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1 Introduction

The quantum relativistic sine-Gordon model is a paradigmatic example of an integrable quan-
tum field theory (IQFT) that is amenable to solution by the bootstrap programme. It provides
the simplest example of a theory that is interacting and has a non-diagonal S-matrix, famously
obtained in [1]. This means that the theory allows for backscattering or, in a different language,
the S-matrix is a non-trivial solution of the Yang-Baxter equation. The theory has a rich particle
spectrum containing two fundamental particles known as the soliton (s) and the antisoliton (3)
and a tower of breathers (b) which can be interpreted both as soliton-antisoliton bound states
and as bound states of lighter breathers. The number and masses of these breathers depend
on the model’s coupling constant. Although the theory is non-diagonal in the standard scatter-
ing matrix sense, the breather sector is diagonal and this simplifies form factor computations
considerably. In addition, in a certain coupling constant regime, the sine-Gordon model can be
seen as the continuum limit of another paradigmatic integrable theory, namely the spin—% XX7Z
quantum spin chain.

In the context of the bootstrap programme for IQFTs, the matrix elements of local operators
(e.g. form factors) of the sine-Gordon model have been extensively studied by many authors
employing many different techniques. Some of the earliest results are due to F.A. Smirnov [2,3],
while a long series of papers by the Berlin group employed integral representations and nested
Bethe ansatz as solution techniques [4-8]. A different approach known as free field representation
was employed in [9,10] and the fermionic structure of the model was exploited in [11,12]. Of
particular interest to us is the work [10] which focused on breather form factors and used the
fusion technique in order to obtain form factors of heavier breathers from those of the lightest one.
There has also been intense study and a large body of applications of sine-Gordon form factors in
various other contexts such as the case of finite temperature one-point functions [13,14], quantum
quenches [15-17] and boundary field theory [18] and, in particular, in finite volume [19-21] where
once again fusion techniques can be employed.

Finally, it is important to note that many studies of the breather form factors (particularly
those where fusion is used) exploit the relationship between the sine-Gordon and sinh-Gordon
theories. At Lagrangian level the two theories are identical up to the complexification of the cou-
pling constant. In addition, the two-particle S-matrix of the first (lightest) breather is mapped
to the two-particle scattering matrix of the sinh-Gordon particle under the same transforma-
tion. This implies that the form factors of the first breather (and by fusion, also those of higher
breathers) can be obtained from those of the sinh-Gordon field by simply changing the coupling
constant dependence. Then the sinh-Gordon form factors computed in various papers [22, 23]
become the starting point of computations in the sine-Gordon model.

The works we have referred to so far are concerned with “standard” local fields of the sine-
Gordon theory, such as the sine-Gordon field ¢, its powers and, especially, exponential fields
of the form €’ which are of particular interest as they are related to the trace of the stress-
energy tensor. In the present work our main aim is to generalize these results to branch point
twist fields, starting with the branch point twist field and associated form factor programme
introduced in [24], and then continuing (in part II) with the symmetry resolved branch point
twist field recently introduced in [25,26]. Twist field form factors of the sine-Gordon model where
first studied in [27] but only in the so-called repulsive regime where no breathers are present. In



this paper we extend those results to the situation when several breathers are present focussing
on all non-vanishing one- and two-particle form factors. In the breather sector we employ the
results of [24] and [28] where the two- and four-particle form factors of the sinh-Gordon field
where obtained, respectively. These will constitute our starting point when employing the fusion
procedure to obtain lower particle form factors of higher breathers.

The paper is organized as follows: In Section 2 we review some general results for the
sine-Gordon model, notably its S-matrix and particle spectrum. In Section 3 we review the
definition of the branch point twist field and the main equations satisfied by its form factors.
In Section 4 we diagonalize the two-particle form factor equations to compute the two-particle
solition-antisoliton form factor. We put special emphasis on the discussion of its dynamical pole
structure. In Section 5 we use fusion to compute one- and two-particle breather form factors,
including up to four breathers and carry out some simple consistency checks of our solutions. In
Section 6 we evaluate the A sum rule in several coupling regimes, finding very good agreement
with the exact value of the branch point twist field conformal dimension for all coupling choices.
In Section 7 we discuss one application of our results to the study of the entanglement dynamics
following a mass quench. We conclude in Section 8. The more technical details of our work are
presented in various Appendices. Appendix A summarizes some useful formulae for the minimal
form factors. Appendices B and C give details of the computation of breather form factors for
the branch point twist field and the trace of the stress-energy tensor, respectively. In both cases
we use the fusion procedure. In Appendix D we analyse in more detail the dynamical pole axiom
for the soliton-antisolition form factors. In Appendix E we present some additional numerical
results concerning our evaluation of the the A sum rule.

2 Main Features of the Model

The sine-Gordon model is characterized by the following euclidean action

A= [ st | =009 - @)~ 2ucosta)| 1)

where g and p are coupling constants and ¢ is a scalar field. As anticipated in the introduction,
this action becomes that of another theory, know as sinh-Gordon model under the mapping
g — ig with g € R. For generic values of the coupling, the theory has a rich particle spectrum
consisting of a soliton (s) and anti-solition (5) of opposite U(1) charge and a family of bound
states known as breathers. Defining the new coupling
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we have that the masses of the breathers take the form

k
mk:2msin%€ for k=1,2,...,0(&), (3)

where m is the mass of the soliton and the anti-soliton and ¢(§) = % —1if % € Z and [%]
otherwise, where [-] denotes the integer part. The mass m is related to the couplings p and g



through the mass-coupling relation
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first found in [29]. There are various interesting regimes:

e For £ > 1 there are no bound states and the full spectrum consist only of the solition and
the antisoliton. This is called the repulsive regime. In this regime, the theory is equivalent
to the massive Thirring model, a perturbation of the massive Dirac theory that preserves
the U(1) symmetry. We studied the entanglement entropy in this particular regime in [27].

e The point £ = 1 is special as can be seen more precisely from the S-matrices given below.
From (5) we have that S%5(0) = S55(0) = —1 and also S%5(f) = —1 and S55(0) = 0. At

this point the theory becomes a Dirac free fermion.

e For ¢ < 1 the model is in the attractive regime were bound states (breathers) are formed
with the masses (3).

e In particular, whenever % = n, with n € Z" the non-diagonal scattering amplitude S3%(6) =
0 is vanishing and the theory becomes diagonal. In fact, it reduces to the D,,-minimal Toda
field theory.

The S-matrices are [1]
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where S25(0) and S25(0) are the off-diagonal amplitudes. Useful linear combinations are

sinh =0 7%
3

S+(0) = S5(0) + S5(0)  S-(0) = SE(0) — S5:(0). (7)
The remaining S-matrices are diagonal and can be expressed in terms of the standard blocks:

B tanh 1 (0 + imz)
B tanh 3 (6 — irz)

[*]e

(8)



For instance
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An important property of these S-matrices is that they have poles in the physical sheet which
can be attributed to the presence of a bound state. The residue of such poles plays a role in
later sections and so we report some of these results here. In general, we define

—i Res Sq(0) := (T'y)?, (11)

where imu, is the pole of the S-matrix corresponding to the formation of a bound state c¢ in
the scattering process a + b+ c. This equation provides a definition of the “pole strength” I'¢,.
For the S-matrices above we have for instance,
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which can be obtained using the infinite product representation (5). The above quantities are
associated with the pole strengths of S%3(0) and S3%(6) for the first few breathers and the
position of the poles are at inék with k = 1,...,4(§) as defined in (3) and assuming we are in
the attractive regime. For the breather S-matrices, we have

2(:05775—&-1 2cosmE + 1
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I}y, = /2tanmg, Tpl, = 2tan2m8, Tyl =0 Scosme =1 ot (19)
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and I‘Z‘ll by = I‘Zng / Fb1b2 Note that, as mentioned earlier, Sy, s, (6) coincides with the sinh-Gordon
S-matrix under the replacement B = —2¢, where B is the sinh-Gordon coupling constant [30,31].
More generally, the following integral formulae hold

© dt 2 cosh T sinh T sin (¢0)
S (0) = (=1)Fexp | —i / — 2 2 . 14
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for k < p and, finally
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A good summary of all the S-matrices, and of how to derive Gamma-function representations
from integral representations can be found for instance in [4].

