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Abstract

We propose that doped Weyl semimetals with four Weyl points are natural
candidates to realize higher-order topological superconductors, which exhibit
a fully gapped bulk while the surface hosts robust gapless chiral hinge states.
We show that in such a doped Weyl semimetal, a featureless finite-range at-
tractive interaction favors a p + ip pairing symmetry. By analyzing its topo-
logical properties, we identify such a chiral pairing state as a higher-order
topological superconductor, which depending on the existence of a four-fold
roto-inversion symmetry R4z, is either intrinsic (meaning that the correspond-
ing hinge states can only be removed by closing the bulk gap, rather than
modifying the surface states) or extrinsic. We achieve this understanding via
various methods recently developed for higher-order topology, including Wan-
nier representability, Wannier spectrum, and defect classification approaches.
For the R4z symmetric case, we provide a complete classification of the higher-
order topological superconductors. We show that such second-order topologi-
cal superconductors exhibit chiral hinge modes that are robust in the absence
of interaction effects but can be eliminated at the cost of introducing surface
topological order.
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1 Introduction

Topological superconductivity [1–4] combines two fascinating topics in condensed matter
physics, topological phases of matter and unconventional superconductivity, and is the
key component of fault-tolerant topological quantum computation [5, 6]. Over the past
decade, significant progress has been made in classifying topological superconductors with
internal and/or crystalline symmetries. For the purpose of classification, these phases
are often treated as free fermion states. For experimental realizations, much of the focus
has been placed on ideas similar to the Fu-Kane superconductor [7] where a conventional
superconductor is in proximity with a topological material. On the other hand, unconven-
tional superconductors with nontrivial (i.e., non-s-wave) pairing symmetries can exhibit
even richer symmetry-breaking and topological properties. The understanding and pre-
diction of these unconventional topological superconductors necessarily require a synergy
of band structure and electronic interaction effects.

The notion of band topology has recently been extended to higher-order topology [8–
30], with protected gapless states localized at the corners and hinges of the sample. This
opens up a new avenue for novel topological superconductivity [11, 31–37], where many
interesting open questions abound, including classification of such phases and its poten-
tial application in topological quantum computation. Just like regular unconventional
topological superconductors, the realization of higher-order topological superconductiv-
ity via an intrinsic pairing instability typically has stringent requirements on both the
normal state band structure and the pairing symmetry in an intrinsic superconductor.
There have been several recent proposals along these lines, including potential higher-
order topological superconducting phases (HOTSC) in FeSeTe, in two-dimensional Dirac
semimetals [11, 33, 34, 38–40], and in superconductors with unconventional p + id pairing
symmetry [11, 41]. Alternatively, it has been pointed out in several recent works [42, 43]
that superconducting proximity effects between a quantum spin Hall insulator and a d-
wave superconductor also realizes a HOTSC phase.

In this work we show that thanks to its normal state band structure, interacting
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topological semimetals are natural candidates for hosting HOTSCs. A number of previ-
ous [44–48] works have shown that topological semimetals provide a promising avenue for
realizing novel topological superconducting phases, including fully gapped ones and those
with topologically protected nodal points. Here we analyze the fully gapped superconud-
cting phase that emerges from an interacting time-reversal symmetric Weyl semimetal. A
minimal model of such a system consists of two bands with four co-planar Weyl points.
With a proper chemical potential within the width of Weyl bands, there exist four Fermi
pockets around each Weyl point. We find that in the presence of a finite-range attractive
interaction (as opposed to an on-site or short-ranged one), the leading instability is to-
ward a chiral p-wave order, which spontaneously breaks time-reversal symmetry. While
the resulting superconductor is fully gapped in the bulk, it hosts gapless chiral Majorana
modes at its hinges that are perpendicular to the plane of Weyl points. These gapless
hinge states are a characteristic of second-order topology. We examine the topological
properties in the presence of a four-fold rotoinversion symmetry R4z via several different
methods, including the analysis of Wannier obstruction and the defect classification ap-
proach and find that the bulk has no well-defined Wannier representation that respects
all the symmetries of the system.

Using the defect classification approach that we developed for higher-order topology in
an earlier work [46], we find that the defect Hamiltonian H(k, θ) for a tube enclosing the
hinge has a second Chern number protected by R4z symmetry. This further confirms the
robustness of the chiral hinge modes and second-order topology. Next, we extend our focus
to the general class of R4z-symmetric superconductors in 3d, and obtain a full classification.
We demonstrate that while the chiral hinge modes are robust for a free fermion system,
they can be eliminated in the presence of strong interactions on the surface by inducing
an anomalous surface topological order [30].

We also analyze the situation in the absence of R4z symmetry. Of important relevance
to this case is a four-band time-reversal invariant Weyl semimetal. In this situation two
pairs of Weyl points come from different bands that are Kramers partners, and four-fold
symmetries are absent. Despite the reduced symmetry, the chiral p-wave pairing order
remains the leading pairing channel. However, in the absence of R4z, the aforementioned
classification of HOTSC does not apply. Nevertheless, we show that the chiral hinge modes
remain a robust feature of the spectrum of a finite sized sample. We show this by directly
solving the defect Hamiltonian corresponding to the portion of the surface around a hinge.
These hinge states can be understood as coming from extrinsic second-order topology, as
they can be eliminated by modifying the surface without closing the gap in the bulk. The
Wannier obstruction of the surface states remain present, consistent with the fact that the
hinge modes are protected by the surface gap.

The rest of this paper is organized as follows. In Sec. 2 we introduce the model for
the normal state and analysis its pairing instabilities in the presence of an attractive in-
teraction. In Sec. 3 we show that such a chiral p-wave superconductor has nontrivial
second-order topology in the presence of R4z symmetry. In Sec. 4 we obtain a full classi-
fication of the higher-order topology for 3d R4z symmetric superconudctors, and in Sec. 5
we discuss the fate of the gapless hinge modes in the presence of strong surface interac-
tions. In Sec. 6 we show that the chiral hinge modes remain robust in the absence of R4z

symmetry.
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Figure 1: The position of the four ellipsoidal Fermi surfaces in the Brilliouin zone. The
color of a Fermi surface denotes the chirality of the Weyl point it encloses with red (resp.
blue) with C = 1 (resp. −1).

2 Time-reversal invariant Weyl semimetal and its pairing
instabilities

2.1 Normal state

Consider the following two-band lattice model for a Weyl semimetal, H =
∫
dkψ†

kHn(k)ψk,
with the single-particle Hamiltonian given by

Hn(k) = f(k) · σ − µ, (1)

where σi’s are Pauli matrices acting on an internal band space. The Weyl nodes of the
band structure are given by the condition f(k0) = 0, which are in general isolated points
in three dimensions. We impose a time-reversal symmetry T such that

THn(k)T−1 = Hn(−k). (2)

In general the two bands are non-degenerate other than at the Weyl points, which are not
at high-symmetry points, and we take T2 = 1 so that the time-reversal symmetry does not
enforce any Kramer’s degeneracy. With no loss of generality we choose the time reversal
symmetry to be,

T = K, (3)

where K is the complex conjugation operator. Other choices are related by unitary trans-
formations in the band basis. Time-reversal symmetry requires

f1,3(−k) = f1,3(k), f2(−k) = −f2(k). (4)

In the presence of time-reversal symmetry, there are a minimum of four Weyl points that
are pairwise related. We primarily focus on this minimal case in this work. The pair
of Weyl points related by time-reversal each carry a monopole charge (Chern number)
C = 1, while the other pair each carry C = −1 in accordance with the Nielson-Ninomiya
theorem [49].

Additionally, we impose spatial symmetries relating all four Weyl points. While the
simplest possibility would be a four-fold rotation in the plane of Weyl points, such a
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Figure 2: The full BZ with the Weyl points labeled in black dots, and the rotoinversion
points labeled in red dots. Due to the R4z symmetry and the Weyl points, the surface
ZAA′Z ′ carry a Chern number of 1/2.

symmetry is incompatible with the fact that the four Weyl points carry alternating ±1
monopole charges under a four-fold rotation. Instead such a configuration of Weyl-points
can be stabilized by a four-fold roto-inversion symmetry, given by a composite transforma-
tion R4z = C4zMz, where C4z is a fourfold rotation around the z-axis and Mz is reflection
along the z-axis, under which

R4zHn(k)R−1
4z = Hn(R4zk), (5)

with R4z : (kx, ky, kz) → (−ky, kx,−kz).
At momentum points invariant under R4z, the Bloch states can be labeled by its

eigenvalues. Focusing on the Γ = (0, 0, 0) point, using the fact that f2(k) is odd, this
requires that (assuming f1,3(0) ̸= 0, without loss of generality) up to a common U(1)
phase,

R4z ∝ exp
[
iθ
(
f̂1(0)σx + f̂3(0)σz

)]
, (6)

where we defined f̂1,3 ≡ f1,3/
√
f2

1 + f2
3 . Further, consistency with the f2(k)σy term limits

us to θ = 0 (for which f2(k) is even under R4z) or θ = π/2 (for which f2(k) is odd under
R4z).

