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1 Introduction

The quantum relativistic sine-Gordon model is a paradigmatic example of an integrable quan-
tum field theory (IQFT) that is amenable to solution by the bootstrap programme. It provides
the simplest example of a theory that is interacting and has a non-diagonal S-matrix, famously
obtained in [1]. This means that the theory allows for backscattering or, in a different language,
the S-matrix is a non-trivial solution of the Yang-Baxter equation. The theory has a rich particle
spectrum containing two fundamental particles known as the soliton (s) and the antisoliton (s̄)
and a tower of breathers (bk) which can be interpreted both as soliton-antisoliton bound states
and as bound states of lighter breathers. The number and masses of these breathers depend
on the model’s coupling constant. Although the theory is non-diagonal in the standard scatter-
ing matrix sense, the breather sector is diagonal and this simplifies form factor computations
considerably. In addition, in a certain coupling constant regime, the sine-Gordon model can be
seen as the continuum limit of another paradigmatic integrable theory, namely the spin-1

2 XXZ
quantum spin chain.

In the context of the bootstrap programme for IQFTs, the matrix elements of local operators
(e.g. form factors) of the sine-Gordon model have been extensively studied by many authors
employing many different techniques. Some of the earliest results are due to F.A. Smirnov [2,3],
while a long series of papers by the Berlin group employed integral representations and nested
Bethe ansatz as solution techniques [4–8]. A different approach known as free field representation
was employed in [9, 10] and the fermionic structure of the model was exploited in [11, 12]. Of
particular interest to us is the work [10] which focused on breather form factors and used the
fusion technique in order to obtain form factors of heavier breathers from those of the lightest one.
There has also been intense study and a large body of applications of sine-Gordon form factors in
various other contexts such as the case of finite temperature one-point functions [13,14], quantum
quenches [15–17] and boundary field theory [18] and, in particular, in finite volume [19–21] where
once again fusion techniques can be employed.

Finally, it is important to note that many studies of the breather form factors (particularly
those where fusion is used) exploit the relationship between the sine-Gordon and sinh-Gordon
theories. At Lagrangian level the two theories are identical up to the complexification of the cou-
pling constant. In addition, the two-particle S-matrix of the first (lightest) breather is mapped
to the two-particle scattering matrix of the sinh-Gordon particle under the same transforma-
tion. This implies that the form factors of the first breather (and by fusion, also those of higher
breathers) can be obtained from those of the sinh-Gordon field by simply changing the coupling
constant dependence. Then the sinh-Gordon form factors computed in various papers [22, 23]
become the starting point of computations in the sine-Gordon model.

The works we have referred to so far are concerned with “standard” local fields of the sine-
Gordon theory, such as the sine-Gordon field ϕ, its powers and, especially, exponential fields
of the form eiaϕ which are of particular interest as they are related to the trace of the stress-
energy tensor. In the present work our main aim is to generalize these results to branch point
twist fields, starting with the branch point twist field and associated form factor programme
introduced in [24], and then continuing (in part II) with the symmetry resolved branch point
twist field recently introduced in [25,26]. Twist field form factors of the sine-Gordon model where
first studied in [27] but only in the so-called repulsive regime where no breathers are present. In
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this paper we extend those results to the situation when several breathers are present focussing
on all non-vanishing one- and two-particle form factors. In the breather sector we employ the
results of [24] and [28] where the two- and four-particle form factors of the sinh-Gordon field
where obtained, respectively. These will constitute our starting point when employing the fusion
procedure to obtain lower particle form factors of higher breathers.

The paper is organized as follows: In Section 2 we review some general results for the
sine-Gordon model, notably its S-matrix and particle spectrum. In Section 3 we review the
definition of the branch point twist field and the main equations satisfied by its form factors.
In Section 4 we diagonalize the two-particle form factor equations to compute the two-particle
solition-antisoliton form factor. We put special emphasis on the discussion of its dynamical pole
structure. In Section 5 we use fusion to compute one- and two-particle breather form factors,
including up to four breathers and carry out some simple consistency checks of our solutions. In
Section 6 we evaluate the ∆ sum rule in several coupling regimes, finding very good agreement
with the exact value of the branch point twist field conformal dimension for all coupling choices.
In Section 7 we discuss one application of our results to the study of the entanglement dynamics
following a mass quench. We conclude in Section 8. The more technical details of our work are
presented in various Appendices. Appendix A summarizes some useful formulae for the minimal
form factors. Appendices B and C give details of the computation of breather form factors for
the branch point twist field and the trace of the stress-energy tensor, respectively. In both cases
we use the fusion procedure. In Appendix D we analyse in more detail the dynamical pole axiom
for the soliton-antisolition form factors. In Appendix E we present some additional numerical
results concerning our evaluation of the the ∆ sum rule.

2 Main Features of the Model

The sine-Gordon model is characterized by the following euclidean action

A “
ˆ
dxdt

„

1

16π

“

pB0ϕq
2 ´ pB1ϕq

2
‰

´ 2µ cospgϕq



, (1)

where g and µ are coupling constants and ϕ is a scalar field. As anticipated in the introduction,
this action becomes that of another theory, know as sinh-Gordon model under the mapping
g ÞÑ ig with g P R. For generic values of the coupling, the theory has a rich particle spectrum
consisting of a soliton (s) and anti-solition (s̄) of opposite Up1q charge and a family of bound
states known as breathers. Defining the new coupling

ξ “
g2

1´ g2
, (2)

we have that the masses of the breathers take the form

mk “ 2m sin
πkξ

2
for k “ 1, 2, . . . , `pξq, (3)

where m is the mass of the soliton and the anti-soliton and `pξq “ 1
ξ ´ 1 if 1

ξ P Z and r1ξ s
otherwise, where r¨s denotes the integer part. The mass m is related to the couplings µ and g
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through the mass-coupling relation

µ “
Γpg2q

πΓp1´ g2q

»

–

m
?
πΓp 1

2´2g2 q

2Γp g2

2´2g2 q

fi

fl

2´2g2

, (4)

first found in [29]. There are various interesting regimes:

• For ξ ą 1 there are no bound states and the full spectrum consist only of the solition and
the antisoliton. This is called the repulsive regime. In this regime, the theory is equivalent
to the massive Thirring model, a perturbation of the massive Dirac theory that preserves
the Up1q symmetry. We studied the entanglement entropy in this particular regime in [27].

• The point ξ “ 1 is special as can be seen more precisely from the S-matrices given below.
From (5) we have that Ssssspθq “ S s̄s̄s̄s̄pθq “ ´1 and also Sss̄ss̄pθq “ ´1 and S s̄sss̄pθq “ 0. At
this point the theory becomes a Dirac free fermion.

• For ξ ă 1 the model is in the attractive regime were bound states (breathers) are formed
with the masses (3).

• In particular, whenever 1
ξ “ n, with n P Z` the non-diagonal scattering amplitude S s̄sss̄pθq “

0 is vanishing and the theory becomes diagonal. In fact, it reduces to the Dn-minimal Toda
field theory.

The S-matrices are [1]

Ssssspθq “S
s̄s̄
s̄s̄pθq “ ´ exp

«

´i

ˆ 8
0

dt

t

sinh πtp1´ξq
2 sin ptθq

sinh πtξ
2 cosh πt

2

ff

“

8
ź

k“0

Γ
´

2k`1
ξ ´ iθ

πξ ` 1
¯

Γ
´

2k`1
ξ ´ iθ

πξ

¯

Γ
´

2k
ξ `

iθ
πξ ` 1

¯

Γ
´

2k`2
ξ ` iθ

πξ

¯

Γ
´

2k
ξ ´

iθ
πξ ` 1

¯

Γ
´

2k`2
ξ ´ iθ

πξ

¯

Γ
´

2k`1
ξ ` iθ

πξ

¯

Γ
´

2k`1
ξ ` iθ

πξ ` 1
¯ ,

(5)

and

Sss̄ss̄pθq “ S s̄ss̄spθq “
sinh θ

ξ

sinh iπ´θ
ξ

Ssssspθq , Sss̄s̄spθq “ S s̄sss̄pθq “
sinh iπ

ξ

sinh iπ´θ
ξ

Ssssspθq (6)

where Sss̄s̄spθq and S s̄sss̄pθq are the off-diagonal amplitudes. Useful linear combinations are

S`pθq “ Sss̄ss̄pθq ` S
ss̄
s̄spθq S´pθq “ Sss̄ss̄pθq ´ S

ss̄
s̄spθq . (7)

The remaining S-matrices are diagonal and can be expressed in terms of the standard blocks:

rxsθ “
tanh 1

2 pθ ` iπxq

tanh 1
2 pθ ´ iπxq

. (8)
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For instance

Ssb1pθq “

„

1` ξ

2



θ

, Sb1b1pθq “ rξsθ , Sb2b2pθq “ rξs
2
θr2ξsθ , (9)

Sb1b3pθq “ rξsθr2ξsθ , Sb1b2pθq “

„

ξ

2



θ

„

3ξ

2



θ

. (10)

An important property of these S-matrices is that they have poles in the physical sheet which
can be attributed to the presence of a bound state. The residue of such poles plays a role in
later sections and so we report some of these results here. In general, we define

´i Res
θ“iπucab

Sabpθq :“ pΓcabq
2 , (11)

where iπucab is the pole of the S-matrix corresponding to the formation of a bound state c in
the scattering process a` b ÞÑ c. This equation provides a definition of the “pole strength” Γcab.
For the S-matrices above we have for instance,

Γb1ss̄ “

c

2 cot
πξ

2

Γb2ss̄ “

c

1

4
sin 2πξ csc2 πξ

2

Γb3ss̄ “

c

2 cot
3πξ

2
cot

πξ

2
cotπξ

Γb4ss̄ “
a

2 cot 2πξ cot
πξ

2
cotπξ cot

3πξ

2
.

(12)

which can be obtained using the infinite product representation (5). The above quantities are
associated with the pole strengths of Sss̄ss̄pθq and Ssssspθq for the first few breathers and the
position of the poles are at iπξk with k “ 1, . . . , `pξq as defined in (3) and assuming we are in
the attractive regime. For the breather S-matrices, we have

Γb2b1b1 “
a

2 tanπξ, Γb4b2b2 “
2 cosπξ ` 1

2 cosπξ ´ 1

a

2 tan 2πξ , Γb3b1b2 “

d

2 cosπξ ` 1

2 cosπξ ´ 1
Γb2b1b1 , (13)

and Γb4b1b3 “ Γb4b2b2{Γ
b3
b1b2

. Note that, as mentioned earlier, Sb1b1pθq coincides with the sinh-Gordon
S-matrix under the replacement B “ ´2ξ, where B is the sinh-Gordon coupling constant [30,31].
More generally, the following integral formulae hold

Ssbkpθq “ p´1qk exp

«

´i

ˆ 8
0

dt

t

2 cosh πtξ
2 sinh πtkξ

2 sin ptθq

sinh πξt
2 cosh πt

2

ff

. (14)

Sbkbppθq “ exp

«

´i

ˆ 8
0

dt

t

4 cosh πtξ
2 sinh πtkξ

2 cosh πtp1´ξpq
2 sin ptθq

sinh πξt
2 cosh πt

2

ff

. (15)
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for k ă p and, finally

Sbkbkpθq “ ´ exp

»

–´i

ˆ 8
0

dt

t

2
”

cosh πtξ
2 sinh πtp2kξ´1q

2 ` sinh p1´ξqπt
2

ı

sin ptθq

sinh πξt
2 cosh πt

2

fi

fl . (16)

A good summary of all the S-matrices, and of how to derive Gamma-function representations
from integral representations can be found for instance in [4].

