according to classical equations of motion, but treats exactly quantum fluctuations in the
initial state by sampling over a discrete Wigner distribution [74].

We again compute maxf Jy(f) and the results are shown in Fig. 4. For N = 100,
quantum diffusion occurs on observable time scales. As shown in the inset and discussed
above for α = 0, this decreases the amplitude of the subharmonic response but does not
result in a complete decay. For N = 200, our numerics show that, up to computable time
scales, the oscillations are almost perfect up to α = 0.2 at which the subharmonic response
starts to slowly decay. This indicates that for large values of α, many body effects relax
the oscillations before quantum diffusion in the collective Hilbert space occurs. As we
increase N , this critical α grows to larger values indicating that these many body effects
are a finite size effect and are suppressed at large N .

This result is consistent with previous results in driven long range interacting systems
[9, 47, 63, 64, 82], and can be understood by a suppression of spin waves [9, 62–65, 83–88].
In the α = 0 limit, spin waves are not excited due to permutation symmetry, while for
finite α, spins waves can be produced. In Ref. [64], they found that the generation of spin
waves are suppressed by a factor small in Λa/N

1−α when α < 1. This suggests that the
α < 1 dynamics are stable to many body perturbations for times up to N1−α/(maxa Λa),
and that the stability of Stroboscopic aliasing increases with N as shown in Fig 4. While
the DTWA numerics cannot identify the critical value in the thermodynamic limit, they
do show that oscillations are stable for finite α, finite N and within observable time scales.
The stroboscopic aliasing is therefore not a fine tuned point in parameter space, rather, it
shows robustness to the inclusion of long-range spin-spin interactions, relevant in trapped
ions implementations. In this respect, it survives, for times accessible to DTWA, a purely
mean-field description of dynamics.

3.3 Generality and stability to dissipation

. We believe that the stroboscopic aliasing subharmonic response discussed in this work
is a general phenomenon provided a few requirements are satisfied. The collective mode
should have only one dominant frequency, otherwise the kick cannot be in resonance with
a single period. Furthermore, the kick must deform the collective mode, although not
completely destroy it. The trajectory of the deformed collective mode should cross the
bare trajectory in two points since this will allow for the dynamics of U ′1 = (U1U2)

n−1U1

to cross back and forth across the resonant trajectory. Notice that these requirements are
easily satisfied when the classical phase space of the collective mode is two dimensional
because this guarantees regular trajectories with only one frequency. Despite such required
regularity in the collective mode dynamics, integrability is not required as demonstrated
by the robustness of the subharmonic response to many body perturbations at finite α.

Furthermore, the dynamics of the collective mode are not required to be conservative
either. We demonstrate this aspect by considering the effect of a global spin decay, which
occurs naturally in cavity QED experiments [89–92]. The effect of global spin decay is
modeled via Lindblad evolution:

∂tO = i [Ha, O] + κ
(
2J+OJ− −

{
J+J−, O

})
(2)

where the Lindblad jump operators, J±, are the total spin raising and lowering operators,
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Figure 5: Stroboscopic aliasing subharmonic response in the presence of collective spin
emission. Depending on initial conditions an n = 4 or an n = 3 subharmonic oscillation
can occur. The inset also shows the n = 3 subharmonic response for an initial state with
z = 0.5 and φ = −0.5. In this figure α = 0, and we have used a mean field approximation
which assumes the thermodynamic limit: N →∞.

and O is an arbitrary operator evolving in the Heisenberg picture. To solve the dynamics
for the collective observables, 〈Jα〉, we make a mean field approximation, 〈O1(t)O2(t)〉 =
〈O1(t)〉 〈O2(t)〉, to truncate the hierarchy of equations generated by Eq. 2 and numerically
solve the closed set of equations for ∂t 〈Jα〉. Such an approximation is valid for times
large [45] in N , and therefore capture the thermodynamic limit N →∞.

