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Abstract

Patterns of symmetry breaking induced by potentials at the boundary of free

O(N)-models in d = 3 − ε dimensions are studied. We show that the sponta-

neous symmetry breaking in these theories leads to a boundary RG �ow ending

with N − 1 Neumann modes in the IR. The possibility of �uctuation-induced

symmetry breaking is examined and we derive a general formula for comput-

ing one-loop e�ective potentials at the boundary. Using the ε-expansion we

test these ideas in an O(N)⊕O(N)-model with boundary interactions. We de-

termine the RG �ow diagram of this theory and �nd that it has an IR-stable

critical point satisfying conformal boundary conditions. The leading correction

to the e�ective potential is computed and we argue the existence of a phase

boundary separating the region �owing to the symmetric �xed point from the

region �owing to a symmetry-broken phase with a combination of Neumann

and Dirchlet boundary conditions.
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1 Introduction

Spontaneous breaking of global symmetries is one of the most universally used tools to
understand phase transitions in modern theoretical physics. In this paper we would like to
consider its application to systems described by scalar �eld theories existing on a manifold
with a boundary. A lot has already been understood in the condensed matter context [1],
where such systems describe polymer absorption by walls [2]. Other than the usual order-
disorder phase transition in the bulk (called the ordinary transition), there is a possibility
of an extraordinary phase transition at the boundary above the bulk critical temperature.
Field theoretically such systems are represented by an O(N)-model in d = 3 dimensions
with polynomial interactions in the bulk where the extraordinary phase transition is trig-
gered by a negative 'boundary mass' term. This representation makes them amenable to
study with the techniques of high-energy physics. In particular the machinery of bound-
ary conformal bootstrap [3] allows for high precision evaluation of correlation functions at
the Wilson-Fisher (WF) �xed point (f.p.) [4, 5], which was recently used in evaluation of
layer susceptibility at the extraordinary transition point [6, 7]. Alternatively a wealth of
information on these models can be obtained by coupling them to a curved background
and calculating the resulting partition function [8, 9].

In this work we would like to examine the case when the bulk couplings are turned
o� and instead we include interactions at the boundary. For d = 3 − ε this still leads to
a non-trivial RG �ow at the boundary with an interacting infrared (IR) f.p., which was
recently studied in [10] and [11]. Scalar models with boundary interactions were considered
long before in condensed matter literature [12]. In the context of polymer physics, tuning
the bulk couplings to zero means considering a rather non-realistic example with two-body
monomer interactions con�ned to the boundary.

In the realm of high energy physics there are nevertheless important examples of free
theories with boundary interactions. For d = 2 free bosons with boundary potentials
have been studied in the context of open strings [13, 14]. More recently there has been
a progress in constraining free scalar theories with boundaries and defects with d > 2 by
using conformal boostrap techniques [15,16].

Finally let us note that free models are often related to interacting ones via dualities
such as bosonisation in d = 2 or more re�ned dualities that have recently been discovered
in d = 3 [17, 18]. Thus it is possible that already by studying the models that are free
in the bulk we can learn something about the interacting theories and their boundary
deformations via the duality.

In this paper we would like to consider giving a vacuum expectation value (v.e.v.) to
a boundary �eld. This is not a new idea in itself, e.g. in the condensed matter context
(cf. [1]) this phenomenon gives rise to new kinds of phase transitions called the special
and the extraordinary. These transitions cannot be deduced from the knowledge of the
bulk phase diagram itself and are described by a set of independent boundary parameters
(couplings, v.e.v.'s, etc.). When the bulk is free there are no bulk parameters to tune so all
the non-trivial dynamics happens at the boundary either through edge degrees of freedom
or dynamical boundary conditions (b.c.'s). We would like to study the latter in the present
work and convince the reader that such a simple set-up can lead to rich physics similar to
the phase structure of the Ising model.

Let us start by introducing the class of models we want to work with. We will consider
a free O(N)-scalar with a boundary potential

S[φ] =

∫
R
d
+

ddx

(
(∂µφ)2

2
+ δ(x⊥)V (φ)

)
, d = 3− ε , (1)
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where Rd+ = {(x‖, x⊥) : x‖ ∈ R
d−1, x⊥ > 0}, we have suppressed the index notation for

φ ≡ φi with i running from 1 to N and used the Euclidean space conventions. The bulk
theory has an O(N)-symmetry

φ→ Rφ , R ∈ O(N) , (2)

and an additional shift symmetry
φ→ φ+ c . (3)

Here c is a constant vector.1 In the absence of boundary potential we can choose Neumann
b.c.'s, which will preserve both of these symmetries.