One can exclude the possibility of a trivial R4z with θ = 0 using restrictions placed by
the four Weyl points. To this end, one can divide the Brillouin zone into four quadrants
related by R4z, shown in Fig. 2, each of which encloses one Weyl point. Due to time-
reversal symmetry, the AA′A′′A′′′ surface does not have a Chern number, and thus for a
quadrant enclosing one Weyl point, the two “dividers” (AA′Z ′Z and A′′′A′′Z ′Z ) that are
related by R4z each contributes a Berry flux C = π. Via the Stokes theorem, this Berry
flux is the difference of the Berry phases along the vertical paths AA′ (or A′′A′′′) and
ZZ ′. Each of the two paths are symmetric under R4z, which acts as inversion kz → −kz,
and the Berry phases can be determined by the inversion (played by R4z) eigenvalues
at the high-symmetry points. Using known results from inversion-symmetric topological
insulators [50], in terms the R4z invariant points {Γ = (0, 0, 0), M = (π, π, 0), Z =
(0, 0, π), A = (π, π, π)}, the existence of four R4z symmetric Weyl point translates to∏

k∗∈{Γ,M,Z,A},i∈occ.
ηi

k∗ = −1, (7)

where ηi
k∗ is the eigenvalue R4z at k∗ for the i-th occupied band, which takes the value

of ±1 by properly choosing a common U(1) phase in R4z. This clearly eliminates the
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possibility θ = 0, and we have

R4z = f̂1(0)σx + f̂3(0)σz. (8)

Note that the condition (7) also eliminates the possibility of time-reversal symmetry
with T2 = −1 for a four-point Weyl semimetal with R4z. If T2 = −1, at the above R4z-
invariant momenta every band would be doubly degenerate via the Kramers theorem. For
every given band in each of the two 1d subsystems, (ZZ ′) and (AA′), since R4z acts as
spatial inversion, its eigenvalues η at high-symmetry points can again be chosen to be
±1. Time-reversal operation either preserves the sign of η or flips it. But since time-
reversal symmetry is local and each 1d band can be represented by a 1d Wannier state,
this action must be independent of kz = 0 or kz = π. Therefore, time-reversal partners
from every band give the same contribution to the product on the left hand side of (7),
thus incompatible with the criterion that the product for all states is −1.

As a concrete example, a lattice model with R4z and T is given by

f1(k) = γ + cos(kz) + cos(kx), f3(k) = γ + cos(kz) + cos(ky), f2(k) = sin(kz). (9)

As can be easily checked, such a model has four Weyl nodes on the kz = 0 plane for
−2 < γ < 0. In this case

R4z = (σx + σz)/
√

2, (10)

and indeed the condition Eq. (7) is satisfied.
For later use we note that there are two additional composite symmetries, C2z ≡ R2

4z,
and C2zT which generate subgroups of the full symmetry group generated by R4z and T.
The symmetries act as

C2z = − 1, C2zT = −K. (11)

In Sec. 6 we will relax the R4z symmetry and only impose C2. From the action of the C2zT
on the Hamiltonian it can be seen that,

f1,3(kx, ky,−kz) = f1,3(kx, ky, kz), f2(kx, ky,−kz) = −f2(kx, ky, kz). (12)

The second equation implies that the Weyl points are all located at either kz = 0 or π,
and are therefore also related by C4z. For concreteness, we take the 4 Weyl points to exist
on the kz = 0 plane with positions ±K and ±K ′ such that K ′ = R4zK. We further focus
on the low-energy fermions near the Fermi surfaces by expanding the Hamiltonian near
the Weyl points,

hI(δk) ≡ Hn(I + δk) = δkiϕ
ij
I σj − µ, (13)

where I ∈ {±K,±K ′} is the set of Weyl-point, and ϕij
I = ∂ki

f j(k)
∣∣
k=I

. The chirality of
the Weyl points is given by sgn[detϕij

I ]. For later convenience, we define,

ϵI(δk) =
√
δki[ϕIϕT

I ]ijδkj (14)
ξI(δk) = ϵI(δk) − µ (15)

n̂i
I(δk) = δkjϕ

ji
I

ϵI(δk)
. (16)
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Figure 3: The linearized gap equation for the Cooper pairing vertex. See Eq. (19).

2.2 Pairing instability
For a finite proper chemical potential, each of the Weyl points will be surrounded with
an ellipsoidal Fermi surface (FS). Let us consider the Cooper instabilities of such a WSM
model in the presence of a finite-range attractive density-density interaction. The inter-
action is given by

Hint = −
∫
dkdk′dq ψ†

k,αψk+q,αV (q)ψ†
k′+q,βψk′,β,

where α, β denotes pseudospin indices, and the attractive potential depends on momentum
transfer q. The range of the interaction is characterized by the inverse width of the peak
of V (q) around q = 0. For our purposes, the relevant momentum transfer are those
that connect electrons on the Fermi surfaces. In the limit where µ is small, it is a good
approximation to take the interaction to only depends on which of the Fermi surfaces the
two electrons belong to. We define, VII′ ≡ V (I−I ′) as the interaction between an electron
on the SI Fermi surface and another on the SI′ Fermi surface. Due to the R4z symmetry,
we have

VII′ =


V0 V1 V2 V1
V1 V0 V1 V2
V2 V1 V0 V1
V1 V2 V1 V0


II′

(17)

The pairing Hamiltonian is written as,

H∆ =
∫
dkψ†

k∆(k)[ψ†
−k]T + H.c.. (18a)

Analogous to spin-singlet and triplet pairing, one can conveniently express ∆(k) via

∆(k) = [∆0(k) + d(k) · σ]iσy, (18b)

although here due to the lack of SU(2) symmetry in the band space, the four components
are in general mixed. In the weak coupling limit, the linearized gap equation is given by

∆(k) = Tc

∑
ωm

∫
dk V (k − k′) G(k′, ωm)∆(k′)GT (−k′, ωm), (19)

where ωm = (2m+1)πT are the Matsubara frequencies, and the Green’s functionG(k, ωm) ≡
G(k, ωm) = −[iωm − Hn(k)]−1. Using time reversal symmetry we have,

GT (−k, ωm) = G(k, ωm). (20)

which can be used to simplify the form of the gap equation. Further, the Green’s functions
can be approximated by projecting onto the low-energy electrons making up the FS’s:

GI(δk, ωm) = − PI(δk)
iωm − ξI(δk)

, (21)
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where PI(δk) is the projection operator onto the states near the Fermi surface,

PI(δk) = 1
2

(1 + n̂I(δk) · σ) . (22)

The momentum integral can be restricted to the vicinity of the four Weyl FS’s, on which
we assume ∆(k) takes constant values, and we have

∆I = Tc

∑
ωm,I′

∫
dδk VII′PI′(δk)Tr[PI′(δk)∆I′ ]

ω2
m + ξ2

I′(δk)
, (23)

where we define ∆I = ∆(I). Thus, the pairing gap equation in general reduces to an
eigenvalue problem for a 16 component vector (four components (∆0,d) for each Weyl
point I), and strongest pairing tendency corresponds to the channel with the largest
eigenvalue Tc. Using the fact that n̂I(δk) is odd in δk, we notice that independent of the
details of the band structure, ∆I = dy

I1, i.e., the “triplet channel” with d = dyŷ is always
an eigenmode of Eq. (23).

In fact, as we prove in Appendix A, as long as the range of the interaction is sufficiently
longer than the lattice constant (such that V0 is the dominant component in Eq. (17)), the
leading instability of the system which gaps out all the Fermi surfaces is of the ∆I = dy

I1
type. Compatible with the Fermi statistics ∆T

−I = −∆I , we found that such a state is an
irreducible representation of R4z that transform as

R4z∆IRT
4z = ±i∆R4zI , (24)

and the choice of ±i spontaneously breaks T. This is analogous to the px + ipy pairing
order for inversion symmetric systems. As we show in Appendix A, the superconducting
critical temperature is given by

Tc = Λ exp
[
− 2

(V0 − V2)N(0)

]
, (25)

where Λ is an upper cutoff either from the band structure or from the interaction. We
write the pairing gap as

∆(k) = (∆1(k) + i∆2(k)) 1, (26)

and the BdG Hamiltonian as

H(k) = f(k) · στz − µτz + ∆1(k)τx + ∆2(k)τy, (27)

where the real gap functions are odd in k,

∆1,2(−k) = −∆1,2(−k), (28)

and τi are the Pauli matrices in the Nambu space. The rotoinversion symmetry for the
BdG Hamiltonian consistent with Eq. (24) is given by

R4z =
(
f̂1(0)σx + f̂3(0)σz

)
e−i π

4 τz . (29)

The BdG Hamiltonian as always has a built-in particle-hole symmetry P = τxK.
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3 Higher-Order Topological superconductor with rotoinver-
sion symmetry R4z

In previous works [10,11,30], C2nT (with n > 1) symmetric HOTIs and HOTSCs have been
studied and their second order topology has been analyzed in some detail. In such systems,
one often finds that when defined on a C2n symmetric spatial geometry, the model support
gapless chiral modes along hinges that are related by C2n symmetry. These chiral modes
would intersect at points on the surface that are C2n invariant. This point of intersection
is protected by the C2nT symmetry. The present situation is slightly different. Since there
are no fixed points on the surface under the rotoinversion action. The symmetry does not
necessitate any particular spatial position to host gapless modes. However we still find a
gapless chiral mode along a rotoinversion symmetric locus on the surface that is protected
by the rotoinversion symmetry. This situation is somewhat similar to the case of inversion
symmetric models with second order topology [51].