3 Branch Point Twist Fields in a Nutshell

It has been known for some time that several entanglement measures, including the Rényi
entropies, can be expressed in terms of correlation functions of a special class of local fields T
which have been termed branch point twist fields in [24]. Branch point twist fields are, on the one
hand, twist fields in the broader sense, that is, fields associated with an internal symmetry of the
theory under consideration [24], and on the other hand related to branch points of multi-sheeted
Riemann surfaces [32]. They are twist fields associated to the cyclic permutation symmetry of
a model composed of n copies or “replicas” of a given theory, characterized by the exchange
relations

T pxqOipyq “ Oi`1pyqT pxq for y1 ą x1 , (17)

“ OipyqT pxq for x1 ą y1 , (18)

where Oipyq is any local field on copy number i, and with On`1pyq “ O1pyq.
The idea of quantum fields associated with branch points of Riemann surfaces in the context

of entanglement appeared first in [32]. The general picture of branch point twist fields as
symmetry fields associated to cyclic permutation symmetry of the n Riemann surface’s sheets,
as per (17), was given in [24], where they were studied in massive IQFT. This description is
however independent of integrability, and it was first used in massive QFT outside of integrability
in [33].

Cyclic permutation symmetry is not naturally present in most IQFTs, but can be “manu-
factured” by considering a replica model, composed of n copies of the original QFT (e.g. the
sine-Gordon model). The connection to replica theories and multi-sheeted Riemann surfaces
arises from the explicit formulae for entanglement measures, which generally depend on the
quantity TrApρ

n
Aq where ρA is the reduced density matrix associated to a particular region A

of the system. It is possible to show that the quantity TrApρ
n
Aq is proportional to a correlation

function of branch point twist fields involving as many twist field insertions as boundary points
between the region A and the rest of the system. We will see an application of these ideas in
Section 7 where we discuss the application of our results to the computation of the entanglement
dynamics.

3.1 Form Factors and Form Factor Equations

Starting with the exchange relations (17), in IQFT one can formulate twist field form factor
equations which generalize the standard form factor programme for local fields [3, 34]. These
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equations were first given in [24] for diagonal theories and then in [27] for non-diagonal ones.
They have been generalized to symmetry resolved branch point twist fields in [25, 26]. We
will not review all these equations and their properties here but only those relations that are
repeateadly used in the current paper, in particular the equations for one- and two-particle form
factors. Let us start by defining

Fa1...akpθ1, ¨ ¨ ¨ , θk; ξ, nq :“ nx0|T p0q|θ1, ¨ ¨ ¨ , θkya1...ak;n, (19)

to be a k-particle form factor, that is, a matrix element of the field between the vacuum state
and a k-particle state. Here nx0| represents the vacuum state and |θ1, ¨ ¨ ¨ , θkya1...ak;n represents
an in-state of k particles with rapidities θ1, . . . , θk and quantum numbers a1 . . . ak, both in the
replica model. These quantum numbers generally contain two indices, one for the particle type
and one for the copy number. However, in our computations we will generally restrict ourselves
to a single copy and will therefore drop the copy index. This is because form factors of other
copies can be obtained from these solutions by repeated use of the form factor equations.

The branch point twist field is a neutral field in relation to the sine-Gordon Up1q-symmetry
that exchanges soliton and anti-soliton. This implies the vanishing of any twist-field form factors
involving a different number of solitons and anti-solitons. At the one and two-particle level this
means that

Fsspθ; ξ, nq “ Fs̄s̄pθ; ξ, nq “ Fs̄bkpθ, ξ;nq “ Fsbkpθ, ξ;nq “ Fspξ, nq “ Fs̄pξ, nq “ 0 , @ k P Z`
(20)

Here, we have used relativistic invariance and spinlessness of the twist field, which imply that
the two-particle form factor depends on a single rapidity variable (the rapidity difference of the
particles) and the one-particle form factor is rapidity independent. In addition, because of Z2

symmetry we also have

Fb2kb2p´1pθ; ξ, nq “ Fb2k´1
pξ, nq “ 0 . @ k, p P Z` . (21)

Under these considerations, Watson’s equations for non-vanishing two-particle form factors and
particles in the same copy can be summarized as

Fss̄pθ; ξ, nq “ S`pθqFss̄p´θ; ξ, nq “ Fss̄p2πin´ θ; ξ, nq, (22)

Fbibj pθ; ξ, nq “ Sbibj pθqFbibj p´θ; ξ, nq “ Fbibj p2πin´ θ; ξ, nq for i´ j P 2Z , (23)

whereas the kinematic residue equations are

´iRes
θ“iπ

Fss̄pθ; ξ, nq “ ´iRes
θ“iπ

Fbibipθ; ξ, nq “ xT y @ i P N . (24)

where xT y is the vacuum expectation value of the branch point twist field in the ground state
of the replica theory. Finally, the bound state residue equations are

´i Res
θ“iπucss̄

Fss̄pθ; ξ, nq “ Γcss̄Fcpξ;nq, (25)

where c is any particle that is formed as a bound state of s` s̄ for rapidity difference θ “ iπucss̄.
In the breather sector we will use the bound state residue equation extensively and repeatedly
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to obtain lower particle form factors of heavier breathers in a process known as “fusion”. For
this reason it is convenient to write the more general equation

´iRes
θ“θ0

Fbibja1...akpθ ` iu, θ0 ´ iũ, θ1 ¨ ¨ ¨ , θk; ξ, nq “ Γ
bi`j
bibj

Fbi`ja1...akpθ, θ1 ¨ ¨ ¨ , θk; ξ, nq , (26)

where a1, . . . , ak are any particle combination for which the form factor is non-vanishing and
u` ũ “ ui`jij where θ “ iπui`jij is the pole of the scattering matrix Sbibj pθq corresponding to the
formation of breather bi`j . Similarly, u and ũ are related to the poles of Sbjbi`j pθq and Sbibi`j pθq.

4 Soliton-Antisoliton Form Factors

In the following we summarise the necessary formulas for the two-particle soliton-antisoliton form
factors of the branch point twist field. Although these quantities were already derived in [27],
the formulas were strictly speaking only justified in the repulsive regime of the sine-Gordon
model. As we show below they are, nevertheless, valid in the attractive regime as well once a
proper analytic continuation in the parameter ξ is considered. Let us first discuss the minimal
form factor of these objects, which we denote by Gpθ; ξ, nq. This is the “minimal solution” to
using Eq. (22) which can be constructed in the manner shown in [24], which itself generalizes
a standard method in the context of the form factor programme (see e.g. [35]). This method
takes as starting point the S-matrix involved in the middle identity (S`pθq in the present case)
of (22) and assumes that it admits a representation of the type

Spθq “ exp

„ˆ 8
0

dt

t
gptq sinh

tθ

iπ



, (27)

for some function gptq. If such a representation exists, then a minimal solution the equation (22)
is given by

fpθq “ N exp

„ˆ 8
0

dt

t

gptq

sinhnt
sin2

ˆ

itn

2

ˆ

1`
iθ

π

˙˙

. (28)

where N is a normalization constant. To obtain the minimal form factor Gpθ; ξ, nq of interest,
we therefore need to write S` in the form (27). This is straightforward since

S`pθq “

˜

sinh θ
ξ

sinh iπ´θ
ξ

`
sinh iπ

ξ

sinh iπ´θ
ξ

¸

Ssssspθq :“ spθqSsssspθq , (29)

with

spθq :“
sin π´iθ

2ξ

sin π`iθ
2ξ

. (30)

The function Ssssspθq already has an exponential representation (5) and one can easily write a
similar representation for the function spθq as well

spθq “ exp

«

´2

ˆ 8
0

dt

t

sinh ppξ ´ 1q tq sinh itθ
π

sinh ξt

ff

. (31)
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An important remark is that the integral (5) is convergent for any 0 ă ξ ă 1. Nevertheless (31) is
only convergent for 1

2 ă ξ ă 1. To be precise, for other values of ξ an alternative representation
of the function above has to be used given by

spθq “ exp

«

2

ˆ 8
0

dt

t

sinh ppp2p` 1qξ ´ 1q tq sinh tθ
iπ

sinh ξt

ff

for
1

2p
ě ξ ą

1

2p` 2
(32)

with p P Z`. Thus, we have two different representations of the minimal form factor Gpθ; ξ, nq
depending on whether or not ξ´ 1

2 ą 0 or ξ´ 1
2 ď 0 which we denote by G˘pθ; ξ, nq, respectively.

Interestingly, the value ξ “ 1
2 is precisely the threshold for the formation of breathers and this

is no coincidence. From the symmetry arguments presented in subsection 3.1 we know that
the branch point twist field has vanishing one-particle form factors for odd-indexed breathers.
However, the presence of non-zero one-particle breather form factors for even indices is allowed
as we show later. This means that the two-particle soliton-antisoliton form factor of the branch-
point twist field must have bound state poles at imaginary rapidity values θ “ iπp1 ´ 2kξq for
k “ 1, . . . , r 1

2ξ s. Equivalently, we can formulate this statement as the dynamical pole axiom (25)
which we now specialise to even breather bound states

´i Res
θ“iπp1´2kξq

Fss̄pθ; ξ, nq “ Γb2kss̄ Fb2kpξ, nq . (33)

Notice that each new representation of spθq from (32), corresponds to a new breather with an
even index entering the spectrum of the theory.

Thus, when writing down the minimal part of Fss̄pθ; ξ, nq we have two alternative represen-
tations: if we employ the S-matrix representation (32) together with (5) and apply the standard
machinery (28) to obtain the minimal form factor, the result possesses no breather bound state
poles. This feature, is generally what is meant by “minimal solution”. In this case the dynamical
pole equation (33) can only be satisfied by multiplying the minimal form factor with another
function which incorporates the required poles, similarly as for kinematic poles [24]. On the
other hand, if one uses the analytically continued solution (31) instead of (32), the dynamical
pole axiom (33) is automatically satisfied by the minimal form factor. In other words, this form
factor is no-longer “minimal” in the standard sense, but includes also poles in the physical sheet
corresponding to bound states.