The boundary potential will break the bulk shift symmetry, but we will assume that
it preserves the O(N)-symmetry. We have only chosen O(N) for simplicity but all of the
following discussion can be generalized to other compact global symmetry groups. The
equations of motion (e.o.m.) together with the b.c.'s describing the system in (1) read

∂2φ = 0 , ∂⊥φ|x⊥=0 = V ′(φ)|x⊥=0 . (4)

If the potential has any non-trivial minima these equations admit a constant solution
φ = 〈φ〉 6= 0 satisfying

∂V

∂φi
(〈φ〉) = 0 . (5)

We will furthermore assume that the solution is a stable minimum with ∂2V
∂φi∂φj

≥ 0 (by

this we mean that the Hessian matrix has only non-negative eigenvalues). Now what are
the consequence of having such solution? The vacuum 〈φ〉 will break the global O(N)-
symmetry down to O(N−1). Had there been no boundary interaction this would obviously
not be the case since the new vacuum would be related to the trivial one by the shift
symmetry. We will now demonstrate that in the presence of a boundary the expansion
around 〈φ〉 leads to a distinct qualitative picture.

By running the usual textbook arguments leading to the Goldstone theorem we see
that the Hessian matrix ∂2V

∂φi∂φj
has exactly N − 1 vanishing eigenvalues corresponding to

the broken generators of O(N). We can choose the usual parametrisation to expand about
the minimum

φ = eη
kTk(〈φ〉+ σ) . (6)

Here T k, k ∈ {1, ..., N − 1} is the generator of the Lie algebra corresponding to
O(N)/O(N −1) and σ is a vector in the �avour space parallel to 〈φ〉 satisfying |σ| � |〈φ〉|.
If we insert (6) into the potential (1) we �nd that ηk is a free massless �eld and that σ has
a positive boundary mass and both cubic as well as quartic interactions2

S[η, σ] =

∫
R
d
+

ddx

[
(∂µη

k)2

2
+

(∂µσ)2

2
+ δ(x⊥)V (σ)

]
+ . . . ,

V (η, σ) =
m

2
σ2 +O(σ3) ,

(7)

where m > 0 corresponds to the nonzero eigenvalue of ∂2V
∂φi∂φj

. This mass term induces

a boundary RG �ow for σ into Dirichlet b.c. in the IR.3 The �elds ηk are similar to the

1For a compact scalar φ in three dimensions the symmetry can be interpreted as a topological U(1) that
acts on the corresponding magnetic monopoles eiφ. For bosonic strings on a worldsheet this symmetry
corresponds to space-time translations.

2Here we used that eη
kTk

∈ O(N)/O(N − 1) ⊂ O(N), which means that φ2 = (〈φ〉+ σ)2.
3By IR we mean large distances parallel to the boundary.
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usual Goldstone bosons in that they gain no boundary potential and therefore will retain
the Neumann b.c.'s in the IR. This gives us a clear picture of how the symmetry breaking
is realized in the IR: the �ow will leave us with N − 1 free Neumann scalars preserving
the O(N − 1)- and the shift-symmetry. The remaining �eld satis�es Dirichlet b.c. and
therefore its boundary propagator vanishes. This is similar to the tachyon condensation in
open string theory [14] with the preserved O(N−1)- and shift-symmetry being the rotations
and translations preserving the IR D-brane. Note that since the symmetry breaking only
a�ects the b.c.'s the e�ect gets weaker as we depart from the boundary. More concretely
by examining the propagators corresponding to (7) at large perpendicular distance4 (cf.
(63)) we �nd that both ηk and σ have the same asymptotics implying the preserved O(N)-
symmetry deep in the bulk as expected.

In a quantum theory the constant solution to (4) can only exist in the absence of
bulk couplings. Were there any bulk couplings the solution to the e.o.m. would acquire a
dependence on the normal coordinate and we would need to deal with the renormalisation
of φ in the near boundary limit.5 As a consequence the v.e.v.'s of bulk and boundary
�elds become unequal, which leads to so called extraordinary phase transitions (see [1] for
a comprehensive review of phase transitions with boundaries).

In the case of a free bulk that we consider here, the v.e.v. of a bulk �eld φ is completely
determined from the boundary potential V . This is in line with the fact that in the absence
of bulk interactions, φ does not renormalise at the boundary (i.e. limx⊥→0 φ = φ̂ is well
de�ned).6 Thus to understand the IR dynamics of such �elds theories we need to determine
the potential at the quantum level.