Stroboscopic aliasing occurs when the dissipative dynamics has a limit cycle. This
occurs at κ = 0.5 and for initial states polarized close to 〈Jx〉 = −1 [45]. Choosing t1
to be in resonance with the period of these collective limit cycles, we are able to find a
subharmonic response and have plotted examples for n = 4 and n = 3 in Fig. 5, at α = 0.
In the same plot, we show an example of a persistent subharmonic response for an initial
state initialized with z = 0.5 and φ = −0.5. The oscillation is periodic after every three
kicks as it moves between the n = 3 fixed points shown in the Poincaré section.

The robustness of the phenomenon to coupling to a bath, is of importance in view of a
growing interest in the time crystal community towards dissipative limit cycles and period
doubling phenomena in quantum optics related platforms [44,45,47,93–105]. A thorough
study of the interplay of noise and interactions lies beyond the scope of this work, but the
resilience of subharmonic dynamics shown in Fig. 5 is encouraging in the perspective of
realising stroboscopic aliasing in experiments.

4 Conclusion

To conclude, we remark that the stroboscopic aliasing effects discussed so far should be
observable in experiments. The hamiltonian (1) is used to describe trapped ion experi-
ments [106, 107] in which the transverse field is easily controlled and can be employed to
implement the kicks of Λi. Furthermore, the emergent unstable fixed points could also
be used to create squeezing or more general entangled states in a way similar to the bare
unstable fixed points of H1. Similar to Refs. [69,108–110] such fixed points have two stable
directions and two unstable directions. A quantum state initialized on the unstable fixed
point, compresses in the two stable directions and expands in the two unstable direction
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creating, on short times, a squeezed state. At longer times, the state is stretched further
apart and no longer resembles a squeezed state, yet it might show non-gaussian entangle-
ment with properties controlled by the shape of the separatrix [109]. Since separatrices in
the stroboscopic aliasing discussed here, have different topologies, they can open opportu-
nities to generate new classes of entangled states in trapped ions simulators or in ultracold
atoms experiments [69, 110], potentially with novel metrological uses. Finally, studying
the critical properties of the transition away from the stroboscopic aliasing response, and
analyzing its interplay with quantum fluctuations [111,112] remains an interesting future
direction of research. After completing of this work, we became aware of [82], which finds
a similar subharmonic response to the stroboscopic aliasing discussed above, but with the
drive on the transverse field and with time dependence sin(2πt) instead of a kick.
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[22] M. Medenjak, B. Buča and D. Jaksch, Isolated heisenberg magnet as a quantum
time crystal, Phys. Rev. B 102, 041117 (2020), doi:10.1103/PhysRevB.102.041117.

11

https://doi.org/10.1103/PhysRevLett.122.220603
https://doi.org/10.1103/PhysRevLett.123.147201
https://doi.org/10.1103/PhysRevB.98.235155
https://doi.org/10.1103/PhysRevLett.124.180602
https://doi.org/10.1103/PhysRevLett.122.150601
https://doi.org/10.1103/PhysRevB.99.180302
https://doi.org/10.1103/PhysRevB.102.041117


SciPost Physics Submission

[23] K. Chinzei and T. N. Ikeda, Time crystals protected by floquet dynam-
ical symmetry in hubbard models, Phys. Rev. Lett. 125, 060601 (2020),
doi:10.1103/PhysRevLett.125.060601.

[24] D. K. Mark and O. I. Motrunich, η-pairing states as true scars in an extended hubbard
model, Phys. Rev. B 102, 075132 (2020), doi:10.1103/PhysRevB.102.075132.

[25] S. Moudgalya, N. Regnault and B. A. Bernevig, η-pairing in hubbard models: From
spectrum generating algebras to quantum many-body scars, Phys. Rev. B 102, 085140
(2020), doi:10.1103/PhysRevB.102.085140.

[26] B. Buca, A. Purkayastha, G. Guarnieri, M. T. Mitchison, D. Jaksch and J. Goold,
Quantum many-body attractor with strictly local dynamical symmetries, arXiv
preprint arXiv:2008.11166 (2020).

[27] F. Wilczek, Quantum Time Crystals, Phys. Rev. Lett. 109(16), 160401 (2012),
doi:10.1103/PhysRevLett.109.160401.

[28] H. Watanabe and M. Oshikawa, Absence of Quantum Time Crystals, Phys. Rev.
Lett. 114(25), 251603 (2015), doi:10.1103/PhysRevLett.114.251603.