We now analyze the higher-order topology of the Weyl superconductor in Eq. (27).
We first numerically solve for the spectrum of a concrete tight-binding model with open
boundary conditions and demonstrate the existence of chiral hinge modes. Next, by inves-
tigating the irreducible represention of the little groups of R4z at high symmetry points,
we show that the system does not have a Wannier representation and is in a topological
(obstructed) phase. Finally in this section we directly associate the nontrivial topology
with the hinges by treating the hinges of a finite sample as defects of a space-filling sys-
tem. The gapless modes hosted on the relevant hinges are naturally captured by the defect
classification of topological phases.

3.1 Numerical Calculations of the Majorana Hinge Modes
We first present numerical results on a specific tight-binding Hamiltonian which satisfies
the properties discussed in the previous section.

H(k) = [−1 + cos(kz) + cos(kx)] τzσx + [−1 + cos(ky) + cos(kz)] τzσz − µτz

+ sin(kz)τzσy + ∆ sin(kx)τx + ∆ sin(ky)τy. (30)

The R4z symmetry for this model takes the following form,

R4z = σx + σz√
2

e−i π
4 τz . (31)

By taking periodic boundary condition in one direction and open boundary condition in
the other two we can numerically solve for the hinge modes of the Hamiltonian in Eq. (30)
using exact diagonalization. We show the results of this calculation in Fig. 4 (a-b) for the
case when µ > 0. Chiral modes are shown in red and we find 4 of them propagating in
the ±kz direction, and only 2 propagating in the ±kx,y directions. Further checking of the
localization of these chiral modes shows that indeed they are localized in the hinges, as
illustrated in Fig. 4(e).

We perform the same calculation but for µ = 0 and µ < 0. The top and the bottom
surfaces are gapless for µ = 0. However this gap is not protected by the R4z symmetry,
and depending on sgnµ, the top and bottom surfaces become gapped in different ways as
shown in Fig. 4(e-g).

To better understand the topology of the system, we calculate the layer resolved Chern
number on the n-th layer of a slab geometry defined as,

Cij(n) = Im
π

∫
k||

Tr
[
P(k||)∂ki

P(k||)Pn∂kj
P(k||)

]
(32)
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Figure 4: Panels (a-b) show the result of exact diagonalization of the Hamiltonian in
Eq. (30) with µ > 0 and open boundary conditions in two directions with system size
15 × 15 and periodic boundary condition in the third direction. Panels (c-d) shows the
result of the layer resolved Chern number for the case when µ > 0. Panels (e-g) shows the
profile of the Majorana chiral hinge modes for different values of the chemical potential.

where k|| = (ki, kj), are the components of the momentum parallel to the n-th layer, P(k||)
is the projection operator onto the occupied bands in the slab geometry, and Pn is the
projection operator on the n-th layer. The result of this calculation for slabs parallel to
the yz, and xy planes are shown in Fig. 4(c,d). A surface Chern number can be defined
as,

C±
ij =

∑
n∈S±

Cij(n), (33)

where S± is the set of upper/lower half of the layers. The layer resolved Chern numbers
vanish for the bulk layers, hence we interpret C±

ij as a surface quantity. Restrictions
imposed by R4z imply,

C+
xy = C−

xy, C+
yz = −C+

zx, C+
zx = C−

yz. (34)

Combining the above restrictions with the requirement that a chiral Majorana modes
arises on the interface where this surface Chern number changes by ±1, we get that C±

ij

are fixed to be either ±0.5.
For the quasi-2D slab geometry with open boundary conditions in one direction, the

total Chern number can be obtained by summing over all layers and are integers as ex-
pected. In the x and y-directions the total Chern number is zero, the total Chern number
with open boundary conditions in the z-direction is − sgnµ, for a small µ. This is despite
the fact that the bulk (when periodic boundary conditions are taken in all directions) has
zero Chern number on all planes in the Brillouin zone. Projecting the Majorana Chiral
modes in Fig. 4(e,g), onto the xy-plane, one ends up with a Chiral Majorana mode cir-
cling the edges of the sample in a clockwise, or anti-clockwise fashion, consistent with the
positive, or negative value of µ used in this calculation.
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Figure 5: The eigenvalues of the R4z operator on the occupied subspace at the 4 rotoin-
version symmetric points on the BZ.

Next, our goal is to show that the existence of the higher-order topological phase only
depends on the low energy properties of the model in Eq. (27) and not on the specifics of
the tight-binding model discussed here.

3.2 Wannier obstruction
The pairing terms in the BdG Hamiltonian in Eq. (27) break time-reversal symmetry,
thus with only P2 = 1 the system is in the AZ symmetry class D. Since 3d class D
systems do not support non-trivial band topology, there is no obstruction to having a well
localized Wannier representation. The meaning of the Wannier representation for BdG
Hamiltonian has been previously studied [31, 32, 52–54]. We therefore ask whether there
exists a Wannier representation that respects the R4z symmetry. We check this using a
symmetry indicator approach.

If a Wannier representation exists, the centers of the Wannier functions should re-
produce the eigenvalues of the symmetry operators at the high-symmetry points on the
Brillouin zone. As mentioned before, there are four points in the Brillouin zone that are
invariant under R4z, {Γ = (0, 0, 0), M = (π, π, 0), Z = (0, 0, π), A = (π, π, π)}. All of the
R4z invariant points are also time-reversal invariant, and thus the pairing terms vanish
and the Hamiltonian take the following form

H(k∗) = f(k∗) · στz (35)

where k∗ ∈ {Γ,M,Z,A}, and for now we put µ = 0. The eigenvalues of the rotoinversion
symmetry operator, as defined in Eq. (29), on the occupied bands at these points are shown
in Fig. 5. We notice that the symmetry operators eigenvalues are completely determined
by ηΓ, ηM , ηZ , and ηA. After a straightforward enumeration of all the possible Wannier
centers and the resulting R4z eigenvalues we find the following condition for obstruction

ηΓηMηZηA =
{

−1, obstructed
1, not obstructed.

(36)

The obstruction in the system can be understood as follows: consider a hybrid Wannier
representation of the system that is localized in the x and y-directions but not in the
z-direction,

∣∣νi(Rx, Ry, kz)
〉
, i ∈ {1, 2}. At kz = 0, π the R4z symmetry reduces to a

fourfold rotation symmetry, R4z

∣∣νi(Rx, Ry, kz = 0, π)
〉

=
∣∣νi(−Ry, Rx, kz = 0, π)

〉
. Similar

11
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2D systems under the restriction of fourfold rotation symmetry are studied in [46]. The
Wannier functions for the 2D subsystem at kz = 0 (π) are either centered at r = (0, 0)
when ηΓηM = 1 (ηZηA = 1), or at r = (1/2, 1/2) when ηΓηM = −1 (ηZηA = −1), where
r is measured relative to the unit cell center. The condition for obstruction is that only
one pair, either ηΓ, and ηM , or ηZ , and ηA have a relative minus sign, but not both. The
existence of the Weyl points in the kz = 0 plane but not in the kz = π plane, ensures
a relative minus sign between ηΓ, and ηM . Thus, in this hybrid Wannier reprsentation,
the Wannier centers are centered at r = (1/2, 1/2) at kz = 0, and as we increase kz the
Wannier centers drift and reach r = (0, 0) at kz = π. This kind of Wannier spectral flow
indicates that the system cannot be further localized in the z-direction.

Interestingly, we note that the condition for Wannier obstruction is precisely the one
in Eq. (7) we found for the existence of four Weyl points related by R4z. Therefore,
generally we have proven that an R4z Weyl semimetal with four Weyl nodes with attractive
interaction naturally host a higher-order topological superconducting phase. This is the
main result of our work.

3.3 Gapless hinge modes from defect classification
In this section we analyze the topology of the model in Eq. (27), from its defect classifi-
cation. We treat the appearance of stable gapless states at codimension-1 or higher as a
diagnostic of non-trivial bulk topology. In particular we are interested in the appearance
of gapless chiral hinge modes on R4z symmetric hinges on the surface of an open geometry.
To this end, consider placing the model on an open geometry that preserves the rotoinver-
sion symmetry. Outside the sample exists a perfectly featureless atomic insulator that also
preserves the spatial symmetry. As the outside region is featureless, the four Weyl-points
must annihilate somewhere along the surface of the sample. Since we insist on preserving
the rotoinversion symmetry, the Weyl-points are forced to annihilate at one of the four
R4z-symmetric points k∗ = Γ,M,Z or A.