For a potential without non-zero local minima we have two possibilities. Either there
exists a boundary RG �ow into an IR f.p. satisfying conformal b.c.'s7 or new minima
appear through quantum corrections. The former scenario is analogous to second-order
phase transitions in statistical physics as it involves an IR f.p. with calculable critical expo-
nents (scaling dimensions of boundary operators). The latter corresponds to a �uctuation
induced �rst-order phase transition with the order parameter 〈φ〉. At the perturbative
level the quantum corrections to the classical potential come from the loops through the
Coleman-Weinberg (CW) mechanism [21].

Since the example we consider in this paper involves a boundary with low dimensionality
(≤ 2) we should comment on the Mermin-Wagner theorem [22] prohibiting spontaneous
symmetry breaking of continuous global symmetries in d ≤ 2. For bulk dimension d > 2
this is not an issue due to the boundary theory being non-local.8 The d = 2 case is
more subtle due to the IR divergences of the free scalar propagator screening the v.e.v.
and thus preventing the long range order. Nevertheless based on the discussion above we
still expect to see the emergence of Dirichlet scalar described under (7) at large boundary
distances. This is because the boundary primary operator corresponding to a Dirichlet
scalar is actually ∂⊥φ|x⊥=0 which has a well de�ned IR behaviour. Nevertheless it is not
clear to the authors whether one can still interpret this as a phase transition. We will
return to this point at the end of the explicit example in section 3.2.

4In appendix A we �nd a general expression for the spacetime and the momentum propagator in a
boundary quantum �eld theory (BQFT) with a mass term in both the bulk and on the boundary.

5By this we mean that the �eld enjoys the boundary operator expansion φ = x−∆+∆̂
⊥ φ̂+ . . . , where φ̂ is

a boundary operator of dimension ∆̂. As shown in [10], this expansion is actually equivalent to operator
renormalisation and φ̂ can be interpreted as renormalised �eld.

6See [10,11] and the earlier work [19] for a proof of this statement.
7The conformal b.c.'s of [20] imply vanishing of the normal-parallel components of the bulk energy-

momentum at the boundary. It was shown in [10] that for models of the kind (1) this is equivalent to
vanishing of the boundary β-functions.

8We would like to thank an anonymous referee for pointing this out.
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In section 2 we will show how to compute them at the one-loop level for theories
of type (1). We illustrate how these ideas can be implemented in a scalar theory with
O(N)⊕O(N)-symmetry with interactions con�ned to the boundary in section 3. Finally
in section 4, we discuss the broader picture and some future extensions of this work.

2 One loop e�ective boundary potentials

In the following we will assume the existence of a classical potential V (φ) at the boundary.
For simplicity we will consider a single scalar �eld in the bulk, and later generalize this
to O(N). We will expand the action (1) with φ = φcl + δφ about the classical minimum
background φcl satisfying the e.o.m. (4).9 The linear terms vanish by virtue of the e.o.m.
and we will only keep the quadratic part of the potential

Vquad =
M

2
(δφ)2 +O

(
δφ3
)
, M = V ′′(φ = φcl) > 0 . (8)

The bulk action for δφ will be the one of a free massless scalar. The one-loop e�ective po-
tential will therefore be obtained by computing the functional determinant of the operator

D = −∂2 , (9)

subject to the following b.c.
lim
x⊥→0

(∂⊥ −M)φ = 0 . (10)

In general a functional determinant of a di�erential operator D is computed using

detD = e−
1
2
tr logD , (11)

where the trace is evaluated in a suitable (complete) basis of functions {φn}. I.e. we have

tr logD =
∑
n

∫
R
d
+

ddxφ∗n logDφn . (12)

Without a boundary we typically take the complete set of eigenfunctions ofD. For example
in the case of D = −∂2 we take φn → φp = eipx and the sum over n turns into a momentum
space integral.