3 Branch Point Twist Fields in a Nutshell

It has been known for some time that several entanglement measures, including the Rényi
entropies, can be expressed in terms of correlation functions of a special class of local fields T
which have been termed branch point twist fields in [24]. Branch point twist fields are, on the one
hand, twist fields in the broader sense, that is, fields associated with an internal symmetry of the
theory under consideration [24], and on the other hand related to branch points of multi-sheeted
Riemann surfaces [32]. They are twist fields associated to the cyclic permutation symmetry of
a model composed of n copies or “replicas” of a given theory, characterized by the exchange
relations

T(2)0i(y) = Opi(y)T(z) for y'>al, (17)
= O0;(y)T(z) for z'>yl, (18)

where O;(y) is any local field on copy number i, and with O, +1(y) = O1(y).

The idea of quantum fields associated with branch points of Riemann surfaces in the context
of entanglement appeared first in [32]. The general picture of branch point twist fields as
symmetry fields associated to cyclic permutation symmetry of the n Riemann surface’s sheets,
as per (17), was given in [24], where they were studied in massive IQFT. This description is
however independent of integrability, and it was first used in massive QFT outside of integrability
in [33].

Cyclic permutation symmetry is not naturally present in most IQFTs, but can be “manu-
factured” by considering a replica model, composed of n copies of the original QFT (e.g. the
sine-Gordon model). The connection to replica theories and multi-sheeted Riemann surfaces
arises from the explicit formulae for entanglement measures, which generally depend on the
quantity Tra(p’4) where pa is the reduced density matrix associated to a particular region A
of the system. It is possible to show that the quantity Tr4(p';) is proportional to a correlation
function of branch point twist fields involving as many twist field insertions as boundary points
between the region A and the rest of the system. We will see an application of these ideas in
Section 7 where we discuss the application of our results to the computation of the entanglement
dynamics.

3.1 Form Factors and Form Factor Equations

Starting with the exchange relations (17), in IQFT one can formulate twist field form factor
equations which generalize the standard form factor programme for local fields [3,34]. These



equations were first given in [24] for diagonal theories and then in [27] for non-diagonal ones.
They have been generalized to symmetry resolved branch point twist fields in [25,26]. We
will not review all these equations and their properties here but only those relations that are
repeateadly used in the current paper, in particular the equations for one- and two-particle form
factors. Let us start by defining

Fal---ak (917 e 70’6; f, n) = n<0|7-(0)|017 e 70k>a1---ak;n7 (19)

to be a k-particle form factor, that is, a matrix element of the field between the vacuum state
and a k-particle state. Here ,,{0| represents the vacuum state and |01, - , 0k )q,...,:n represents
an in-state of k particles with rapidities 61, ..., 6; and quantum numbers a ... ay, both in the
replica model. These quantum numbers generally contain two indices, one for the particle type
and one for the copy number. However, in our computations we will generally restrict ourselves
to a single copy and will therefore drop the copy index. This is because form factors of other
copies can be obtained from these solutions by repeated use of the form factor equations.

The branch point twist field is a neutral field in relation to the sine-Gordon U (1)-symmetry
that exchanges soliton and anti-soliton. This implies the vanishing of any twist-field form factors
involving a different number of solitons and anti-solitons. At the one and two-particle level this
means that

Fss(67£an):F§§(9a£7n):FEbk(eaéan):Fsbk(eagan):Fs(£>n):F§(£7n):07 v kEZ+

(20)
Here, we have used relativistic invariance and spinlessness of the twist field, which imply that
the two-particle form factor depends on a single rapidity variable (the rapidity difference of the
particles) and the one-particle form factor is rapidity independent. In addition, because of Zs
symmetry we also have

Fb%bzp,l(& &n)=F,, ,(&n)=0. Y k.peZ™. (21)

Under these considerations, Watson’s equations for non-vanishing two-particle form factors and
)
particles in the same copy can be summarized as

FSE(H; §7 n) = S+(0)Fs§(_9; é? 7’L) = Fs§(27m.n - 0; 67 TL), (22)
Fyp,;(0:€,n) Sbib; (0) Foyp; (=05 €,m) = Fyp, (2min — 0;€,n) for i—je2Z, (23)

whereas the kinematic residue equations are

Re.SFSE(e; 3 n) = _Z.G];EG,SFbibi (07 3 n) = <T> vV ieN. (24)

—1
O=im

where (T is the vacuum expectation value of the branch point twist field in the ground state
of the replica theory. Finally, the bound state residue equations are

—1 RGSC FSE(Q; 67 n) = Pngc(é-v Tl), (25)

O=imuly

where c is any particle that is formed as a bound state of s + 5 for rapidity difference 6 = imu;.
In the breather sector we will use the bound state residue equation extensively and repeatedly



to obtain lower particle form factors of heavier breathers in a process known as “fusion”. For
this reason it is convenient to write the more general equation

. . s biti
725%8Fbibja1...ak (9 + m, 90 — i, 01 e aek;v ga n) = Fbig—jj Fbi+ja1...ak (07 91 et 79k‘7 57 ’I’L) ) (26)
=vo

where ay,...,a; are any particle combination for which the form factor is non-vanishing and
u+a = u;;” where 6 = iru;!” is the pole of the scattering matrix Sy, (#) corresponding to the
(0) and Sbinj (0).

formation of breather ;. Similarly, u and @ are related to the poles of Spp, , ;

4 Soliton-Antisoliton Form Factors

In the following we summarise the necessary formulas for the two-particle soliton-antisoliton form
factors of the branch point twist field. Although these quantities were already derived in [27],
the formulas were strictly speaking only justified in the repulsive regime of the sine-Gordon
model. As we show below they are, nevertheless, valid in the attractive regime as well once a
proper analytic continuation in the parameter £ is considered. Let us first discuss the minimal
form factor of these objects, which we denote by G(6;&,n). This is the “minimal solution” to
using Eq. (22) which can be constructed in the manner shown in [24], which itself generalizes
a standard method in the context of the form factor programme (see e.g. [35]). This method
takes as starting point the S-matrix involved in the middle identity (S5 (6) in the present case)
of (22) and assumes that it admits a representation of the type

S(6) = exp [ /0 B %g(t) sinh ?9] , (27)

(0

for some function g(¢). If such a representation exists, then a minimal solution the equation (22)

f(ﬁ)—./\fexp[/oooitsiig)ntsinz (“2" <1+Zf)>] . (28)

where N is a normalization constant. To obtain the minimal form factor G(6;&,n) of interest,
we therefore need to write S in the form (27). This is straightforward since

is given by

sinhg sinh%7r
S10) =\ ——7 t 57 | 55:(0) :==s(0)55(9), (29)
sinh ”rg smh%
with ‘ 0
sin 5
s(0) = —. (30)
sin "5

The function S:%(0) already has an exponential representation (5) and one can easily write a
similar representation for the function s(0) as well

0 — o [_2 /Ooo dt sinh ((€ — 1) ¢) sinh ff] | (31)

t sinh &t



An important remark is that the integral (5) is convergent for any 0 < £ < 1. Nevertheless (31) is
only convergent for % < & < 1. To be precise, for other values of £ an alternative representation
of the function above has to be used given by

> 32
t sinh &£t 2p - 2p + 2 (32)

26— exp [2 /oo dt sinh (((2p + 1)¢ — 1) ¢) sinh 2 o L ¢
0

with p € Z*. Thus, we have two different representations of the minimal form factor G(6;&,n)
depending on whether or not £ — % >0or— % < 0 which we denote by G4 (6; &, n), respectively.
Interestingly, the value £ = % is precisely the threshold for the formation of breathers and this
is no coincidence. From the symmetry arguments presented in subsection 3.1 we know that
the branch point twist field has vanishing one-particle form factors for odd-indexed breathers.
However, the presence of non-zero one-particle breather form factors for even indices is allowed
as we show later. This means that the two-particle soliton-antisoliton form factor of the branch-
point twist field must have bound state poles at imaginary rapidity values 6 = im(1 — 2k¢) for
k=1,..., [2%] Equivalently, we can formulate this statement as the dynamical pole axiom (25)
which we now specialise to even breather bound states

_q _(h- _ b2k
19:2,7}:({16_52":5)1758(07 éa n) Pss Fka (67 n) . (33)

Notice that each new representation of s(#) from (32), corresponds to a new breather with an
even index entering the spectrum of the theory.

Thus, when writing down the minimal part of Fs3z(6; &, n) we have two alternative represen-
tations: if we employ the S-matrix representation (32) together with (5) and apply the standard
machinery (28) to obtain the minimal form factor, the result possesses no breather bound state
poles. This feature, is generally what is meant by “minimal solution”. In this case the dynamical
pole equation (33) can only be satisfied by multiplying the minimal form factor with another
function which incorporates the required poles, similarly as for kinematic poles [24]. On the
other hand, if one uses the analytically continued solution (31) instead of (32), the dynamical
pole axiom (33) is automatically satisfied by the minimal form factor. In other words, this form
factor is no-longer “minimal” in the standard sense, but includes also poles in the physical sheet
corresponding to bound states.