In any of these cases, the low energy physics is described by keeping only the leading
order terms in a small momentum expansion δk from the rotoinversion invariant point.
We define,

f1,3(k∗ + δk) = m1,2, f2(k∗ + δk) = vzδkz

∆1,2(k∗ + δk) = v1,2
x δkx + v1,2

y δky, (37)

where we used the evenness of f1,3(k) (Eq. (4)) and the fact that f2(k) is zero over the
entire kz = 0, π planes (Eq. (12)) from which it follows that it has no linear terms in kx

and ky on these planes. Furthermore, from the odd parity nature of the pairing, and upon
applying Eq. (24) twice we obtain that ∆1,2(k) are even under kz → −kz, and thus have
no linear terms in kz.

From the action of the rotoinversion symmetry we see that R4z : v2 → v1, where
v1,2 = (v1,2

x , v1,2
y , 0), meaning v2

x = v1
y = vy, and v2

y = −v1
x = −vx. The low energy

continuum Weyl model in the vicinity of the rotoinversion invariant point takes the form

H(δk) = vxy

(
δkxγ

1 + δkyγ
2
)

+ vzδkzγ
3 + m1γ

4 + m2γ
5 − µγ12, (38)

where for convenience we define vxy =
√
v2

x + v2
y , and

γ1 = 1
vxy

(vxτx + vyτy), γ2 = 1
vxy

(vyτx − vxτy),

γ3 = σyτz, γ4,5 = σx,zτz, γ1,2 = iγ1γ2 (39)

12



SciPost Physics Submission

In the bulk, the mass vector m = (m1,m2) is constrained such that m = ±m(f̂1(0), f̂3(0)),
with m2 = m2

1 + m2
2. However, it may vary as one approaches the surface. If m(r)

represents the mass domain wall close to the surface, then m(r), and m(R4zr) are related
by a reflection about the (f̂1(0), f̂3(0)) direction.

Below we present two complementary approaches to study the existence of hinge
modes. The first approach is based on the notion of dimensional reduction/adiabatic
pumping while the second approach makes use of a classification of line defects in BdG
superconductors.

3.3.1 Via adiabatic pumping

In this section we show that the 3D class D hinge superconductor in Eq. (38) dimensionally
reduces to a class BDI second-order superconductor in 2D which was studied in Ref. [46].
The roto-inversion R4z reduces to a fourfold rotation Cz

4 in the x-y plane. In order to make
this dimensional transmutation precise, we write the low energy Hamiltonian (38) in the
following suggestive way by replacing δkz → −i∂/∂z

H(δkx, δky, z) = H2D(δkx, δky) + ivzγ
3 ∂

∂z
. (40)

We first consider setting the chemical potential µ = 0. With µ = 0, note that the
Hamiltonian H2D describes a class BDI superconductor. This is due to the fact that
since

{
γ3,H2D(k)

}
= 0, γ3, effectively implements a chiral symmetry for the 2D model.

Moreover it was shown in Ref. [46] that this model describes a BDI second-order super-
conductor that supports Majorana zero-modes at the corners of a Cz

4 symmetric spatial
geometry. The states localized at each corner can be indexed by an integer Nw ∈ Zodd
which corresponds to the difference in the number of zero-energy eigenstates with positive
and negative chirality. Here we show that each such mode contributes to a chiral gapless
mode on the hinge of the 3D model. Consider the ansatz of the form |Ψ(kx, ky, z, t)⟩ =
ϕ(z, t)|φ(kx, ky)⟩ where |φ(kx, ky)⟩ is a zero-mode of the 2D model with chirality +1, i.e
H2D(kx, ky)|φ(kx, ky)⟩ = 0 and Γ3|φ(kx, ky)⟩ = |φ(kx, ky)⟩. Then solving the Schrodinger
equation gives ϕ(z, t) = ϕ(z + t). Similarly one obtains Nw chiral Majorana modes with
opposite chirality on adjacent corners.

The discussion above survives if we turn on a small but finite chemical potential. Indeed
it was shown in Ref. [46], that that the corresponding Hamiltonian H2D has majorana
zero modes present at the corners of a C4z symmetric spatial geometry. The topological
invariant associated to these zero modes is the mod 2 reduction of the winding number
Nw [55]. The chirality of the hinge mode remains unchanged as compared with µ = 0
case since it cannot change without a gap opening. In the next section we describe an
alternate approach that provides a diagnostic for the higher-order topology based on the
defect classification.

3.3.2 Defect invariant: Second Chern number

Let us formulate (38) as a continuum Euclidean time Dirac action

S =
∫

d3xdτΨ†
[
∂τ + i

3∑
i=1

γi∂i + m1γ
4 + m2γ

5
]

Ψ, (41)

defined on an open spatial geometry M embedded in a trivial insulator. We absorb the
velocities, vz, and vxy through an appropriate rescaling of the coordinates. Such process
does not affect the topology of the system.

13



SciPost Physics Submission

Comparing ηk∗ in the bulk and outside M i.e in the region that hosts the trivial
model, they differ by a minus sign. It is known that line defects in class A and class D
insulators and superconductors are integer classified and host chiral Dirac and Majorana
modes respectively. Moreover the integer invariant corresponding to a model containing a
non-trivial defect is captured by the second Chern number evaluated on the hybrid four-
dimensional space BZ × S1

γ where BZ is the 3D Brillouin zone and S1
γ is a real-space loop

(homotopic to a circle) that links with the defect under consideration.
Such a defect invariant can directly be applied to the study of second-order topological

phases in 3D by simply considering the hinge as a defect. The role of the spatial symmetries
then is to ensure the stability of the defect at particular high symmetry loci on the surface
of the topological phase. We consider S1

γ to be a path linking with a chosen hinge. For
convenience we choose a path that intersects the boundary of the spatial geometry M at
two R4z related points. Let θ be an angular variable parameterizing the path S1

γ . The
invariant associated with the hinge, denoted as NHinge takes the form

NHinge = 1
8π2

∫
BZ×S1

γ

Tr [F ∧ F ] = 1
8π2

∫
BZ×S1

γ

Tr [PdP ∧ dP ∧ dP ∧ dP] , (42)

where P =
∑

i=1,2 |ui(k, θ)⟩⟨ui(k, θ)| is the projector onto the occupied states |ui(k, θ)⟩.
In order to compute the invariant we modify our model without closing the energy gap
thereby leaving the topology unaltered. More precisely, we consider the Hamiltonian

H̃ =
5∑

i=1
hi(k, θ)γi, (43)

where

hi =


ki−ϵk2

√
k2+m2 if i = 1, 2

ki√
k2+m2 if i = 3

mi−3(θ)√
k2+m2 if i = 4, 5

(44)

The term ϵk2(γ1 +γ2) has been added as a R4z symmetric regularization that implements
a one point compactification of BZ × S1

γ such that f denotes a map from S4 to S4. We
take ϵ → 0 at the end of the calculation. Additionally, we choose a path S1

γ on which
m2 = m2

1 + m2
2 is independent of θ. The Hamiltonian H̃ has the advantage that it is

normalized with a pair of degenerate eigenstates with eigenenergies ±1. The projector
onto occupied states can explicitly be written as P = 1+h·γ

2 . Inserting this into the
expression (42) one obtains

NHinge = 1
8π2

∫
ϵijklmhi∂kxhj∂kyhk∂kzhl∂θhm = 1

2π

∫
S1

γ

m∂θm, (45)

therefore the topological invariant associated with a given hinge reduces to the topological
winding number associated with the map m : θ ∈ S1

γ → S1
m where S1

m is the circle
coordinates arctan(m2/m1). Since (1) R4z acts as a reflection along the (f̂1(0), f̂3(0))
direction on the space of masses, and (2) m reverses direction when moving from deep
into the bulk to far outside the sample, the winding number around the loop S1

γ is pinned
to be an odd number [46]. To conclude we have shown that the second Chern number in
hybrid space (k, θ) serves as a topological invariant which may be used to diagnose the
presence of chiral Majorana hinge modes. For the Hamiltonian of the form Eq. (38) it
reduces to the mass winding number around θ which is enforced to be non-vanishing and
odd by the spatial R4z symmetry.
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Figure 6: An illustration for a choice of cell complex for the point group R4z on an open
geometry. The 2-cells are illustrated in panel (a) wherein the 2-cells a, b, c, d are each a
representative of a certain R4z orbit on the surface of the depicted geometry. Likewise
α, β and γ each label a certain R4z orbit in the bulk of the geometry. Similarly, panel (b)
illustrates the distinct R4z orbits for the 1-cells. The representatives of the surface orbits
are denoted A,B, . . . ,G while the bulk orbit representatives are denoted as Λ1 and Λ2.

4 Classification of R4z-symmetric higher-order superconduc-
tors

In this section we derive the classification of R4z-symmetric higher-order phases. We treat
the appearance of robust ingappable modes on high symmetry lines and points on the
surface of a fully gapped and spatially symmetric superconductor as diagnostics of second
and third order topology respectively. For the purpose of classification, it is convenient
to work with ground states directly rather than with Hamiltonians [56–63]. A ground
state of a model within a certain topological phase with a given crystalline symmetry G
can be adiabatically deformed to a particular type of state known as block state. A block
state corresponding to a higher-order topological phase can be understood hueristically
as a network of lower dimensional topological states with only internal symmetries glued
together in a manner that is compatible with all spatial symmetries.