In our case we have to impose the b.c. (10) on the eigenfunctions. The corresponding
functional determinant will take the form

tr logD =

∫
Rd

ddp

(2π)d

∫
R
d
+

ddxφ̃∗p logDφ̃p , (13)

with the momentum eigenfunctions satisfying (10). More concretely they read

φ̃p(x) =
1√
2

(
eipx +

ip⊥ −M
ip⊥ +M

eip̃x
)
, (14)

where we de�ned a re�ected momentum p̃ = (p‖,−p⊥). By substituting these eigenfunc-
tions in (14) we get

tr logD =

∫
Rd

ddp

(2π)d

∫
R
d
+

ddx

(
1− i−M + ip⊥

p⊥ − iM
e−2ip⊥x⊥

)
log(p2) . (15)

9There is a factor of ~ = 1 in front of the quantum �uctuations δφ.
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Figure 1: Integration countour for M > |p‖| closed in the lower plane with a branch cut
between (−i|p‖|,+i|p‖|) and a simple pole at iM . In the case M < |p‖| we take the branch
cuts between in�nity and ±i|p‖| to move the pole away from them (this will not change
the resulting integral).

The �rst term inside the bracket in (15) corresponds to the usual (IR divergent) bulk
contribution. The second term is a new boundary contribution. We can evaluate it by �rst
calculating the integral over p⊥∫

R

dp⊥

(
−iM + ip⊥
p⊥ + iM

)
[log(|p‖|+ ip⊥) + log(|p‖| − ip⊥)]e−2ip⊥x⊥ . (16)

This integral is evaluated by using the contour shown on �gure 1. We close the contour
in the lower half-plane so that the integral along the semicircle at in�nity vanishes. This
will also imply that the residue at iM will not contribute. The integral (16) will therefore
reduce to integrating the segment around the branch point at −i|p‖| which evaluates to

2π

∫ |p‖|
0

du
u−M
u+M

e−2x⊥u . (17)

This expression is still to be integrated over x⊥ > 0, which will turn (17) into

2π
1

2

∫ |p‖|
0

du
u−M

u(u+M)
. (18)

The integral in the above expression can now be evaluated by standard methods∫ |p‖|
0

du
u−M

u(u+M)
= − log

( |p‖|
µIR

)
+ 2 log

( |p‖|+M

M

)
, (19)

where µIR is an IR cuto� introduced to regulate the IR divergence in the above integral.10

Finally putting everything together we �nd the boundary contribution to the functional
determinant (15)

tr logD|∂M =

∫
Rd−1

d2x‖

∫
Rd−1

dd−1p‖

(2π)d−1

[
−1

2
log

( |p‖|
µIR

)
+ log

( |p‖|+M

M

)]
. (20)

10Physically this divergence arises from the in�nite volume limit (or more speci�cally it comes from the
x⊥ →∞ region of the original integral).
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The �rst term in (20) does not depend on M and therefore will not contribute to the
e�ective potential. So we are left with the second term. From the path integral we have

−1

2
tr logD = V 1-loop

e� + . . . . (21)

Here the dots stand for derivative corrections. Thus we �nd that the non-trivial contribu-
tion to the boundary e�ective potential at one-loop reads

−
∫
Rd−1

dd−1p‖

(2π)d−1
log

( |p‖|+M

M

)
. (22)

Note that the numerator of the logarithm in (22) leads to a non-analytic power divergence
Λd−1 logM . Such term does not appear in the usual bulk CW computation, but we can
choose a suitable subtraction scheme to remove it,11 so the relevant one-loop contribution
to the e�ective potential reads

V 1-loop
e� = −

∫
Rd−1

dd−1p‖

(2π)d−1
log
(
|p‖|+M

)
. (23)

For N > 1 this formula still holds withM promoted to a matrix covariant under the global
symmetry group. While the discussion so far has been focused on O(N), the argument
will hold for more general symmetry groups, where the explicit computation depends on
the form of M . We will therefore proceed to evaluate the remaining integral over (d− 1)-
dimensional momenta in the next section.12

3 O(Nφ)⊕O(Nχ) scalar model

3.1 The model

In this section we will consider an O(Nφ)⊕O(Nχ) scalar model similar to that in [24�26],
but with interactions happening at the boundary instead of in the bulk. The model will
be de�ned by the following action13

S[φ, χ] =

∫
R
d
+

ddx

(
(∂φ)2

2
+

(∂χ)2

2
+ δ(x⊥)V (φ2, χ2)

)
,

V (φ2, χ2) =
λ

8
(φ2)2 +

ξ

8
(χ2)2 +

g

4
φ2χ2 .

(24)

The scalar �elds φ ≡ φi, i ∈ {1, ..., Nφ} and χ ≡ χa, a ∈ {1, ..., Nχ} satisfy O(Nφ)- as
well as O(Nχ)-symmetry respectively. The potential in (24) breaks the O(Nφ +Nχ) bulk
symmetry down to O(Nφ)⊕O(Nχ). In general the potential can also include other relevant
operators such as boundary masses14 which we do not include as we do not want to have
any symmetry breaking at the classical level (for a more detailed treatment of boundary
masses we refer the interested reader to appendix A).

