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Abstract

We derive universal thermodynamic inequalities that bound from below the
moments of first-passage times of stochastic currents in nonequilibrium sta-
tionary states and in the limit where the thresholds that define the first-passage
problem are large. These inequalities describe a tradeoff between speed, un-
certainty, and dissipation in nonequilibrium processes, which are quantified,
respectively, with the moments of the first-passage times of stochastic cur-
rents, the splitting probability, and the mean entropy production rate. Near
equilibrium, the inequalities imply that mean-first passage times are lower
bounded by the Van’t Hoff-Arrhenius law, whereas far from thermal equilib-
rium the bounds describe a universal speed limit for rate processes. When
the current is the stochastic entropy production, then the bounds are equali-
ties, a remarkable property that follows from the fact that the exponentiated
negative entropy production is a martingale.
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1 Introduction

In thermal equilibrium transitions between metastable states are activated by thermal
fluctuations. The equilibrium transition rates satisfy the Van’t Hoff-Arrhenius law [1,2]

k =
1

〈T 〉
= νe−

Eb
Tenv , (1)

where the rate k is the inverse of the mean first-passage time 〈T 〉, Eb is the energy barrier
that separates the two metastable states, Tenv is the temperature of the environment, and
ν is a prefactor that has been determined, among others, by Kramers [1, 3].

To speed up a process, an external agent can drive a system out of equilibrium. For
example, in Fig. 1 we illustrate how external driving can increase the reaction rate in
a nonequilibrium version of Kramers’ model [3]. Other examples are the reduced travel
times of self-propelled particles [4–9], the activated escape of a particle from a metastable
state [10], or the enhanced reaction rates of nonequilibrium chemical reactions [11–13].
Since dissipation can increase the rate of a process, one may wonder whether there is a
generic speed limit on processes that are driven away from thermal equilibrium.

In the present paper, building on Ref. [14], we show that rate processes are governed by
a universal tradeoff between dissipation, speed, and uncertainty. We quantify this tradeoff
with generic inequalities on the moments of the first-passage times of stochastic currents
with two thresholds. The derived inequalities are reminiscent of the thermodynamic un-
certainty relations for first-passage times [15], but there exist also a couple of important
distinctions. First, the trade-off relations derived in this paper quantify the uncertainty
in the outcome of the process with the splitting probability of the first-passage problem,
instead of with the variance of the first-passage time as in Ref. [15]. Second, the derived
bounds are equalities when the current is the stochastic entropy production, and hence
the derived first-passage inequalities are optimal in this case.

The paper is organised as follows: in Sec. 2, we state the main results of this paper.
In Sec. 3, we discuss the system setup for which the main results are derived. Secs. 4
and 5 present the derivations of the main results based on large deviation theory and
martingale theory, and Sec. 6 provides an alternative derivation that is based on the
theory of sequential hypothesis testing. In Secs. 7 and 8, we relate the main results of this
paper to results previously published in the literature and to the Van’t Hoff-Arrhenius law,
respectively. In Sec. 9, we illustrate with an example the tightness of the first-passage time
bounds when the stochastic current is proportional to the stochastic entropy production.
The paper ends with a discussion in Sec. 10 and after the discussion there are several
appendices that contain technical details on the mathematical derivations.
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Figure 1: Nonequilibrium version of Kramer’s model demonstrating an increased reaction
rate. Trajectories shown are for a reaction coordinate X that solves the Langevin equation
∂tX(t) = (f − ∂xu(X(t)))/γ+

√
2Tenv/γξ(t), where ξ(t) = dW (t)/dt is a delta-correlated

white Gaussian noise term, and where u(x) is a triangular potential with period δ, i.e.
u(x) = u(±δ), u(x) = u0x/x

∗ if x ∈ [0, x∗], and u(x) = u0(δ−x)/(δ−x∗) if x ∈ [x∗, δ]. Left:
equilibrium trajectory with f = 0. Right: nonequilibrium trajectory with fδ/Tenv = 1.
The remaining parameters are set to δ = 5, γ = 1, x∗ = 1, u0 = 10, and Tenv = 1.

2 Main results

The paper contains two main results. The first main result is an inequality that holds for
the first-passage times of stochastic currents. The second main result is an equality that
holds for first-passage times of stochastic currents that are proportional to the stochastic
entropy production.

2.1 Bound for the moments of first-passage times of stochastic currents

Let J(t) be a stochastic current in a nonequilibrium, stationary process X(t) and let

TJ = inf {t > 0 : J(t) /∈ (−`−, `+)} (2)

be the first time when J(t) leaves the open interval (−`−, `+), where t ≥ 0 is an index that
labels the time and where `−, `+ > 0 are the threshold values of the first-passage problem.

In this paper we show that in the limit of large thresholds `− and `+ it holds that

〈TnJ 〉 ≥
(
`+
`−

| log p−|
ṡ

)n
(1 + o`min

(1)), (3)

where
p− = P (J(TJ) ≤ −`−) (4)

denotes the probability that the current J goes below the negative threshold −`− before
exceeding for the first time the positive threshold `+, where ṡ is the entropy production
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Figure 2: Universal tradeoff between speed, uncertainty, and dissipation in nonequilib-
rium processes. The three axes represent the speed (1/〈TJ〉), uncertainty (1 − p−), and
dissipation (ṡ) in a nonequilibrium process X. The plotted surface is ṡ = | log p−|/〈TJ〉.
Processes that are situated below the surface are physically nonpermissible as they violate
the bound Eq. (3).

rate, and where n ∈ N. The quantity p− is called the splitting probability. The averages 〈·〉
are taken over repeated realisations of the stationary process X. We have used the little-o-
notation o`min

(1) to denote a function that converges to zero when `min = min {`−, `+} →
∞ while the ratio `−/`+ is kept fixed. Equation (3) holds for 〈J(t)〉 > 0; if 〈J(t)〉 < 0,
then p− should be replaced by p+ = P (J(TJ) ≥ `+), `− with `+, and vice versa.

The inequality Eq. (3) describes a tradeoff between dissipation ṡ, speed 〈Tn〉, and
the uncertainty in the outcome of the process that is quantified by p−. It states that
processes that are fast, precise, and have a small entropy production rate are physically not
permissible. We can illustrate this trade-off relation graphically by plotting a surface in a
three-dimensional space delimiting the parameter regime that is physically not permissible,
see Fig. 2.

Near equilibrium ṡ ∼ e−
Eb
Tenv and p− ≈ `−/(`+ + `−). Consequently, Eq. (3) implies

that 〈TJ〉 is lower bounded by the Van’t Hoff-Arrhenius law, i.e.,

〈TJ〉 ≥
1

ν
e
Eb
Tenv . (5)

On the other hand, far from thermal equilibrium the right hand side of Eq. (3) goes below
1
ν e

Eb
Tenv implying that dissipation can increase the reaction rate k = 1/〈TJ〉, as we illustrate

in Fig. 1 for a nonequilibrium version of Kramer’s model [3].
Taken together, the Eq. (3) states we can speed up a process by driving it out of

equilibrium, but there exists a universal speed limit that is determined by the rate of
dissipation and the amount of fluctuations in the process.
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2.2 Equality for the moments of first-passage times of entropy produc-
tion

If J(t) = S(t) with S(t) the stochastic entropy production [16–18], then the inequality
Eq. (3) becomes an equality, viz.,

〈TnS 〉 =

(
`+
`−

| log p−|
ṡ

)n
(1 + o`min

(1)). (6)

This remarkable property follows form the fact that e−S(t) is a martingale [19–21], which
implies the formula p− = e−`−(1 + o`min

(1)) [20,21].
The Eq. (6) implies that the bound Eq. (3) is tight when the stochastic current is the

entropy production (J = S), and this is one of its main advantages with respect to other
tradeoff inequalities reported in the literature, such as, the thermodynamic uncertainty
relation for first-passage times that quantifies uncertainty in terms of the variance of the
first-passage time [15].

3 System setup

3.1 General setup

Let ~X(t) = (X1(t), X2(t), . . . , Xm(t)) be a vector of variables Xi(t) ∈ Xi that describe the
evolution in time of the slow degrees of freedom in a mesoscopic system. We denote the
trajectories of ~X(t) over a time interval [0, t] as ~Xt

0. In examples for which m = 1, we
simply write ~X = X.

We say that a system satisfies local detailed balance when it is weakly coupled to an
environment in thermal equilibrium [22]. For systems that satisfy local detailed balance
the stochastic entropy production S can be expressed as [16,18]

S(t) = log
p( ~Xt

0)

p(Θt( ~Xt
0))

, (7)

where the time-reversal operation Θt maps trajectories ~Xt
0 on their time-reversed trajec-

tory ( ~X†)t0 with entries ~X†i (τ) = ~Xi(t− τ). For simplicity, we will only consider processes
with even parity under time-reversal, although it will become clear that the results extend
to processes that contain odd parity variables. The quantity p( ~Xt

0)/p(Θt( ~X
t
0)) is the ratio

between the probability densities of the trajectory ~Xt
0 in the forward and backward dy-

namics, also known as the Radon-Nikodym derivative [20,23,24]. For a stationary process
p(Θt( ~X

t
0)) = p(Θ0( ~Xt

0)) as the statistics of the process are invariant under a translation
in time. One can verify with examples of Langevin processes and Markov jump processes
that Eq. (7) is the stochastic entropy production when the process satisfies local detailed
balance [18,25,26]. Notice that we use natural units for which the Boltzmann constant is
set equal to one.

Since the process is stationary, the entropy production rate ṡ, or equivalently the rate
of dissipation, is given by

〈S(t)〉 = ṡ t. (8)

Stochastic currents J(t) = J( ~Xt
0) are real-valued functionals defined on the set of

trajectories ~Xt
0 with the following two properties:

(i) J is time extensive, i.e.,
〈J(t)〉 = j t (9)
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where j is the current rate. Without loss of generality we can assume that j > 0.

(ii) J is odd under time-reversal, i.e.,

J(Θt( ~X
t
0)) = −J( ~Xt

0). (10)

Note that this implies J(0) = 0.

So far, from a mathematical point of view, the system setup has been general. We
discuss now two mathematical assumptions on the stochastic current J that we will use
to derive the main results Eqs. (3) and (6).

First, we assume that the current J satisfies a large deviation principle. This means
that for large enough times t the probability distribution of J/t takes the form [27]

pJ/t(z) = e−tJ (z)(1+ot(1)), (11)

where ot(1) is a function that converges to zero when t is large enough and where J (z)
is the large deviation function of the current. Note that in Eq. (11) the normalisation
constant is contained in the term ot(1) in the argument of the exponential. The large
deviation function J (z) ≥ 0 is a convex function that takes its minimum value when
J/t = j. As shown in Ref. [28], a large deviation principle holds for stochastic currents in
Markov jump processes and diffusion processes that are homogeneous and ergodic.

Second, in the derivation of Eq. (3) we assume that at large time scales t the process
J behaves up to leading order in t as a drift-diffusion process, i.e.,

dJ(t) = j(1 + ot(1))dt+
√

2dJ(1 + ot(1))dW (t), (12)

where W (t) is a standard Wiener process and where the diffusion constant dJ is defined
through

lim
t→∞

(
〈J(t)J(t− t′)〉 − j2

t(t− t′)
)

= 2dJ t
′(1 + ot′(1)). (13)

Eq. (12) holds when the stochastic current J has a finite memory. Indeed, in this case
the process J(n∆t), with n ∈ N and ∆t a fixed time interval that is large enough, is a
random walk process on the real line with increments ∆J(n) = J(n∆t) − J((n − 1)∆t)
that are independent and identically distributed variables. As a consequence, the central
limit theorem applies and the process J(n∆t) converges to a drift-diffusion process in the
limit of large t. Examples of processes ~X that contain stochastic currents and for which
Eq. (12) applies are Markov processes with a finite phase space X =

∏m
i=1Xi or Markov

processes with a finite relaxation time.

3.2 Markov jump process

We illustrate the general setup discussed above with the example of a Markov jump process
X(t) defined on a discrete set X(t) ∈ X . The dynamics of X(t) consists of a sequence of
jumps with jump rates that are determined by the Markov transition rate matrix wx→y
with x, y ∈ X [29].

Stochastic currents in a Markov jump process take the form

J(t) =
∑
x,y∈X

cx,yJx→y(t), (14)

with coefficients cx,y ∈ R and with cx,x = 0. The edge currents

Jx→y(t) = Nx→y(t)−Ny→x(t) (15)

7
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denote the difference between the number of times Nx→y(t) the process has jumped from
the x-th state to the y-th state in trajectory Xt

0 and the number of reverse jumps Ny→x(t)
from the y-th to the x-the state.