Let us now continue our derivation for the minimal form factor, where the above discussed
features can be explicitly demonstrated. The minimal form factor can be written as

G(0;€,n) = p(0;€,n)2(0;€,n), (34)

where the function ®(6; £, n) follows from the integral representation of S5 (#) and can be written

as
@ q¢ sinh (1(¢ — 1)¢) sinh? (£ (n — £
(0;€,n) = —isinh +- oxp / d sinh (5(¢ ))Smt (s(e=5)] (35)
2n o t cosh%sinh%sinhnt




or, alternatively, as an infinite product of Gamma functions:
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2n 2n
(36)
However, from a numerical viewpoint, the most useful representation is mixed, combining both
a finite product of Gamma-fuctions and an integral part. This representation (86) is given
in Appendix A. This kind of mixed representation was first used in [22] and is very rapidly
convergent.
The function ¢(6;&,n) in (34) follows from either the representation (31) valid for £ > 35

| © gy s1nh((§ 1)) sinb® (4 (n — £))
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As before, we can also write a mixed representations (see Eq. (87) and (88)). Similar to the
discussion following (31)-(31), the minimal form factors

G+(0;€,n) = p1(0;§,n)P(0;¢,n), (39)

are two representations both satisfy Eq. ( 2), but whereas G (6; £, n) includes bound state poles
at 0 =im(1 —2k) for k=1,...,] 5] —(0;&,mn) does not. Instead the necessary bound state
poles can be introduced by sunply dividing G_(60;&,n) by standard CDD factors of the type

—

2]
H (coshz — cos W(l_n%g)) . (40)

A rigorous demonstration of this fact is presented in Appendix D. In this Appendix, the ful-
filment of (25) with our soliton and breather form factors is numerically checked as well, and



we also derive some identities involving fractions of the minimal soliton-antisoliton form factors
G+(0;¢,n) and breather form factor R(6;&,n) (derived in the next section) based on (25).

Now that we have found a minimal form factor that incorporates also the bound state poles,
we just need to introduce the kinematic pole that ensures our solution satisfies (24). This
kinematic pole can be introduced by multiplying with a function already presented in [24]. The
final formulae for particles on the same copy are

Ful0:6m) = DS G4 (0:€,n)

2n sinh % sinh % Gy (im &,n)

N 41
(T)sin® 2] cos 7+ — COs 7T(kn%g) G_(6:€,n) ()
pes j—1 cosh & — cos % G-{im&n)

2n sinh % sinh

We stress again that the two formulas are completely identical on the physical sheet and that
the first line is the same expression derived for the repulsive regime in [24].

5 Breather Form Factors

In this section we focus on the breather sector of the theory, where the S-matrices are diagonal.
The form factors

Fyp,(60;€,m), Fybiby, (01, 02,03,0456, 1), (42)

can be easily obtained from known results for the sinh-Gordon model under the replacement
B = —2¢. With this identification one can then take the form factor solutions found in [24, 28]
and employ fusion to construct the chains of form factors

Fy b6, (01,02,03,04:6,m) —  Fyypp, (01,062,036, n)
Lang Fbgbg (67 67 n) or Fb3b1 (97 57 n) = Fb4 (67 n) . (43)

and
Fb1b1 (9, 67 n) — FbQ (57 n) : (44)

A nice example of this approach was given in Appendix A of [36] for the form factors of expo-
nential fields.

5.1 Minimal Form Factor and Form Factors of b;

Although we take the sinh-Gordon solutions as starting point, it is still useful to say a few words
about the basic structure of those solutions, specially the minimal form factor. This function
provides a minimal solution to the equations (23) for i = j = 1 and two breathers in the same
copy. It can be easily adapted from the solutions presented in various papers [4,10,20-22] and the
techniques for the computation of minimal form factors introduced in [24]. The generalization

10



to branch point twist fields of the representation given in [10] takes the form

R(0:€,n) — exp _2 /OO @sinh%sinh 715(1;@ cosh (t (n + Zf))]
0

t cosh £ sinh(nt)

- ) , . ) (-1)*
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e}
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This function has the useful properties:

911111 R(0;¢,n) =1 and R(0;¢,n)=0. (46)

A similar discussion as presented in the previous section also applies to this solution. First,
although R(6; &, n) is constructed from the sinh-Gordon minimal form factor, it has very different
analytic properties. Indeed, once more R(6;&,n) is not minimal, in the strictest sense of having
no poles in the physical sheet. R(6;&,n) does have poles in the physical sheet, when the coupling
allows for the the first breather to form higher breather bound states. Therefore, the solution
(47) is valid for all values of the coupling &, with the function R(6;¢,n) introducing bound state
poles as needed. Second, the formula is once more only convergent for £ > % and this can be
numerically addressed by employing the mixed representation (89).
The full two-particle form factor is then given by

(TysinZ R(0;¢,n)
Fypp,(0;€,n) = : n - ) 47
bt (6:8,m) 2n sinh ”;;9 sinh ”;:9 R(im; &, n) (47)
The four-particle form factor can be read off from [28] and takes the form
R(0; — 0;;¢,n)
Foybybyn, (01,02,03,045§,n) = H(E,n)Q(x1, T2, T3, 745§, 1) . , (48)
1010101 1<g<4 (i —wxj)(xj — wx;)
with 6 2
4wP°sin” T 0; i
H . NG o i=en, =en. 49
(&m) =<7 T Yo (49)
and
Q(z1,2,x3,2436,n) = ou[oy + @1, n)o2(0f + ofou) + g2, n)or0305 + ¢3(€, n)oio}
a1(&,n)0504 + ¢5(&, n)o10304 + q6(£,m)07 ] - (50)

Here o; are the elementary symmetric polynomials on variables {x1,z9, 23,24} and the coef-
ficients ¢;(¢,n) where given in the Appendix of [28] (which unfortunately contains a typo).
Calling

c(a) := cos —. (51)
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they can be rewritten as

@(én) = o1)” 1(1+20(2))( (3) — (1 +2¢)),

@(&n) = —c(1)7(e(26 + 1) +4e(1) +¢(3)),

q3(&,m) 2c(2(1 +¢)) + 2¢(28) + 2¢(2) + 3,

qa(§;m) = 2(3c(26) +3¢(2(1 +€)) + c(2(2 +€)) + c(2(1 = §)) + c(2(1 + 2¢))

+3¢(2) —c(4) + 1),
g5(&,n) = —2(6+6¢c(2) 4+ 4c(4) +¢(6) +c(2(2 —&)) + 5e(28) + c(4€) + 5e(2(1 + €))
+ce(4(1+8) +2¢(2(2+ &) +c(2(3+E)) +2¢(2(1 = &)) + c(2(1 + 25))) ,
g6(&E,n) = 8¢(2)%(3 4 3¢(2) — c(4) + 3¢(26) + 3¢(2(1 + €)) + c¢(4(1 + &) + ¢(2(2 + €))
+c(2(1 =€) + c(2(1 +29)), (52)

5.2 Fusion Procedure

In this section we present the results of the fusion procedure as described schematically in (43).
The simplest form factor to be obtained from the bootstrap approach outlined before is Fy, (£, n).
The breather by is a bound state of two b breathers corresponding to the simple pole of Sp,s,(6)
at @ = iw&. The bound state residue equation simply tells us that

—t Res Fblbl(e 3 ) b blFb2(§7 )’ (53)

We also know that the minimal form factor R(6;¢,n) satisfies the equation

R(07£7n> = Sb1b1 (G)R(_gvéan) ) (54)

and so, at the pole we have that

Putting all factors together, this gives the formula

(T)sinZy/2tanmé  R(—iw&; €, n)

F =
ba(8m) = 2n sinh m(l £) sinh M(HQ R(im; €, n) 7

(56)

For n — 1 the form factor vanishes as expected (since the twist field becomes the identity if the
replica number is 1). However the limit

lim Fy,(&,n)  m/tanm§ R(—iw&;¢€,1)
n>1 1l—n ﬂcosz%é R(im; €,1) 7

(57)

is non-zero. This limit plays a role in computations of the von Neumann entropy.
Note that the breather bs is only present for £ < % Fig. 1 shows the function (56) for several
choices of £ and n.
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Figure 1: Left: The one-particle form factor Fy,(£,n) as a function of n for £ = 0.4 (pink),
3 (blue), 0.2 (green), 0.1 (red), 0.05 (brown) and 0.005 (black). Right: The one-particle form
factor Fy,(€,n) as a function of £ for n = 2 (red), 5 (blue), 12 (green), 50 (magenta).