11More speci�cally this term will be set to zero by the CW renormalisation conditions (37) and addition
of a 'cosmological' constant counterterm similar to (38). Addition of such counterterm does not change
the form of the renormalised e�ective potential so we will not discuss it further.

12It should be noted that the relevant integral (23) was also computed in the condensed matter literature
[23] for a diagonal M in a di�erent context (contribution to the Casimir free energy in the presence of
Robin b.c.'s). The authors would like to thank H. W. Diehl for pointing this out.

13We consider scalar couplings, although in general they can be promoted to be tensorial [27].
14Other relevant operators involve the normal derivatives ∂⊥φ

2 and ∂⊥χ
2. However these are related to

φ2, χ2, φ4 and χ4 through the e.o.m.
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g

λ

GP

WFP

TCP

1st order

SP

2nd order

Figure 2: The RG �ow for the model (24) when Nφ = Nχ = 1. F.p.'s are marked by
dots, where the black dot is the fully repellent Gaussian f.p. (GP), the red dots (WFP and
TCP) de�ne a separatrix that separates regions corresponding to �rst- and second-order
phase transitions and the blue dot is a fully attractive f.p. (SP) that is stable in the IR.
The order parameter for the �rst order transition corresponds to 〈φ〉.

To simplify the computations we take Nφ = Nχ ≡ N and therefore also λ = ξ. This
simpli�es the classical potential down to

V (φ2, χ2) =
λ

8
(φ2)2 +

λ

8
(χ2)2 +

g

4
φ2χ2 =

λ

8

(
φ2 + χ2

)2
+
g − λ

4
φ2χ2 , (25)

where we have made the residual O(2N)-symmetry and the coupling that breaks it mani-
fest.15 In this case the theory also has an additional Z2 symmetry

φ←→ χ . (26)

From dimensional analysis we have the following engineering dimensions

∆φ = ∆χ =
d− 2

2
=

1− ε
2

, ∆λ = ∆ξ = ∆g = 3− d = ε . (27)

A detailed discussion of the renormalisation of such models has been presented in our
earlier work [10]. In appendix B we compute the β-functions for a model with generic λ, ξ
up to order two in the coupling constants. For ξ = λ we have the following β-functions

βλ = −ελ+
N + 8

4π
λ2 +

N

4π
g2 + ... , βg = −εg +

g2

π
+ 2

N + 2

4π
λg + ... . (28)

These β-functions have one Gaussian, and three WF f.p.'s de�ning a boundary RG �ow
chart depicted on �gure 2. The positions of these f.p.'s read

(g∗, λ∗) ∈
{

(0, 0),

(
0,

4πε

N + 8

)
,

(
2π(4−N)ε

N2 + 8
,

2πNε

N2 + 8

)
,

(
2πε

N + 4
,

2πε

N + 4

)}
. (29)

15This splitting of the terms in the potential is not unique. A more detailed analysis along the lines
of [27] would reveal that one should project the couplings on ineducable representations of O(2N).
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The �rst one is the fully repulsive Gaussian f.p. (GP), the second of these corresponds to
decoupled O(N)-models with a single coupling at a WF point (WFP) studied in [10, 11],
the third one (TCP) de�nes a stable solution only for N < 4, while the last f.p. (SP)
enjoys an emergent O(2N)-symmetry. As already mentioned, the fundamental �eld φ does
not acquire an anomalous dimension at these f.p.'s. On the other hand the composite
operators (eg. φ2, χ2 etc.) have to be renormalised due to divergences in the boundary
limit which leads to their anomalous dimensions in perturbation theory [10].

The �ow diagram in �gure 2 shares many features to the corresponding charts of the
Abelian-Higgs model or the bulk O(N)⊕O(N)-model (see for example [26]). In particular
the diamond region corresponds to the domain of attraction of the symmetric, IR stable
critical point. We would expect that the separatrix running from the Gaussian f.p. to
the third f.p. in (29) (which is similar to tri-critical f.p. in the language of statistical
physics) should determine the cross-over to a region with �uctuation-induced �rst order
phase transition. More speci�cally the RG �ow in this region should end up in an ordered
phase. In the next section we will argue that this is indeed the case.