Let us now continue our derivation for the minimal form factor, where the above discussed
features can be explicitly demonstrated. The minimal form factor can be written as

Gpθ; ξ, nq “ ϕpθ; ξ, nqΦpθ; ξ, nq , (34)

where the function Φpθ; ξ, nq follows from the integral representation of Ssssspθq and can be written
as

Φpθ; ξ, nq “ ´i sinh
θ

2n
exp

«ˆ 8
0

dt

t

sinh
`

1
2pξ ´ 1qt

˘

sinh2
`

t
2

`

n´ θ
iπ

˘˘

cosh t
2 sinh ξt

2 sinhnt

ff

, (35)
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or, alternatively, as an infinite product of Gamma functions:

Φpθ; ξ, nq “ ´i sinh
θ

2n

8
ź

k,p“0

»

—

—

–

Γ
´

p`n`pk`1qξ
2n

¯2
Γ

ˆ

1`
iθ
π
`p`1`kξ

2n

˙

Γ

ˆ

´ iθ
π
`p`1`kξ

2n

˙

Γ
´

p`n`kξ`1
2n

¯2
Γ

ˆ

1`
iθ
π
`p`pk`1qξ

2n

˙

Γ

ˆ

´ iθ
π
`p`pk`1qξ

2n

˙

fi

ffi

ffi

fl

p´1qp

(36)
However, from a numerical viewpoint, the most useful representation is mixed, combining both
a finite product of Gamma-fuctions and an integral part. This representation (86) is given
in Appendix A. This kind of mixed representation was first used in [22] and is very rapidly
convergent.

The function ϕpθ; ξ, nq in (34) follows from either the representation (31) valid for ξ ą 1
2

ϕ`pθ; ξ, nq “ exp

«

´2

ˆ 8
0

dt

t

sinh ppξ ´ 1qtq sinh2
`

t
2

`

n´ θ
iπ

˘˘

sinhpntq sinhpξtq

ff

“

8
ź

k“0

Γ
´

n`2kξ`1
2n

¯2
Γ

ˆ

´ iθ
π
`2ξpk`1q´1

2n

˙

Γ

ˆ

1`
iθ
π
`2ξpk`1q´1

2n

˙

Γ
´

n`2ξpk`1q´1
2n

¯2
Γ

ˆ

´ iθ
π
`2kξ`1

2n

˙

Γ

ˆ

1`
iθ
π
`2kξ`1

2n

˙ ,

(37)

or from (32), which is instead valid for 1
2p ě ξ ą 1

2p`2 and p P Z`

ϕ´pθ; ξ, nq “ exp

«

´2

ˆ 8
0

dt

t

sinh ppp2p` 1qξ ´ 1qtq sinh2
`

t
2

`

n´ θ
iπ

˘˘

sinhpntq sinhpξtq

ff

“

8
ź

k“0

Γ
´

n`2pk´pqξ`1
2n

¯2
Γ

ˆ

´ iθ
π
`2pk`p`1qξ´1

2n

˙

Γ

ˆ

1`
iθ
π
`2pk`p`1qξ´1

2n

˙

Γ
´

n`2pk`p`1qξ´1
2n

¯2
Γ

ˆ

´ iθ
π
`2pk´pqξ`1

2n

˙

Γ

ˆ

1`
iθ
π
`2pk´pqξ`1

2n

˙ ,

(38)

As before, we can also write a mixed representations (see Eq. (87) and (88)). Similar to the
discussion following (31)-(31), the minimal form factors

G˘pθ; ξ, nq “ ϕ˘pθ; ξ, nqΦpθ; ξ, nq , (39)

are two representations both satisfy Eq. (22), but whereas G`pθ; ξ, nq includes bound state poles
at θ “ iπp1 ´ 2kξq for k “ 1, . . . , r 1

2ξ s, G´pθ; ξ, nq does not. Instead the necessary bound state
poles can be introduced by simply dividing G´pθ; ξ, nq by standard CDD factors of the type

r 1
2ξ
s

ź

k“1

ˆ

cosh
θ

n
´ cos

πp1´ 2kξq

n

˙

. (40)

A rigorous demonstration of this fact is presented in Appendix D. In this Appendix, the ful-
filment of (25) with our soliton and breather form factors is numerically checked as well, and
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we also derive some identities involving fractions of the minimal soliton-antisoliton form factors
G˘pθ; ξ, nq and breather form factor Rpθ; ξ, nq (derived in the next section) based on (25).

Now that we have found a minimal form factor that incorporates also the bound state poles,
we just need to introduce the kinematic pole that ensures our solution satisfies (24). This
kinematic pole can be introduced by multiplying with a function already presented in [24]. The
final formulae for particles on the same copy are

Fss̄pθ; ξ, nq “
xT y sin π

n

2n sinh iπ´θ
2n sinh iπ`θ

2n

G`pθ; ξ, nq

G`piπ; ξ, nq

“
xT y sin π

n

2n sinh iπ´θ
2n sinh iπ`θ

2n

»

—

–

r 1
2ξ
s

ź

k“1

cos πn ´ cos πp1´2kξq
n

cosh θ
n ´ cos πp1´2kξq

n

fi

ffi

fl

G´pθ; ξ, nq

G´piπ; ξ, nq
.

(41)

We stress again that the two formulas are completely identical on the physical sheet and that
the first line is the same expression derived for the repulsive regime in [24].

5 Breather Form Factors

In this section we focus on the breather sector of the theory, where the S-matrices are diagonal.
The form factors

Fb1b1pθ; ξ, nq, Fb1b1b1b1pθ1, θ2, θ3, θ4; ξ, nq , (42)

can be easily obtained from known results for the sinh-Gordon model under the replacement
B “ ´2ξ. With this identification one can then take the form factor solutions found in [24, 28]
and employ fusion to construct the chains of form factors

Fb1b1b1b1pθ1, θ2, θ3, θ4; ξ, nq ÞÑ Fb2b1b1pθ1, θ2, θ3; ξ, nq

ÞÑ Fb2b2pθ; ξ, nq or Fb3b1pθ; ξ, nq ÞÑ Fb4pξ, nq . (43)

and
Fb1b1pθ; ξ, nq ÞÑ Fb2pξ, nq . (44)

A nice example of this approach was given in Appendix A of [36] for the form factors of expo-
nential fields.

5.1 Minimal Form Factor and Form Factors of b1

Although we take the sinh-Gordon solutions as starting point, it is still useful to say a few words
about the basic structure of those solutions, specially the minimal form factor. This function
provides a minimal solution to the equations (23) for i “ j “ 1 and two breathers in the same
copy. It can be easily adapted from the solutions presented in various papers [4,10,20–22] and the
techniques for the computation of minimal form factors introduced in [24]. The generalization

10



to branch point twist fields of the representation given in [10] takes the form

Rpθ; ξ, nq “ exp

«

2

ˆ 8
0

dt

t

sinh ξt
2 sinh tp1`ξq

2 cosh
`

t
`

n` iθ
π

˘˘

cosh t
2 sinhpntq

ff

“

8
ź

k“0

»

—

—

–

Γ

ˆ

´ iθ
π
´ξ`k

2n

˙

Γ

ˆ

1`
iθ
π
´ξ`k

2n

˙

Γ

ˆ

´ iθ
π
`1`ξ`k

2n

˙

Γ

ˆ

1`
iθ
π
`1`ξ`k

2n

˙

Γ

ˆ

´ iθ
π
`k

2n

˙

Γ

ˆ

1`
iθ
π
`k

2n

˙

Γ

ˆ

´ iθ
π
`k`1

2n

˙

Γ

ˆ

1`
iθ
π
`k`1

2n

˙

fi

ffi

ffi

fl

p´1qk

,

(45)

This function has the useful properties:

lim
θÑ8

Rpθ; ξ, nq “ 1 and Rp0; ξ, nq “ 0 . (46)

A similar discussion as presented in the previous section also applies to this solution. First,
although Rpθ; ξ, nq is constructed from the sinh-Gordon minimal form factor, it has very different
analytic properties. Indeed, once more Rpθ; ξ, nq is not minimal, in the strictest sense of having
no poles in the physical sheet. Rpθ; ξ, nq does have poles in the physical sheet, when the coupling
allows for the the first breather to form higher breather bound states. Therefore, the solution
(47) is valid for all values of the coupling ξ, with the function Rpθ; ξ, nq introducing bound state
poles as needed. Second, the formula is once more only convergent for ξ ą 1

2 and this can be
numerically addressed by employing the mixed representation (89).

The full two-particle form factor is then given by

Fb1b1pθ; ξ, nq “
xT y sin π

n

2n sinh iπ´θ
2n sinh iπ`θ

2n

Rpθ; ξ, nq

Rpiπ; ξ, nq
, (47)

The four-particle form factor can be read off from [28] and takes the form

Fb1b1b1b1pθ1, θ2, θ3, θ4; ξ, nq “ Hpξ, nqQpx1, x2, x3, x4; ξ, nq
ź

1ďiăjď4

Rpθi ´ θj ; ξ, nq

pxi ´ ωxjqpxj ´ ωxiq
, (48)

with

Hpξ, nq “ xT y
4ω6 sin2 π

n

n2Rpiπ; ξ, nq2
, xi “ e

θi
n , ω “ e

iπ
n . (49)

and

Qpx1, x2, x3, x4; ξ, nq “ σ4

“

σ4
2 ` q1pξ, nqσ2pσ

2
3 ` σ

2
1σ4q ` q2pξ, nqσ1σ

2
2σ3 ` q3pξ, nqσ

2
1σ

2
3

q4pξ, nqσ
2
2σ4 ` q5pξ, nqσ1σ3σ4 ` q6pξ, nqσ

2
4

‰

. (50)

Here σi are the elementary symmetric polynomials on variables tx1, x2, x3, x4u and the coef-
ficients qipξ, nq where given in the Appendix of [28] (which unfortunately contains a typo).
Calling

cpaq :“ cos
πa

2n
. (51)
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they can be rewritten as

q1pξ, nq “ cp1q´1 p1` 2cp2qq pcp3q ´ cp1` 2ξqq ,

q2pξ, nq “ ´cp1q´1 pcp2ξ ` 1q ` 4cp1q ` cp3qq ,

q3pξ, nq “ 2cp2p1` ξqq ` 2cp2ξq ` 2cp2q ` 3,

q4pξ, nq “ 2 p3cp2ξq ` 3cp2p1` ξqq ` cp2p2` ξqq ` cp2p1´ ξqq ` cp2p1` 2ξqq

`3cp2q ´ cp4q ` 1q ,

q5pξ, nq “ ´2 p6` 6cp2q ` 4cp4q ` cp6q ` cp2p2´ ξqq ` 5cp2ξq ` cp4ξq ` 5cp2p1` ξqq

`cp4p1` ξqq ` 2cp2p2` ξqq ` cp2p3` ξqq ` 2cp2p1´ ξqq ` cp2p1` 2ξqqq ,

q6pξ, nq “ 8cp2q2p3` 3cp2q ´ cp4q ` 3cp2ξq ` 3cp2p1` ξqq ` cp4p1` ξqq ` cp2p2` ξqq

`cp2p1´ ξqq ` cp2p1` 2ξqq , (52)

5.2 Fusion Procedure

In this section we present the results of the fusion procedure as described schematically in (43).
The simplest form factor to be obtained from the bootstrap approach outlined before is Fb2pξ, nq.
The breather b2 is a bound state of two b1 breathers corresponding to the simple pole of Sb1b2pθq
at θ “ iπξ. The bound state residue equation simply tells us that

´i Res
θ“iπξ

Fb1b1pθ; ξ, nq “ Γb2b1b1Fb2pξ, nq , (53)

We also know that the minimal form factor Rpθ; ξ, nq satisfies the equation

Rpθ; ξ, nq “ Sb1b1pθqRp´θ; ξ, nq , (54)

and so, at the pole we have that

´i Res
θ“iπξ

Rpθ; ξ, nq “ ´i Res
θ“iπξ

Sb1b1pθqRp´θ; ξ, nq “ pΓ
b2
b1b1
q2Rp´iπξ; ξ, nq . (55)

Putting all factors together, this gives the formula

Fb2pξ, nq “
xT y sin π

n

?
2 tanπξ

2n sinh iπp1´ξq
2n sinh iπp1`ξq

2n

Rp´iπξ; ξ, nq

Rpiπ; ξ, nq
, (56)

For nÑ 1 the form factor vanishes as expected (since the twist field becomes the identity if the
replica number is 1). However the limit

lim
nÑ1

Fb2pξ, nq

1´ n
“

π
?

tanπξ
?