The stochastic entropy production is given by

S(t) =
1

2

∑
x,y∈X

log
pss(x)wx→y
pss(y)wy→x

Jx→y(t), (16)

where pss(x) is the probability distribution of X(t) in the stationary state.

3.3 Overdamped Langevin process

As a second illustration, we consider overdamped Langevin processes [30,31]. In this case
the dynamics of ~X ∈ Rm is governed by [32]

d ~X

dt
= µ

(
−~∇u+ ~f

)
+ ~∇ · dth +

√
2σ

d ~W

dt
(17)

where µ is the mobility tensor, u is a potential, ~f is an external force, σ is the noise
amplitude, and dth = σσT is the diffusion tensor. The process ~W = (W1,W2, . . . ,Wm)T

is a vector of m independent, standard Wiener processes Wi. We have left the explicit
dependence of µ, u, ~f , and σ on ~X away not to overload the notation. The process obeys
local detailed balance when dth = Tenvµ.

A stochastic current J takes the form [32]

J(t) =
m∑
j=1

∫ t

0
cj( ~X) ◦ dXj(s) (18)

where ◦ denotes the Stratonovich integral.
If dth = Tenvµ, then the stochastic entropy production is given by [30]

dS(t) =

m∑
j=1

∫ t

0

(
1

pss
d−1

th
~jss −

1

Tenv

(
−~∇u+ ~f

))
j

◦ dXj(s), (19)

where jss(~x) and pss(~x) are the stationary probability flux and probability distribution.

4 Bounds for the moments of first-passage times of stochas-
tic currents

We derive the bounds (3) for the moments of first-passage times of stochastic currents.
The derivation consists of three parts. First, in Subsec. 4.1 we use the large deviation

principle for J to show that for all n ∈ N

〈TnJ 〉 =

(
`+

j

)n
(1 + o`min

(1)). (20)

The Eq. (20) is determined by the events for which J(t) hits the positive boundary.
However, to obtain the Eq. (3) we also need to know the statistics of times TJ when J(t)
hits the negative boundary. In Subsec. 4.2 we will use the property Eq. (12) and a duality
property for the first-passage times of drift-diffusion processes to show that for all n ∈ N

〈TnJ 〉− =

(
`−

j

)n
(1 + o`min

(1)), (21)

8
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where 〈TnJ 〉− is the average value of TnJ conditioned on the event J(TJ) ≤ −`− that J hits
the negative boundary first.

Lastly, we focus on the splitting probability of J . Using a large deviation function
bound for stochastic currents [33–35] we show in Subsec. 4.3 that

p− ≥ exp

(
−`−ṡ

j

)
. (22)

Combining the Eqs. (20) and (22) we readily obtain Eq. (3), which completes the
derivation.

4.1 Moments 〈T nJ 〉 of first-passage times of stochastic currents

Since J(t) satisfies a large-deviation principle, see Eq. (11), J(t) converges with probability
one to a deterministic function jt, viz.,

J(t)

t
= j(1 + ot(1)), (23)

where the little-o notation ot(1) denotes a function that decays to zero when t � 1.
Consequently, the first-passage time given by Eq. (2) is deterministic for large values of
`min, and as j > 0 we get

TJ =
`+

j
(1 + o`min

(1)), (24)

which implies Eq. (20).

4.2 Moments 〈T nJ 〉− of first-passage times of stochastic currents hitting
the negative boundary

To determine the statistical properties of first-passage times at the negative threshold, we
use a duality property for first-passage times of drift-diffusion processes [20, 36, 37]. As
shown in the Appendix B, a drift-diffusion process satisfies the first-passage duality

〈TnJ (`−, `+)〉− = 〈TnJ (`+, `−)〉+, (25)

where TJ(`−, `+) denotes the first-passage time of J with threshold values −`− < 0 and
`+ > 0, and where 〈·〉+ and 〈·〉− denote the ensemble averages conditioned on the process
realisations for which J first hits the positive boundary and negative boundary, respec-
tively.

Since by assumption the statistics of J are up to leading order determined by the
drift-diffusion process Eq. (12), and since in the limit of large thresholds `+, `− � 1 the
first-passage times at the positive thresholds are deterministic and given by Eq. (20), we
readily obtain Eq. (21). Equivalently, we have that

TJ =
`−

j
(1 + o`min

(1)) (26)

for the realisations of the process that hit the negative threshold. Hence, up to leading
order in `min the statistics of TJ at the negative threshold are determined by the first-
passage duality Eq. (25), implying that they are deterministic.

9
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4.3 Splitting probability p−

We derive the inequality given by Eq. (22). Using Eq. (26) we express the splitting
probability p− in terms of the large deviation function of the current J . Using Eqs. (11)
and (26), we get

p− =

∫ −j
−∞

exp

(
−`−
j
J (z)(1 + o`−(1))

)
dz. (27)

Consequently, we use in Eq. (27) the bound

J (z) ≤ ṡ

4
(z/j − 1)2 (28)

for the large deviation function of the current [33] that has been derived for overdamped
Markov processes in nonequilibrium stationary states in Ref. [34], yielding

p− ≥
∫ −j
−∞

exp

(
−`−
j

ṡ

4
(z/j − 1)2

)
dz = exp

(
−`−
j
ṡ

)
, (29)

which is the bound Eq. (22) that we were meant to derive.

5 Equalities for the moments of first-passage times of en-
tropy production

The derivation of the equality Eq. (6) goes similar as the derivation of the inequality
Eq. (3) in the sense that it also relies on the Eqs. (20) and (21) [or equivalently (26)].
However, instead of deriving the inequality Eq. (22) for the splitting probability, we derive
the equality

p− = e−`−(1+o`min
(1)). (30)

We present two different derivations for the equality Eq. (6): (i) based on Eq. (27) and
the Gallavotti-Cohen fluctuation relation for entropy production [38] and (ii) based on the
martingale property of e−S(t) [19–21,31].

5.1 Derivation based on the Gallavotti-Cohen fluctuation relation

Let us first derive Eq. (6) using the Gallavotti-Cohen fluctuation relation. For J = S, the
rate function J (z) is convex, satisfies J (z) ≥ 0, and J (ṡ) = 0, and it also satisfies the
fluctuation relation [38]

J (z)− J (−z) = −z. (31)

In the limit of large thresholds `− � 1, the integral in Eq. (27) is a saddle point integral.
Since J is a convex function, we find that in this limit

p− = e−
`−
ṡ
J (−ṡ)(1+o`min

(1)) (32)

where we have used that j = ṡ when J = S. Consequently, using the Gallavotti-Cohen
fluctuation relation Eq. (31) and the fact that J (ṡ) = 0 we obtain

p− = e−`−(1+o`min
(1)). (33)

Eqs. (33) together with (20) for J = S lead to the equality (6).

10
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5.2 Derivation based on the martingality of e−S(t)

The fact that p− is universal and only depends on the threshold `− is a remarkable fact
that is a direct consequence of the martingale property of e−S(t) [19–21]. Indeed, since the
process e−S(t) is a martingale and since TS is a first-passage time with two thresholds, the
integral fluctuation relation at stopping times

〈e−S(TS)〉 = 1, (34)

applies, see Corollary 2 of the Appendix of Ref. [21]. The Eq. (34) also reads

p−〈e−S(TS)〉− + p+〈e−S(TS)〉+ = 1, (35)

where 〈·〉− and 〈·〉+ denote averages over those trajectories that terminate at the negative
and positive threshold values, respectively. Using that for `−, `+ � 1, it holds that
S(TS) = `±(1 + o`min

(1)), we obtain

p−e
`−(1+o`min

(1)) + p+e
−`+(1+o`min

(1)) = 1, (36)

and `+ � 1 we obtain
p− = e−`−(1+o`min

(1)), (37)

which implies again the equality (6).

6 First-passage time bounds from the asymptotic optimal-
ity of sequential probability ratio tests

As pointed out in Ref. [14], first-passage problems of stochastic currents with two thresh-
olds are sequential hypothesis tests that decide on the arrow of time and first-passage
problems for entropy production are sequential probability ratio tests. Therefore, we can
use the theory of sequential hypothesis testing to derive bounds on the moments of first-
passage times of stochastic currents. We first provide a brief review of the theory of
sequential hypothesis testing, focusing on the asymptotic optimality of sequential proba-
bility ratio tests, and then show how to use these results to derive the main results Eqs. (3)
and (6).

6.1 Review of sequential hypothesis testing

Sequential hypothesis tests are statistical hypothesis tests that take a decision D about the
true hypothesis H at a random stopping time T . The general setup goes as follows [39,40].
There is an observation process ~X(t) whose statistics are determined by one of two possible
probability measures P+ or P− corresponding to two hypotheses H = + and H = −,
respectively. A sequential hypothesis test is a pair (T,D), where T is a stopping time
relative to the process ~X, and D ∈ {−1, 1} is a decision variable defined on the set of
trajectories ~XT

0 up to the decision time T . The error reliabilities of the test are

p− = P+(D = −) and p†+ = P−(D = +), (38)

where P+(D = −) = P (D = −|H = +) and P−(D = +) = P (D = +|H = −).
Given certain maximally allowed error probabilities α− and α+, we define the set

Cα−,α+ =
{

(T,D) : p− ≤ α+, p
†
+ ≤ α−, 〈T |H = +〉 <∞, 〈T |H = −〉 <∞

}
(39)

11
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of all sequential hypothesis tests that meet the required constraints on the error reliabilities
and with finite expected decision times under both hypotheses. We say that a sequential
hypothesis test is optimal if it is an element of Cα−,α+ and it minimises the mean decision
times 〈T |H = +〉 and 〈T |H = −〉.

For general observation processes ~X(t), the optimal sequential hypothesis tests is not
known. Nevertheless, in the asymptotic limit of small error probabilities α− and α+ the
optimal test is the sequential probability ratio test [40]. The sequential probability ratio
test was first introduced by Wald for observation processes of independent and identically
distributed random variables [41], and subsequently, Wald and Wolfowitz proved the op-
timality of this test in this setup [42]. In a later work [43], Lai proved the the asymptotic
optimality of sequential probability ratio tests for general observation processes.

Let

Λ(t) = log
p+( ~Xt

0)

p−( ~Xt
0)
, (40)

be the log-likehood ratio process, which should be understood as the logarithm of the
Radon-Nikodym derivative of the probability measure P+ with respect to the probability
measure P−, both constrained on the sub-σ-algebra generated by the trajectories Xt

0.
Loosely said this is the logarithm of the ratio of the probability densities p+( ~Xt

0) and
p−( ~Xt

0) associated to the trajectries ~Xt
0, which clarifies the notation in Eq. (92). The

sequential probability ratio test is then the first-passage problem TΛ (see Eq. (2)) with

thresholds `− and `+ that determine the error probabilities p− and p†+. When Λ is a
continuous process, then

`− = log[(1− p†+)/p−], `+ = log[(1− p−)/p†+]. (41)

We formulate a lemma and a theorem about the asymptotic properties of sequential
hypothesis tests and the asymptotic optimality of sequential probability ratio tests. We
first consider Lemma 3.4.1 in [40] that derives an asymptotic lower bound for the moments
of the decision times of sequential hypothesis tests.

Lemma 1 (Asymptotic lower bounds for the moments of decision times in sequential
hypothesis tests). Let δ = (T,D) be a sequential hypothesis test in the set Cα−,α+. We
assume that Λ(t) ∈ R and 1/Λ(t) ∈ R for all t ≥ 0. We assume that there exists a
nonnegative increasing function ψ(t) with ψ(∞) =∞ such that

lim
t→∞

Λ(t)

ψ(t)
= λ+, (P+-almost surely); lim

t→∞

Λ(t)

ψ(t)
= −λ−, (P−-almost surely) (42)

with λ−, λ+ ∈ (0,∞). Moreover, we assume that for all finite τ

P+

(
supt∈[0,τ ]Λ(t) <∞

)
= 1, P−

(
−inft∈[0,τ ]Λ(t) <∞

)
= 1. (43)

Under these assumptions, it holds that for all ε > 0

lim
αmax→0

infδ∈C(α−,α+)P+

(
T > (1− ε)Ψ

(
| logα−|/λ+

))
= 1 (44)

lim
αmax→0

infδ∈C(α−,α+)P−
(
T > (1− ε)Ψ

(
| logα+|/λ−

))
= 1 (45)

where Ψ(t) is the inverse of ψ(t), i.e., Ψ(ψ(t)) = t. Moreover, for all n > 0

lim
αmax→0

infδ∈C(α−,α+)〈Tn|H = +〉 ≥
(
Ψ
(
| logα−|/λ+

))n
(1 + oαmax(1)) (46)

lim
αmax→0

infδ∈C(α−,α+)〈Tn|H = −〉 ≥
(
Ψ
(
| logα+|/λ+

))n
(1 + oαmax(1)). (47)

12
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Second, we consider Theorem 3.4.2 in [40] for the asymptotic optimality of the se-
quential probability ratio test. Contrarily to Lemma 1, this theorem provides an equality
for the mean first-passage times and therefore we will need to replace the almost sure
convergence conditions Eqs. (42) by the stronger r-quick convergence condition. Let

Lε(Y (t)) = sup {t > 0 : |Y (t)| > ε} , (48)

be the last entry time of a real-valued stochastic process Y (t) ∈ R into an interval [−ε, ε].
We say that Y (t) converges r-quickly to 0 in P+ if 〈Lrε |H = +〉 <∞ for every ε > 0.