Here we illustrate the construction for the case of R4z-symmetric class D superconduc-
tors. To do so, we consider a R4z-symmetric cell complex, illustrated in Fig. 6. Since we
are interested in higher-order topology and therefore boundary modes, we consider the
cellulation of an open R4z symmetric geometry. The cell complex consists of a network
of 1-cells and 2-cells. Note that we do not consider 3-cell as (i) they do not affect the
classification of higher order phases and (ii) for the present case, i.e class D, there are no
topologically non-trivial phases in 3D. Moreover, we also do not consider bulk 0-cells since
they do not contribute to any boundary signatures. We consider a cell complex such that
each p-cell is either left entirely invariant or mapped to another p-cell under the under the
action of R4z. Since, the R4z only has a single fixed-point, and we do not consider 0-cells,
all the p-cells we consider transform to R4z related p-cells under the symmetry action. It
is therefore convenient to divide up the p-cells into R4z orbits. There are 3 bulk and 4
boundary 2-cell orbits which in Fig. 6, we denote as α, β, γ and a, . . . , d respectively. Like-
wise there are 2 bulk and 9 boundary 1-cell orbits which we denote as Λ1,2 and A, . . . ,G
respectively.

A particular bulk state is constructed by populating a chosen orbit or more generally
a collection of orbits by non-trivial topological states with the constraint that the bulk
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Figure 7: An illustration of a state with a fully gapped bulk a surface containing an R4z

symmetric configuration of chiral majorana modes and majorana zero-modes. The hinges
with blue and black arrows contain nα and nγ majorana modes while the orange and red
dots denote the presence of m1 and m2 majorana zero modes.

be fully gapped for the chosen network. More concretely, since class D superconductors
in 1D and 2D are Z2 and Z classified respectively with the 1D Kitaev chain and the 2D
p ± ip superconductors as generators, we may populate the bulk of the R4z-cellulation
with states corresponding to the p ± ip and Kitaev phase on some combination of the
α, β, γ and Λ1,2 orbits respectively. Let the state assigned to the α-orbit have topological
index nα ∈ Z and similarly for β and γ, likewise we denote the index assigned to the
1-cells belonging to the orbits Λ1,2 as m1,2. A priori bulk states are therefore labelled by
(nα, nβ, nγ ,m1,m2) ∈ Z3 × Z2

2. Since each of these candidate bulk cells contribute gapless
1D modes or zero modes on the boundaries of the cells, we must ensure that these modes
can be gapped out pairwise such that one ends up with a fully gapped bulk. Notably
we require nβ + nγ = 0 such that the central hinge (Λ1) is gapped. Upon imposing this
condition, the bulk is fully gapped, since (i) the gapless modes contributed by the γ and
β orbits on the 1-cells Λ2, cancel out pairwise upon imposing the condition nβ + nγ = 0
and (ii) the gapless modes contributed by the α orbit cancel out pairwise. Therefore the
most general fully gapped bulk state is labelled as (nα, nβ,−nβ,m1,m2) ∈ Z2 × Z2

2. Each
non-trivial bulk cell contributes a gapless mode on the boundary such that one ends up
with a network of gapless currents and zero-modes on the boundary as illustrated in Fig. 7.

Next, we ask which of the above modes are truly the signature of bulk topology. To
answer this question, one needs to check which modes can be annihilated or equivalently
constructed from a purely surface pasting of p ± ip and Kitaev states. Firstly, it can
be checked that the m2 Majorana modes constributed on the surface by the presence
of Kitaev state on Λ2 can be trivialized by surface pasting of Kitaev chains on the or-
bits corresponding to the 1-cells A and F. Similarly one can transform the configuration
(nα, nβ,−nβ, . . . ) to (nα − nβ, 0, 0, . . . ) by surface pasting of nβ copies of p+ ip states on
the a and d orbits. Collectively, these two operations reduce the space of non-trivial bulk
states from Z2 × Z2

2 to Z × Z2 indexed by (nα − nβ, 0, 0,m1, 0). It can be verified that
the m1 zero modes contributed by Λ1 are robust, hence there exist a Z2 classified third
order superconductor protected by point group R4z. Getting back to the nα − nβ chiral
majorana mode propagating around the sample on the reflection symmetric plane. One
can always change nα to nα + 2n by pasting n copies of p ± ip states on all the surface
orbits a, b, c, d. This reduces the classification of second-order phases to Z2. To summarize
the classification of both second and third order R4z symmetric superconductors in class
D is Z2. For second order superconductors, this is generated by the bulk state with the
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α-orbit populated with p+ ip class D superconductors while for the third order topology,
it is generated by the populating the Λ1 orbit with Kitaev chains.

5 R4z symmetric second-order superconductor with surface
topological order

In previous sections, we showed that class D superconductors enriched by R4z rotoreflec-
tion symmetry supports non-trivial second order topology. The appearance of a robust
chiral majorana hinge mode on a rotoreflection symmetric line on the surface was treated
as diagnostic of the second-order topology. Here we ask whether these surface modes re-
main robust in the presence of symmetry preserving strong interactions on the surface. We
answer this question in the negative by constructing a fully gapped topologically ordered
surface that preserves all the symmetries in question. We construct such a surface topo-
logical order (STO) by symmetrically introducing SO(3)6 non-abelian topological orders
on the two R4z related regions denoted Σ1,2 in Fig. 8. A similar construction for the topo-
logically ordered surfaces of C2nT -symmetric second-order topological superconductors
has been previously studied in [30]. The SO(3)6 topological order is a ‘spin’ or fermionic
topological order [64] as it contains a single fermionic excitation (denoted below as j = 3)
which is local, in the sense that it braids trivially with all other excitations/anyons in the
topological order. Such a model is described by the continuum Chern-Simons action [65,66]

SI = (−1)Ik

4π

∫
MI

Tr
{
A ∧ dA+ 2

3
A ∧A ∧A

}
, (46)

where k is the ‘level’ of the Chern-Simons theory which is 6 for present purpose, A is
SO(3)-valued gauge connection and MI = ΣI × S1 with I = 1, 2 labelling the two R4z-
related regions and S1 is the compactified time domain. The SO(3)6 topological order
has a total of four anyons labelled j = 0, 1, 2, 3, with j = 3 being a fermion [30, 67, 68]
and j = 0 the vacuum sector or “trivial anyon”. The j = 1, 2 anyons are semionic and
anti-semionic respectively. The fusion rules among the anyons are

j × j′ =
min(j+j′,6−j−j′)∑

j′′=|j−j′|
j′′, (47)

while the modular S and T matrices that describe the braiding and self-statistics respec-
tively are given by

Tj,j′ = exp {2πij(j + 1)/8} δj,j′ , Sj,j′ = 1
2

sin
[(2j + 1)(2j′ + 1)π

8

]
. (48)

Since the regions Σ1 and Σ2 share a common hinge as their boundary, one obtains
two sets of co-propogating chiral edge modes on the hinge, one from each of the surface
topological orders. Each of these correspond to a chiral SO(3)6 Wess-Zumino-Witten
(WZW) conformal field theory (CFT) [69] with chiral central charge c− = 9/4. The
combined CFT on the hinge has a central charge c− = 9/2. We denote the holomorphic
current operators as Ja,I where I = 1, 2 again labels which topological order the mode is
contributed from and a = 1, . . . , dim(so(3)). The current operators satisfy the operator
product expansion

Ja,I(z)Jb,I(w) ∼ kδab

(z − w)2 + if c
abJc,I

z − w
, (49)
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Figure 8: The chiral Majorana hinge mode on the surface of an R4z-symmetric second-
order superconductor can be gapped out by introducing a topologically-ordered surface.
The figure illustrates an R4z-symmetric pattern of SO(3)6 topological order which furnishes
a single chiral Majorana hinge mode that can gap out the hinge mode contributed from
the bulk second-order superconductor.

where fabc are the structure constants of the so(3) Lie-algebra. The Hamiltonian of the
hinge CFT is obtained via the Sugawara construction [70] and takes the form

H0 = 1
k + hv

∑
I,a

Ja,IJa,I . (50)

The modes of the current operators additionally satisfy the Kac-Moody algebra that acts
on the states in the conformal field theory, which are thus organized into conformal towers
or representations of the Kac-Moody algebra. Each representation is built on a highest
weight state which is related to a conformal primary operator via the state operator map
and is in one-to-one correspondence with the bulk anyons. We label the primary operators
just as the bulk anyons by a tuple (j1, j2) where jI = 0, 1, 2, 3. One obtains conformal
characters χj1,j2 by tracing over the corresponding conformal towers H(j1,j2)

χ(j1,j2)(τ) = TrH(j1,j2)

[
e2πiτ(H0− c

24 )
]

(51)

where H0 is the Hamiltonian in Eq. (50) and τ is the modular parameter of the spacetime
torus ∂MI . The bulk topological data in Eq. (48) can be recovered from the edge CFT by
performing the S (i.e τ → −1/τ) and T (i.e. τ → τ + 1) modular transformations on the
conformal characters. Next, we deform the Hamiltonian in Eq. (50) by adding terms that
lead to a condensation on the hinge. Such a condensation is equivalent to adding ‘simple
currents’ to Kac-Moody algebra which furnishes a so-called extended chiral algebra. The
simple currents that can be simulataneously condensed correspond to primary operators
that are mutually local (i.e have a trivial S-matrix element) and have integer spin (i.e
have a trivial T matrix element). Adding simple currents to the chiral algebra further
constrains the corresponding representation theory and therefore has profound physical
consequences on the structure of the theory. Some of the conformal towers merge together
while others are removed from the spectrum. In the present case, there are three candidate
simple current operators corresponding to the primaries (j1, j2) = (1, 2), (2, 1) and (3, 3).
These primaries correspond to the only ‘condensable’ operators as they exhaust all the
integer spin operators in the theory. We denote this set as B and add the following term
to the Hamiltonian in Eq. (50)

H = H0 + λ
∑

(j1,j2)∈B
(Φ(j1,j2) + Φ†

(j1,j2)). (52)
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Figure 9: The Majorana zero modes of the model Hamiltonian in Eq. (53). The surface
Chern numbers C±

ij are as defined in Eq. (33).