2 cos2 πξ
2

Rp´iπξ; ξ, 1q

Rpiπ; ξ, 1q
, (57)

is non-zero. This limit plays a role in computations of the von Neumann entropy.
Note that the breather b2 is only present for ξ ă 1

2 . Fig. 1 shows the function (56) for several
choices of ξ and n.
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Figure 1: Left: The one-particle form factor Fb2pξ, nq as a function of n for ξ “ 0.4 (pink),
0.3 (blue), 0.2 (green), 0.1 (red), 0.05 (brown) and 0.005 (black). Right: The one-particle form
factor Fb2pξ, nq as a function of ξ for n “ 2 (red), 5 (blue), 12 (green), 50 (magenta).

5.2.1 Higher Breather Form Factors

Let us now consider a more involved fusion-based computation, namely that giving the form
factor Fb2b1b1pθ1, θ2, θ3; ξ, nq from the four-particle form factor (48). The key equation in this
case is

´iRes
θ“θ1

Fb1b1b1b1pθ `
iπξ

2
, θ1 ´

iπξ

2
, θ2, θ3; ξ, nq “ Γb2b1b1Fb2b1b1pθ1, θ2, θ3; ξ, nq , (58)

Considering the formula (48) we see once more that the pole will originate from of the R-factors
in the product, giving the contribution (55). More precisely, we obtain a solution of the form

Fb2b1b1pθ1, θ2, θ3; ξ, nq “ H211pξ, nqQ211px1, x2, x3; ξ, nq

ˆ
Rpθ23; ξ, nqRpθ12 `

iπξ
2 ; ξ, nqRpθ13 `

iπξ
2 ; ξ, nqRpθ12 ´

iπξ
2 ; ξ, nqRpθ13 ´

iπξ
2 ; ξ, nq

px2 ´ ωx3qpx3 ´ ωx2qpx1 ´ x2ω
?
βqpx2 ´ x1ω

?
βqpx1 ´ x3ω

?
βqpx3 ´ x1ω

?
βq

, (59)

where β “ e´
iπξ
n and Q211px1, x2, x3; ξ, nq is obtained from evaluating Qpx1β

´ 1
2 , x1β

1
2 , x2, x3q

which simplifies with part of the denominator of (48) giving

Q211px1, x2, x3; ξ, nq “ σ2

“

pσ2
2 ` σ̂

2
1σ

2
1 ` σ̂

4
1qcp1q ` 2σ2σ̂

2
1cpξqcpξ ´ 5q

´2σ1σ̂1pσ2 ` σ̂
2
1qcpξ ` 2qcp2ξ ´ 1q

`2σ2σ̂
2
1pcp1qcp2pξ ` 2qq ´ cpξqcp3ξ ` 1qq

`2pσ2
1 ´ σ2qσ̂

2
1cpξqpcp3ξ ´ 1q ´ cp3´ ξqq

‰

, (60)

and σ1 “ x2 ` x3, σ2 “ x2x3 and σ̂1 “ x1. As for the constant, we obtain

H211pξ, nq “ xT y
2ω3β sin π

2n sin π
nΓb2b1b1

n2 sin πpξ`1q
2n sin πpξ´1q

2n

Rp´iπξ; ξ, nq

Rpiπ; ξ, nq2
“

4ω3β sin π
2nFb2pξ, nq

nRpiπ; ξ, nq
. (61)
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Having now seen two applications of the fusion procedure it is easy to proceed for other form
factors. We present more details of those computations in Appendix B. Here we just summarize
the main formulae:

Fb3b1pθ12; ξ, nq “ H31pξ, nqQ31px1, x2; ξ, nq
Rpθ12; ξ, nqRpθ12 ` iπξ; ξ, nqRpθ12 ´ iπξ; ξ, nq

px1 ´ x2ωβqpx2 ´ x1ωβqpx1α´ x2qpx2α´ x1βq
. (62)

with H31pξ, nq and Q31px1, x2; ξ, nq given in (93), (92), respectively.

Fb2b2pθ12; ξ, nq “ H22pξ, nqQ22px1, x2; ξ, nq
Rpθ12; ξ, nq2Rpθ12 ` iπξ; ξ, nqRpθ12 ´ iπξ; ξ, nq

px1 ´ αx2qpx2 ´ αx1qpx1 ´ αβx2qpx2 ´ αβx1q
, (63)

with H22pξ, nq and Q22px1, x2; ξ, nq given by (104) and (102) and, finally

Fb4pξ, nq “ xT y
sin π

n sin π
2np1` 2 cos πξn q cos πp1´ξq2n Γb4b3b1Γb3b2b1Γb2b1b1

2n2 sin2 πp1`ξq
2n sin πp1´2ξq

2n sin πp1´3ξq
2n

ˆ
Rp´3πiξ; ξ, nqRp´2πiξ; ξ, nq2Rp´iπξ; ξ, nq3

Rpiπ; ξ, nq2
, (64)

which, as we see in Appendix B can be obtained from either fusing b3 and b1 or b2 with itself,
giving identical results. Before ending this section, it is worth noting that Watson’s equations
and the bound state residue equation for form factors can be repeatedly used to obtain the form
factors of breather bk starting with a form factor involving k breathers of type b1 in a more
systematic manner. This technique is described for instance in equation (A.3) of Appendix A
in [37]. This method would allow us for instance to reduce (48) to (64) by simultaneously fusing
all particles. The result is the same as presented here.

5.3 Some Consistency Checks

Apart from the ∆ sum rule that we will discuss later, there are a few properties that the
form factors must satisfy and which help us make sure these formulae are correct. One of the
strongest tests is the clustering decomposition property which states that in the absence of
internal symmetries, form factors factorize into products of lower particle number form factors if
a subset of the rapidities is sent to infinity. More precisely, for the form factors above we expect
that

lim
θÑ8

Fb1b3pθ; ξ, nq “ 0, lim
θÑ8

Fb2b2pθ; ξ, nq “
Fb2pξ, nq

2

xT y
, (65)

and

lim
θ1Ñ8

Fb2b1b1pθ1, θ2, θ3; ξ, nq “
Fb2pξ, nqFb1b1pθ23; ξ, nq

xT y
, lim

θ1,θ2Ñ8
Fb2b1b1pθ1, θ2, θ3; ξ, nq “ 0 .

(66)
These identities can be easily checked thanks to the first property in (46). The first property
in (65) follows from observing that for θ1 Ñ 8 the denominator of the form factor (62) scales
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with x4
1 whereas the numerator (that is, the function Q31px1, x2, x2; ξ, nqq scales as x3

1. A similar
argument applies to the second equality in (66). The second identity in (65) follows from

lim
θ1Ñ8

Q22px1, x2; ξ, nq „ 2ω
?
ωβ2cp1qx4

1 , (67)

and

lim
θ1Ñ8

Rpθ12; ξ, nq2Rpθ12 ` iπξ; ξ, nqRpθ12 ´ iπξ; ξ, nq

px1 ´ ωx2qpx2 ´ ωx1qpx1 ´ ωβx2qpx2 ´ ωβx1q
„

1

ω2βx4
1

(68)

together with the formula (104). The first identity in (66) follows from

lim
θ1Ñ8

Q211px1, x2, x3; ξ, nq „ cp1qx4
1x2x3 , (69)

lim
θ1Ñ8

Rpθ23; ξ, nqRpθ12 `
iπξ
2 ; ξ, nqRpθ13 `

iπξ
2 ; ξ, nqRpθ12 ´

iπξ
2 ; ξ, nqRpθ13 ´

iπξ
2 ; ξ, nq

px2 ´ ωx3qpx3 ´ ωx2qpx1 ´ x2ω
?
βqpx2 ´ x1ω

?
βqpx1 ´ x3ω

?
βqpx3 ´ x1ω

?
βq

„
Rpθ23; ξ, nq

ω2βx4
1px2 ´ ωx3qpx3 ´ ωx2q

(70)

Comparing with (47) and (56) we find that the clustering property is exactly reproduced. We
may also check that the solution Fb2b2pθ; ξ, nq satisfies the kinematic residue equation (24) which
indeed it does. This can be shown by employing the non-trivial identity

Rp´iπξ; ξ, nq2Rpiπp1´ ξq; ξ, nqRpiπp1` ξq; ξ, nq “
n tan πξ

2n sin πp1`ξq
2n sin πpξ´1q

2n

2ω4 sin π
2n sin πp1`2ξq

2n tanπξ
, (71)

which can be established with the help of the Γ-function representation given in Appendix A.

6 Consistency Checks by ∆ Sum Rule

The ∆ sum rule [38] is one of the most useful and common methods for testing form factor
solutions. It gives a relationship between the conformal dimension of a local field T and a
certain integral involving the two point function nx0|T p0qΘprq|0yn where Θ is the trace of the
stress-energy tensor and |0yn is again the vacuum state in the replica theory. In its integrated
form given for instance in [39] and after generalizing to branch point twist fields, the rule can
be expressed as follows:

∆T “ ´
n

2xT y

8
ÿ

k“1

ÿ

a1...ak

ˆ 8
´8

dθ1 . . . dθk
k!p2πqk

F T
a1...ak

pθ1, . . . , θk; ξ, nqF
Θ
a1...ak

pθ1, . . . , θk; ξq
˚

´

řk
p“1mp cosh θp

¯2 , (72)

where ∆T “ c
24pn ´

1
nq is the conformal dimension of the branch point twist field [24, 32, 40]

and we have now added a superindex to the form factors to indicate the quantum field they
correspond to. The second sum is over all possible choices of particle types ap with masses mp.
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As usual with this type of expansion, convergence of the sum is expected to be quick, and
the main contributions come from the one- and two-particle form factors. Hence, if we can show
such near saturation we can be confident that our form factors solutions are correct.