Theorem 1 (Asymptotic optimality of sequential probability ratio tests). We assume
that

lim
t→∞

Λ(t)

ψ(t)
= λ+, (r−quickly in P+); lim

t→∞

Λ(t)

ψ(t)
= −λ−, (r−quickly in P−). (49)

It holds then that

• for any finite threshold values `− and `+,

〈T rΛ|H = ±〉 <∞; (50)

• for all m ∈ (0, r],

〈TmΛ |H = ±〉 =
(
Ψ
(
`±/λ±

))m
(1 + oαmax(1)) ; (51)

• if `− = | log p−|(1 +o`min
(1)) and `+ = | log p†+|(1 +oαmax(1)), then for all m ∈ (0, r]

〈TmΛ |H = +〉 =
(

Ψ
(
| log p†+|/λ+

))m
(1 + oαmax(1)) (52)

and
〈TmΛ |H = −〉 =

(
Ψ
(
| log p−|/λ−

))m
(1 + oαmax(1)) . (53)

6.2 Using Lemma 1 to derive the first-passage bound Eq. (3)

We derive Eq. (3) by using Lemma 1. As will become evident, Lemma 1 is not sufficient
to derive Eq. (3) and we also require the condition that J converges asymptotically to the
drift-diffusion process in Eq. (12).

Let P denote the probability measure of events in the forward dynamics and let P ◦Θ
be the probability measure of events in the time-reversed dynamics. Setting P+ = P ,
P− = P ◦Θ, and ψ(t) = t, we obtain that Λ(t) = S(t) and λ+ = ṡ. Since J is a stochastic
current it changes sign under time-reversal and therefore the pair (TJ , DJ), with TJ as
defined in Eq. (2) and DJ = sign(J(TJ)), is a sequential hypothesis test corresponding to

the two probability measures P and P ◦Θ [14]. Replacing in Eq. (46) the α− by p†+ and
oαmax(1) by o`min

(1), we obtain [14]

〈TnJ 〉 ≥

(
| log p†+|

ṡ

)n
(1 + o`min

(1)). (54)

Note that Eq. (54) cannot be interpreted as a tradeoff between dissipation, speed, and un-

certainty as the error probability p†+ relates to the time-reversed process and has therefore
not much to say about the fluctuations in the original forward process.

13
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When J converges asymptotically to a drift-diffusion process, i.e., when the condition
Eq. (12) holds, then (see Appendix B.3)

`+ = | log p†+|(1 + o`min
(1)), and `− = | log p−|(1 + o`min

(1)). (55)

Multiplying the right-hand side of Eq. (54) with

1 =

(
`+
`−

| log p−|
| log p†+|

)n
, (56)

we obtain Eq. (3), which concludes the derivation.
Note that the present derivation of Eq. (3) is more general than the derivation in Sec. 4.

Indeed, in Sec. 4. we have used the large deviation function bound Eq. (28) that has been
derived for Markov jump processes or overdamped Langevin processes [34]. On the other
hand, Lemma 1 does not refer to a specific observation process ~X and therefore Eq. (3)
also applies to, e.g., underdamped Langevin processes or periodically driven systems, as
long as the asymptotic condition Eq. (12) is satisfied.

6.3 Using Theorem 1 to derive the asymptotic equality Eq. (6)

We set again P+ = P , P− = P ◦ Θ, and ψ(t) = t, obtaining λ+ = ṡ and Ψ(t) = t.
Therefore, Eq. (52) reads

〈TnS 〉 =

(
| log p†+|

ṡ

)n
(1 + o`min

(1)). (57)

In Sec. 5.2 we have shown that

`− = | log p−|(1 + o`min
(1)), (58)

which follows readily from the martingale property of e−S . Analogously, one can show
that [20]

`+ = | log p†+|(1 + o`min
(1)). (59)

Multiplying the right-hand side of Eq. (57) with

1 =

(
`+
`−

| log p−|
| log p†+|

)n
, (60)

we obtain Eq. (6), which completes the derivation.

7 Connections between Eq. (3) and other trade-off relations

We point out connections between Eqs. (3) and trade-off inequalities that appeared before
in the literature.
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7.1 Dissipation-time uncertainty relation

Eq. (3) is related to the so-called dissipation-time uncertainty relation that states

〈TJ〉 ≥
1

ṡ
(61)

in the limit | log p−| � 1 [44].
The dissipation-time uncertainty relation is a loose bound when compared to the

bounds Eqs. (3) and Eq. (54). Indeed, comparing Eq. (61) with (3), we conclude that

〈TJ〉 ≥
c

ṡ
(1 + o`min

(1)) (62)

holds for any prefactor c ≥ 0. This is because the prefactor in Eq. (3) is c = | log p−| and
thus diverges when p− is small.

7.2 Thermodynamic uncertainty relations

Since the large deviation function bound Eq. (28) implies both the bound Eq. (3) and
the thermodynamic uncertainty relations [33, 34, 45–49], one may expect that the bound
Eq. (3) is related to the latter.

The thermodynamic uncertainty relation bounds from below the Fano factor of stochas-
tic currents, i.e., [34, 45]

σ2
J

2j
2 ≥

1

ṡ
, (63)

where j is the current rate and

σ2
J = lim

t→∞

1

t

(
〈J2(t)〉 − 〈J(t)〉2

)
. (64)

A first-passage time thermodynamic uncertainty relation was derived in Ref. [15], viz.,

〈T 2
J 〉 − 〈TJ〉2

2〈TJ〉
≥ 1

ṡ
(1 + o`min

(1)). (65)

The bounds Eqs. (3), (63) and (65) all express a nonequilibrium tradeoff between dis-
sipation, speed, and uncertainty. The differences between these bounds is in how they
quantify speed and uncertainty. The thermodynamic uncertainty relation Eq. (63) quan-
tifies speed with j and uncertainty with σ2

J , the first-passage time uncertainty relation
Eq. (65) quantifies speed with 〈TJ〉 and uncertainty with 〈T 2

J 〉 − 〈TJ〉2, and the bound
Eq. (3) quantifies speed with 〈TJ〉 and uncertainty with p−.

An important distinction between the thermodynamic uncertainty relations, Eqs. (63)
and Eq. (65), and the bound Eq. (3) on the moments of first-passage times, is that the
latter is tight when J = S while the former is loose. Indeed, if J(t) = S(t)(1+ot(1)), then
Eq. (3) becomes the equality Eq. (6), whereas the Eqs. (63) and Eq. (65) are in general
not equalities, even not when J(t) = S(t)(1 + ot(1)) [31,50].

Remarkably, all the three relations Eqs. (3), (63) and (65) are a consequence of the
large deviation function bound Eq. (28). However, Eq. (3) uses the large deviation function
bound at a value z = −j, while Eqs. (63) and (65) use the large deviation function bound
at values z ≈ 0. As observed in Ref. [33], the large deviation function bound Eq. (28) is
tight when J = S and z = −ṡ, see the lower panel of Figure 3 in Ref. [33], while it is
in general loose for z ≈ 0. This clarifies why the bound (3) is tight for J = S while the
Eqs. (63) and (65) or loose, even though they all follow from the same inequality Eq. (28).
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Figure 3: Asymptotic lower bound on the mean first-passage time. The ratio
〈TX〉ṡ/| log p−| is plotted as a function of `/δ, where TX is the first-passsage time Eq. (2)
of the nonequilibrium Kramer process X described by Eq. (66) with triangular potential u
given by Eq. (67). Curves shown are for the parameters δ = 5, x∗ = 1, u0 = 10, Tenv = 1,
and γ = 1, and the values of f are given in the figure legend.
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Figure 4: Extension of the Van’t Hoff-Arrhenius law to nonequilibrium stationary states.
The mean-first passage time 〈TX〉 (solid black line) of the reaction coordinate X, described
by Eq. (66) with triangular potential u given by Eq. (67), is plotted as a function of the
inverse temperature 1/Tenv, and 〈TX〉 is also compared with its asymptotic value | log p−|/ṡ
for large thresholds ` (blue dashed line) and with the Van’t Hoff-Arrhenius law Eq. (77)
(green dotted line). The model parameters are δ = 5, x∗ = 1, u0 = 10, Tenv = 1 and
γ = 2 and the values of f are f = 1, f = 5 and f = 10 (left to right). The threshold for
the first-passage time TX , which is defined in Eq. (70), is ` = 10.

8 Recovering the Van’t Hoff-Arrhenius law in the near equi-
librium limit

We show that near equilibrium Eq. (3) implies that 1/〈TJ〉 is smaller or equal than the
Van’t Hoff-Arrhenius law Eq. (5). To this aim, we consider a nonequilibrium version of
Kramer’s model [1, 3]. Details of the calculations can be found in the Appendices C and
D.

We consider a reaction coordinateX ∈ R that is described by the overdamped Langevin
equation

dX(t) =
f − ∂xu(X(t))

γ
dt+

√
2Tenv/γ dW (t), (66)
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where u(x) is a periodic potential with period δ, i.e., u(x + δ) = u(x) = u(x − δ), f is a
nonconservative force, γ is a friction coefficient, W (t) is a standard Wiener process that
models the thermal noise, and Tenv is the temperature of the environment. We assume
that at time t = 0, X(0) = 0 and W (0) = 0.

The variableX models, e.g., a reaction coordinate that tracks the progress of a chemical
reaction. In this scenario, Eb = maxxu(x)−minx u(x) is the Gibbs free energy barrier that
separates two chemical states and the ratio [X/δ] is the number of cycles of the reaction
that have been completed; [a] denotes the largest integer smaller than a.

Figure 1 presents two trajectories generated by Eq. (66) for the special case where u(x)
is the triangular potential

u(x) =

{
u0

x
x∗ if x ∈ [0, x∗),

u0
δ−x
δ−x∗ if x ∈ [x∗, δ).

(67)

From Fig. 1 we observe that the dynamics consists of a sequence of jumps between
metastable states that are centred at the positions nx∗ with n ∈ Z. In the equilibrium case
with f = 0 the jumps are activated by thermal fluctuations and the Van’t Hoff-Arrhenius
law Eq. (5) applies. On the other hand, when f > 0, then jumps in one direction over the
energy barrier Eb are facilitated by the external driving f , while in the reverse direction
jumps are less likely. In this case, although the Van’t Hoff-Arrhenius law Eq. (5) does not
apply, the Eqs. (3) and (6) apply and can thus be considered nonequilibrium versions of
the Van’t Hoff-Arrhenius law.

For values fδ/Eb > 0 the chemical reaction settles into a nonequilibrium stationary
state with an entropy production rate (see Appendix C.2)

ṡ =
fδ

Tenv
jss, (68)

where jss is the stationary current (see Appendix C.1)

jss =
Tenv

γ

1− e
−fδ
Tenv∫ δ

0 dy w(y)
(∫ y+δ

y dx′ 1
w(x′)

) , (69)

and where w(x) = exp(−(u(x)− fx)/Tenv).
Consider the first time

TX = inf {t > 0 : X(t) /∈ (−`, `)} (70)

when the reaction has completed a net number [`/δ] of cycles in either the forward or
backward direction. Since, (see Appendix C.2)

S(t) =
fX(t)

Tenv
+ o(t) (71)

the equality (6) applies to TX . In Appendices C.3 and C.4, we derive explicit analyt-
ical expressions for the splitting probability p− and the mean first-passage time 〈TX〉,
respectively, which we omit here as the expressions are involved. However, as shown in
Appendix C.5, in the limit of large ` we obtain the formula

| log p−|
〈TX〉

= ṡ+O

(
1

`

)
, (72)

in correspondence with Eq. (6), where O denotes the big-O notation. Hence, in this case,
the correction term in Eq. (6) is of order 1/`.
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In Fig. 3 we plot | log p−|ṡ/〈TX〉 as a function of `/δ. The figure demonstrates the con-
vergence of | log p−|ṡ/〈TX〉 to its universal limit for different values of the nonequilibrium
driving fδ/Tenv. Observe the oscillations of | log p−|ṡ/〈TX〉. These oscillations appear
because for the parameters selected it holds that Eb � Tenv, and therefore the process
consists of discrete-like hops over the energy barrier Eb that represent the subsequent
completion cycles of the chemical reaction.