5.2.1 Higher Breather Form Factors

Let us now consider a more involved fusion-based computation, namely that giving the form
factor Fp,p,p, (01, 02,03;&,n) from the four-particle form factor (48). The key equation in this
case is

i€

i€ E
9 791

—ieR%stlblblbl(HJr ,02,03;6,n) = blblFb2b1b1(91;027937§’ n), (58)
=t

Considering the formula (48) we see once more that the pole will originate from of the R-factors
in the product, giving the contribution (55). More precisely, we obtain a solution of the form

Foybiby (01,02,03;€,n) = H211(€,n)Qo11(w1, 72, 73; €, n)
R(023: 6 m)R (012 + 55 € n)R(013 + 555 €, ) R(O12 — 5556, m) R(01s — 5*:€,m)
(19 — wz3) (23 — wre) (11 — T2w/B) (T2 — 21w/ B) (21 — 3WA/B) (23 — TIWV/B)

(59)

i€

where = e~ » and Q211(x1, 22, x3;§,n) is obtained from evaluating Q(l‘l,@_%,l‘lﬁé,l’g,xg)
which simplifies with part of the denominator of (48) giving

Q211(z1, 22, 23;8,n) = 02 [(05 + 6707 + 61)c(1) + 20267 ¢(€)e(€ — 5)
—20161 (02 + 6%)c(€ + 2)c(26 — 1)
+20967 (e(1)e(2(€ + 2)) — c(§)e(3¢ + 1))
+2(0f — 02)67¢(£)(¢(36 = 1) — (83— 9))] , (60)

and o1 = x9 + T3,09 = xox3 and 61 = x1. As for the constant, we obtain

2w3/8 sin 3, 2n sin ﬂ'rgfl)l (—Z7T§, 5’ n) _ 4“‘)36 sin %sz (57 n)
n?sin (§+1) sin ”(g 1) R(im; &, n)2 nR(im; §,n)
n n

Hyi(&,n) =<T) (61)
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Having now seen two applications of the fusion procedure it is easy to proceed for other form
factors. We present more details of those computations in Appendix B. Here we just summarize
the main formulae:

R(612;&,n)R(012 + im&; §,n)R(012 — im&; €, n)

F f12;6,n) = H31(&,n r1,x2;€,M . (62
bsby (0125 €,m) = H31(€,n)Q31 (21, 72; € )(x1 1208 (@ — 21B) (1100 — 2 (a0r — 21) (62)
with Hs1(&,n) and Qs1(x1,22;&,n) given in (93), (92), respectively.

R(612;€,n)*R(b1a + in&; €, n)R(612 — in&; €, n)
Fyop,(012;€,n) = Hoo(&,n x1,2;€,n , (63
boby (0125 €, 1) 22(&,n)Qa2(x1, 22;€, 1) (21 — ourg) (2 — 0y (&1 — Biry) (2 — afy) (63)
with Hag(§,n) and Qoa(x1,xe; &, n) given by (104) and (102) and, finally
S (T ™ m(1— b b b
Fy (6n) - <T>smﬁsm%(1+2cos f)cos 7(2nE)Fb§b1Fb;b1bebl

b 2n2 sin? W(é%) sin ”(12725) sin ”(12735)

_ g 9 ic. 2p( i g 3
 R(=3mi; £,m) R(~2mit; €, n)* R(~iE; £,n) o)

R(im; &, n)? ’

which, as we see in Appendix B can be obtained from either fusing b3 and by or by with itself,
giving identical results. Before ending this section, it is worth noting that Watson’s equations
and the bound state residue equation for form factors can be repeatedly used to obtain the form
factors of breather by starting with a form factor involving k breathers of type b; in a more
systematic manner. This technique is described for instance in equation (A.3) of Appendix A
in [37]. This method would allow us for instance to reduce (48) to (64) by simultaneously fusing
all particles. The result is the same as presented here.

5.3 Some Consistency Checks

Apart from the A sum rule that we will discuss later, there are a few properties that the
form factors must satisfy and which help us make sure these formulae are correct. One of the
strongest tests is the clustering decomposition property which states that in the absence of
internal symmetries, form factors factorize into products of lower particle number form factors if
a subset of the rapidities is sent to infinity. More precisely, for the form factors above we expect
that

_ sz(gvn)2

GIL% Fb1b3(9;§?n) = 07 Ghiglo szbz(g;‘fan) - Ta (65)

and

i EF , F 0 ;E,m
thoo Fb2b1b1 (01,92793;6’,’1) — b2(£ ) blbl( 23 5 )
1—)

<7—> 3 o IHiQIE)waghbl(el?eQ)gig;g’n) =0.
(66)

These identities can be easily checked thanks to the first property in (46). The first property
in (65) follows from observing that for #; — oo the denominator of the form factor (62) scales
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with 2] whereas the numerator (that is, the function Q31 (w1, z2, r2;&,n)) scales as 2. A similar
argument applies to the second equality in (66). The second identity in (65) follows from

9}@@@22@1,562;5, n) ~ 2wy/wpe(1)zf, (67)

and

(912a£7 ) (912 + Zﬂ-g 57 ) (012 - ZT(&) gvn) 1

lim ~ 68
010 (21 — wrg)(z2 — wr1) (21 — WPE2) (22 — wWPT1)  w?PBa} (68)
together with the formula (104). The first identity in (66) follows from
Jm Qa11(21, w2, 23;€,m) ~ c(1)zizaws, (69)
1—>¢

lim R(023;€,n)R(012 + 55, n)R(013 + 55 €,n)R(012 — 556, n)R(013 — 56, n)
h1—0 (19 — wrsg)(rs — wra) (1 — Taw/B) (22 — T1WA/B) (21 — T3WA/B) (T3 — TIWA/B)
R(023;&,m)

wQBx‘ll(xg — wrg)(r3 — wra)

(70)

Comparing with (47) and (56) we find that the clustering property is exactly reproduced. We
may also check that the solution Fy,y, (6; &, n) satisfies the kinematic residue equation (24) which
indeed it does. This can be shown by employing the non-trivial identity

(148 i TE=D)

2n sin 2n (71)

m029) (e

wE
R(—iné; €,n)*R(im(1 — €); €&, m)R(im(1 + €);6,n) = 20 2m

2wt sin X 5, Sin

sin

which can be established with the help of the I'-function representation given in Appendix A.

6 Consistency Checks by A Sum Rule

The A sum rule [38] is one of the most useful and common methods for testing form factor
solutions. It gives a relationship between the conformal dimension of a local field 7 and a
certain integral involving the two point function ,,{0|7(0)O(r)|0), where © is the trace of the
stress-energy tensor and |0), is again the vacuum state in the replica theory. In its integrated
form given for instance in [39] and after generalizing to branch point twist fields, the rule can
be expressed as follows:

dby .. dak ai.. ak(ela--'70k§§7 )Fg ak(91,---79k;§)*
= 2
AT 2<7‘> Z Z / kl(2m) 2 , (12)

k=1a1..ax (Z’;zl my, cosh Hp)

Cc

where A7 = 7(n — %) is the conformal dimension of the branch point twist field [24, 32, 40]
and we have now added a superindex to the form factors to indicate the quantum field they
correspond to. The second sum is over all possible choices of particle types a, with masses m,,.
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As usual with this type of expansion, convergence of the sum is expected to be quick, and
the main contributions come from the one- and two-particle form factors. Hence, if we can show
such near saturation we can be confident that our form factors solutions are correct.

Let A%{(g)) be the conformal dimension of the branch point twist field as given by (72) in
the regime where /() breathers are present. Although the exact value of A is independent
of £ the number and contribution of the terms in the sum changes substantially depending on
the coupling. In what follows we present numerical results for the sum above for ¢(§) = 1,2,3
and 4. For this we need first to obtain the one- and two-particle breather form factors of the
stress-energy tensor in the sine-Gordon model. This can be done in a similar fashion as for the
branch point twist fields, namely starting from the sinh-Gordon solutions presented in [22] and
carrying out the fusion procedure. The results are presented in appendix E.

|

| Ar 55 bibs AP ]
0.0625 | 0.0602025 | 0.0008771 | 0.0610796
0.11111 | 0.1064464 | 0.0016783 | 0.1081246
0.15625 | 0.1493874 | 0.0024134 | 0.1518008
0.2 0.1910316 | 0.0031194 | 0.1941510

| Ar | ss by | AP
0.0625 | 0.0618871 | 0.0000835 | 0.0619705
0.11111 | 0.1098190 | 0.0001636 | 0.1099826
0.15625 | 0.1543269 | 0.0002368 | 0.1545637
0.2 0.1974738 | 0.0003068 | 0.1977806

o w| oS
o w| oS

Table 1: The contributions to the sum (73) from the solition-antisoliton term (s5) and the
breather-breather term (b1by) for £ = 0.62734 (left) and ¢ = 0.82734 (right). The first column
shows the exact values of A7 and the last column the sum of s5 and b1b; contributions. As
expected, the main contribution comes from the ss term. This contribution gets larger as we
approach the threshold value £ = 1, while the breather contribution is reduced.