At strong coupling i.e. λ → ∞, this leads to a theory with a single non-trivial repre-
sentation corresponding to a chiral majorana fermion with c− = 9/2. More precisely,
the sectors (0, 0), (1, 2), (2, 1), (3, 3) form the new vacuum of the theory while the sectors
(1, 1), (2, 2), (0, 3), (3, 0) are identified into a single fermionic sector. The remaining sectors
get confined. The c− = 9/2 mode can be mapped to single chiral Majorana mode with
c− = 1/2 by symmetric surface pasting of p + ip superconductors described in Sec. 4.
Therefore by inducing topological order on the surface, it is possible to assemble a pat-
tern of chiral currents that corresponds to the hinge modes obtained from a non-trivial
R4z symmetric second-order superconductor. As a corollary one can completely gap out
the surface of second-order R4z symmetric superconductor by inducing surface topological
order.

6 Boundary-Obstructed Topology with twofold rotation sym-
metry C2z

In this section we study the case where the spatial rotoinversion symmetry is broken down
to the C2z subgroup. We find that a BdG model with four (modulo eight) Weyl-points
and C2z symmetry still furnishes a topological superconductor which supports a chiral
Majorana hinge mode on its surface. However the mode is no longer protected by the bulk
topology and instead is boundary-obstructed, in the sense that it can be gapped out by a
purely surface deformation.

6.1 Boundary-obstruction and Wannier representation
Before discussing the topology of our system with symmetry broken down to C2z, we
briefly discuss how this symmetry reduction affects the Cooper instability of the system.
We still expect the normal state to have the Weyl points on the kz = 0, π planes since they
were pinned on the planes by C2zT symmetry. Additionally, we still expect a minimum
of 4 Weyl points, a pair at ±K and another at ±K ′. Even though the two pairs are not
related by any symmetry of the system, we cannot have only a single pair due to the fact
that each Weyl-point in a pair related by time-reversal symmetry have the same chirality.
This, in conjunction with the Nielsen Ninomiya theorem requires a minimum of two pairs.

In the absence of the R4z symmetry, one no longer requires |∆K | = |∆K′ |. This
however does not change the fact that ∆I = dy

I1 still is an eigenmode of the self-consistent
equation. Moreover, we still expect a regime in which it is the leading instability as it
remains to be the only mode that completely gaps out the Fermi-surfaces of the Weyl
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Figure 10: The model in Eq. (53) can be viewed as the stacking of Chern superconducting
layers with SSH like coupling between the layers. In the fully dimerized limit, it is clear
that the bulk of the system is Wannier representable, whereas the surfaces perpendicular
to the x-direction are not.

semimetal.
We illustrate boundary-obstructed topology in the C2z-symmetric case via a specific

simplified model,

H(k) = [γx + cos(kx)]σxτz + sin(kz)σyτz + [cos(ky) + cos(kz) − 1]σzτz − µτz

+ sin(ky)τx + sin(kx)τy. (53)

Numerically solving for the chiral Majorana hinge modes, we obtain the profile shown in
Fig. 9. The sample has two separate chiral modes that are related by C2z symmetry. These
Majorana chiral modes can be removed by for example gluing two 2D p+ ip superconduc-
tors with opposite Chern numbers on the two opposite xz-surfaces without breaking the
symmetry. The model can therefore at best be boundary-obstructed.

From the point of view of bulk Wannier representability, the case with only C2z symme-
try is simpler than the case with the more restrictive R4z symmetry. The only restriction
of C2z is for the Wannier centers to come in pairs that are related by the symmetry, but
otherwise the exact positions can be arbitrary.

This might seems counter-intuitive at first, since the existence of the chiral modes on
the hinges indicate the existence of some sort of a Wannier obstruction. If the bulk is
Wannier representable, the only remaining possibility is that the stand-alone surface not
be Wannier representable. We discuss this in some detail. The terms in model in Eq. (53)
can be re-organized as

H(k) = Hp+ip(k) +HSSH(k) (54)

with,

Hp+ip(k) = [cos(ky) + cos(kz) − 1]σzτz + sin(kz) σyτz + sin(ky)τx,

HSSH(k) = [γx + cos(kx)]σxτz + sin(kx)τy, (55)

The Hp+ip(k) term describes two 2-dimensional layers parallel to the yz-plane with op-
posite Chern numbers trivially stacked, while the HSSH(k) term describes an SSH-like
coupling between the layers as shown in Fig. 10. An insulating (i.e without particle-hole
symmetry) version of this model is also discussed in [71]. Looking at the case when γx = 0,
as in Fig. 10, it is clear that the surfaces of the sample (when cut in the yz-plane) are not
Wannier representable because of the dangling p+ ip superconducting layer at each end.
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Figure 11: Real space geometry of the sample.

Away from the γx = 0 limit the situation is less obvious. However, the Wannier states
would evolve smoothly as we move away from the fully dimerized limit, thus the situation
would remain unchanged.

6.2 Defect approach
We show that the low energy properties of the general Hamiltonian in Eq. (27) even in the
absence of the R4z symmetry leads to a surface theory that is gapped in a topologically
non-trivial way, leading to hinge chiral modes. We consider the system with cylindrical
hinges along the z-directions. We take the radius of the cylinder to be much larger than
the inter-atomic distance. The surface theory at each point on the surface of the cylinder
can then be taken as that of a straight edge tangent to that point. The rounded hinge can
be parametrized by an angle θ and we define n̂⊥(θ) as the unit vector perpendicular to
the tangent surface, and n̂||(θ) as the direction parallel to the surface and the xy-plane.
Thus at each point on the surface, n̂⊥(θ), n̂||(θ), and n̂z) constitute and orthonormal
coordinate basis. See Fig. 11 for an ilustration of the geometry.

Since we are interested in the low energetics of the system, we study the system near
the Weyl points, and take the order parameter to be small of order ϵ and write,

∆1,2(k) = ϵg1,2(k). (56)

If we start with a particle near the K point, a surface in the θ direction would scatter
the particle back, flipping its momentum in the n̂⊥(θ) direction. Generically, the momen-
tum of this scattered particle will not coincide with another Weyl point. A special case is
when n̂⊥(θ) is in the same direction as K, in which the surface mix the momenta at the
K point with the −K point. We label such special direction with θ0. We will reserve the
subscripts ||, ⊥, and z to indicate the components in the n̂||(θ0), n̂⊥(θ0), n̂z respectively.

We expand the Hamiltonian near the Weyl points for a small momentum deviation q,
and introduce a valley degree of freedom, νz, such that νz = 1 (respectively −1) indicate
the K (respectively −K) point. We define, gi ≡ gi(k)|k=K and

ϕ⃗i ≡ ∂fi(k)
∂k⃗

∣∣∣∣
k=K

, γ⃗i ≡ ∂gi(k)
∂k⃗

∣∣∣∣
k=K

(57)
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Figure 12: The relative change in momentum between the two valleys for (a) adding
momentum to the particles to find the dispersion, (b) changing the direction of the surface
by a δθ.

and set q|| = qz = 0, keeping only the first order terms in ϵ and q⊥, and let q⊥ → −i∂⊥.
The resulting Hamiltonian can be written as,

H0 = −i(ϕ1⊥σx + ϕ3⊥σz)τzνz∂⊥ + ϵ(g1τx + g2τy)νz. (58)

Note that ϕ2⊥ = 0 since from Eq. (12) f2(k) is zero over the entire kz = 0 plane where
the Weyl points are located.