In the limits Tenv → 0 and fδ/Tenv → 0, the Eq. (6) leads to a Van’t Hoff-Arrhenius
law for 1/〈TX〉. Indeed, as shown in Appendix C.6, taking the limits Tenv → 0 and
fδ/Tenv → 0 in the expression of the stationary current Eq. (69), we obtain

jss = κ
fδ

γ
e
−Eb
Tenv , (73)

where the prefactor

κ =

√
−u′′minu

′′
max

2πTenv
(74)

if the second derivatives u′′min and u′′max evaluated at the minimum and maximum of u(x),
respectively, exist. In the special case of the triangular potential, given by Eq. (67), the
second derivatives u′′min and u′′max do not exist. In this particular case

1

κ
=

(
1

u+
max
− 1

u−max

)(
1

u+
min

− 1

u−min

)
T2

env (75)

where u+
max and u−max denote the left and right derivatives evaluated at the maximum of

u(x). In addition, as shown in Appendix C.6, in the limit of Tenv → 0 and fδ/Tenv → 0
the logarithm of the splitting probability is inversely proportional to the temperature, viz.,

log p− = − f`

Tenv
+O`(1). (76)

Combining Eqs. (6), (68), (73), and (76) we obtain the Van’t Hoff-Arrhenius law

〈TX〉 =
`

δ

γ

fδ

1

κ
e
Eb
Tenv . (77)

In Fig. 4 we compare 〈TX〉 with its asymptotic value | log p−|/ṡ, given by Eq. (6), and
with the Van’t Hoff-Arrhenius law, given by Eq. (77), for three values of the driving force
f . We make a few interesting observations: (i) the Van’t Hoff-Arrhenius law approximates
well 〈TX〉 up to moderately large values of fδ/Tenv < 5; (ii) for fδ/Tenv > 25, 〈TX〉 is
significantly smaller than what is predicted by the Van’t Hoff-Arrhenius law, implying
that the nonequilibrium driving speeds up the process. Nevertheless, 〈TX〉 is larger than
| log p−|/ṡ, which is a consequence of the trade-off between speed, uncertainty, and dissi-
pation as expressed by Eq. (3); (iii) the asymptotic expression | log p−|/ṡ given by Eq. (6)
approximates 〈TX〉 already well for relatively small values of the threshold, viz., `/δ = 2.

Taken together, we conclude that the Eqs. (3) and (6) reduce to a Van’t Hoff-Arrhenius
law near equilibrium simply because ṡ ∼ exp(−Eb/Tenv) in the limit of small temperatures
Tenv ≈ 0 and small driving force fδ/Tenv ≈ 0. On the other hand, one can can significantly
increase the reaction rate 1/〈TX〉 by driving a system out of equilibrium, even though the
reaction rates are still bounded from above by the inequality Eq. (3) that expresses a
tradeoff between speed, uncertainty, and dissipation.
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9 Illustration of the tightness of the first-passage time bounds
with a biased random walker

As stated before, the bound Eq. (3) is tight for J = S, whereas the thermodynamic
uncertainty relation Eq. (65) is loose when J = S. In this section we compute the moments
〈TnJ 〉 on an example of a nonequilibrium process to better understand the origin of the
tightness of the bound Eq. (3).

We consider a hopping process X ∈ Z described by

dX(t) = dN+(t)− dN−(t), (78)

where N+ and N− are two counting process with rates k+ and k−, respectively. The bias
of the process is defined by the ratio

b :=
k−
k+

= exp

(
− a

Tenv

)
(79)

where a is the thermodynamic affinity and Tenv the temperature of the environment. We
assume, without loss of generality, that k− < k+ so that b < 1.

The coordinate X may represent the number of times a chemical reaction has been
completed or the position of a molecular motor on a biofilament. In the former, a = ∆µ is
the difference between the sum of the chemical potentials of the products and the reagents
of the chemical reaction, and in the latter a = fδ is the work performed by the system on
the motor when it moves forwards. Hence, the stochastic entropy production S obeys

dS(t) =
a

Tenv
dX(t) (80)

and

ṡ =
〈dS

dt

〉
=

a

Tenv
(k+ − k−) (81)

is the entropy production rate.
We consider the first passage time

TX = inf {t > 0 : X(t)−X(0) /∈ (−`−, `+)} , (82)

which is also the first-passage time TS of the stochastic entropy production with thresholds
s− = a`−/Tenv and s+ = a`+/Tenv.

The splitting probabilities p− and p+ are given by (see Appendix E.3)

p+ =
1− b[`−]

1− b[`−]+[`+]
and p− = b[`−] 1− b[`+]

1− b[`−]+[`+]
, (83)

where [`−] and [`+] denote the largest integers that are smaller than `− and `+, respectively.
The generating function

g(y) = 〈e−yTX(k−+k+)〉 (84)

is for all y > 0 given by (see Appendix E.4)

g(y) =

(
2

ζ+(y)

)[`+] 1−
(
ζ−(y)
ζ+(y)

)[`−]

1−
(
ζ−(y)
ζ+(y)

)[`−]+[`+]

+

(
ζ−(y)

2

)[`−] 1−
(
ζ−(y)
ζ+(y)

)[`+]

1−
(
ζ−(y)
ζ+(y)

)[`−]+[`+]
, (85)
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Figure 5: Comparing the tightness of the first-passage time bounds Eq. (3) with the ther-
modynamic uncertainty relation Eq. (65). The ratio ṡ〈TnX〉1/n/| log p−| for n = 1, 2, 3 and
the uncertainty ṡ(〈T 2

X〉−〈TX〉2)/(2〈TX〉) as a function of ` = `− = `+ for a biased random
walk process X described by Eq. (78) with k+ = 1 and b = 0.1. Note that the inequalities
Eq. (3) are tight for `→∞, while the uncertainty relation Eq. (65) is loose.

where
ζ±(y) = β(y)±

√
−4b+ β2(y) (86)

and
β(y) = (1 + y)(1 + b). (87)

The moments of TX follow from

〈TnX〉 =

(
−1

k− + k+

)n dn

(dy)n
g(y)

∣∣∣∣
y=0

, (88)

where n ∈ N.
Figure 5 compares the first-passage time bounds Eqs. (3) with the thermodynamic

uncertainty relation Eq. (65). The plotted curves are obtained from the explicit analytical
expressions for ṡ and p−, given by Eqs. (81) and (83), respectively, and from explicit
analytical expressions for 〈Tn〉 that we have obtained from the Eqs. (84-88) and can
be found in the Appendix E.6. The figure shows that for large values of the first-passage
thresholds the bounds Eqs. (3) are tight, as predicted by Eq. (6), while the thermodynamic
uncertainty relation is loose.

In Fig. 5 we also observe that the first moment 〈T 〉 converges fast to its asymptotic
value, while higher order moments 〈T 2〉 and 〈T 3〉 converge slowly to their asymptotic
values. Using Eqs. (81), (83), and (84-88), we obtain the asymptotics (see Appendices E.7
and E.8)

[`+]

[`−]

| log p−|
〈TX〉

= ṡ+O
(
b[`−]

)
, (89)

and for n > 1
[`+]

[`−]

| log p−|(
〈TnX〉

)1/n = ṡ+O

(
1

[`+]

)
. (90)

Hence, the first moment converges exponentially fast to the entropy production rate ṡ,
while the higher order moments converge as 1/[`+] to their asymptotic value. Conse-
quently, in this example the first moment is more effective for the inference of the entropy
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production rate ṡ. However, from Eq. (72) we can conclude that the exponential fast
convergence for the first moment is a model specific property.

The asymptotic expression for the thermodynamic uncertainty relation depends on the
subleading O (1/[`+]) term in Eq. (90), and is given by

2〈TX〉
〈T 2
X〉 − 〈TX〉2

=
2(k+ − k−)

tanh
(

a
2Tenv

) +O
(
b[`−]

)
. (91)

Since tanh(x) ≤ x, Eq. (65) holds. However, contrary to Eqs. (89) and (90), the ther-
modynamic uncertainty relation is not tight in the limit of large thresholds and the ratio
Eq. (91) depends on the affinity a/Tenv of the process.

Taken together, we can conclude that the equality Eq. (6), and thus the tightness of
the bound Eq. (3) for J = S, follows from the universality of the leading order term in
the Eqs. (89) and (90) for 〈TnX〉. On the other hand, the looseness of the thermodynamic
uncertainty relation Eq. (65) for S = J is a consequence of the nonuniversality of the
subleading term of 〈T 2

X〉 in the Eqs. (89) and (90) and therefore the right-hand side of
Eq. (91) depends on the affinity a of the process.

10 Discussion

Driving a system out of equilibrium can speed up the rate of a chemical reaction. However,
there exists a fundamental thermodynamic tradeoff between speed, the fluctuations in
the process, and the rate of dissipation. The main contribution of this paper is the
derivation of a universal inequality, Eq. (3), that expresses in nonequilibrium stationary
states a thermodynamic tradeoff between speed, uncertainty, and dissipation, which are
quantified in terms of the mean first passage time 〈TJ〉, the splitting probability p−,
and the dissipation rate ṡ, respectively. The main advantage of the inequality (3) with
respect to previously published trade-off relations, such as the thermodynamic uncertainty
relations [33,34,45–49,51,52], is that Eq. (3) is an equality when J = S, see Eq. (6), and
hence the bound is optimal in this case.

From a mathematical point of view, the Eqs. (3) and (6) are interesting as they are
related to thermodynamic uncertainty relations, martingale theory, and the theory of
sequential hypothesis testing. Indeed, both Eq. (3) and the thermodynamic uncertainty
relations follow readily from the large deviation function bound Eq. (28). On the other
hand, the equality Eq. (6) follows from martingale theory [19,20], in particular the integral
fluctuation relation at stopping times [21]. In addition, both of the Eqs. (3) and Eq.(6) are
can be derived by using results from the theory of sequential hypothesis testing [40, 43],
more specifically the asymptotic optimality of sequential probability ratio tests. It is
fascinating that all these different research areas are related to each other and certainly
more fundamental insights about stochastic thermodynamics can be gained by exploring
the links between these areas.

Let us now discuss the conditions under which the main results Eqs. (3) and (6) apply.
We will rely on the derivations in Sec. 6 as they are more general than those in Secs. 4
and 5. Both of the Eqs. (3) and (6) require stationarity in the weak sense that S(t)/t
converges to a constant limit ṡ: for the inequality Eq. (3) we require that S(t)/t converges
almost surely to ṡ and for the equality Eq. (6) we require that S(t)/t converges r-quickly
to ṡ. In addition, for Eq. (3) we need that e−S is a martingale, which is the case whenever
it takes the form [19–21]

e−S(t) =
p( ~Xt

0)

p̃( ~Xt
0)
, (92)
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with p̃ characterising the statistics of trajectories in the time-reversed process. Note that
Eq. (92) and the martingalitiy of e−S(t) holds when ~X obeys local detailed balance, see
e.g. [19–21, 53–55]. For the inequality Eq. (3) we need the additional condition that J
converges asymptotically to the drift-diffusion process Eq. (12). This condition could be
violated by considering for ~X, e.g., a nonMarkovian process or a Lévy flight.