Let us consider the regimes when there are one, two, three or four breathers present we have
that the expansion above can be approximated as follows:

e For £ > 1 we are in the repulsive regime where no breathers are present. The main
contribution to the A sum rule comes from the soliton-antisoliton form factor and was
computed in [27].

e For % < € < 1 we have a single breather b present and the main contributions are

AD o n /OO de4sin2%5FSE(@;&,n)Fs(?(@;f)*+Fszl(9;fan)Fb?bl(H;é)*
T 32m2m2(T) | _o 4 sin? %ﬁ cosh?

(73)

The sum for two values of £ is presented in Table 1.

e For % <E€< % we have two breathers b1, by present and the main contributions are

nE] (R n /w i P (06 FG, (0:€)*
8rm2sin? w&(T)  32m°>mXT) |_ 4sin? 7¢ cosh? §

Agg) ~ Agp — (74)

Numerical values of the sum (74) and of individual contributions to it are presented in
Table 2 of Appendix E.
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e For % <EéE< % we have three breathers by, bo, b3 present and the main contributions are

F,,st (6;€,n) Fyy, (0;6)*

32m m2<7d> / 4 sin? 3755 co&,h2 g

/ / df1dbs l;71—b3( 0276’ ) b1b3(01 92;5)* (5)
647r2m2<T> (sin gcos.h&l—i—sm = £ cosh 65)2

3 o A®
AP~ AP

e Finally, for % <€< i we have four breathers b1, bo, b3, by present and the main contribu-
tions are

nFl (¢, n)F2(&)* / Fly, (0:€, ) Fy (6;6)*
8mm?2sin? 2m&(T) 32772m2<T> 4sin? 27¢ cosh? §

/ / df,dbs b2b4(01 O2; €, n) Fp)y (01 — 623 €)*
 64rm m2<T> 1 (sin € cosh 01 + sin 27€ cosh 65)?

@ o AG

(76)

Table 3 gives an example of the evaluation of the sum (76), albeit without including the byby,
bsbs and bsby contributions, which we have not evaluated in this paper. Even so, the sum rule
is approximately 95% saturated.

In conclusion, our numerical evaluation of the A sum rule in various regions of the attractive
regime shows near saturation upon inclusion of all relevant one-particle and two-particle form
factors and therefore provides strong backing for our analytical results. It is interesting to
note that the deeper we go into the attractive regime (i.e. the smaller £ is) the more significant
breather contributions are, so that for instance, in Table 2(d) the soliton-antisoliton contribution
represents only about 20% of the total value of the dimension.

7 Application: Entanglement Oscillations after a Mass Quench

An interesting application of our results is to the study of the entanglement dynamics of the
sine-Gordon model after a global mass quench [41,42]. That is, we want to study the time-
dependence of a certain measure of entanglement when the mass scale m is abruptly changed at
time zero. Then, if the original hamiltonian of the system was H(m) and m was the pre-quench
soliton mass, at times ¢t > 0 the system will time-evolve with a new Hamiltonian H (72), where
m is the post-quench soliton mass. In such a situation, the reduced density matrix may be
formally written as:

pa = Trp(e 1M |0) 0] M), (77)

where A and B are two complementary regions and |0) is the pre-quench ground state. In terms
of p4 the Rényi and von Neumann entropies are defined in the usual form:

log(Trp™

Su(t) = 2BIPL) gy i S0, (78)
1—n n—1

and if A is a semi-infinite region, these expressions are equivalent to:

log (52A7n<0\7'(0, £)[0)n))

1—n

Sn (t) =

: (79)
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and its n — 1 limit, where ¢ is a non-universal UV cut-off which can be eliminated by considering
instead the quantities

A8y (t) == Sn(t) — Sp(0). (80)

and |0),, is the pre-quench ground state in the replica theory. Note that S, (0) is a function of
the vacuum expectation value ,{0|7(0,0)|0), which we have abbreviated as (7 ) in our form
factor formulae.

With these definitions, the situation we want to consider here is entirely analogous to the
studies performed in [43,44]. In fact, the present model has two key common features with the
minimal Eg Toda field theory studied in [44]. They are the presence of non-vanishing one-particle
form factors and a mass spectrum where all masses are proportional to a fundamental scale m
(the mass of the soliton/antisoliton). Carrying out the quench perturbation theory proposed
n [45], non-vanishing one-particle form factors inevitably lead to entanglement oscillations at
first order in perturbation theory. As observed in [43,46] the dynamics of entanglement is closely
tied to the dynamics of the one-point function of the order parameter. Indeed, oscillations of the
one-point function of the order parameter in the sine-Gordon model, following a mass quench
where found in [47] employing perturbation theory.

The formulae involved are almost identical to those presented in [44], specially in the sup-
plementary material. We must just highlight that the field associated with the mass quench in
this case is the perturbing field in the sine-Gordon theory, namely the field ¥ = 2 cos g where
g is the coupling we first encountered in the action (1). This field is, as usual, proportional
to the trace of the stress-energy tensor, hence its form factors are identical to those of @ up
to a proportionality constant (essentially, we need to replace (©) = 27rm? with (¥)). Let us
consider a perturbation where the original coupling p in the action (1) is changed by a small
amount &, that is p — 46, with 2 « 1. Then, the O(d,) contribution to the Rényi entropies
may be expressed as a series in form factors of 7 and W, where the leading contributions to the
increment of the Rényi entropies, come from one- and two-particle form factors. After various
simplifications, the series takes the form

1 6, 2A T
1—-np | 2—2Ag

(7
AS,(t) = +nCy Z TFka &) FL (&,n)cos(ropimt)  (81)
k=1 2

do Re [[ Y (26; 5)]*]3187;(297 £, n)e—%mtcoshe]
+2nC\p/ 5
—00 2 2 cosh” 0
o /°° a6 "€ Re | [, (20O FT,, (205€, m)e2mmteosto
v

—» o = 2rk cosh? 0

e [0S 1
n — .
Y o izp Tk cosh 8(ry cosh 6 + 1y, cosh )

xRe | [Fily, (0 = O)] FT, (6 — ) trneohemeoshd) | 4| 1 0(3),
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where

f := —sinh! <Tk sinh 9> , (82)
Tp
re = 2k are the scaled post-quench breather masses. The “prime” symbol in the last sum
m

indicates the additional restriction that only terms where k and p are either both even or both

odd will be non-vanishing. The “hatted” form factors are scaled versions of the usual form factors

where the expectation values of the associated fields have been factored out. This dependency

can then be absolved into the ratio of couplings 6,/p and the constant Cy. The conformal
g

dimension Ay = ¢ = e and the constant

Ay _2Ag 1
Coy = — where (¥) = Agp2-22v and m = Ku?>2Av | (83)

12
These are the standard scaling laws for vacuum expectation values and the mass-coupling rela-
tion. A relationship between the constant Ay and x can be read off from the paper [48] where
the expectation values of exponential fields in the sine-Gordon model were obtained. From this
formula it follows that
2g°

1
2
2T (%)

It is important to note that this formula is only convergent for g% < %, which excludes the
repulsive regime [48]. The mass-coupling relation was given earlier in (4). This allows us to fix
the ratio above to

(W) =2

“ dt sinh?(2¢%t) 9 _o
— —2g%e | . (84
exp/g t [2sinh(g2t) sinh t cosh((1 — ¢?)t) 7e ] (84)

P(92)P<2—1292)2 . p/OO dt { sinh2(292t)
X
)2 0

v 2T(1 — g2)I'( g 't | 2sinh(g2t) sinh  cosh((1 — g2)t)

p —292e2t] . (85)
2—2g2

Despite the messy nature of the formula (81) (a very similar formula can be written for the
von Neumann entropy) the main features of entanglement are rather clear: for small quenches,
there will be undamped oscillations whenever any one-particle form factors are non-vanishing,
confirming the general ideas observed in [44,45]. In addition, there will be additional oscillatory
terms coming from higher particle form factors which will be suppressed by a power of ¢ that
depends on the leading behaviour of the form factors near zero rapidity (this can be analysed
further by using a saddle-point approximation). This means that the dynamics of entanglement
following a mass quench is rather different in the regime % > ¢ (undamped oscillations with at
least two breathers present) and for for £ < % (damped oscillations with at most one breather
present).