We solve this equation on the half-infinite plane with the vacuum on the r⊥ > 0 side.
This equation has the following zero modes solutions,

ψα(r⊥) = χαe∆0r⊥/v⊥ , (59)

where we define,

v⊥ =
√
ϕ2

1⊥ + ϕ2
3⊥, ∆0 = ϵ

√
g2

1 + g2
2, (60)

and χα is a eight-component spinor (coming from two band, two valleys, and two Nambu
sectors) determined by the following condtions. First, for the zero mode solution to hold,
we have

σ̃xτ̃yχ
α = +χα (61)

with

σ̃x ≡ 1
v⊥

(ϕ1⊥σx + ϕ3⊥σz), σ̃y ≡ σy, σ̃z ≡ iσyσ̃x, (62)

τ̃x ≡ ϵ

∆0
(g1τx + g2τy), τ̃z ≡ τz, τ̃y ≡ iτz τ̃x. (63)

Second, the boundary mode is a superposition between incoming and outgoing waves with
±K, or νz = ±1, depending on the detailed form of the boundary potential. Without loss
of generality, in the valley basis, we choose the condition set by the boundary potential to
be

νxχ
α = −χα. (64)

This is equivalent to the boundary condition used in Ref. [72]. There exist two such
eight-component spinors satisfying the above boundary conditions.

Next we find the form of the boundary Hamiltonian for a generic q|| and qz and for
a generic angular position θ = θ0 + δθ on the surface. For a fixed angular position, the
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deviation in momenta at the K, and −K points has the same direction, see Fig. 12(a).
Upon projecting to the two-dimensional subspace for the boundary states, we get

h(q∥, qz) = P̂
[
ϕ2zσ̃y τ̃zqz + (β1qz + β2q||)τ̃y

]
(65)

where P̂ is the projection onto the subspace and we have defined,

β1 = ϵ

2
Tr τ̃y(γ1zτy + γ2zτx),

β2 = ϵ

2
Tr τ̃y(γ1||τy + γ2||τx). (66)

For a different surface parameterized by the angle θ = θ0 + δθ, the axis of q∥ = 0 is
rotated by δθ. In the new coordinate system, effectively the perturbation incurred are
opposite shifts p|| = ±|K|δθ in the positions of Weyl points, shown in Fig. 12(b). It
turns out that the perturbation terms that survives projection onto the two-dimensional
subspace is

h(δθ) = P̂mσ̃z τ̃zδθ. (67)

where

m = |K|
2

Tr σ̃z(ϕ1||σx + ϕ3||σz). (68)

Putting the two perturbations together we get a two-band Hamiltonian,

h(q∥, qz, δθ) = P̂
[
ϕ3zqzσ̃y τ̃z + (β1qz + β2q||)τ̃y + mδθσ̃z τ̃z] (69)

which describes a 2D Dirac fermion with a mass domain wall at δθ = 0. Such a Hamiltonian
is known to host chiral propagating modes that are localized at the domain wall [73, 74].
This concludes our proof.

6.3 Two-band vs four-band Weyl semimetals
So far we have restricted out discussion on two-band Weyl semimetals – that is, the
four Weyl points are formed by two bands across the full Brillouin zone, which are
non-degenerate except at Weyl points. Since there are no Kramers degeneracy at high-
symmetry points, necessarily the time-reversal symmetry satisfies T2 = 1.

In Sec. 2 we have remarked that the spin-full version of time-reversal symmetry with
T2 = −1 is incompatible with R4z symmetry. However, it is possible to retain only a two-
fold rotational symmetry C2z = R2

4z and have T2 = −1. Due to the additional Kramer’s
degeneracy, such a Weyl semimetal involves four bands, given by the following Hamiltonian
H =

∫
dkψ†

kHnψk where

Hn(k) = f1(k)σx + f2(k)σy + f3(k)σz + f ′
3(k)σzsx − µ, (70)

where sz is the Pauli matrix representing an additional spin degree of freedom, f1,3(k) are
even functions and f ′

3(k) and f2(k) are odd. Such a Hamiltonian preserves a time-reveral
symmetry T′ = isyK that squares to −1. The two-fold rotation symmetry is represented
as C2z = isz. The location of the Weyl points are given by the conditions

f1(k) = 0, f2(k) = 0, f3(k) = ±f ′
3(k). (71)
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As a concrete example, such a Weyl semimetal with four Weyl points ais realized by the
lattice model in which

f1(k) = cos kx + cos ky + cos kz − 2, f3(k) = 1/2
f ′

3(k) = sin kx, f2(k) = sin kz. (72)

It is straightforward to show that a p+ ip pairing order, e.g., with∫
dkψ†

k[∆x sin(kx) + i∆y sin(ky)]σzsz(ψ†
k)T + h.c. (73)

gaps out all Fermi surfaces enclosing the Weyl points. However, one can readily verify
that such a system does not host chiral hinge modes, even though the low-energy spectrum
in the bulk is identical to that of the two-band model. It turns out that the low-energy
surface states, which we relied on in the previous subsection to derive the hinge states,
in general are not solely determined by the low-energy bulk states. In particular, having
a four-band normal state, the boundary conditions given by Eq. (61) and (64) does not
reduce the boundary modes to a two-dimensional subspace.

This obstacle can be removed by lifting the T′ symmetry. This removes all the Kramers
degeneracies at high symmetry points and one can separate the four-band model into one
with two Weyl bands and two remote bands. For example, one can include a perturbation
from a T′ breaking, C2z preserving term ∼ Mszσz. As long as M is sufficiently small, it
does not affect the band structure near the Weyl points, but it lifts the degeneracy along
ky = 0. With this term there remains a spinless version of time-reversal symmetry T = K.
Using the argument in the previous subsection, we obtain that in the weak-pairing limit,
such a model hosts gapless hinge modes. We indeed confirmed this by numerically solving
the lattice model at a finite system size. Unfortunately, however, in general the correct
form of the T′-breaking perturbation that fully disentangles the Weyl bands from remote
bands depends on the detailed model and requires a case-by-case analysis.

7 Conclusion

In this work, we have shown that in a time-reversal symmetric doped Weyl semimetal,
the combination of symmetry constraints (R4z and T) and momentum space structure of
a finite-range attractive interaction naturally leads to a chiral superconducting state. By
analyzing the topological properties of the superconducting state, we show identify it is a
second-order topological phase with chiral Majorana hinge modes traversing the surface.

We have also analyzed the classification of general BdG Hamiltonians with rotoinver-
sion symmetry supporting second-order topology and found that the classification to be
Z2. We show that the hinge modes can be removed by inducing strong surface interaction
leading to a topologically ordered surface state. Crucially such a topologically ordered
system with rotoinversion symmetry cannot be realized in strictly two dimensions (i.e
without a three dimensional bulk) and is therefore anomalous. The less constrained sys-
tem with only twofold symmetry is shown to be boundary-obstructed while also hosting
chiral Majorana hinge modes.

In a broader context, Our work showed that the nontrivial topology and gapless exci-
tations in a topological semimetal provide a natural platform for novel topological super-
conductivity. It will be interesting to explore possible topological superconducting phases
from other types of topological semimetals.
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A Calculating the leading Cooper instability.

Here we discuss the solutions of the self-consistent equation

∆I = Tc

∑
ωm,I′

∫
dδkVII′PI′(δk)Tr[PI′(δk)∆I′ ]

ω2
m + ξ2

I′(δk)
(74)

in more detail. As discussed in the main text we have,

PI(δk) = 1
2

(1 + n̂I(δk) · σ) (75)

and,

Tr(PI(δk)∆I) = in̂y
I (δk)∆0

I + idy
I − dx

I n̂
z
I(δk) + dz

I n̂
x
I (δk). (76)

From the form of n̂I(δk) we see that,

n̂I(−δk) = −n̂I(δk). (77)

Further, using the C2zT symmetry we have that,

n̂x,z
I (δkx, δky,−δkz) = n̂x,z

I (δk) (78)
n̂y

I (δkx, δky,−δkz) = −n̂y
I (δk). (79)

We conclude from the above equations that terms that are odd in either n̂I(δk) or n̂y
I (δk)

will vanish upon integrating over the solid angle.

∆I = i∆0
Iσy + idy

I1 − dx
Iσz + dz

Iσx = Tc

2
∑

ωm,I′

∫
dδk

VII′

ω2 + ξ2
I′(δk)

[
in̂y

I′(δk)2 ∆0
I′ σy

+idy
I′1 + (dz

I′ n̂x
I′(δk) − dx

I′ n̂z
I′(δk)) n̂x

I′(δk)σx + (dz
I′ n̂x

I′(δk) − dx
I′ n̂z

I′(δk)) n̂z
I′(δk) σz

]
.

(80)

We see that both the singlet, and the σy channel of the triplet pairing form independent
solutions of the self-consistent equation. However the σx and σz channels do not, they can
in general mix together.