[29] V. K. Kozin and O. Kyriienko, Quantum time crystals from hamiltoni-
ans with long-range interactions, Phys. Rev. Lett. 123, 210602 (2019),
doi:10.1103/PhysRevLett.123.210602.

[30] K. Sacha, Discrete time crystals and related phenomena, In Time Crystals, pp.
39–172. Springer (2020).

[31] V. Khemani, R. Moessner and S. L. Sondhi, A Brief History of Time Crystals,
arXiv:1910.10745 [cond-mat, physics:hep-th] (2019), 1910.10745.

[32] D. V. Else, C. Monroe, C. Nayak and N. Y. Yao, Discrete Time Crystals,
arXiv:1905.13232 [cond-mat] (2019), 1905.13232.

[33] K. Sacha and J. Zakrzewski, Time crystals: A review, Rep. Prog. Phys. 81(1),
016401 (2017), doi:10.1088/1361-6633/aa8b38.

[34] K. Sacha, Modeling spontaneous breaking of time-translation symmetry, Physical
Review A 91(3), 033617 (2015).

[35] K. Giergiel, A. Kosior, P. Hannaford and K. Sacha, Time crystals: Analysis of
experimental conditions, Physical Review A 98(1), 013613 (2018).

[36] P. Matus and K. Sacha, Fractional time crystals, Physical Review A 99(3), 033626
(2019).

[37] V. Khemani, A. Lazarides, R. Moessner and S. L. Sondhi, Phase Struc-
ture of Driven Quantum Systems, Phys. Rev. Lett. 116(25), 250401 (2016),
doi:10.1103/PhysRevLett.116.250401.

[38] D. V. Else, B. Bauer and C. Nayak, Floquet Time Crystals, Phys. Rev. Lett. 117(9),
090402 (2016), doi:10.1103/PhysRevLett.117.090402.

[39] R. Nandkishore and D. A. Huse, Many-Body Localization and Thermalization in
Quantum Statistical Mechanics, Annual Review of Condensed Matter Physics 6(1),
15 (2015), doi:10.1146/annurev-conmatphys-031214-014726.

12

https://doi.org/10.1103/PhysRevLett.125.060601
https://doi.org/10.1103/PhysRevB.102.075132
https://doi.org/10.1103/PhysRevB.102.085140
https://doi.org/10.1103/PhysRevLett.109.160401
https://doi.org/10.1103/PhysRevLett.114.251603
https://doi.org/10.1103/PhysRevLett.123.210602
1910.10745
1905.13232
https://doi.org/10.1088/1361-6633/aa8b38
https://doi.org/10.1103/PhysRevLett.116.250401
https://doi.org/10.1103/PhysRevLett.117.090402
https://doi.org/10.1146/annurev-conmatphys-031214-014726


SciPost Physics Submission

[40] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D.
Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao and C. Monroe, Observation of
a discrete time crystal, Nature 543(7644), 217 (2017), doi:10.1038/nature21413.

[41] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F. Jelezko, S. Onoda,
H. Sumiya, V. Khemani, C. von Keyserlingk, N. Y. Yao et al., Observation of discrete
time-crystalline order in a disordered dipolar many-body system, Nature 543(7644),
221 (2017), doi:10.1038/nature21426.

[42] T. Li, Z.-X. Gong, Z.-Q. Yin, H. Quan, X. Yin, P. Zhang, L.-M. Duan and X. Zhang,
Space-time crystals of trapped ions, Physical review letters 109(16), 163001 (2012).

[43] A. Russomanno, F. Iemini, M. Dalmonte and R. Fazio, Floquet time crys-
tal in the Lipkin-Meshkov-Glick model, Phys. Rev. B 95(21), 214307 (2017),
doi:10.1103/PhysRevB.95.214307.

[44] Z. Gong, R. Hamazaki and M. Ueda, Discrete Time-Crystalline Order in
Cavity and Circuit QED Systems, Phys. Rev. Lett. 120(4), 040404 (2018),
doi:10.1103/PhysRevLett.120.040404.

[45] F. Iemini, A. Russomanno, J. Keeling, M. Schirò, M. Dalmonte and
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