We end the paper with a brief discussion of potential applications for the Eqs. (3) and
(6). The inequality Eq. (3) could be used to infer dissipation rates from the measurements
of first-passage times of stochastic currents. It is difficult to measure the entropy produc-
tion rate directly as it is related to the heat exchanged with the environment [56]. However,
since the mean first-passage time 〈TJ〉 and the splitting probability p− are directly mea-
surable quantities, Eq. (3) can be used to bound the entropy production rate from below.
When compared with other methods that infer entropy production rates from the mea-
surements of stochastic currents, see e.g. [57–61], the present inequalities may turn out
to perform better as they are optimal when J = S, although this requires further study.
A second interesting application is in the use of the bound Eq. (3) to determine how far
molecular systems operate from what is physically nonpermissible. Notable examples are
molecular motors that are responsible for copying genetic information in biological cells,
such as, ribosomes or polymerases. These motors are known to attain a reliability that
is larger than what is possible in equilibrium through kinetic proof reading [62–64], but
it is not known how close to the physically nonpermissible limits these motors operate.
Another example are transistors that are small enough so that they are prone to noise [65].
Bounds of the form Eq. (3) could be used to understand thermodynamic limitations on
computing that are based on the tradeoff between dissipation, speed, and uncertainty in
nonequilibrium processes.
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A Martingales

In this appendix we briefly revisit some key properties of martingales that we use in this
paper.

A.1 Definition of a martingale

Let Ω be the set of all realisations of a physical process ~X, which is endowed with a
σ-algebra F . Let P be a probability measure that determines the probabilities P (Φ)
of events Φ ∈ F . We denote averages with respect to P by 〈·〉. Let {F (t)}t≥0 be the

filtration generated by ~X, i.e., a sequence of sub-σ-algebras F (t) that is generated by the
trajectories ~Xt

0 of the process X.
A martingale M(t) with respect to a filtration {F (t)}t≥0 is a stochastic process for

which (i) the process M(t) is F (t)-measurable (ii) 〈|M(t)|〉 < ∞ (iii) 〈M(t)|F (s)〉 =
M(s) [66,67]. The latter condition implies that the martingale M is a driftless process.
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A.2 Doob’s optional stopping theorem

A stopping time T is a random time T : Ω→ R+ ∪ {∞} such that {T ≤ t} ∈ F (t) for all
values of t ∈ R+. This means that T stops the process X based on a stopping rule that
does not anticipate the future or use side information.

One of the key properties of martingales that we use in this paper is described by
Doob’s optional stopping theorem [67].

Theorem 2 (Doob’s optional stopping theorem). Let (Ω,F , P ) be a probability space
with sample space Ω, σ-algebra F , and probability measure P . Let X(t) with t ≥ 0 be a
F -measurable stochastic process and let {F (t)}t≥0 be the filtration generated by X. Let
M be a martingale process with respect to the filtration {F (t)}t≥0 and let T be a stopping
time relative to the filtration {F (t)}t≥0. It holds then that

〈M(T ∧ t)〉 = 〈M(0)〉 (93)

where T ∧ t = min {T, t}.

B First-passage duality for an overdamped Brownian par-
ticle in an external force field

We derive the Eq. (25) that expresses a duality for the first-passage times Eq. (2) in
drift-diffusion processes of the form

dJ(t) = jdt+
√

2dJdW (t), (94)

where W (t) is a standard, one-dimensional Wiener process. Since dualities compare first-
passage times with different threshold values `− and `+, we refer to the first-passage
problem of Eq. (2) as TJ(`−, `+) whenever that is necessary to avoid misunderstandings.
We derive Eq. (25) by showing that〈

e−y
TJ (`−,`+)

τ |DJ = −1
〉

=
〈
e−y

TJ (`+,`−)

τ |DJ = 1
〉
, (95)

where

τ =
dJ

j
2 (96)

and where
DJ = sign (J(TJ)) (97)

is the decision variable. The Eq. (95) readily implies the duality relation (25).

B.1 Two martingale equalities

The two processes

Z(t) = exp

(√
zJ(t)

jτ
− t (z +

√
z)

τ

)
, t ≥ 0 (98)

and

Z̃(t) = exp

(
−
√
zJ(t)

jτ
− t (z −

√
z)

τ

)
, t ≥ 0, (99)
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are martingales for all values z > 0. Indeed, using Itô’s formula we readily obtain that

dZ(t) =
√

2zZ(t)dW (t), and dZ̃(t) = −
√

2zZ̃(t)dW (t), (100)

and the processes Z and Z̃ are thus driftless. Note that in the special case of z = 1, the
martingale Z̃(t) is the exponentiated negative entropy production.

Since Z and Z̃ are martingales, we can employ Theorem 2 yielding

〈Z(t ∧ TJ)〉 = 〈Z(0)〉 = 1, and 〈Z̃(t ∧ TJ)〉 = 〈Z̃(0)〉 = 1. (101)

Using the equalities (101), we can derive the splitting probabilities and generating
functions for the first-passage time TJ in the interval (−`−, `+). To this aim, we will use
the following two equalities.

Proposition 1 (Equality 1). For all z > 0, we obtain

1 =
〈

1TJ<∞1DJ=1e
√
z
τ+
τ
−(z+

√
z)
TJ
τ + 1TJ<∞1DJ=−1e

−
√
z
τ−
τ
−(z+

√
z)
TJ
τ

〉
, (102)

where τ+ = `+/j and τ− = `−/j.

Proof. Since Z(t ∧ TJ) is a martingale, Theorem 2 applies yielding

1 = 〈Z(t ∧ TJ)〉 =
〈
e
√
z
J(t∧TJ )

jτ
−(z+

√
z)
t∧TJ
τ

〉
. (103)

Since

e
√
z
J(t∧TJ )

jτ
−(z+

√
z)
t∧TJ
τ ≤ e

√
z
τ+
τ , (104)

the bounded convergence theorem applies, and we can take the limit t → ∞ under the
expectation value. We obtain

1 =
〈

lim
t→∞

e
√
z
J(t∧TJ )

jτ
−(z+

√
z)
t∧TJ
τ

〉
(105)

=
〈

1TJ<∞1DJ=1e
√
z
τ+
τ
−(z+

√
z)
TJ
τ + 1TJ<∞1DJ=−1e

−
√
z
τ−
τ
−(z+

√
z)
TJ
τ

〉
, (106)

which completes the proof.

Proposition 2 (Equality 2). For all z >
√
z, it holds that

1 =
〈

1TJ<∞1DJ=1e
−
√
z
τ+
τ
−(z−

√
z)
TJ
τ + 1TJ<∞1DJ=−1e

√
z
τ−
τ
−(z−

√
z)
TJ
τ

〉
. (107)

Proof. The proof is analogous to the proof of Eq. (102), with the distinction that now we
consider the martingale Z̃(t ∧ TJ).

Using Theorem 2, we obtain

1 = 〈Z̃(t ∧ TJ)〉 = 〈e−
√
z
J(t∧TJ )

jτ
−(z−

√
z)
t∧TJ
τ 〉. (108)

Since for z >
√
z,

e
−
√
z
J(t∧TJ )

jτ
−(z−

√
z)
t∧TJ
τ ≤ e

√
z
τ−
τ (109)

the bounded convergence theorem applies, and

1 =
〈

lim
t→∞

Z̃(t ∧ TJ)
〉

=
〈

lim
t→∞

e
−
√
z
J(t∧TJ )

jτ
−(z−

√
z)
t∧TJ
τ

〉
=

〈
1TJ<∞1DJ=1e

−
√
z
τ+
τ
−(z−

√
z)
TJ
τ + 1TJ<∞1DJ=−1e

√
z
τ−
τ
−(z−

√
z)
TJ
τ

〉
. (110)
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B.2 The first-passage time TJ is almost surely finite

.

Proposition 3. It holds that TJ is almost surely finite, i.e.,

p− + p+ = 1. (111)

Proof. We take the the limit z → 0 in Eq. (102). Since for z < 1 the argument in the

expectation value on the right-hand side of Eq. (102) is bounded by e
τ+
τ , the bounded

convergence theorem applies and thus

1 = lim
z→0

〈
1TJ<∞1DJ=1e

√
z
τ+
τ
−(z+

√
z)
TJ
τ + 1TJ<∞1DJ=−1e

−
√
z
τ−
τ
−(z+

√
z)
TJ
τ

〉
= 〈1TJ<∞1DJ=1〉+ 〈1TJ<∞1DJ=−1〉 = p− + p+.

B.3 Splitting probabilities

Proposition 4. The splitting probabilities are given by

p+ =
1− w−

1− w−w+
, and, p− = w−

1− w+

1− w−w+
, (112)

where
w− = e−

τ−
τ , and w+ = e−

τ+
τ , (113)

where τ− = `−/j, τ+ = `+/j and τ = dJ/j
2
.

Proof. We consider the martingale process

e−S(t) = e
−J(t)

jτ . (114)

Theorem 2 implies that 〈
e
−J(t∧TJ )

jτ

〉
= 1. (115)

Since J is a continuous process, it holds that

lim
t→∞

〈
e
−J(t∧TJ )

jτ

〉
≤ p−e

τ−
τ + p+e

− τ+
τ + p0e

τ−
τ (116)

and

lim
t→∞

〈
e
−J(t∧TJ )

jτ

〉
≥ p−e

τ−
τ + p+e

− τ+
τ . (117)

According to Proposition 3, it holds that p0 = 0, and thus

p−e
τ−
τ + p+e

− τ+
τ = 1 (118)

The solutions to the Eqs. (111) and (118) is given by Eqs. (112) and (113), which
completes the proof.
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B.4 Generating functions of TJ

We derive an explicit expressions for the generating functions

g+(y) = 〈e−y
TJ
τ |DJ = 1〉, g−(y) = 〈e−y

TJ
τ |DJ = −1〉, (119)

with λ ≥ 0. We will use the notation

κ(y) =
√

1 + 4y. (120)

The derivation of g+ and g− is based on the following two lemma’s.

Lemma 2. It holds that for y ≥ 0,

1 = p+e
− 1+κ(y)

2

τ+
τ g+(y) + p−e

1+κ(y)
2

τ−
τ g−(y) (121)

and

1 = p+e
κ(y)−1

2

τ+
τ g+(λ) + p−e

1−κ(y)
2

τ−
τ g−(λ). (122)

Proof. Using the relation (102) for z > 0, we obtain

1 = p+e
√
z
τ+
τ 〈e−(z+

√
z)
TJ
τ |DJ = 1〉+ p−e

−
√
z
τ−
τ 〈e−(z+

√
z)
TJ
τ |DJ = −1〉. (123)

Setting

y = z +
√
z (124)

yields the solution

z =
1

2
(1 + 2y − κ(y)) . (125)

Using Eqs. (124) and (125) in Eq. (123) yields Eq. (122).
Let us now consider the relation (107) for z >

√
z. This relation reads

1 = p+e
−
√
z
τ+
τ 〈e−(z−

√
z)
TJ
τ |DJ = 1〉+ p−e

√
z
τ−
τ 〈e−(z−

√
z)
TJ
τ |DJ = −1〉. (126)

Setting

y = z −
√
z (127)

we find that

z =
1

2
(1 + 2y + κ(y)) . (128)

Using Eqs. (127) and (128) in Eq. (126) yields Eq. (121).

Proposition 5. The generating functions

g+(y) =
e(1−κ(y))

τ+
2τ

p+

[
1− e−κ(y)

τ−
τ

1− e−κ(y)
(
τ++τ−

τ

)
]

(129)

and

g−(y) =
e−(1+κ(y))

τ−
2τ

p−

[
1− e−κ(y)

τ+
τ

1− e−κ(y)
(
τ++τ−

τ

)
]
. (130)

Proof. We solve the Eqs. (121) and (122) towards p+g+(y) and p−g−(y) to find Eqs. (129)
and (130).

26



SciPost Physics Submission

B.5 First-passage duality

Let us denote g+(y; `−, `+) and g−(y; `−, `+) for the generating functions of TJ(`−, `+)
when DJ = 1 or DJ = −1, respectively.

It follows readily from the Eqs. (112), (113), (129) and (130) that

g+(y; `−, `+) = g−(y; `+, `−) (131)

and
g−(y; `−, `+) = g+(y; `+, `−), (132)

which is exactly the first-passage duality Eq. (95) that we were meant to show.

C Mean-first passage time for an overdamped Brownian
particle in a generic periodic potential and in a uniform
force field

In this appendix, we analyse the first-passage problem for a Brownian motion in a generic
periodic potential u and a uniform force field f , as described by Eq. (66). In particular, we
derive analytical expressions for the mean-first passage time 〈TX〉, the splitting probability
p−, and the mean entropy production rate ṡ, where TX is defined as in Eq. (70). In the
limit of large thresholds ` � 1, we show that the main result Eq. (6) holds. In addition,
in the near-equilibrium limit and at low temperatures, we show that Eq. (6) is a Van’t
Hoff-Arrhenius law.