3.2 Coleman-Weinberg mechanism

In this section we will follow the standard reasoning of Coleman and Weinberg [21] applied
within the context of this paper. We will expand around classical �eld values

φi = φicl + δφi ,
∣∣δφi∣∣� 1 ,

χa = χacl + δχa , |δχa| � 1 ,
(30)

and only keep up to quadratic terms

S = S[φcl, χcl] +

∫
R
d
+

ddx

(
(∂δφ)2

2
+

(∂δχ)2

2
+ δ(x⊥)δV (φ2

cl, δφ
2, χ2

cl, δχ
2)

)
. (31)

where the quadratic part of the potential can be written as a boundary mass term

δV = ΦImIJ
Φ ΦJ , (32)

with

mIJ
Φ =

(
mij
φ gφjclχ

b
cl

gχaclφ
k
cl mab

χ

)IJ
, (33)

mij
φ ≡ A

λ
gδ
ij + λφ̂iclφ̂

j
cl ,

mab
χ ≡ A

g
λδ
ab + λχ̂aclχ̂

b
cl ,

Axy =
xφ2

cl + yχ2
cl

2
.

(34)

Here we de�ned the �eld ΦI = δφj⊕δχa, I, J ∈ {1, ..., 2N}. The one-loop correction to the
path integral ZΦ can be calculated by substituting the above mass term into the formula
derived in section 2 and performing the relevant momentum integral (23). We leave the
details of this computation to appendix C. It yields the e�ective boundary potential

Ve�(φ2
cl, χ

2
cl) =

(
λ

8
+B1

)
φ4
cl +

(g
4

+B2

)
φ2
clχ

2
cl +

(
λ

8
+B1

)
χ4
cl+

+ Ξ1(φ2
cl, χ

2
cl) + Ξ2(φ2

cl, χ
2
cl) +A1φ

2
cl +A2χ

2
cl ,

(35)

9
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where Ξ1, Ξ2 can be found in appendix C, and the constants Ai, Bi, i ∈ {1, 2} are counter-
terms (which depend on the momentum cut-o� Λ� 1) which can be �xed by de�ning the
renormalised masses and coupling constants as the respective coe�cients in the potential

∂V

∂(φ2
cl)

∣∣∣∣
φ2
cl=χ

2
cl=0

=
∂V

∂(χ2
cl)

∣∣∣∣
φ2
cl=χ

2
cl=0

= 0 ,

∂2V

∂(φ2
cl)

2

∣∣∣∣
φ2
cl=χ

2
cl=0

=
∂2V

∂(χ2
cl)

2

∣∣∣∣
φ2
cl=χ

2
cl=0

=
λ

4
,

∂2V

∂(φ2
cl)∂(χ2

cl)

∣∣∣∣
φ2
cl=χ

2
cl=0

=
g

4
.

(36)

The latter two derivatives are IR divergent in the φcl, χcl → 0 limit due to the presence
of logarithms in Ve�. Following the CW procedure we can resolve this issue by evaluating
the renormalisation conditions at non-zero �eld value for φ (alternately for χ)

∂Ve�
∂(φ2

cl)

∣∣∣∣
φ2
cl=χ

2
cl=0

=
∂Ve�
∂(χ2

cl)

∣∣∣∣
φ2
cl=χ

2
cl=0

= 0 ,

∂2Ve�
∂(φ2

cl)
2

∣∣∣∣
φ2
cl=µ,χ

2
cl=0

=
∂2Ve�
∂(χ2

cl)
2

∣∣∣∣
φ2
cl=µ,χ

2
cl=0

=
λ

4
,

∂2Ve�
∂(φ2

cl)∂(χ2
cl)

∣∣∣∣
φ2
cl=µ,χ

2
cl=0

=
g

4
,

(37)

where µ is an arbitrary RG scale and we used that near d = 3 the scaling dimension of φc
is (27) so to leading order in ε-expansion φ2

cl scales as mass.16

The renormalisation conditions (37) now �x the counter-terms in such a way that the
divergences in Λ vanish in the e�ective potential

A1 = (d− 4)e(d−3)γE/2
Ng + (N + 2)λ

2dπ(d−1)/2
Λd−2 ,

A2 = (d− 4)e(d−3)γE/2
Ng + (N + 2)ξ

2dπ(d−1)/2
Λd−2 ,

(38)

B1 =

(
N + 8

4π
λ2 +

N

4π
g2

)
log Λ

8
+ ... ,

B2 =

(
g2

π
+ 2

N + 2

4π
λg

)
log Λ

4
+ ... .