Let ∆
p`pξqq
T be the conformal dimension of the branch point twist field as given by (72) in

the regime where `pξq breathers are present. Although the exact value of ∆T is independent
of ξ the number and contribution of the terms in the sum changes substantially depending on
the coupling. In what follows we present numerical results for the sum above for `pξq “ 1, 2, 3
and 4. For this we need first to obtain the one- and two-particle breather form factors of the
stress-energy tensor in the sine-Gordon model. This can be done in a similar fashion as for the
branch point twist fields, namely starting from the sinh-Gordon solutions presented in [22] and
carrying out the fusion procedure. The results are presented in appendix E.

n ∆T ss̄ b1b1 ∆
p1q
T

2 0.0625 0.0602025 0.0008771 0.0610796

3 0.11111 0.1064464 0.0016783 0.1081246

4 0.15625 0.1493874 0.0024134 0.1518008

5 0.2 0.1910316 0.0031194 0.1941510

n ∆T ss̄ b1b1 ∆
p1q
T

2 0.0625 0.0618871 0.0000835 0.0619705

3 0.11111 0.1098190 0.0001636 0.1099826

4 0.15625 0.1543269 0.0002368 0.1545637

5 0.2 0.1974738 0.0003068 0.1977806

Table 1: The contributions to the sum (73) from the solition-antisoliton term (ss̄) and the
breather-breather term (b1b1) for ξ “ 0.62734 (left) and ξ “ 0.82734 (right). The first column
shows the exact values of ∆T and the last column the sum of ss̄ and b1b1 contributions. As
expected, the main contribution comes from the ss̄ term. This contribution gets larger as we
approach the threshold value ξ “ 1, while the breather contribution is reduced.

Let us consider the regimes when there are one, two, three or four breathers present we have
that the expansion above can be approximated as follows:

• For ξ ą 1 we are in the repulsive regime where no breathers are present. The main
contribution to the ∆ sum rule comes from the soliton-antisoliton form factor and was
computed in [27].

• For 1
2 ď ξ ă 1 we have a single breather b1 present and the main contributions are

∆
p1q
T « ´

n

32π2m2xT y

ˆ 8
´8

dθ
4 sin2 πξ

2 F T
ss̄pθ; ξ, nqF

Θ
ss̄pθ; ξq

˚`F T
b1b1
pθ; ξ, nqFΘ

b1b1
pθ; ξq˚

4 sin2 πξ
2 cosh2 θ

2

. (73)

The sum for two values of ξ is presented in Table 1.

• For 1
3 ď ξ ă 1

2 we have two breathers b1, b2 present and the main contributions are

∆
p2q
T « ∆

p1q
T ´

nF T
b2
pξ, nqFΘ

b2
pξq˚

8πm2 sin2 πξxT y
´

n

32π2m2xT y

ˆ 8
´8

dθ
F T
b2b2
pθ; ξ, nqFΘ

b2b2
pθ; ξq˚

4 sin2 πξ cosh2 θ
2

. (74)

Numerical values of the sum (74) and of individual contributions to it are presented in
Table 2 of Appendix E.
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• For 1
4 ď ξ ă 1

3 we have three breathers b1, b2, b3 present and the main contributions are

∆
p3q
T « ∆

p2q
T ´

n

32π2m2xT y

ˆ 8
´8

dθ
F T
b3b3
pθ; ξ, nqFΘ

b3b3
pθ; ξq˚

4 sin2 3πξ
2 cosh2 θ

2

´
n

64π2m2xT y

ˆ 8
´8

ˆ 8
´8

dθ1dθ2

F T
b1b3
pθ1 ´ θ2; ξ, nqFΘ

b1b3
pθ1 ´ θ2; ξq˚

psin πξ
2 cosh θ1 ` sin 3πξ

2 cosh θ2q
2

(75)

• Finally, for 1
5 ď ξ ă 1

4 we have four breathers b1, b2, b3, b4 present and the main contribu-
tions are

∆
p4q
T « ∆

p3q
T ´

nF T
b4
pξ, nqFΘ

b4
pξq˚

8πm2 sin2 2πξxT y
´

n

32π2m2xT y

ˆ 8
´8

dθ
F T
b4b4
pθ; ξ, nqFΘ

b4b4
pθ; ξq˚

4 sin2 2πξ cosh2 θ
2

´
n

64π2m2xT y

ˆ 8
´8

ˆ 8
´8

dθ1dθ2

F T
b2b4
pθ1 ´ θ2; ξ, nqFΘ

b2b4
pθ1 ´ θ2; ξq˚

psinπξ cosh θ1 ` sin 2πξ cosh θ2q
2
. (76)

Table 3 gives an example of the evaluation of the sum (76), albeit without including the b2b4,
b3b3 and b4b4 contributions, which we have not evaluated in this paper. Even so, the sum rule
is approximately 95% saturated.

In conclusion, our numerical evaluation of the ∆ sum rule in various regions of the attractive
regime shows near saturation upon inclusion of all relevant one-particle and two-particle form
factors and therefore provides strong backing for our analytical results. It is interesting to
note that the deeper we go into the attractive regime (i.e. the smaller ξ is) the more significant
breather contributions are, so that for instance, in Table 2(d) the soliton-antisoliton contribution
represents only about 20% of the total value of the dimension.

7 Application: Entanglement Oscillations after a Mass Quench

An interesting application of our results is to the study of the entanglement dynamics of the
sine-Gordon model after a global mass quench [41, 42]. That is, we want to study the time-
dependence of a certain measure of entanglement when the mass scale m is abruptly changed at
time zero. Then, if the original hamiltonian of the system was Hpmq and m was the pre-quench
soliton mass, at times t ą 0 the system will time-evolve with a new Hamiltonian Hpm̂q, where
m̂ is the post-quench soliton mass. In such a situation, the reduced density matrix may be
formally written as:

ρA “ TrBpe
´itHpm̂q|0yx0|eitHpm̂qq , (77)

where A and B are two complementary regions and |0y is the pre-quench ground state. In terms
of ρA the Rényi and von Neumann entropies are defined in the usual form:

Snptq :“
logpTrρnAq

1´ n
, S1ptq :“ lim

nÑ1
Snptq , (78)

and if A is a semi-infinite region, these expressions are equivalent to:

Snptq “
log

`

ε2∆T
nx0|T p0, tq|0ynq

˘

1´ n
, (79)
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and its nÑ 1 limit, where ε is a non-universal UV cut-off which can be eliminated by considering
instead the quantities

∆Snptq :“ Snptq ´ Snp0q . (80)

and |0yn is the pre-quench ground state in the replica theory. Note that Snp0q is a function of
the vacuum expectation value nx0|T p0, 0q|0yn which we have abbreviated as xT y in our form
factor formulae.

With these definitions, the situation we want to consider here is entirely analogous to the
studies performed in [43,44]. In fact, the present model has two key common features with the
minimal E8 Toda field theory studied in [44]. They are the presence of non-vanishing one-particle
form factors and a mass spectrum where all masses are proportional to a fundamental scale m
(the mass of the soliton/antisoliton). Carrying out the quench perturbation theory proposed
in [45], non-vanishing one-particle form factors inevitably lead to entanglement oscillations at
first order in perturbation theory. As observed in [43,46] the dynamics of entanglement is closely
tied to the dynamics of the one-point function of the order parameter. Indeed, oscillations of the
one-point function of the order parameter in the sine-Gordon model, following a mass quench
where found in [47] employing perturbation theory.

The formulae involved are almost identical to those presented in [44], specially in the sup-
plementary material. We must just highlight that the field associated with the mass quench in
this case is the perturbing field in the sine-Gordon theory, namely the field Ψ “ 2 cos gϕ where
g is the coupling we first encountered in the action (1). This field is, as usual, proportional
to the trace of the stress-energy tensor, hence its form factors are identical to those of Θ up
to a proportionality constant (essentially, we need to replace xΘy “ 2πm2

1 with xΨy). Let us
consider a perturbation where the original coupling µ in the action (1) is changed by a small

amount δµ, that is µ ÞÑ µ`δµ with
δµ
µ ! 1. Then, the Opδµq contribution to the Rényi entropies

may be expressed as a series in form factors of T and Ψ, where the leading contributions to the
increment of the Rényi entropies, come from one- and two-particle form factors. After various
simplifications, the series takes the form

∆Snptq “
1

1´ n

δµ
µ

»

—

–

2∆T
2´ 2∆Ψ

` n CΨ

r
`pξq

2
s

ÿ

k“1

2

r2
2k

F̂Ψ
b2k
pξq

˚
F̂ T
b2k
pξ, nq cospr2km̂tq (81)

`2n CΨ

ˆ 8
´8

dθ

2π

Re
”

rF̂Ψ
ss̄p2θ; ξqs

˚F̂ T
ss̄p2θ; ξ, nqe

´2im̂t cosh θ
ı

2 cosh2 θ

`2n CΨ

ˆ 8
´8

dθ

2π

`pξq
ÿ

k“1

Re
”

rF̂Ψ
bkbk
p2θ; ξqs˚F̂ T

bkbk
p2θ; ξ, nqe´2irkm̂t cosh θ

ı

2r2
k cosh2 θ

`2n CΨ

ˆ 8
´8

dθ

2π

1
ÿ

k‰p

1

rk cosh θprk cosh θ ` rp cosh θ̃q

ˆRe
”

rF̂Ψ
bkbp
pθ ´ θ̃qs˚F̂ T

bkbp
pθ ´ θ̃qe´im̂tprk cosh θ`rp cosh θ̃q

ı

` . . .
ı

`Opδ2
λq ,

18



where

θ̃ :“ ´ sinh´1

ˆ

rk
rp

sinh θ

˙

, (82)

rk “
m̂k
m̂ are the scaled post-quench breather masses. The “prime” symbol in the last sum

indicates the additional restriction that only terms where k and p are either both even or both
odd will be non-vanishing. The “hatted” form factors are scaled versions of the usual form factors
where the expectation values of the associated fields have been factored out. This dependency
can then be absolved into the ratio of couplings δµ{µ and the constant CΨ. The conformal

dimension ∆Ψ “ g2 “
ξ

1`ξ and the constant

CΨ “
AΨ

κ2
where xΨy “ AΨµ

2∆Ψ
2´2∆Ψ and m “ κµ

1
2´2∆Ψ . (83)

These are the standard scaling laws for vacuum expectation values and the mass-coupling rela-
tion. A relationship between the constant AΨ and κ can be read off from the paper [48] where
the expectation values of exponential fields in the sine-Gordon model were obtained. From this
formula it follows that

xΨy “ 2

»

–

m
?
πΓ

´

1
2´2g2

¯

2Γ
´

g2

2´2g2

¯

fi

fl

2g2

exp

ˆ 8
0

dt

t

„

sinh2p2g2tq

2 sinhpg2tq sinh t coshpp1´ g2qtq
´ 2g2e´2t



. (84)

It is important to note that this formula is only convergent for g2 ă 1
2 , which excludes the

repulsive regime [48]. The mass-coupling relation was given earlier in (4). This allows us to fix
the ratio above to

CΨ “
Γpg2qΓp 1

2´2g2 q
2

2Γp1´ g2qΓp g2

2´2g2 q
2

exp

ˆ 8
0

dt

t

„

sinh2p2g2tq

2 sinhpg2tq sinh t coshpp1´ g2qtq
´ 2g2e´2t



. (85)

Despite the messy nature of the formula (81) (a very similar formula can be written for the
von Neumann entropy) the main features of entanglement are rather clear: for small quenches,
there will be undamped oscillations whenever any one-particle form factors are non-vanishing,
confirming the general ideas observed in [44,45]. In addition, there will be additional oscillatory
terms coming from higher particle form factors which will be suppressed by a power of t that
depends on the leading behaviour of the form factors near zero rapidity (this can be analysed
further by using a saddle-point approximation). This means that the dynamics of entanglement
following a mass quench is rather different in the regime 1

2 ě ξ (undamped oscillations with at
least two breathers present) and for for ξ ă 1

2 (damped oscillations with at most one breather
present).