C.1 Stationary distribution and current

We derive Eq. (69) in the main text for the stationary current jss.
The stationary distribution of X ∈ R does not exist. However, we can define the

process on a ring with periodic boundary conditions such that X(t) = X(t) + δ. The
stationary state pss of the equivalent process defined on a ring exists, and we can use the
stationary process on a ring to determine the stationary current jss.

The stationary distribution pss solves the equation [18,68]

∂xjss(x) = 0 (133)

with periodic boundary conditions pss(x) = pss(x+ δ), where

jss(x) = µ(f − ∂xu(x))pss(x)− Tenv

γ
∂xpss(x). (134)

The solution to Eq. (133) is given by [21,69]

pss(x) =
w(x)

(∫ x+δ
x dx′ 1

w(x′)

)
∫ δ

0 dy w(y)
(∫ y+δ

y dx′ 1
w(x′)

) (135)

with x ∈ [0, δ], and where

w(x) = e−
u(x)−fx

Tenv . (136)

The expression Eq. (69) for the stationary current jss follows readily from the Eqs. (134)
and (135).
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C.2 Entropy production

We derive Eqs. (68) and (71) in the main text for the entropy production rate ṡ and the
stochastic entropy production S, respectively. We will again use the equivalent process
defined on a ring with periodic boundary conditions.

The stochastic entropy production S of X, as defined in Eq. (7), is determined by the
stochastic differential equation [30,31]

dS = vS(X) dt+
√

2vS(X) dW (t), (137)

where

vS(x) =
γ

Tenv

j2
ss

p2
ss(x)

=
Tenv

γ

(
1− e

−fδ
Tenv

)2

w2(x)
(∫ x+δ

x dx′ 1
w(x′)

)2 . (138)

Alternatively, we can write

S(t) =
fX(t)− u(X(t)) + u(X(0))

Tenv
+ log

pss(X(0))

pss(X(t))
. (139)

The latter formula implies that for large t� 1 it holds that

S(t) =
fX(t)

Tenv
+ o(t), (140)

which is Eq. (71) in the main text.
The average stationary entropy production rate is given by

ṡ =
〈S(t)〉
t

= 〈vS〉 =
γj2

ss

Tenv

∫ δ

0

dx

pss(x)
. (141)

Since the stationary distribution pss is given by Eq. (135) and u(x) is a periodic function,
we can express this also as

ṡ = jss

(
1− e

−fδ
Tenv

)∫ δ

0
dx

1

w(x)
(∫ δ

0 dx′ 1
w(x′) − (1− e−

fδ
Tenv )

∫ x
0 dx′ 1

w(x′)

) . (142)

Introducing the function ∫ x

0
dx′

1

w(x′)
= W (x), (143)

we find that

ṡ = jss

(
1− e

−fδ
Tenv

)∫ W (δ)

0
du

1(
W (δ)− (1− e−

fδ
Tenv )u

) . (144)

Integrating yields the expression for ṡ given by Eq. (68) in the main text.

C.3 Splitting probabilities

We use the martingale property of e−S(t), see Refs. [20, 21] or Appendix A, to determine
the splitting probabilities p− and p+. Doob’s optional stopping theorem for martingales
implies the following integral fluctuation relation at stopping times

〈e−S(TX)|X(0) = 0〉 = e−S(0) = 1, (145)
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and since S(t) is continuous as a function of t this implies that, see Refs. [20, 21],

p− = e−s−
1− e−s+

1− e−s−−s+
, and p+ =

1− e−s−
1− e−s−−s+

, (146)

where

s− = −−f`− u(−`) + u(0)

Tenv
− log

pss(0)

pss(−`)
, and s+ =

f`− u(`) + u(0)

Tenv
+ log

pss(0)

pss(`)
.

(147)
Notice that we have used a slight abuse of notation in the sense that u(x) and pss(x) are
here defined on x ∈ R using u(x) = u(x± δ) and pss(x) = pss(x± δ).

C.4 Mean first-passage time

Consider the backward Fokker-Planck equation

µ (f − ∂xu(x)) ∂xt(x) +
Tenv

γ
∂2
xt(x) = −1 (148)

with boundary conditions t(−`) = t(`) = 0. It then holds that, see Ref. [70],

〈TX |X(0) = x〉 = t(0). (149)

The solution of t(x) to Eq, (148) with boundary conditions t(−`) = t(`) = 0 is given
by

t(x) =
γ

Tenv

∫ `

−`
dy

1

w(y)

∫ y

0
dx′w(x′)

∫ x−` dy 1
w(y)∫ `

−` dy 1
w(y)

−

∫ x
−` dy 1

w(y)

∫ y
0 dx′w(x′)∫ `

−` dy 1
w(y)

∫ y
0 dx′w(x′)

 , (150)

and therefore

〈TX〉 =
γ

Tenv

(∫ `

−`
dy

1

w(y)

∫ y

0
dx′w(x′)

)∫ 0
−` dy 1

w(y)∫ `
−` dy 1

w(y)

−

∫ 0
−` dy 1

w(y)

∫ y
0 dx′w(x′)∫ `

−` dy 1
w(y)

∫ y
0 dx′w(x′)

 .

(151)
In order to better understand the structure of the expression Eq. (151) for the mean-

first passage time, it is useful to express the integrals in Eq. (151) that run over the intervals
[−`, `] and [−`, 0] in terms of integrals that run over the interval [0, δ]. Let n = [`/δ] be
the largest integer smaller than `/δ, then we can write

` = nδ + z, (152)

with z ∈ [0, δ]. Using this decomposition for `, we obtain that

∫ 0

−nδ−z
dy

1

w(y)
= en

fδ
Tenv

{(
1− e−n

fδ
Tenv

1− e−
fδ

Tenv

)∫ δ

0

dx

w(x)
+ e

fδ
Tenv

∫ δ

δ−z

dx

w(x)

}
(153)

and∫ nδ+z

−nδ−z
dy

1

w(y)

= en
fδ

Tenv

{(
1− e−2n fδ

Tenv

1− e−
fδ

Tenv

)∫ δ

0

dx

w(x)
+ e

fδ
Tenv

∫ δ

δ−z

dx

w(x)
+ e−2n fδ

Tenv

∫ z

0

dx

w(x)

}
.

(154)
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In addition,∫ nδ+z

0
dy

1

w(y)

∫ y

0
dx′w(x′)

= n

{
e−

fδ
Tenv

1− e−
fδ

Tenv

∫ δ

0
dx

1

w(x)

∫ δ

0
dxw(x) +

∫ δ

0
dy

1

w(y)

∫ y

0
w(x)dx

}

−
e−

fδ
Tenv

(
1− e−n

fδ
Tenv

)
(

1− e−
fδ

Tenv

)2

∫ δ

0
dxw(x)

∫ δ

0
dx

1

w(x)

+e−
fδ

Tenv
1− e−n

fδ
Tenv

1− e−
fδ

Tenv

∫ z

0
dy

1

w(y)

∫ δ

0
dxw(x) +

∫ z

0
dy

1

w(y)

∫ y

0
dxw(x), (155)

and

−
∫ 0

−nδ−z
dy

1

w(y)

∫ y

0
dx′w(x′)

=
1− en

fδ
Tenv

(1− e−
fδ

Tenv )(1− e
fδ

Tenv )

(∫ δ

0
dxw(x)

)(∫ δ

0
dx

1

w(x)

)

+n

{∫ δ

0
dy

1

w(y)

∫ δ

y
dxw(x)− 1

1− e−
fδ

Tenv

(∫ δ

0
dxw(x)

)(∫ δ

0
dx

1

w(x)

)}

+
en

fδ
Tenv − 1

1− e−
fδ

Tenv

∫ δ

δ−z
dx

1

w(x)

∫ δ

0
dxw(x) +

∫ δ

δ−z
dy

1

w(y)

∫ δ

y
dxw(x). (156)

Using the Eqs. (153), (154), (155), and (156) in Eq. (151), we obtain an expression for
〈TX〉 that depends only on integrals over the interval [0, δ].

C.5 Limit of large thresholds

We derive the Eq. (72) that holds in the limit of large `.

C.5.1 Splitting probabilities

In the limit of large thresholds, the linear term in ` dominates the Eqs. (147) and therefore

s− =
f`

Tenv
+O`(1), and s+ =

f`

Tenv
+O`(1). (157)

Using Eq. (157) in the Eqs. (146) for p− and p+, we obtain that

log p− = − f`

Tenv
+O`(1), and log p+ = 1 +O`(1). (158)

C.5.2 Mean first-passage time

We use that

n =

[
`

δ

]
+O`(1), (159)

where as before
[
`
δ

]
denotes the largest integer that is smaller than `

δ .
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Taking the asymptotic limit of large ` in Eqs. (153) and (154), we obtain that∫ 0
−` dy 1

w(y)∫ `
−` dy 1

w(y)

= 1− e−[ `δ ]
fδ

Tenv

∫ δ
0

dx
w(x)∫ δ

0
dx
w(x) + (e

fδ
Tenv − 1)

∫ δ
δ−z

dx
w(x)

+O
(
e−2[ `δ ]

fδ
Tenv

)
.(160)

The asymptotic limit of Eq. (155) is∫ `

0
dy

1

w(y)

∫ y

0
dx′w(x′)

=

[
`

δ

]{
e−

fδ
Tenv

1− e−
fδ

Tenv

∫ δ

0
dx

1

w(x)

∫ δ

0
dxw(x) +

∫ δ

0
dy

1

w(y)

∫ y

0
w(x)dx

}
+O`(1),

(161)

and from Eqs. (155) and (156) it follows that

−
∫ `

−`
dy

1

w(y)

∫ y

0
dx′w(x′)

= e[
`
δ ]

fδ
Tenv


∫ δ

0 dxw(x)
∫ δ

0 dx 1
w(x)

(1− e−
fδ

Tenv )(e
fδ

Tenv − 1)
+

∫ δ
δ−z dx 1

w(x)

∫ δ
0 dxw(x)

1− e−
fδ

Tenv


+

[
`

δ

]
∫ δ

0
dy

1

w(y)

∫ δ

y
dxw(x)− 1

tanh
(

fδ
2Tenv

) ∫ δ

0
dx

1

w(x)

∫ δ

0
dxw(x)

−
∫ δ

0
dy

1

w(y)

∫ y

0
dxw(x)

}
+O`(1). (162)

The Eqs. (161) and (162) imply that the ratio∫ 0
−` dy 1

w(y)

∫ y
0 dx′w(x′)∫ `

−` dy 1
w(y)

∫ y
0 dx′w(x′)

= 1 +

[
`

δ

]
e−[ `δ ]

fδ
Tenv


e−

fδ
Tenv

(∫ δ
0 dxw(x)

)(∫ δ
0 dx 1

w(x)

)
+
(

1− e−
fδ

Tenv

) ∫ δ
0 dy 1

w(y)

∫ y
0 w(x)dx∫ δ

0 dxw(x)
∫ δ
0 dx 1

w(x)

e
fδ

Tenv −1

+
∫ δ
δ−z dx 1

w(x)

∫ δ
0 dxw(x)


+O

(
e−[ `δ ]

fδ
Tenv

)
. (163)

Using Eqs. (160)-(163) in Eq. (151) yields for the mean first-passage time the asymptotic
expression

〈TX〉 =
γ

Tenv

[
`

δ

] [
e−

fδ
Tenv

1− e−
fδ

Tenv

(∫ δ

0
dxw(x)

)(∫ δ

0
dx

1

w(x)

)
+

∫ δ

0
dy

1

w(y)

∫ y

0
w(x)dx

]
+O`(1).

(164)

C.5.3 The ratio | log p−|/〈TX〉

It follows from the asymptotic relations for 〈TX〉 and | log p−|, given by Eqs. (164) and
(158), respectively, that the ratio

| log p−|
〈TX〉

=
fδ

γ

1− e
−fδ
Tenv∫ δ

0 dy w(y)
(∫ y+δ

y dx′ 1
w(x′)

) +O(1/`). (165)
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Using Eqs. (68) and (69) for ṡ and jss, respectively, together with the identities∫ δ

0
dy

1

w(y)

∫ y

0
dxw(x) =

∫ δ

0
dy w(y)

∫ δ

y

1

w(x)
dx (166)

and

e−
fδ

Tenv

∫ δ

0
dxw(x)

∫ y

0
dx

1

w(x)
=

∫ δ

0
dxw(x)

∫ y+δ

δ
dx

1

w(x)
, (167)

we readily obtain Eq. (72), which is what we were meant to show.