(39)

Here we only wrote out the divergent parts of the bare couplings (75) in Bi. As a con-
sistency check we can readily verify that the coe�cients of the logarithmic divergences in
Bi agree with the β-functions (28) computed with dimensional regularisation. If we plug
these constants into (35) we get the full e�ective potential which we do not write out here
since it is given by a cumbersome expression. Details of this can be found in an appended
Mathematica notebook.

We can verify by explicit computation that this e�ective potential admits a perturbative
minimum at φ2

cl = µ with

φicl
∂V

∂φ̂icl

∣∣∣∣∣
φ2
cl=〈φ〉2=µ,χ2

cl=〈χ〉2=0

= χacl
∂V

∂χacl

∣∣∣∣
φ2
cl=〈φ〉2=µ,χ2

cl=〈χ〉2=0

= 0 , (40)

16Note that we choose to de�ne the renormalisation conditions w.r.t. φ2
cl, χ

2
cl as opposed to some

particular component of φcl, χcl. In this way we obtain O(N)-invariant counter-terms, but otherwise the
physics remains the same.
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Figure 3: Plots of the e�ective potential for N = 1. There are two three-dimensional plots:
one with narrow range of φcl and one of χcl. We can see that the potential only has two
minima along the χcl-axis. The two-dimensional plots are slices of the three-dimensional
plot when φcl = 0 or χcl = 0. In the plots g = 0.01 and µ = 1.

provided the couplings satisfy the relation

λ =
4π −

√
16π2 − 4N(N + 8)g2

2(N + 8)
=
Ng2

4π
+O(g3) . (41)

This relation describes a region very close to the Gaussian f.p. (rather than a WF one),
making it independent of the ε-expansion. A plot of the e�ective potential with N = 1
is depicted on �gure 3 from which we can see that this solution indeed corresponds to a
minimum. Without loss of generality we can parametrise this solution as follows

〈φ〉 = (
√
µ, 0, ...0) , 〈χ〉 = 0 . (42)

This minimum tells us that the O(N)⊕O(N)-symmetry has been broken into
O(N − 1)⊕O(N). Additionally this vacuum breaks the discrete symmetry (26).

Since this vacuum only breaks one of the O(N)-symmetries we can apply the arguments
discussed in the introduction around (4). In particular we can now study the perturbations
around (42) by using the parametrisation (6) for φ. Expanding the e�ective potential to
the quadratic order yields17

Ve�(σ, χ2) =
Ng2µ

8π
σ2 +

(
1− g

π

) gµ
4
χ2 + . . . , (43)

where the dots stand for higher order terms in g, χ, σ. The positive sign of both mass
terms is a consequence of (42) being the minimum of the e�ective potential. The leading
(positive) correction to the mass term for χ is a purely classical consequence of the mixed
coupling. Hence we see that the potential (43) induces a boundary RG �ow ending with
N − 1 Neumann scalars from the broken O(N)-symmetry.

17At higher orders there will be interactions with both even and odd powers of σ, e.g. σ3 and σχ2
cl.
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To summarize, the theory (24) we started with had O(N) ⊕ O(N)-symmetry as well
as the symmetry (26). After integrating out quantum �uctuations, one of the O(N)-
symmetries is still preserved while the symmetry (26) is completely broken and the other
O(N)-symmetry is broken down to its subgroup O(N−1). The remaining O(N−1) can be
seen through the e�ective theory in the IR which contains N − 1 Neumann scalars (which
additionally regain the shift symmetry (3)), and N + 1 Dirichlet scalars.

At last let us discuss the validity of the one-loop approximation and its relevance to
the �ow diagram charted on �gure 2. The condition (41) tells us that the region of validity
of the approximation lies in the λ, g > 0 quadrant. Furthermore, in the g � 1 limit
this region lies below the line connecting the Gaussian f.p. with the 3rd TC f.p. in (29),
which is de�ned by the relation λ = kg with k being O(g0) and positive. As we can see
in �gure 2, the �ow in this region drives the coupling λ to negative values and hence we
would indeed expect a phase-transition happening here. We should also remark that the
approximation we used cannot be trusted for �eld values far from

√
µ and thus we cannot

exclude the possibility of other vacua hiding in these regions.
One might also wonder whether the phase transition persists in the ε → 1 limit given

the applicability of Mermin-Wagner theorem mentioned in the introduction. While we
presently cannot give a de�nite answer to this question we can make the following qualita-
tive observation: from the discussion around (29) we see that the phase diagram in �gure
2 exists only for models with low N (< 4). This window certainly includes N = 1 and
one might expect that it shrinks further at higher orders in ε. Thus it could be that in
the ε→ 1 limit only the N = 1 remains in which case the broken symmetry in question is
discrete (Z2) which is not at odds with the Mermin-Wagner theorem.