We demonstrate these qualitative differences in the entanglement evolution by evaluating
(81) numerically for various values of n and two particular values of ξ. In Figure 2 ∆Snptq
is displayed for n “ 2, 3, 4, 5 and for ξ “ 0.810361 and ξ “ 0.420712. Clearly, above the
second breather threshold (ξ “ 0.810361) no undamped oscillations can be seen, which are, very
clearly present when the second breather joins the spectrum (ξ “ 0.420712). Note that although
∆Snp0q “ 0 by the definition (80), it is not exactly zero numerically (although it is rather small).
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This is because Snptq is evaluated at first order in perturbation theory and therefore its value
at zero is only an approximation of the exact analytic value Snp0q that is subtracted in (80).
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(a) ξ “ 0.810361

0 5 10 15

-0.090

-0.085

-0.080

-0.075

-0.070

mt

(δ
μ
/μ
)-
1
Δ
S
n

(b) ξ “ 0.420712

Figure 2: The time evolution of the rescaled Rényi entropy difference
´

δµ
µ

¯´1
∆Sn after a mass

quench in the sine-Gordon model with interaction parameter ξ “ 0.810361 (a) and ξ “ 0.420712
(b). Time is measured in units of the inverse soliton mass m and the blue, yellow, green, and
red curves correspond to Rényi entropies with n “ 2, 3, 4 and 5, respectively.

Note that these results are only expected to hold for small quenches and times t ă µ´1, as
explained in [45]. In addition, we know that for large times the leading feature of entanglement
(in any regime) is linear growth [41, 42, 49]. As observed in other studies, this feature is not
recovered using first-order perturbation theory as it is a second order effect [43,44]. In addition,
in some cases, like for E8 Toda field theory, linear growth is very slow so that it only becomes
apparent for large times in numerical simulations [44]. The same phenomenology is also observed
for the von Neumann entropy for the same reasons.

It is worth considering whether or not these behaviours will persist for larger times and
quenches. In this regard, arguments have been put forward as to why the undamped oscillations
found at first order should be damped when including higher order terms [16]. At the same time,
we know of at least one theory, E8 Toda field theory, where this eventual damping is not observed
numerically even for large quenches and times [44]. This suggests that this phenomenology still
needs to be better understood. Similar behaviours have been observed in [16, 17, 47] for the
expectation value of the field Ψ and in [15] for two-point functions of the field ϕ.

8 Conclusion

In this paper we have carried out an in-depth study of the form factors of the branch point
twist field in the sine-Gordon model in the attractive regime. We have considered up to four
breathers in the spectrum and focused on the one- and two-particle form factors. Our work
extends results for the repulsive regime that were presented in [27].

Although computations are generally tedious, great simplification comes from the presence
of Up1q symmetry in the soliton-antisoliton sector and Z2 symmetry in the breather sector. The
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latter imply the vanishing of a large number of form factors so that only form factors containing
the same number of solitons and antisolitons as well as an even number of odd breathers are
non-vanishing. The two-particle form factors of the soliton-antisoliton sector can be computed
by diagonalizing the form factor equations (as the theory is non-diagonal) and incorporating the
correct structure of bound state and kinematic poles, as discussed in great detail in Section 4 and
Appendix D. For the breather sector the combination of the fusion mechanism with the analytic
continuation from sinh-Gordon, provide an effective way of constructing the form factors of
heavier breathers from those of lighter ones leading to the results of Secion 5 and Appendices B
and C.

Our form factors can now be employed to compute correlation functions of branch point twist
fields, hence a number of entanglement measures. In this paper we have highlighted just one such
application, namely to the study of the entanglement dynamics following a mass quench in the
sine-Gordon model. As observed in a similar study [44] we find that at least for small quenches,
undamped oscillations of frequencies proportional to the even breather masses are present and
constitute the leading behaviour of Rényi and von Neumann entropies. This is analogous to
results found in [16,17,47] for the expectation value of the field Ψ and more generally in [15] for
two-point functions of the field ϕ.

As anticipated in the introduction, our immediate goal now is to extend these results to
symmetry resolved twist fields [25,26].

Acknowledgment: We are grateful to Benjamin Doyon, Gábor Takács and Jacopo Viti for
useful discussions. We specially thank Pasquale Calabrese for discussions and for his early stage
involvement in this project. DXH acknowledges support from ERC under Consolidator grant
number 771536 (NEMO).

A Minimal Form Factors Mixed Representations

As mentioned in Sections 4 and 5 the most useful representation for the minimal form factors is
neither exponential nor based entirely on Gamma-function products, but a mixture of the two.
This idea was employed first in [22] and can be implemented in a similar way for any minimal
form factor of the type described in this paper. The function (36) can be written as

Φpθ; ξ, nq “ ´i sinh
θ

2n

N
ź

k,p“0

»

—

—

–

Γ
´

p`n`pk`1qξ
2n

¯2
Γ

ˆ

n` iθ
π
`p`1`kξ`n

2n

˙

Γ

ˆ

´n´ iθ
π
`p`1`kξ`n

2n

˙

Γ
´

p`n`kξ`1
2n

¯2
Γ

ˆ

n` iθ
π
`p`pk`1qξ`n

2n

˙

Γ

ˆ

´n´ iθ
π
`p`pk`1qξ`n

2n

˙

fi

ffi

ffi

fl

p´1qp

ˆ exp

«

´

ˆ 8
0

dt

t

sinh
`

1
2p1´ ξqt

˘ `

e´ξpN`1qt ` e´pξ`1qpN`1qt ´ e´pN`1qt
˘

sinh2
`

t
2

`

n´ θ
iπ

˘˘

cosh t
2 sinh ξt

2 sinhnt

ff

.

(86)
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Whereas the functions ϕ˘pθ; ξ, nq can be written as

ϕ`pθ; ξ, nq “
N
ź

p“0

Γ
´

n`2pξ`1
2n

¯2
Γ

ˆ

´ iθ
π
`2pξ`2ξ´1

2n

˙

Γ

ˆ

2n` iθ
π
`2pξ`2ξ´1

2n

˙

Γ
´

n`2pξ`2ξ´1
2n

¯2
Γ

ˆ

´ iθ
π
`2pξ`1

2n

˙

Γ

ˆ

2n` iθ
π
`2pξ`1

2n

˙

ˆ exp

«

´2

ˆ 8
0

dt

t

e´2ξpN`1qt sinh ppξ ´ 1qtq sinh2
`

t
2

`

n´ θ
iπ

˘˘

sinhpntq sinhpξtq

ff

(87)

This quantity is independent of the choice of N only when ξ ą 1{2, but can be made convergent
for any positive real values of ξ if the minimal allowed value for N is suitably chosen. In fact
(87) gives a physically motivated (as seen in Appendix D) and correct analytic continuation.
Alternatively, for 1

2p ě ξ ą 1
2p`2 and p P Z`

ϕ´pθ; ξ, nq “
N
ź

m“0

Γ
´

n`2pm´pqξ`1
2n

¯2
Γ

ˆ

´ iθ
π
`2pm`p`1qξ´1

2n

˙

Γ

ˆ

2n` iθ
π
`2pm`p`1qξ´1

2n

˙

Γ
´

n`2pm`p`1qξ´1
2n

¯2
Γ

ˆ

´ iθ
π
`2pm´pqξ`1

2n

˙

Γ

ˆ

2n` iθ
π
`2pm´pqξ`1

2n

˙

ˆ exp

«

´2

ˆ 8
0

dt

t

e´2ξpN`1qt sinh ppp2p` 1qξ ´ 1qtq sinh2
`

t
2

`

n´ θ
iπ

˘˘

sinhpntq sinhpξtq

ff

.

(88)

Finally, the breather-breather minimal form factor also admits the representation

Rpθ; ξ, nq “

N
ź

k“0

»

—

—

–

Γ

ˆ

´ iθ
π
´ξ`k

2n

˙

Γ

ˆ

1`
iθ
π
´ξ`k

2n

˙

Γ

ˆ

´ iθ
π
`1`ξ`k

2n

˙

Γ

ˆ

1`
iθ
π
`1`ξ`k

2n

˙

Γ

ˆ

´ iθ
π
`k

2n

˙

Γ

ˆ

1`
iθ
π
`k

2n

˙

Γ

ˆ

´ iθ
π
`k`1

2n

˙

Γ

ˆ

1`
iθ
π
`k`1

2n

˙

fi

ffi

ffi

fl

p´1qk

ˆ exp

«

4

ˆ 8
0

dt

t

e´
t
2
p3`4Nq sinh ξt

2 sinh p1`ξqt
2 cosh t

`

n` iθ
π

˘

p1` etq sinhpntq

ff

. (89)

B Computation of Branch Point Twist Field Breather Form
Factors from Fusion

B.1 Computation of Fb3b1pθ; ξ, nq

Using fusion again we have that

´iRes
θ“θ1

Fb2b1b1pθ `
iπξ

2
, θ1 ´ iπξ, θ2; ξ, nq “ Γb3b2b1Fb3b1pθ12; ξ, nq . (90)

This gives a solution of the form

Fb3b1pθ12; ξ, nq “ H31pξ, nqQ31px1, x2; ξ, nq
Rpθ12; ξ, nqRpθ12 ` iπξ; ξ, nqRpθ12 ´ iπξ; ξ, nq

px1 ´ x2ωβqpx2 ´ x1ωβqpx1ω ´ x2qpx2ω ´ x1βq
. (91)
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The polynomial Q31px1, x2; ξ, nq follows from the reduction of Q211px1β
´ 1

2 , x1β, x2; ξ, nq and can
be written as

Q31px1, x2; ξ, nq “ x1x2pωx1 ´ x2qpx2ω ´ x1βq , (92)

if we also identify

H31pξ, nq “ ´xT y
2ωβ sin π

2n sin π
n cos πp1´ξq2n p1` 2 cos πξn qΓ

b3
b2b1

Γb2b1b1

n2 sin πp1`ξq
2n sin πp1´2ξq

2n

Rp´2πiξ; ξ, nqRp´iπξ; ξ, nq2

Rpiπ; ξ, nq2
.(93)

B.2 Computation of Fb4pξ, nq from fusion in Fb3b1pθ; ξ, nq

Computing
´i Res

θ“2πiξ
Fb3b1pθ; ξ, nq “ Γb4b3b1Fb4pξ, nq , (94)

which gives

Fb4pξ, nq “ xT y
sin π

n sin π
2np1` 2 cos πξn q cos πp1´ξq2n Γb4b3b1Γb3b2b1Γb2b1b1

2n2 sin2 πp1`ξq
2n sin πp1´2ξq

2n sin πp1´3ξq
2n

ˆ
Rp´3πiξ; ξ, nqRp´2πiξ; ξ, nq2Rp´iπξ; ξ, nq3

Rpiπ; ξ, nq2
, (95)

which is plotted in Fig. 3 as a function of ξ and n.
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Figure 3: Left: The one-particle form factor Fb4pξ, nq as a function of n for ξ “ 0.24 (red),
0.21 (blue), 0.2 (green), 0.1 (magenta) and 0.05 (brown). Right: The one-particle form factor
Fb4pξ, nq as a function of ξ for n “ 2 (red), 5 (blue), 12 (green), 50 (magenta).