We demonstrate these qualitative differences in the entanglement evolution by evaluating
(81) numerically for various values of n and two particular values of . In Figure 2 AS,(t)
is displayed for n = 2,3,4,5 and for £ = 0.810361 and £ = 0.420712. Clearly, above the
second breather threshold (£ = 0.810361) no undamped oscillations can be seen, which are, very
clearly present when the second breather joins the spectrum (§ = 0.420712). Note that although
AS,(0) = 0 by the definition (80), it is not exactly zero numerically (although it is rather small).
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This is because Sy, (t) is evaluated at first order in perturbation theory and therefore its value
at zero is only an approximation of the exact analytic value S, (0) that is subtracted in (80).

-0.095} 1 —~0.075F
g g
T -0.100p T -0.080f
2 2
3 -0.105} S
= ~ -0.085f
-0.110+F 4 \/\/\/\-/\/\
N —— -0.090
-0.115 L L L L L L
0 5 10 15 0 5 10 15
mt mt
(a) € = 0.810361 (b) & = 0.420712

-1
Figure 2: The time evolution of the rescaled Rényi entropy difference <%“) AS,, after a mass

quench in the sine-Gordon model with interaction parameter £ = 0.810361 (a) and £ = 0.420712
(b). Time is measured in units of the inverse soliton mass m and the blue, yellow, green, and
red curves correspond to Rényi entropies with n = 2, 3,4 and 5, respectively.

Note that these results are only expected to hold for small quenches and times ¢t < u~!, as
explained in [45]. In addition, we know that for large times the leading feature of entanglement
(in any regime) is linear growth [41,42,49]. As observed in other studies, this feature is not
recovered using first-order perturbation theory as it is a second order effect [43,44]. In addition,
in some cases, like for Fg Toda field theory, linear growth is very slow so that it only becomes
apparent for large times in numerical simulations [44]. The same phenomenology is also observed
for the von Neumann entropy for the same reasons.

It is worth considering whether or not these behaviours will persist for larger times and
quenches. In this regard, arguments have been put forward as to why the undamped oscillations
found at first order should be damped when including higher order terms [16]. At the same time,
we know of at least one theory, Fs Toda field theory, where this eventual damping is not observed
numerically even for large quenches and times [44]. This suggests that this phenomenology still
needs to be better understood. Similar behaviours have been observed in [16,17,47] for the
expectation value of the field ¥ and in [15] for two-point functions of the field .

8 Conclusion

In this paper we have carried out an in-depth study of the form factors of the branch point
twist field in the sine-Gordon model in the attractive regime. We have considered up to four
breathers in the spectrum and focused on the one- and two-particle form factors. Our work
extends results for the repulsive regime that were presented in [27].

Although computations are generally tedious, great simplification comes from the presence
of U(1) symmetry in the soliton-antisoliton sector and Zg symmetry in the breather sector. The
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latter imply the vanishing of a large number of form factors so that only form factors containing
the same number of solitons and antisolitons as well as an even number of odd breathers are
non-vanishing. The two-particle form factors of the soliton-antisoliton sector can be computed
by diagonalizing the form factor equations (as the theory is non-diagonal) and incorporating the
correct structure of bound state and kinematic poles, as discussed in great detail in Section 4 and
Appendix D. For the breather sector the combination of the fusion mechanism with the analytic
continuation from sinh-Gordon, provide an effective way of constructing the form factors of
heavier breathers from those of lighter ones leading to the results of Secion 5 and Appendices B
and C.

Our form factors can now be employed to compute correlation functions of branch point twist
fields, hence a number of entanglement measures. In this paper we have highlighted just one such
application, namely to the study of the entanglement dynamics following a mass quench in the
sine-Gordon model. As observed in a similar study [44] we find that at least for small quenches,
undamped oscillations of frequencies proportional to the even breather masses are present and
constitute the leading behaviour of Rényi and von Neumann entropies. This is analogous to
results found in [16,17,47] for the expectation value of the field ¥ and more generally in [15] for
two-point functions of the field .

As anticipated in the introduction, our immediate goal now is to extend these results to
symmetry resolved twist fields [25,26].
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A Minimal Form Factors Mixed Representations

As mentioned in Sections 4 and 5 the most useful representation for the minimal form factors is
neither exponential nor based entirely on Gamma-function products, but a mixture of the two.
This idea was employed first in [22] and can be implemented in a similar way for any minimal
form factor of the type described in this paper. The function (36) can be written as

v | T (wf r <n+ij+p+1+k£+n) r (nif+p+1+k§+n) (-vF

2] 2n 2n 2n
®(0;¢,n) = —isinh2— 5 T e oD oD
n - - +n+ké+1 n+ 2 +p+(k+1)E+n —n—2+p+(k+1)E+n
I ey () g

< exp [ /Oo dt sinh (5(1 — &)t) (e‘g(NH)t + e~ (EFDWN+E _ e_(NH)t) sinh? (£ (n — .9))]
X — — .
0

t cosh % sinh % sinh nt
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Whereas the functions ¢4 (6;&,n) can be written as

2 0 0
+2pe+1 — 4 +2pf+2{—1 2n+2 +2pE+2¢—1
Nr(n 2]?@ )F< 2n >P< on

:6n) =]

2 0 i0
_ n+2 26—1 —;+2p§+1 2n+?+2p£+1
p=0 ( + sz 3 ) r < i > r ( o ) (87)
© gt e~ 26N+t ginp (€ =1)1) sinh2 (% (n B .i))
X exp | —2 — - - i
/0 t sinh(nt) sinh(&t)

This quantity is independent of the choice of N only when & > 1/2; but can be made convergent
for any positive real values of £ if the minimal allowed value for N is suitably chosen. In fact
(87) gives a physically motivated (as seen in Appendix D) and correct analytic continuation.
Alternatively, for ﬁ >¢> 21)% and pe Z*

N T <n+2(m—p)§+1>2 r <—f+2(m+p+1)g—1> r <2n+f+2(m+p+1)g_1>

2n 2n 2n
_:en) =]

- nt2(m+p+1)e—1\2 1 [ —L+2(m—p)e+1 20+ 12(m—p)é+1
m=0 F( . ;er K ) F( 2n - r 2n - (88)
© dt e 26N+t ginh (((2p + 1)€ — 1)t) sinh? (£ (n — £))
x exp | —2 — - - = .
/0 sinh(nt) sinh(&t)

Finally, the breather-breather minimal form factor also admits the representation

— 9 _eqk Y _¢+k — 11 1ek O 1+e+k (="
N | T|{—"5— )T {1+ 75 N'——,— |1+ *—5,—
R(6;¢,n) H

—L4k Otk — 9kl O k+1
F< o )I‘(l—i— o) )F( 3 >F<1+ 5 >

/oo dt e—%(3+4N) sinh % sinh % cosht (n + ﬁ)
x exp |4 — . T .
o t (1 + et) sinh(nt)

(89)

B Computation of Branch Point Twist Field Breather Form
Factors from Fusion
B.1 Computation of Fy, (6;&,n)
Using fusion again we have that
in€

_ig{eeSFbelbl (9 + 7 Zﬂf 927 §7 ) b blFb3b1 (0127 57 ) : (90)
=0

This gives a solution of the form

R(612;&,n)R(012 + im&; &, n)R(b12 — im&; €, n)

(1 — wowp) (z2 — x1wWP)(T1W — x2)(T2w — 21 3)

Fyp, (012;€,n) = H31(£,n)Q31(x1, 22; €, 1) - (91)
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The polynomial Q31 (1, z2; &, n) follows from the reduction of an(:nlﬂ_%,ajlﬁ, x9;&,n) and can
be written as

Q31(71,72;§,n) = 1172(WT1 — T2)(T2w — 713), (92)

if we also identify

2w sin £ sin T cos "0 (1 + 2cos T, T02,  R(—2mi€; €, n) R(—in&; €, n)?

n2 sin ﬂg:g) sin ”(12;25) R(im; €, n)?