C.6 Van’t Hoff-Arrhenius law near equilibrium

We show that Eq. (72) yields the Van’t Hoff-Arrhenius law Eq. (77).
Indeed, if ` is large enough, then Eq. (72) together with Eq. (158) yields

〈TX〉 =
f`

Tenv

1

ṡ
+O

(
1

`

)
(168)

where the mean entropy production rate ṡ is given by Eq. (68). Since the mean entropy
production rate is proportional to the stationary current, given by Eq. (69), we can use
saddle point integrals to evaluate the mean current in the limit Tenv → 0 and to obtain
the Van’t Hoff-Arrhenius law.

Let us therefore first revisit the saddle point method, and then apply it to the mean
current to obtain the Van’t Hoff-Arrhenius law.

C.6.1 Saddle point integrals in the limit of Tenv → 0

We first revisit briefly the saddle point method.
Let v(x) be a function defined on the interval [0, δ]. Then we analyse integrals of the

form ∫ δ

0
dx e

v(x)
Tenv f(x) (169)

in the limiting case of small Tenv. In this limiting case,∫ δ

0
dx e

v(x)
Tenv f(x) = κf(xmax)e

vmax
Tenv +O

(
Tenv

vmax

)
(170)

where κ is a prefactor that depends on the properties of the function v at the maximum.
Note that we use the following notation: if xmax = argmax v(x), then vmax = v(xmax),
v′max = v′(xmax), and v′′max = v′′(xmax).

There exist four relevant cases:

• v′max = 0 and xmax ∈ (0, δ):

κ =

√
2πTenv

−v′′max

; (171)

• v′max does not exist (maximum is a cusp) and xmax ∈ (0, δ):

κ = Tenv

(
1

v+
max
− 1

v−max

)
(172)

where

v+
max = lim

ε→0

v(xmax)− v(xmax − ε)
ε

, and v−max = lim
ε→0

v(xmax + ε)− v(xmax)

ε
;

(173)
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• xmax = 0:

κ = −Tenv

v−max
; (174)

• xmax = δ:

κ =
Tenv

v+
max

. (175)

C.6.2 The mean first-passage time in the low temperature limit and the linear
response limit

We consider first the near equilibrium limit with fδ/Tenv ≈ 0, and then we consider the
low temperature limit Tenv ≈ 0.

First we take the linear response limit with fδ/Tenv ≈ 0. It holds then that

w(x) = e−
u(x)
Tenv

(
1 +

fx

Tenv
+O

((
fδ

Tenv

)2
))

, (176)

and
1

w(x)
= e

u(x)
Tenv

(
1− fx

Tenv
+O

((
fδ

Tenv

)2
))

, (177)

such that

jss =
fδ

γ

1∫ δ
0 dye−

u(y)
Tenv

∫ δ
0 dxe

u(x)
Tenv

+O

((
fδ

Tenv

)2
)
. (178)

Second, we take the low temperature limit with Tenv ≈ 0. Using the saddle point
method, we obtain that

jss =
fδ

γ
κ1κ2e

− Eb
Tenv +O

((
fδ

Tenv

)2
)

(179)

where κ1 and κ2 are two prefactors due to the two saddle point integrals in Eq. (178).
The entropy production rate follows from Eq. (68) and is given by

ṡ =
(fδ)2

γTenv
κ1κ2e

− Eb
Tenv +O

((
fδ

Tenv

)3
)
. (180)

Lastly, using Eq. (168) we obtain the Van’t Hoff-Arrhenius law for the mean-first passage
time

〈TX〉 =
`

δ

γ

fδ

1

κ1κ2
e
Eb
Tenv

(
1 +O

(
fδ

Tenv

))
. (181)

We discuss two relevant cases:

• u′max = u′min = 0 and xmax, xmin ∈ (0, δ):

κ1κ2 =

√
−u′′minu

′′
max

2πTenv
; (182)

• u′max 6= 0 and u′min 6= 0:

κ1κ2 =

(
1

u+
max
− 1

u−max

)−1( 1

u+
min

− 1

u−min

)−1 1

T2
env

. (183)
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D Mean-first passage time for a Brownian particle in a pe-
riodic potential that is triangular and in a uniform force
field

Just as in the previous appendix, we consider a Brownian motion in a uniform force field
f and a periodic potential u, for which dynamics of the position variable X is described
by the overdamped Langevin Eq. (66). However, in this appendix we consider the specific
case of the triangular potential given by Eq. (67). We have used this case to generate the
curves in the Figs. 1-4.

D.1 Stationary distribution

The stationary probability distribution, given by Eq. (135), for a triangular potential is
given by [31]

pss(x) =

 a1 + a2e
xf+
Tenv if x ∈ [0, x∗],

a3 + a4e
xf−
Tenv if x ∈ [x∗, δ],

(184)

where
f+ = f − u0

x∗
, and f− = f +

u0

δ − x∗
, (185)

and

a1 = f+f
2
−
e
f−x
∗

Tenv − e
f−δ+f+x

∗

Tenv

N
, (186)

a2 = f+f−(f− − f+)
e
f−δ
Tenv − e

f−x
∗

Tenv

N
, (187)

a3 = f2
+f−

e
f−x
∗

Tenv − e
f−δ+f+x

∗

Tenv

N
, (188)

a4 = f+f−(f+ − f−)
e
f+x
∗

Tenv − 1

N
, (189)

and where the normalisation constant

N = Tenv(f+ − f−)2

(
e
f+x
∗

Tenv − 1

)(
e
f−δ
Tenv − e

f−x
∗

Tenv

)
+f+f−(f+δ − f+x

∗ + f−x
∗)

(
e
f−x
∗

Tenv − e
f−δ+f+x

∗

Tenv

)
. (190)

The stationary current is given by the expression

jss =
f+a1

γ
=
f−a3

γ
. (191)

In Fig. 6, we plot the stationary distribution pss for various values of the nonequilibrium
driving fδ/Tenv. Observe that the distribution concentrates around the values x ≈ 0 or
x ≈ δ, and thus the process resembles a hopping process, as is also visible in Fig. 1.
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D.2 Mean first-passage time

In the case of the triangular potential we can obtain an explicit expression for 〈TX〉 given
by Eq. (151). This is because the integrals that appear in the Eqs. (153), (154), (155),
and (156) can be solved explicitly.

We obtain explicit expressions for the following integrals:

∫ z

0
dx w(x) =


Tenv
f+

(
e
f+z

Tenv − 1

)
if z < x∗,

Tenv
f+

(
e
f+x
∗

Tenv − 1

)
+ Tenv

f−
e−

u0
Tenv

δ
δ−x∗

(
e
f−z
Tenv − e

f−x
∗

Tenv

)
if z > x∗,

(192)

∫ z

0

dx

w(x)
=


Tenv
f+

(
1− e

−f+z
Tenv

)
if z < x∗,

Tenv
f+

(
1− e

−f+x
∗

Tenv

)
+ Tenv

f−
e

u0
Tenv

δ
δ−x∗

(
e
−f−x

∗

Tenv − e
−f−z
Tenv

)
if z > x∗,

(193)
and∫ δ

δ−z

dx

w(x)

=


Tenv
f+

(
e
−f+(δ−z)

Tenv − e
−f+x

∗

Tenv

)
+ Tenv

f−
e

u0
Tenv

δ
δ−x∗

(
e
−f−x

∗

Tenv − e
−f−δ
Tenv

)
if δ − z < x∗,

Tenv
f−

e
u0

Tenv
δ

δ−x∗

(
e
−f−(δ−z)

Tenv − e
−f−δ
Tenv

)
if δ − z > x∗.

(194)

In addition, if z < x∗, then∫ z

0
dy

1

w(y)

∫ y

0
w(x)dy =

Tenv

f+
z −

(
Tenv

f+

)2(
1− e−

f+z

Tenv

)
, (195)

and if z > x∗, then∫ z

0
dy

1

w(y)

∫ y

0
w(x)dy

=
Tenv

f+
x∗ +

Tenv

f−
(z − x∗)−

(
Tenv

f+

)2(
1− e−

f+x
∗

Tenv

)
−
(
Tenv

f−

)2(
1− e

f−(x∗−z)
Tenv

)
+
Tenv

f−
e

u0
Tenv

δ
δ−x∗

(
e−

f−x
∗

Tenv − e−
f−z
Tenv

)
Tenv

f+

(
e
f+x
∗

Tenv − 1

)
. (196)

Lastly, it holds that∫ δ

0
dy

1

w(y)

∫ δ

y
dxw(x) =

∫ δ

0
dy

1

w(y)

∫ δ

0
dxw(x)−

∫ δ

0
dy

1

w(y)

∫ y

0
dxw(x) (197)

and∫ δ

δ−z
dy

1

w(y)

∫ δ

y
dxw(x) =

∫ δ

0
dy

1

w(y)

∫ δ

0
dxw(x)−

∫ δ

0
dy

1

w(y)

∫ y

0
dxw(x)

−
∫ δ−z

0
dy

1

w(y)

∫ δ

0
dxw(x) +

∫ δ−z

0
dy

1

w(y)

∫ y

0
dxw(x).

(198)
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Figure 6: Stationary distribution pss as a function of x for δ = 5, x∗ = 1, u0 = 10, Tenv = 1
and for given values of f . The value of γ is immaterial. Solid lines are results from the
Eqs. (184)-(190) while markers are simulation results. The green dotted line plots the
potential u divided by 5.

Substituting the above integrals, given by Eqs. (192)-(198), into Eqs. (153), (154),
(155), and (156), and consequently using these in Eq. (151) for 〈TX〉, we obtain a closed
form expression for 〈TX〉.

In the Figs. 3 and 4 of the main text we have used this closed form expression of 〈TX〉
to plot 〈T 〉ṡ/| log p−| as a function of ` or 〈TX〉 as a function of Tenv.

D.3 Recovering the Van’t Hoff-Arrhenius law

The Eq. (181) in the particular case of a triangular potential leads to

〈TX〉 =
`γ

f

T2
env

u2
0

e
u0

Tenv

(
1 +O

(
fδ

Tenv

))
. (199)

We have used this equation to plot the green dotted line in the Fig. 4 of the main text.

E Biased hopping process

In this appendix, we determine the moments of the first-passage time TX , defined in
Eq. (82), of the biased hopping process X determined by Eq. (78). We follow closely
the analysis from Appendix B. Just as in Appendix B, we will make use of the decision
variable

DX = sign (X(t)−X(0)) . (200)

E.1 Martingales in the biased hopping processes

The processes
Z(t) = ezX(t)+[(1−ez)k++(1−e−z)k−]t (201)

are martingales for all values of z ∈ R (see Appendix A.1 for the definition of a martingale).
Indeed, using Itô’s formula for jump processes [71], we obtain

dZ(t) = (ez − 1)Z(t) [dN+(t)− k+dt] + (e−z − 1)Z(t) [dN−(t)− k−dt] , (202)
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which is a martingale process as both dN+(t)− k+dt and dN−(t)− k−dt are martingales.
In the special case of z = ln k−

k+
, we obtain that Z(t) = e−S(t) is the exponentiated negative

entropy production, which is an example of martingale process [21].

Proposition 6 (A martingale equality). If k+ > k−, then for all z ∈ R\ [ln k−
k+
, 0] it holds

that

1 =
〈

1TX<∞1DX=1e
z[`+]+f(z)TX + 1TX<∞1DX=−1e

−z[`−]+f(z)TX
〉
, (203)

where
f(z) = (1− ez)k+ + (1− e−z)k−, (204)

and where [`+] and [`−] are the smallest natural numbers that are larger than `+ and `−,
respectively.

Proof. Since Z(t) is a martingale, we can apply Theorem 2 to Z(t ∧ TX) giving

1 = 〈Z(t ∧ TX)〉 =
〈
ezX(t)+f(z)(t∧TX)

〉
. (205)

Since for z ∈ R \ [ln k−
k+
, 0] it holds that for f(z) < 0

ezX(t)+f(z)(t∧TX) < ez`+ . (206)

Hence, the bounded convergence theorem applies, see e.g. Ref. [72], and we can take the
limit t→∞ under the expectation value to obtain

1 = 〈 lim
t→∞

ezX(t)+f(z)(t∧TX)〉 (207)

=
〈

1TX<∞1DX=1e
z[`+]+f(z)TX + 1TX<∞1DX=−1e

−z[`−]+f(z)TX
〉
,

(208)

which completes the proof of the equality (203).

In what follows, we use this martingale equality to derive various properties TX .