We have also that

lim
nÑ1

Fb4pξ, nq

1´ n
“

2π sin4 πξ
2 Γb4b3b1Γb3b2b1Γb2b1b1

sin 2πξ sin2 πξ

1` 2 cosπξ

1´ 2 cosπξ

ˆ
Rp´3πiξ; ξ, 1qRp´2πiξ; ξ, 1q2Rp´iπξ; ξ, 1q3

Rpiπ; ξ, 1q2
. (96)

Note that the breather b4 is only present for ξ ă 1
4 .
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B.3 Computation of Fb2b2pθ; ξ, nq

Starting with the form factor Fb2b1b1pθ1, θ2, θ2; ξ, nq we can now fuse the last two particles to
obtain Fb2b2pθ; ξ, nq. The bound state residue equation dictates that

´iRes
θ“θ1

Fb1b1b2pθ `
iπξ

2
, θ1 ´

iπξ

2
, θ2; ξ, nq “ Γb2b1b1Fb2b2pθ1, θ2; ξ, nq , (97)

From the the form factor axioms we can write the following

´i Res
θ0“θ1

Fb1b1b2pθ0 `
iπξ

2
, θ1 ´

iπξ

2
, θ2; ξq “ Γb2b1b1Fb2b2pθ12; ξq (98)

“ ´i Res
θ0“θ1

Fb2b1b1pθ2, θ1 ´
iπξ

2
, θ0 `

iπξ

2
; ξqSb1b2pθ12 ´

iπξ

2
qSb1b2pθ02 `

iπξ

2
qSb1b1pθ01 ` iπξq

“ pΓb2b1b2q
2Fb2b1b1pθ2, θ1 ´

iπξ

2
, θ1 `

iπξ

2
; ξqSb1b2pθ12 ´

iπξ

2
qSb1b2pθ12 `

iπξ

2
q

“ pΓb2b1b2q
2Sb2b2pθ12qFb2b1b1pθ2, θ1 ´

iπξ

2
, θ1 `

iπξ

2
; ξq . (99)

where we used the bootstrap equation for the breather S-matrices

Sb1b2pθ ´
iπξ

2
qSb1b2pθ `

iπξ

2
q “ Sb2b2pθq . (100)

Then it immediately follows that the two-particle form factor has the following structure

Fb2b2pθ12; ξ, nq “ H22pξ, nqQ22px1, x2; ξ, nq
Rpθ12; ξ, nq2Rpθ12 ` iπξ; ξ, nqRpθ12 ´ iπξ; ξ, nq

px1 ´ ωx2qpx2 ´ ωx1qpx1 ´ ωβx2qpx2 ´ ωβx1q
,

(101)
with

Q22px1, x2; ξ, nq “ α1pξ, nqσ
4
1 ` α2pξ, nqσ2σ

2
1 ` α3pξ, nqσ

2
2 , (102)

α1pξ, nq “ ωβ2p1` ωq ,

α2pξ, nq “ ´pβp1` βq ` ωβ2pβ ` β2 ` 4q ` ω2p4β2 ` β ` 1q ` ω3β2q ,

ω3pξ, nq “ ´1` ω2pβ5 ` 5β2 ` 2β4 ` 3β3 ` 2β ` 1q ` pω´1 ` ω4qβp1` β ` β2q

`ωp3β ` 2β3 ` β4 ` 5β2 ` 2` β´1q ´ ω3β4 , (103)

and

H22pξ, nq “ xT y
?
ωβ´1 sin π

n sin π
2npΓ

b2
b1b1
q2

4n2 sin2 πpξ´1q
2n sin2 πpξ`1q

2n

Rp´iπξ; ξ, nq2

Rpiπ; ξ, nq2
“

?
ωFb2pξ, nq

2

2β cos π
2nxT y

. (104)

B.4 Computation of Fb4 from Fusion in Fb2b2pθ; ξ, nq

Finally, we may consider the fusion of two b2 breathers to form b4. We employ the equation

´iRes
θ“θ1

Fb2b2pθ ` iπξ, θ1 ´ iπξ; ξ, nq “ Γb4b2b2Fb4pξ, nq , (105)
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This gives us

Fb4pξ, nq “ xT y
sin π

n sin π
2np1` 2 cos πξn q cos πp1´ξq2n pΓb2b1b1q

2Γb4b2b2

2n2 sin p1´2ξqπ
2n sin p1´3ξqπ

2n sin2 p1`ξqπ
2n

ˆ
Rp´3πiξ; ξ, nqRp´2πiξ; ξ, nq2Rp´iπξ; ξ, nq3

Rpiπ; ξ, nq2
. (106)

This is identical to the result we obtained from fusing Fb3b1pθ; ξ, nq with the identification

Γb4b3b1Γb3b2b1 “ Γb4b2b2 (107)

C Form Factors of the Stress-Energy Tensor from Fusion

The form factors of the trace of the stress-energy tensor in the sinh-Gordon model where first
computed in [22], where closed formulae for special values of the coupling were obtained. We
are interested in the case of generic coupling B for which solutions up to 14 particles where
given. These solutions will be the building blocks for our fusion procedure. We are particularly
interested in the one-particle form factors of the second and fourth breather which requires
the two- and four-particle form factors of the stress energy tensor in sinh-Gordon. Replacing
B “ ´2ξ these form factors are given by

FΘ
b1b1pθ; ξq “ 2πm2

1

Rpθ; ξ, 1q

Rpiπ; ξ, 1q
, (108)

where m1 is the mass of the first breather as given in (3) and

FΘ
b1b1b1b1pθ1, θ2, θ3, θ4; ξq “ ´

8πm2
1 sinπξ

Rpiπ; ξ, 1q2
σ1σ2σ3

ź

1ďiăjď4

Rpθij ; ξ, 1q

xi ` xj
, (109)

with xi “ eθi and σi the elementary symmetric polynomial on variables tx1, x2, x3, x4u .

C.1 Computation of FΘ
b2

pξq

Applying the fusion procedure to the two-particle form factor we have that

´i Res
θ“iπξ

FΘ
b1b1pθ; ξq “ Γb2b1b1F

Θ
b2 pξq , (110)

and we get simply

FΘ
b2 pξq “ 2πm2

1

a

2 tanπξ
Rp´iπξ; ξ, 1q

Rpiπ; ξ, 1q
, (111)

which is plotted in Fig. 4.
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Figure 4: The one particle form factor FΘ
b2
pξq for m “ 1.

C.2 Computation of FΘ
b2b1b1

pθ1, θ2, θ3; ξq

In order to get higher breather form factors we must use the four-particle solution above. For
instance we may fuse the first two particles to obtain FΘ

b2b1b1
pθ1, θ2, θ3; ξq. The relevant equation

is

´i Res
θ0“θ1

FΘ
b1b1b1b1pθ0 `

iπξ

2
, θ1 ´

iπξ

2
, θ2, θ3; ξq “ Γb2b1b1F

Θ
b2b1b1pθ1, θ2, θ3; ξq. (112)

which after some simplifications gives

FΘ
b2b1b1pθ1, θ2, θ3; ξq “ HΘ

211pξqQ
Θ
211px1, x2, x3; ξq

Rpθ23; ξ, 1q

x2 ` x3

ˆ
Rpθ12 `

iπξ
2 ; ξ, 1qRpθ12 ´

iπξ
2 ; ξ, 1qRpθ13 ´

iπξ
2 ; ξ, 1qRpθ13 `

iπξ
2 ; ξ, 1q

px2 ` αx1qpx1 ` αx2qpx3 ` αx1qpx1 ` αx3q
. (113)

with α :“ e
iπξ
2 and

QΘ
211px1, x2, x3; ξq “ pσ1 ` 2 cos

πξ

2
σ̂1qpσ2 ` 2 cos

πξ

2
σ1σ̂1 ` σ̂

2
1qpσ̂1σ1 ` 2 cos

πξ

2
σ2q , (114)

for σ̂1 “ x1, σ1 “ x2 ` x3 and σ2 “ x2x3. The normalization constant is

HΘ
211pξq “ ´

8πm2
1α

2 sin πξ
2 Rp´iπξ; ξ, 1qΓ

b2
b1b1

Rpiπ; ξ, 1q2
. (115)

C.3 Computation of FΘ
b2b2

pθ; ξq

We know from Watson’s equation that

FΘ
b1b1b2pθ1, θ2, θ3; ξq “ FΘ

b2b1b1pθ3, θ2, θ1; ξqSb1b2pθ23qSb1b2pθ13qSb1b1pθ12q (116)

So we have that

´i Res
θ0“θ1

FΘ
b1b1b2pθ0 `

iπξ

2
, θ1 ´

iπξ

2
, θ2; ξq “ Γb2b1b1F

Θ
b2b2pθ12; ξq (117)

“ pΓb2b1b2q
2S22pθ12qF

Θ
b2b1b1pθ2, θ1 ´

iπξ

2
, θ1 `

iπξ

2
; ξq . (118)
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which follows exactly as in (99). This gives

FΘ
b2b2pθ12; ξq “ HΘ

22pξqQ
Θ
22px1, x2; ξq

Rpθ12; ξ, 1q2Rpθ12 ` iπξ; ξ, 1qRpθ12 ´ iπξ; ξ, 1q

px1 ` α2x2qpx2 ` α2x1q
, (119)

where

HΘ
22pξq “ ´

8πm2
1α

2 sinπξRp´iπξ; ξ, 1q2pΓb2b1b1q
2

Rpiπ; ξ, 1q2
, QΘ

22px1, x2; ξq “ σ2
1 ` 2 cosπξ σ2 , (120)

with σ1 “ x1 ` x2 and σ2 “ x1x2 .

C.4 Computation of FΘ
b4

pξq

By computing the residue
´i Res

θ“2πiξ
FΘ
b2b2pθ; ξq “ Γb4b2b2F

Θ
b4 pξq , (121)

which gives

FΘ
b4 pξq “ ´4πm2

1 sec
3πξ

2

ˆ

sin
πξ

2
` sin

5πξ

2

˙

pΓb2b1b1q
2Γb4b2b2

ˆ
Rp´3πiξ; ξ, 1qRp´2πiξ; ξ, 1q2Rp´πiξ; ξ, 1q3

Rpiπ; ξ, 1q2
. (122)

A plot of FΘ
b4
pξq as a function of ξ is presented in Fig. 5.
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Figure 5: The one-particle form factor FΘ
b4
pξq for m “ 1.