H31(&n) = —(T)

.(93)

B.2 Computation of Fy,(¢,n) from fusion in Fy, (6;&,n)

Computing b
_1952%&31)1 (0:6,m) =Ty, Fy,(&,n), (94)

which gives

sin 7 sin - (1 + 2 cos %5) cos TU=8)bs ls b2

_ 2n, b3b1™ bab1” biby
Foul&om) = <T) o2 sin? 1+ gy 712 ) m(1-36)
2n 2n 2n
R(=3mi&; &, n)R(—2mi; €, n)* R(—in&; €, n)°
X . ’ (95)
R(im; &, n)?
which is plotted in Fig. 3 as a function of £ and n.
0.08; ‘
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UA [ -
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w i | W
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§

Figure 3: Left: The one-particle form factor Fy,(£,n) as a function of n for £ = 0.24 (red),
0.21 (blue), 0.2 (green), 0.1 (magenta) and 0.05 (brown). Right: The one-particle form factor
Fy,(&,n) as a function of £ for n = 2 (red), 5 (blue), 12 (green), 50 (magenta).

‘We have also that

lim Fpy(§n) _ 27 sin’ %gl‘iiblfiiblf'éibl 1 +2cosm¢
n—>1 1l—n sin 27¢ sin? ¢ 1 —2cosmé
R(=3migs &, ) R(=2mig; €, 1) R(—ing; €,1)° (96)
R(im; €, 1) ‘

Note that the breather b4 is only present for £ < i.
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B.3 Computation of Fy,;,(6;&,n)

Starting with the form factor Fy,p,p, (01, 602,02;&,n) we can now fuse the last two particles to
obtain Fp,p, (6;&,n). The bound state residue equation dictates that

. T
_ZQR%SFblblbg(e-i- 75,01 5 02,57 ) b1b1Fb2b2(01’927€7 ), (97)
=bt1

From the the form factor axioms we can write the following

5 5

—1 Res Fb1b1b2 (6o + 01 — ,09:8) = b by Fyp, (012;€) (98)
= —iRes Fiypp, (62,601 — 25, 0o + mg, €) b, (012 — g)Sblbg (B2 + £)5171171(901 + im€)
= (002, Foapi (02,01 — 25,00+ 706183, (012 — ) (02 + 20)
= (002, Stapa (012) Fr (02,01 — 25,01+ 7). (99)
where we used the bootstrap equation for the breather S-matrices
A lgg)sblbz (0 + ?) = Shyb, () - (100)

Then it immediately follows that the two-particle form factor has the following structure

(0127£a ) (912 + Zﬂf fa ) (012 - Z7T§, gan)

(z1 — wro) (T2 — wry) (21 — WBT2) (T2 — WPTY)

Fy,p, (012;€,n) = Hoo(§,n)Q22(x1, 22; €, 1)

(101)
with
Qaa(1, 225 €,n) = a1(€,n)0] + aa(€,n)o207 + az(€,n)os, (102)
ar(§,n) = wh(l+w),
ax(én) = —(BA+B)+wB(B+ % +4) +w 4B+ B +1) +wp?),
w3(€,n) = —14+w?(BP+582+264+333+26+1) + (W +wh)B(l+ 8+ 57
+w(38+268° + B +56%2+2+ 871 —wist, (103)
and
Vwp~t sin T sin o (Fzzl’bl) R(—im&; €,n)?  VwE,(En (104)

H22(€7n) = <T> 2 w(€—1)

4n? sin st W(gﬂ) R(im;§,n)? ~ 2fBcos 5:$T) .
n

B.4 Computation of F;, from Fusion in Fy,,,(0;¢,n)

Finally, we may consider the fusion of two by breathers to form b4. We employ the equation

—iRes Fhupy (0 + i€, 01 — im&;€,m) = Ty, Py, (€,1) (105)
=01
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This gives us

. . , i
(g n) < Sy S %(1 cos %) cos (Qn e ( bfln )2 b;bZ
Fy, (&, = [ 2co I
4 2n?si = 2?15) sin : 2?':16) sin” (1;‘5)”

R(—3mi&; €,n)R(—2mi&; €,n)? R(—in&; €,n)3
- R(im; €, n)? '

(106)

This is identical to the result we obtained from fusing Fj,p, (0; ¢, n) with the identification

by b b
Fbgblrbzbl =Ty, (107)

C Form Factors of the Stress-Energy Tensor from Fusion

The form factors of the trace of the stress-energy tensor in the sinh-Gordon model where first
computed in [22], where closed formulae for special values of the coupling were obtained. We
are interested in the case of generic coupling B for which solutions up to 14 particles where
given. These solutions will be the building blocks for our fusion procedure. We are particularly
interested in the one-particle form factors of the second and fourth breather which requires
the two- and four-particle form factors of the stress energy tensor in sinh-Gordon. Replacing
B = —2£ these form factors are given by

R(6;€,1)
[S) . _ 2 IS}
Fb1b1 (95 g) - 27rm1 R(Z’/T, 5’ 1) ) (108)
where my is the mass of the first breather as given in (3) and
8mm? sin & R(0;;;¢,1)
FP 01,05,03,04;6) = ————— 01090 > 109
with z; = e and o; the elementary symmetric polynomial on variables {z1, z2, z3, 24} .
C.1 Computation of F(§)
Applying the fusion procedure to the two-particle form factor we have that
. b
—i Res Fily, (0:€) = Ty, F(6), (110)
and we get simply
R(—im&; €1
Fg(f) = 27rm%\/2tan7r§M , (111)

R(im; €, 1)
which is plotted in Fig. 4.
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2.5
2.0

L 1.0

Figure 4: The one particle form factor Fbi)(f) for m = 1.

C.2 Computation of ngblbl(el, 0s,03; &)

In order to get higher breather form factors we must use the four-particle solution above. For
instance we may fuse the first two particles to obtain Fb?bl by (01,02,03;€). The relevant equation

is
5 in§

—i Res fglbﬂnbl(eo + 256, - 0 02,05;€) = T2, Fyopin, (01,02, 05:€). (112)

which after some simplifications gives

R(f23;¢,1
Fiooun, (01, 02, 03:6) = Hgll(f)@z‘en(%,wmx:i;ﬁ);z—i-xg)

XR(912 + T DR(012 — T2 6, 1) R(013 — T8 6, 1) R(613 + 5556, 1)
(xo + axy)(x1 + amwe)(x3 + oz:nl)(:nl + axs)

. (113)

with o := e¥ and
7r T T
Q?ll(xl,a}g,xg;f) = (01 + 2cos ;&1)(02 + 2cos ;Jlfn + &%)(6101 + 2cos ;0'2) ,  (114)

for 61 = x1, 01 = T2 + x3 and o9 = xox3. The normalization constant is
2.2 ;o mE e ba
8mmia”sin 5 R(—img; &, 1)1y2,
R(im; €, 1)?

H,(€) = - (115)

C.3 Computation of FbC;)bZ(Q; £)
We know from Watson’s equation that
F 0, (01,02, 055€) = Fyy (03, 02, 015)Sp,0, (023) Spyby (013) Spyp, (012) (116)

So we have that

é i€

— 0 02:8) = T2, iy (612 €) (117)
iﬂf m’é

—1 Res Fb1b1b2(90 + 91

= (T2, )‘522(912)f12bﬂn(92,91-— =38 (118)
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which follows exactly as in (99). This gives

R(912; 57 1)2R(912 + iﬂf; fa 1)R(012 - 7:7-(5; 57 1)
(x1 + a2x9)(z2 + a2x1)

F, (012;€) = Hip(§)Q% (w1, a3 €) . (119)

where

8rmia? sin m¢ R(—in&; €, 1)2(T}2, )2
R(im €, 1)2 ’

HS(&) = — Q5y(21,72;€) = 0F + 2cos oy,  (120)
with o1 = 21 + 29 and 09 = 2122 .

C.4 Computation of F(§)

By computing the residue

—Z'QEZ%F&M;&) = Toin, 5, (€) (121)
which gives
3m LT . om
Fb?(f) = *471'771% SGC% (Sln; + sin 25) (Flgibl)QFg;bQ
— s _ e 2 i 3
><R( 3mi&; €, 1) R( ?Wlf,f,l) R(—mi&; €, 1) ' (122)
R(im;&,1)2

A plot of F,S(é ) as a function of ¢ is presented in Fig. 5.
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Figure 5: The one-particle form factor Fb94(§) for m = 1.