E.2 The first-passage time TX is with probability one finite

Proposition 7. It holds that TX is almost surely finite, i.e.,

p− + p+ = 1. (209)

Proof. We take the the limit z → 0 in Eq. (203). Since for z ∈ [0, 1] the argument in
the expectation value is bounded by e`+ , the bounded convergence theorem applies, see
e.g. Ref. [72], and

1 = lim
z→0

〈
1TX<∞1DX=1e

z[`+]+f(z)TX + 1TX<∞1DX=−1e
−z[`−]+f(z)T

〉
= 〈1TX<∞1DX=1 + 1TX<∞1DX=−1〉 = 〈1TX<∞〉 = P(TX <∞),

where we have used that f(0) = 0.
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E.3 Splitting probabilities

Proposition 8. It holds that

p+ =
1− e−[`−] ln

k+
k−

1− e−([`+]+[`−]) ln
k+
k−

, and p− = e
−[`−] ln

k+
k−

1− e−[`+] ln
k+
k−

1− e−([`+]+[`−]) ln
k+
k−

, (210)

where [`−] and [`+] are the smallest natural numbers that are greater or equal than `− and
`+, respectively.

Proof. Wee Theorem 2 to the martingale

e−S(t) = e
X(t) ln

k−
k+ , (211)

yielding 〈
e
X(t∧TX) ln

k−
k+

〉
= 1. (212)

Since X is a jump process on a lattice, it holds that

lim
t→∞

〈
e
X(t∧TX) ln

k−
k+

〉
≤ p−e

−[`−] ln
k−
k+ + p+e

[`+] ln
k−
k+ + (1− p− − p+)e

−[`−] ln
k−
k+ (213)

and

lim
t→∞

〈
e
X(t∧TX) ln

k−
k+

〉
≥ p−e

−[`−] ln
k−
k+ + p+e

[`+] ln
k−
k+ . (214)

According to Proposition 7, it holds that p− + p+ = 1, and thus

p−e
−[`−] ln

k−
k+ + p+e

[`+] ln
k−
k+ = 1. (215)

The solutions to the Eqs. (209) and (215) are given by Eqs. (210), which completes
the proof.

Using b = k−/k+ in Eq. (210), we obtain the Eq. (83) in the main text.

E.4 Generating function

We derive an explicit formula for the generating function g(y) defined in Eq. (84).
We can write

g(y) = p+g+(y) + p−g−(y) (216)

where g+ and g− are the conditional generating functions

g+(y) = 〈e−yTX(k−+k+)|DX = 1〉, and g−(y) = 〈e−yTX(k−+k+)|DX = −1〉. (217)

Lemma 3. It holds that

1 =

(
1

2

[
(1 + b)(1 + y) +

√
−4b+ (1 + b)2(1 + y)2

])[`+]

p+g+(y)

+

(
1

2

[
(1 + b)(1 + y) +

√
−4b+ (1 + b)2(1 + y)2

])−[`−]

p−g−(y), (218)

and

1 =

(
1

2

[
(1 + b)(1 + y)−

√
−4b+ (1 + b)2(1 + y)2

])[`+]

p+g+(y)

+

(
1

2

[
(1 + b)(1 + y)−

√
−4b+ (1 + b)2(1 + y)2

])−[`−]

p−g−(y), (219)
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Proof. We rewrite the relation (203) for z /∈ [ln k−
k+
, 0] as

1 = ez[`+]p+〈ef(z)T (k−+k+)|DX = 1〉+ e−z[`−]p−〈ef(z)T (k−+k+)|DX = −1〉. (220)

Setting
y = −f(z) (221)

and solving towards z, we obtain two solutions.
First, let us consider the solution branch for z ≥ 0, which is given by

z = ln

(
1

2

[
(1 + b)(1 + y) +

√
−4b+ (1 + b)2(1 + y)2

])
. (222)

Using Eqs. (221) and (222) in (220), we obtain Eq. (220).
Second, let us consider the solution branch for z ≤ ln b, namely,

z = ln

(
1

2

[
(1 + b)(1 + y)−

√
−4b+ (1 + b)2(1 + y)2

])
. (223)

In this case, using Eqs. (221) and (223) in (220), we obtain the Eq. (219).

Proposition 9. The generating function Eq. (84) is given by Eqs. (85)-(87).

Proof. We find Eq. (85) readily by solving the Eqs. (219)-(220).

E.5 Moments of first-passage times

The moments of first passage times follow from taking the derivatives in Eq. (88).
The first moment is given by

〈TX〉 =
[`+]p+ − [`−]p−

k+ − k−
. (224)

The second moment is given by

(k+ − k−)2〈T 2
X〉 =

p+

1− b[`−]+[`+]

(
[`+]2 + [`+] tanh−1

(
a

2Tenv

))
− [`−]2p−

(
3 + b[`−]+[`+]

1− b[`−]+[`+]

)

+
p+b

[`−]+[`+]

1− b[`−]+[`+]

(
3[`+]2 − [`+] tanh−1

(
a

2Tenv

))
+[`−] tanh−1

(
a

2Tenv

)
b2[`−]+[`+](1− b[`+])

(1− b[`−]+[`+])2
− 4[`+][`−]

b2[`−]+[`+]

(1− b[`−]+[`+])2

+

(
[`−] tanh−1

(
a

2Tenv

)
+ 8[`−][`+]

)
b[`−]b[`+]

(1− b[`−]b[`+])2

−[`−]

(
tanh−1

(
a

2Tenv

)
+ 4[`+]

)
b[`−]

(1− b[`−]b[`+])2
, (225)

where tanh−1
(

a
2Tenv

)
= 1/ tanh

(
a

2Tenv

)
.

We avoid writing down the expression for 〈T 3
X〉 given that it is even lengthier than

〈T 2
X〉.
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E.6 Symmetric thresholds

In the specific case where `+ = `− = `, we obtain the simpler expression

g(y) =
2[`] + 2−[`]

(
β(y)−

√
−4k−k+ + β2(y)

)[`] (
β(y) +

√
−4k−k+ + β2(y)

)[`]

(
β(y)−

√
−4k−k+ + β2(y)

)[`]

+
(
β(y) +

√
−4k−k+ + β2(y)

)[`]
(226)

for the generating function.
In this case, the first-passage time is

〈TX〉 =
[`]

k+ − k−
1− b[`]

1 + b[`]
. (227)

and the second moment

〈T 2
X〉 = [`]

[`] + k++k−
k+−k− − 6[`]b[`] + b2[`]

(
[`]− k++k−

k+−k−

)
(k+ − k−)2 (1 + b[`]

)2 (228)

and the third moment,

〈T 3
X〉 =

[`]

k3
+(1− b)5(1 + b[`])3

{
2 + 8b+ 2b2 + 3[`](1− b2) + [`]2(1− b)2

+b[`](2 + 2b(4 + b) + 15(−1 + b2)[`]− 23(−1 + b)2[`]2)

+b2[`](−2− 2b(4 + b) + 15(−1 + b2)[`] + 23(−1 + b)2[`]2)

+b3[`](2 + 2b(4 + b) + 3(−1 + b2)[`] + (−1 + b)2[`]2)
}
. (229)

These are the formulae used in Fig. 5 of the main text.
One readily verifies the thermodynamic uncertainty relation

lim
[`]→∞

〈T 2
X〉 − 〈TX〉2

〈TX〉
=

k+ + k−
(k+ − k−)2

≥ 2

(k+ − k−) log k+
k−

(230)

where we used the fact that log(x) ≥ x−1
x ≥

x−1
x+1 with x = k+/k−.

E.7 Asymptotics with large thresholds

We consider the limit `+, `− � 1 with the ratio `+/`− fixed to a constant value.
The big-O notation O(f(`−)) denotes an arbitrary function g(`−) for which it holds

that there exists a constant c such that g(`−) < cf(`−) for `− large enough.
From Eqs. (83), we obtain for the splitting probabilities that

p− = b[`−] +O(b[`+]+[`−]), and p+ = 1 +O(b[`−]). (231)

Equation (224) implies that the mean first-passage time

〈TX〉 =
[`+]

k+ − k−

(
1 +O(b[`−])

)
, (232)

and from Eq. (225) it follows that the second moment

〈T 2
X〉 =

[`+]2

(k+ − k−)2

1 +
1

[`+] tanh
(

a
2Tenv

) +O(b[`−])

 . (233)
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The Eqs. (231) and (232) imply that

[`+]

[`−]

| log p−|
〈TX〉

=
a

Tenv

1

k+ − k−
(1 +O(b[`−])). (234)

We recognise in the above formula the entropy production rate ṡ given by Eq. (81), and
thus

[`+]

[`−]

| log p−|
〈TX〉

= ṡ+O(b[`−]). (235)

Analogously, Eqs. (231) and (233) imply that

[`+]

[`−]

| log p−|√
〈T 2
X〉

= ṡ+O

(
1

[`+]

)
. (236)

The thermodynamic uncertainty relation is governed by the subleading O (1/[`+]) term
in Eq. (236). Using Eqs. (231) and (233), we obtain the Eq. (91) in the main text. Since,

1

tanh(x/2)
≥ 2

x
(237)

the thermodynamic uncertainty relation [15]

2〈TX〉
〈T 2
X〉 − 〈TX〉2

≥ ṡ (238)

holds.
In order to find asymptotic expressions for the higher order moments, we analyze in

the next subsection the probability distribution of TX in the limit of large thresholds `−
and `+.

E.8 Probability distribution in the asymptotic limit `± →∞

In order to derive asymptotic expressions for the moments 〈Tn〉 with n > 2, we determine
the probability distribution in this limit.

Using that ζ− < ζ+, we obtain in the limit `min →∞,

g(y) =

(
2

ζ+(y)

)[`+]
(

1 +O

((
ζ−(y)

ζ+(y)

)[`−]
))

+

(
ζ−(y)

2

)[`−]
(

1 +O

((
ζ−(y)

ζ+(y)

)[`−]
))

.

(239)

In the limit `min →∞, we obtain

g(y) =

(
2

ζ+(y)

)[`+]

+O(b[`−]). (240)

Considering that T will be large when both [`+] and [`−] are large, we use that y ∼
1

[`min] . Therefore,

ζ+(y) = 2 + 2
1 + b

1− b
y +O(y2). (241)

Taking the inverse Laplace transform, we obtain up to leading order

pTX (t) =
((k+ + k−)t)[`+]−1

Γ([`+])

(
1− b
1 + b

)[`+]

e−t(k++k−) 1−b
1+b +O(b[`−]), (242)
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which is the Gamma distribution with shape parameter [`+] and rate (1− b)/(1 + b).
If we introduce a new variable,

τ =
(k+ + k−)t

[`+]
, (243)

then we obatain

p (k−+k+)TX
[`+]

(τ) ∼ exp
(
−[`+]I(τ) +O[`+](1)

)
+O(b[`−]) (244)

with the large deviation function

I(τ) =
1− b
1 + b

τ − log (τ)− log
1− b
1 + b

− 1. (245)

The minimum is found when

τ∗ =
1 + b

1− b
(246)

in which case I(τ∗) = 0. Expanding I(τ) around τ∗ we obtain

I(τ) =

(
τ − 1+b

1−b

)2

2
(

1+b
1−b

)2 +O(τ3). (247)

Hence, the distribution of pT is

p (k++k−)TX
[`+]

(τ) =

√
[`+]

2π(τ∗)2
exp

(
−[`+]

(τ − τ∗)2

2(τ∗)2
+O(τ2)

)
+O(b[`−]). (248)

For large [`+], the distribution p (k++k−)TX
[`+]

(τ) is centered around τ = τ∗, and therefore

(k++k−)TX
[`+] is a deterministic variable in this limit. The moments of T are thus up to

leading order terms of the form

〈TnX〉 = [`+]n
(τ∗)n

(k+ + k−)n
+O([`+]n−1) =

[`+]n

(k+ − k−)n
+O([`+]n−1). (249)

Using the formula for p−, given by Eq. (231), and the expression for ṡ in Eq. (81), we find
thus indeed

[`+]

[`−]

| log p−|(
〈TnX〉

)1/n = ṡ+O

(
1

[`+]

)
. (250)

Note that obtaining the 1/[`+] correction terms is more complicated as we need to
consider subleading order terms in Eq. (247). The subleading order terms depend on b
and are thus process dependent. Hence, the moments 〈TnX〉 converge for large thresholds
to the universal limit given by Eq. (250) since they are governed by the leading order term
in the asymptotic behaviour of TX . On the other hand, the Fano factor

〈T 2
X〉 − 〈TX〉2

〈TX〉
(251)

characterising uncertainty depends on the subleading terms and will therefore not converge
to a universal limit when the thresholds diverge.
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