C.5 Computation of FΘ
b3b1

pθ; ξq

The last two-particle form factor that we can obtain starting with (109) is FΘ
b1b3
pθ; ξq, resulting

from the fusion process:

´i Res
θ1“θ0

FΘ
b2b1b1pθ1 `

iπξ

2
, θ0 ´ iπξ, θ2; ξq (123)
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FΘ
b3b1pθ12; ξq “ HΘ

31pξqQ
Θ
31px1, x2; ξq

Rpθ12; ξ, 1qRpθ12 ´ iπξ; ξ, 1qRpθ12 ` iπξ; ξ, 1q

px1 ` α2x2qpx2 ` α2x1q
, (124)

with

HΘ
31pξq “ ´

8πm2
1α

2 sin πξ
2 sin 3πξ

2

sin 2πξ

Rp´iπξ; ξ, 1q2Rp´2πiξ; ξ, 1qΓb2b1b1Γb3b2b1
Rpiπ; ξ, 1q2

, (125)

QΘ
31px1, x2; ξq “ px1 ` x2 ` 2x2 cosπξqpx1 ` x2 ` 2x1 cosπξq . (126)

D Dynamical Poles of the Soliton-Antisoliton Form Factors

In this appendix we first show that the two representations G˘pθ; ξ, nq of the minimal soliton-
antisoliton form factor are indeed proportional to each other when the proper CDD-factors
accounting for the bound state poles are introduced. We also demonstrate the precise working
of the dynamical pole axiom (33).

Considering the first point, as G˘pθ; ξ, nq “ ϕ˘pθ; ξ, nqΦpθ; ξ, nq, it is enough to show that

ϕ`pθ; ξ, nq “ constˆ

r 1
2ξ
s

ź

k“1

cos πn ´ cos πp1´2kξq
n

cosh θ
n ´ cos πp1´2kξq

n

ϕ´pθ; ξ, nq . (127)

From Eqs. (37) and (38) we have that

ϕ`pθ; ξ, nq

ϕ´pθ; ξ, nq
“

r 1
2ξ
s

ź

k“1

Γ

ˆ

´ iθ
π
´2kξ`1

2n

˙

Γ

ˆ

1`
iθ
π
´2kξ`1

2n

˙

Γ

ˆ

´ iθ
π
`2kξ´1

2n

˙

Γ

ˆ

1`
iθ
π
`2kξ´1

2n

˙

Γ
´

n´2kξ`1
2n

¯2
Γ
´

n`2kξ´1
2n

¯2 ,

“

r 1
2ξ
s

ź

k“1

cos
´

πp1´2kξq
n

¯

` 1

cos
´

πp1´2kξq
n

¯

´ cosh θ
n

. (128)

hence

ϕ`pθ; ξ, nq

ϕ´pθ; ξ, nq
“

r 1
2ξ
s

ź

k“1

cos
´

πp1´2kξq
n

¯

` 1

cos
´

π´2πkξ
n

¯

´ cosh θ
n

, (129)

that is (127) holds.
Let us now turn to the issue of the dynamical pole axiom (33) and write down some identities

involving the ratios of the minimal form factors Rpθ; ξ, nq and G˘pθ;xi, nq. Restricting ourselves
first to the regime where the second breather is already present 1

2 ě ξ, we can evaluate the residue
in Fss̄pθ; ξ, nq corresponding to the second breather as

´iRes
θ“0

Fss̄pθ ` iπp1´ 2ξq; ξ, nq “ ´xT y sin
π

n
csc

πp1´ 2ξq

n

G´piπp1´ 2ξq; ξnq

G´piπ; ξnq
. (130)
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This function is compared to

Γb2ss̄Fb2pξ, nq “

a

sinp2πξq csc2 πξ
2

2

sin π
n

?
2 tanπξRp´iπξ; ξ, nq

´

2n sinh
´

iπp1´ξq
2n

¯

sinh
´

iπpξ`1q
2n

¯¯

Rpiπ; ξ, nq

“ csc2 πξ

2

xT y sin π
n sinπξRp´iπξ; ξ, nq

2n sinh iπp1´ξq
2n sinh iπpξ`1q

2n Rpiπ; ξ, nq
.

(131)

This means, that the following identity holds

n tan πξ
2 sin πp1´ξq

2n sin πp1`ξq
2n

sin πp1´2ξq
n

“
Rp´iπξ; ξ, nqG´piπ; ξ, nq

Rpiπ; ξ, nqG´piπp1´ 2ξq; ξ, nq
(132)

for any integer n ě 1 and 1
2 ě ξ, which can be easily verified numerically.

Concerning now the regime when the breather b4 is present, that is, 1
4 ě ξ ą 0, we write

´iRes
θ“0

Fss̄pθ`iπp1´4ξq; ξ, nq “ xT y
2 sin π

n sin
´

πξ
n

¯

sin
´

πp1´ξq
n

¯

csc
´

πp1´4ξq
n

¯

cos
´

πp1´4ξq
n

¯

´ cos
´

πp1´2ξq
n

¯

G´piπp1´ 4ξq; ξ, nq

G´piπ; ξ, nq

(133)
which is expected to be equal to

Γb4ss̄Fb4pξ, nq “xT yΓ
b4
ss̄Γ

b4
b3b1

Γb3b2b1Γb2b1b1
sin π

n sin π
2np1` 2 cos πξn q cos πp1´ξq2n

2n2 sin2 πp1`ξq
2n sin πp1´2ξq

2n sin πp1´3ξq
2n

ˆ
Rp´3πiξ; ξ, nqRp´2πiξ; ξ, nq2Rp´iπξ; ξ, nq3

Rpiπ; ξ, nq2

“xT y
2 sin π

2n sin π
n cot2 πξ

2 cos πp1´ξq2n

´

1` 2 cos πξn

¯

n2 sin2 πp1`ξq
2n sin πp1´2ξq

2n sin πp1´3ξq
2n

ˆ
Rp´3πiξ; ξ, nqRp´2πiξ; ξ, nq2Rp´iπξ; ξ, nq3

Rpiπ; ξ, nq2
.

(134)

This means, that the following identity holds

n2 tan2 πξ
2 sin πξ

n sin2 πp1`ξq
2n sin πp1´3ξq

2n sin πp1´2ξq
2n sin πp1´ξq

n

sin π
2n

´

1` 2 cos πξn

¯´

cos πp1´4ξq
n ´ cos πp1´2ξq

n

¯

sin πp1´4ξq
n cos πp1´ξq2n

“
Rp´3πiξ; ξ, nqRp´2πiξ; ξ, nq2Rp´iπξ; ξ, nq3G´piπ; ξnq

Rpiπ; ξ, nq2G´piπp1´ 4ξq; ξnq
,

(135)

for any integer n ě 1 and 1
4 ě ξ, which can be verified numerically. Indeed, these two identities

clearly hold when checked numerically, an analytic proof, however, has not yet been achieved.
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E ∆ Sum Rule Evaluation

In this Appendix we summarize our numerical results for the sum (72) and several distinct
values of ξ and n. As discussed in Section 6 we include one- and two-particle contributions. In
the regime 1 ě ξ ą 1

3 all the non-vanishing two- and one-particle contributions are taken into
account as described in equations (73)-(74).

As we can see in Tables 1 and 2, the contribution from the b1b1 and b2b2 terms is very small
compared to those of ss̄ and b2. Assuming this tendency to hold for the contributions b3b3, b2b4
and b4b4, in the interaction regimes 1

3 ě ξ ą 1
5 we have neglected the corresponding terms and

still found good saturation of the rule (see Table 3).

n ∆T ss̄ b1b1 b2b2 b2
ř

2 0.0625 0.0526252 0.0026597 0.0000016 0.0050643 0.0603508

3 0.11111 0.0930742 0.0049999 0.0000030 0.0085415 0.1066187

4 0.15625 0.1306165 0.0071536 0.0000044 0.0117942 0.1495687

5 0.2 0.1670215 0.0092264 0.0000057 0.0149699 0.1912235

(a) ξ “ 0.48734

n ∆T ss̄ b1b1 b2b2 b2
ř

2 0.0625 0.0398813 0.0034363 0.0000204 0.0168508 0.0601887

3 0.11111 0.0712682 0.0064312 0.0000387 0.0285433 0.1062814

4 0.15625 0.1003544 0.0091893 0.0000555 0.0394690 0.1490682

5 0.2 0.1285211 0.0118452 0.0000717 0.0501288 0.1905668

(b) ξ “ 0.45133

n ∆T ss̄ b1b1 b2b2 b2
ř

2 0.0625 0.0230446 0.0054990 0.0000904 0.0313208 0.0599548

3 0.11111 0.0419772 0.0102062 0.0001745 0.0534327 0.1057905

4 0.15625 0.0594778 0.0145467 0.0002518 0.0740622 0.1483385

5 0.2 0.0763850 0.0187308 0.0003260 0.0941674 0.1896092

(c) ξ “ 0.38231

n ∆T ss̄ b1b1 b2b2 b2
ř

2 0.0625 0.0112334 0.0093408 0.0001931 0.0390784 0.0598457

3 0.11111 0.0209003 0.0171719 0.0003779 0.0671062 0.1055563

4 0.15625 0.0298140 0.0244039 0.0005479 0.0932251 0.1479910

5 0.2 0.0384043 0.0313831 0.0007111 0.1186557 0.1891542

(d) ξ “ 0.30091

Table 2: One- and two-particle contributions to the ∆ sum rule for four values of ξ P p1
3 ,

1
2). It

is interesting to observe how the breather contributions become larger as ξ is decreased, sending
the theory deeper into the attractive regime. For instance, in Table (d) the ss̄ contribution
accounts only for 20% of the value of ∆T .
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n ∆T ss̄ b1b1 b2b2 b1b3 b2 b4
ř

2 0.0625 0.0031453 0.0154695 0.0002683 0.0004363 0.0395954 0.0015294 0.060444

3 0.11111 0.0060694 0.0281816 0.0005309 0.0008206 0.0683090 0.0027951 0.106707

4 0.15625 0.0087587 0.0399377 0.0007727 0.0011717 0.0950521 0.0039606 0.149653

5 0.2 0.0113407 0.0512960 0.0010044 0.0015091 0.1210735 0.0050857 0.191309

Table 3: One- and two-particle contributions to the ∆ sum rule for ξ “ 0.22108. For this value
of the coupling the first four breathers can be formed and approximately half the value of ∆T
comes from breather contributions. Even after neglecting the terms b3b3, b2b4 and b4b4 the rule
is 95% saturated.
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[18] M. Lencsés and G. Takács, Breather boundary form factors in sine-Gordon theory, Nucl.
Phys. B852(3), 615–633 (2011).
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after a quench in Ising field theory: a branch point twist field approach, JHEP 2019(12)
(2019).

33



[44] O. A. Castro-Alvaredo, M. Lencsés, I. M. Szécsényi and J. Viti, Entanglement Oscillations
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