C.5 Computation of F, (6;¢)

The last two-particle form factor that we can obtain starting with (109) is Fb?bg (0;€), resulting
from the fusion process:

—i Res Fb?blbl(el + @,Go—iﬂﬁ,ﬁg;ﬁ) (123)
61=00 2
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R(612; &, 1)R(612 — im&; £, 1) R(012 + im&; €, 1)

Fyy, (612;€) = H3 (§)Q5) (w1, 723 ) (21 + %) (g + 0%21) . (124)
e 87rm2a sin ”5 sin 3”5 R(—im&; €,1)2R(—2mi&; €,1)I%2, T

H3(6) = : sin 27r§ ~ R(im; &, 1)’2 EE— (125)

QS (w1, 295 €) = (1 + T2 + 229 coswE) (1 + T2 + 221 cos TE) . (126)

D Dynamical Poles of the Soliton-Antisoliton Form Factors

In this appendix we first show that the two representations G (6;&,n) of the minimal soliton-
antisoliton form factor are indeed proportional to each other when the proper CDD-factors
accounting for the bound state poles are introduced. We also demonstrate the precise working
of the dynamical pole axiom (33).

Considering the first point, as G4 (6;&,n) = ¢4 (0;&,n)®(0;&,n), it is enough to show that

w(1— 2k§)

cos E — COoS
e o (0:6m) (127)

sh9 0S

[2¢]
v+ (0;&,n) = const x H

From Egs. (37) and (38) we have that

q — ¥ _2ke+1 $—2k§+1 — 9 1okE—1 %mkg 1
o (B:Em) i (=) (1 Jr(=E)r (e )
p-(0;:¢,m) Pl r <n—221;5+1)2 r (n+2217€1§—1)2 ’
[5e]  cos (Ll*zkg)) +1
- = ' (128)
k=1 CO (%) — cosh%
hence
[3¢] m(1—2k¢) 1
0 57 COS oy =+
129
o_(0;€,n) H (129)

n—2mkE 0’
k=1 CO <T> — coshﬁ

that is (127) holds.

Let us now turn to the issue of the dynamical pole axiom (33) and write down some identities
involving the ratios of the minimal form factors R(0;&,n) and G4 (6; xi,n). Restricting ourselves
first to the regime where the second breather is already present % > ¢, we can evaluate the residue
in Fs3(6;&,n) corresponding to the second breather as

— %) G_(in(1 - 2);¢n)

—iResFys(6 + im(1 - 26);6,n) = —(T)sin % ese T - o) (130)
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This function is compared to

sin(27€) esc? & sin 7+/2 tan T R(—im¢; €, n)
2 <2n sinh (M> sinh (%)) R(im; &, n)
2 T (T)sin I sinm{ R(—im&; &, n)
2 2nsinh ”(1 5) sinh m(&l)R(m;ﬁ,n) '

T2 Fy, (&, n) =
(131)

= CSC

This means, that the following identity holds

uts

ntan =5 sin = (1 &) sin (;:;E) _ R(_Zﬂ-ga 55 n)G* (Zﬂ-a ga n)

i % " R(im; €,n)G_(im(1 — 2€);€,n)

for any integer n > 1 and > &, which can be easily verified numerically.
Concerning now the reglme when the breather b4 is present, that is, % > ¢ > 0, we write

2sin 7 sin (58) sin (") ese (59) 6 (in1ag)em)

(132)

_zlg{ngsg(e-Hﬂ'(l—llf);f,n) = <T> cos (ﬂ(1_4§)) — cos (7r(1—2§)) G_ (iﬂ'; f,n)
(133)
which is expected to be equal to

b, Sinpsing-(1+2cos L'S) cos %

b bapbs b
PasFo, (€ 1) =(TOV g, Loy, iy, 2 m(1+€) . m(1—2€) . m(1—3€)
2n 2n 2n

2n 2Sln sin X

R(—3mi&; &, n)R(—2mi&; €, n)* R(—in&; &, n)3
R(im; &, n)?

sin T T cot? ”5 cos TU=8) (1 + 2cos %é)

2n
m(1-2¢) m(1-3¢)

sin o sin n

R(—?)?TZ{,g, ) (_27”5’57 )QR(—mf;g,n)?’
R(im; &, n)?

sin

134
2sin — 2 ( )

=T 27 (1+s>

n?sin

This means, that the following identity holds

. . . 1—
n? tan? 7r2£ sin 5 sin? (2+§) sin sin sin ¢ — §)

i % (1 9 o8 ?> (COS % ~ cos w(l;%)) sin 7r(17;4€) COS W(;;f) (135)

R(=37i&; €, n) R(=2mi€; €, n)*R(—in&; €, n)>G_(im; £n)
N R(im; €,n)2G_(im (1 — 4€); &n) ’

for any integer n > 1 and > £, which can be verified numerically. Indeed, these two identities
clearly hold when checked numerically, an analytic proof, however, has not yet been achieved.

m(1-3¢) m(1-2¢)
2n 2n
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E A Sum Rule Evaluation

In this Appendix we summarize our numerical results for the sum (72) and several distinct
values of & and n. As discussed in Section 6 we include one- and two-particle contributions. In
the regime 1 > ¢ > % all the non-vanishing two- and one-particle contributions are taken into
account as described in equations (73)-(74).

As we can see in Tables 1 and 2, the contribution from the b1b; and boby terms is very small
compared to those of s5 and by. Assuming this tendency to hold for the contributions bsbs, boby
and bygby, in the interaction regimes % =€ > % we have neglected the corresponding terms and

still found good saturation of the rule (see Table 3).

n [ Ar ss | bk [ bk | b [ Y]
2 | 0.0625 | 0.0526252 | 0.0026597 | 0.0000016 | 0.0050643 | 0.0603508
3 | 011111 | 0.0930742 | 0.0049999 | 0.0000030 | 0.0085415 | 0.1066187
4 | 015625 | 0.1306165 | 0.0071536 | 0.0000044 | 0.0117942 | 0.1495687
5 | 0.2 0.1670215 | 0.0092264 | 0.0000057 | 0.0149699 | 0.1912235

(a) € = 0.48734

n [ Ar 55 | bkt [ baby o |y ]
2 [ 0.0625 | 0.0398813 | 0.0034363 | 0.0000204 | 0.0168508 | 0.0601887
3 | 0.11111 | 0.0712682 | 0.0064312 | 0.0000387 | 0.0285433 | 0.1062814
4 ] 015625 | 0.1003544 | 0.0091893 | 0.0000555 | 0.0394690 | 0.1490682
5 |02 0.1285211 | 0.0118452 | 0.0000717 | 0.0501288 | 0.1905668

(b) & = 0.45133

[n [Ar 55 | bibi | bab b ||
2 [ 0.0625 | 0.0230446 | 0.0054990 | 0.0000904 | 0.0313208 | 0.0599548
3 | 0.11111 | 0.0419772 | 0.0102062 | 0.0001745 | 0.0534327 | 0.1057905
4 ] 015625 | 0.0594778 | 0.0145467 | 0.0002518 | 0.0740622 | 0.1483385
5 | 0.2 0.0763850 | 0.0187308 | 0.0003260 | 0.0941674 | 0.1896092

(c) € = 0.38231

n [ Ar 55 | babi [ babo o |y ]
2 [ 0.0625 | 0.0112334 | 0.0093408 | 0.0001931 | 0.0390784 | 0.0598457
3 | 0.11111 | 0.0209003 | 0.0171719 | 0.0003779 | 0.0671062 | 0.1055563
4 [ 015625 | 0.0208140 | 0.0244039 | 0.0005479 | 0.0932251 | 0.1479910
5 |02 0.0384043 | 0.0313831 | 0.0007111 | 0.1186557 | 0.1891542

(d) € = 0.30091
Table 2: One- and two-particle contributions to the A sum rule for four values of £ € (é, 3). It
is interesting to observe how the breather contributions become larger as £ is decreased, sending
the theory deeper into the attractive regime. For instance, in Table (d) the ss contribution
accounts only for 20% of the value of Ar.
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‘ A1 s8S b1by baba b1bs3 b2 by ‘ Z ‘

0.0625 0.0031453 | 0.0154695 | 0.0002683 | 0.0004363 | 0.0395954 | 0.0015294 | 0.060444

0.11111 | 0.0060694 | 0.0281816 | 0.0005309 | 0.0008206 | 0.0683090 | 0.0027951 | 0.106707

0.15625 | 0.0087587 | 0.0399377 | 0.0007727 | 0.0011717 | 0.0950521 | 0.0039606 | 0.149653

o w| oS

0.2 0.0113407 | 0.0512960 | 0.0010044 | 0.0015091 | 0.1210735 | 0.0050857 | 0.191309

Table 3: One- and two-particle contributions to the A sum rule for £ = 0.22108. For this value
of the coupling the first four breathers can be formed and approximately half the value of Ay
comes from breather contributions. Even after neglecting the terms b3bs, bobs and bybs the rule
is 95% saturated.
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