∆0 = Tc

2
∑

ωm,I′

∫
dδk

VII′

ω2 + ξ2
I′(δk)

n̂y
I′(δk)2 ∆0

I′ (81)

dy
I = Tc

2
∑

ωm,I′

∫
dδk

VII′

ω2 + ξ2
I′(δk)

dy
I′ (82)

(
dx

I

dz
I

)
= Tc

2
∑

ωm,I′

∫
dδk

VII′

ω2 + ξ2
I′(δk)

(
n̂z

I′(δk)2 −n̂x
I′(δk)n̂z

I′(δk)
−n̂x

I′(δk)n̂z
I′(δk) n̂x

I′(δk)2

)(
dx

I′

dz
I′

)
(83)

25



SciPost Physics Submission

Performing the Matsubara sum we have,

∑
ωm

Tc

ω2
m + ξ2

I′(δk)
= 1

2ξI′(δk)
tanh ξI′(δk)

2Tc
. (84)

Doing the change of variables, dδk → dΩ dξNI′(ξ,Ω), and noticing that n̂I′(δk) only
depend on the solid angle Ω, the integral over ξ reduces to,∫ Λ

−Λ
dξ N(ξ,Ω) 1

2ξ
tanh ξ

2Tc
= N(0,Ω)

∫ Λ/Tc

0
dx

1
x

tanh x
2

≈ N(0,Ω) log
( Λ
Tc

)
. (85)

where Λ is an upper cutoff either from the band structure or from the interaction, we get

∆0
I = 1

2
log
( Λ
T 0

c

)∑
I′

VII′∆0
I′

∫
dΩNI′(0,Ω) n̂y

I′(Ω)2 (86)

dy
I = 1

2
log
( Λ
T y

c

)∑
I′

VII′dy
I′

∫
dΩNI′(0,Ω) (87)(

dx
I

dz
I

)
= log

( Λ
T xz

c

)∑
I′

VII′

2

∫
dΩNI′(0,Ω)

(
n̂z

I′(Ω)2 −n̂x
I′(Ω)n̂z

I′(Ω)
−n̂x

I′(Ω)n̂z
I′(Ω) n̂x

I′(Ω)2

)(
dx

I′

dz
I′

)
.

(88)

In order to simplify the notation we make the following definitions,

N(0) ≡
∫
dΩNI′(0,Ω) (89)

⟨n̂i
I , n̂

j
I⟩ ≡

∫
dΩNI(0,Ω)n̂i

I(δk)n̂j
I(Ω)

N(0)
. (90)

Note that ⟨n̂y
I , n̂

y
I ⟩ is constant over all Fermi-surfaces, and ⟨n̂i

I , n̂
j
I⟩ in general is the same

for two opposing Fermi-surfaces. Further, because of the rotoinversion symmetry involved
we have |∆R4zI | = |∆I |. For the s-wave solution even all the phases are equal across all
Fermi-surfaces, whereas for the p-wave solutions we have ∆−I = −∆I .

1 = (V0 + 2V1 + V2)N(0)
2

⟨n̂y
I , n̂

y
I ⟩ log

( Λ
T 0

c

)
(91)

1 = (V0 − V2)N(0)
2

log
( Λ
T y

c

)
(92)(

dx
I

dz
I

)
= (V0 − V2)N(0)

2
log
( Λ
T xz

c

)(
⟨n̂z

I , n̂
z
I⟩ − ⟨n̂z

I , n̂
x
I ⟩

− ⟨n̂z
I , n̂

x
I ⟩ ⟨n̂x

I , n̂
x
I ⟩

)(
dx

I

dz
I

)
. (93)

The critical temperatures can be read off the above equations as,

T 0
c = Λ exp

[
− 2/ ⟨n̂y

I , n̂
y
I ⟩

(V0 + 2V1 + V2)N(0)

]
(94)

T y
c = Λ exp

[
− 2

(V0 − V2)N(0)

]
(95)

T xz1
c = Λ exp

[
− 2/λ1

(V0 − V2)N(0)

]
(96)

T xz2
c = Λ exp

[
− 2/λ2

(V0 − V2)N(0)

]
, (97)
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where λ1 and λ2 are the eigenvalues of the matrix,(
⟨n̂z

I , n̂
z
I⟩ − ⟨n̂z

I , n̂
x
I ⟩

− ⟨n̂z
I , n̂

x
I ⟩ ⟨n̂x

I , n̂
x
I ⟩

)
(98)

such that λ2 > λ1.
The leading instability of the system is the one that produce the highest critical tem-

perature. We start by comparing the different triplet pairing channels together. By choice
we have T xz2

c > T xz1
c . What is less trivial is comparing T y

c with T xz2. An upper-bound on
λ2 can be obtained by replacing the off diagonal terms in Eq. (98) by their upper-bound.
An upper-bound for ⟨n̂z

I , n̂
x
I ⟩ can be found using the Cauchy-Schwarz inequality,

⟨n̂x
I , n̂

z
I⟩ ≤

√
⟨n̂x

I , n̂
x
I ⟩ ⟨n̂z

I , n̂
z
I⟩. (99)

The charactaristic equation of the resulting matrix is,
λ (λ− ⟨n̂x

I , n̂
x
I ⟩ − ⟨n̂z

I , n̂
z
I⟩) = 0. (100)

Then we have when reacing its upper bound,
λ2 = ⟨n̂x

I , n̂
x
I ⟩ + ⟨n̂z

I , n̂
z
I⟩ (101)

On the other hand we have ⟨n̂x
I , n̂

x
I ⟩ + ⟨n̂z

I , n̂
z
I⟩ = 1 − ⟨n̂z

I , n̂
z
I⟩ < 1, since for around a Weyl

point n̂I(δk) points in all possible direction. Therefore we conclude that λ2 < 1, and
T y

c > T xz2
c .

In comparing T 0
c and T y

c we have two different regimes,
V0 − V2

V0 + 2V1 + V2
> ⟨n̂y

I , n̂
y
I ⟩ , T y

c > T 0
c (102)

V0 − V2
V0 + 2V1 + V2

< ⟨n̂y
I , n̂

y
I ⟩ , T y

c < T 0
c . (103)

We can expect the T y
c > T 0

c in the case the interaction is sufficiently long rage. Indeed, if
V0 is the dominant component in the V ’s, (102) always holds.

It is instructive to see how the calculation is carried in the special case of spherical
energy contours. In this case we have,

[ϕIϕ
T
I ]ij = v2δij , (104)

and N(0, δk) to be constant in δk. We thus have,
N(0) = 4πNI(0,Ω), (105)

and,

⟨n̂i
I , n̂

j
I⟩ = 1

3
δij (106)

Using this we can write,

T 0
c = Λ exp

[
− 6

(V0 + 2V1 + V2)N(0)

]
(107)

T y
c = Λ exp

[
− 2

(V0 − V2)N(0)

]
(108)

T xz1
c = Λ exp

[
− 6

(V0 − V2)N(0)

]
(109)

T xz2
c = Λ exp

[
− 6

(V0 − V2)N(0)

]
, (110)

In the spherical Fermi-surfaces case the condition for T y
c > T 0

c reduces to,
V0 > V1 + V2. (111)
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Figure 13: The energy spectrum (a) with open boundary conditions in the z-direction.
Wannier spectrum (b) for the Wilson loops in the z-direction. Both graphs are in the
topological phase of the system, γ = 0,∆ = 0.4, µ = 0.5. Size = (15×15). The gaplessness
of the Wannier spectrum is protected by R4z while the surface energy spectrum can be
gapped without breaking the symmetry.

B A comment on the Wannier spectrum of the model with
R4z

The Wannier spectrum come form diagonalizing the Wannier Hamiltonian ν̂i(k) defined
through the Wilson loops in the i-th direction,

ei2πν̂i(k) ≡
Li−1∏
n=0

P(k + 2πnei/Li), (112)

where Li is the system size along i-th direction, and P(k) =
∑

i=1,2 |ui(k)⟩⟨ui(k)| is the
projection operator on the occupied states. We note that the operator on the RHS of
the above equation acts on a 4-dimensional Hilbert space. However, because of the pro-
jection operators involved, it has a 2-dimensional null space, and effectively the Wannier
Hamiltonian, ν̂i(k), is 2-dimensional.

When considering only internal symmetries, the Wannier spectrum in the i-th direction
share the same topological properties with the surface of the system perpendicular to that
direction. [75] However, spatial symmetries can impose vastly different constrains on the
surface bands and the Wannier bands, thus leading to different topological features. Indeed
for our case, the R4z symmetry act very differently on the Wilson loop in the z-direction
and the surface perpendicular to it. The R4z symmetry maps the top surface of the sample
to the bottom surface of the sample, and thus does not put any constrains on the surface
spectrum.

Consider the action of the rotoinversion symmetry on Wz(k) is,

R̂4zŴz(k)R̂−1
4z = Ŵ†

z(R̂4zk), (113)

which puts the following constraint on the Wannier spectrum,

{νi
z(kx, ky)} = {−νi

z(ky,−kx)} mod. 1. (114)

This action can be thought of as a combination of a chiral symmetry and a fourfold rotation
symmetry. In 2D a chiral symmetry can lead to a symmetry protected Dirac point. We
explicitly calculate the Wannier spectrum, and the surface bands for open boundaries in
the z-direction and compare them. When the chemical potential is zero, we have both
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spectra to be gapless. However, the gapless mode in the Wannier spectrum is protected by
the action of the R4z operator, while gapless mode in the surface spectrum is accidental.
Indeed, for non-zero chemical potential, we see that the surface spectrum opens a gap,
while the Wannier spectrum does not, see Fig. 13.
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