Let us �nally mention the d = 3 case. For ε = 0 the three non-Gaussian f.p.'s in �gure
2 disappear and the asymptotic freedom is lost.18 Despite that, the arguments of this
subsection apply if we think of the model at non-zero (g, λ) as an e�ective �eld theory
with radiately generated potential just as in the original Coleman-Weinberg paper.

4 Conclusion

In this paper we have argued that many of the critical phenomena appearing for interacting
bulk systems can also be observed in free theories with non-trivial dynamical b.c.'s. These
dynamical b.c.'s generically break the conformal symmetry and induce an RG �ow at the
boundary. We have found that in this context the phase transitions should be understood
in terms of the b.c.'s at the IR end of this �ow. The second-order phase transitions are
described by a boundary RG �ow preserving the global symmetries of the theory. It has an
IR f.p. with conformal b.c.'s that are neither Dirichlet nor Neumann. To check whether the
f.p.'s we discovered in section 3 are artefacts of the ε-expansion or actual physical boundary
CFT's would require a non-perturbative approach which is beyond the scope of this paper.
An evidence for existence of such f.p. beyond perturbation theory was nevertheless put
forward in a recent work [16] employing the numerical boostrap. It would be interesting
to investigate the existence of the phase diagram 2 by such boostrap methods.

Our analysis also suggests the possibility of RG �ows leading to �rst-order phase tran-
sitions induced by quantum e�ects. These will be described by a combination of Dirichlet
and Neumann scalars, with the latter playing a role analogous to Goldstone bosons of the
ordinary symmetry breaking. To con�rm such assertion beyond the perturbative reasoning
o�ered here, we could devise a lattice simulation of the model.

The physical interpretation of the model described in section 3 remains an open ques-

18More concretely the boundary RG �ow ends with the Gaussian f.p. with Neumann b.c.'s for all �elds.
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tion. It would be very interesting to explore whether the interpolation ε→ 1 of the model
we described in section 3 describes a meaningful two-dimensional theory. In particular there
remains the question of whether the �xed points (29) correspond to conformal boundary
conditions in d = 2. For compact scalars in d = 2 there is a body of evidence [28, 29]
suggesting that in a conformal theory we can have at most a combination of Dirichlet
and Neumann boundary conditions. To make a connection with our work we note that in
d = 2 the full potential in (24) should include in�nitely many more terms that are classi-
cally marginal. Such deformations do lead to f.p.'s corresponding to Dirichlet b.c.'s [13,30]
and hence it would not be unreasonable to expect something similar to happen here too.

In d = 3 the free scalar can be interpreted as a dual photon of the Maxwell theory. A
boundary potential (1) would correspond to a monopole potential breaking the topolog-
ical U(1) symmetry. Given that the bulk theory is free, it would be very interesting to
investigate the possibility of exactly solvable monopole potentials.

The free O(N) model with N > 1 also has a nice condensed matter interpretation as
crystaline displacement �elds with N being the spatial dimension of the solid [31]. The
boundary potential we consider would correspond to dislocations interacting directly at
the edge of the solid. It would be amusing to explore whether it can describe a realistic
physical situation.

Let us mention a few interesting possible extensions of this work. First we could try
coupling the free bulk scalar to boundary degrees of freedom and use this to generate
an e�ective potential and condensates for the boundary �elds. This could provide some
quantitative arguments for the possible existence of ordered phases of mixed dimensional
theories similar to the ones recently considered in the literature (e.g. [32�34]).

On the other hand we could consider adding bulk couplings and making connection
with the recent work [8], where the contribution of a bulk φ6-interaction to the one-loop
e�ective action was computed.
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A Propagators in boundary quantum �eld theories

In this appendix we will study Feynman propagators in an O(N)-symmetric scalar BQFT
with masses in both the bulk and on the boundary

L =

∫
R
d
+

ddx

(
(∂µφ

i)2

2
+

(m2)ijφiφj

2
+ δ(x⊥)m̂ijφiφj

)
. (44)

This theory has the e.o.m.(
−δij∂2 + (m2)ij

)
φj = 0 ,

∂⊥φ
i|x⊥=0 = M ijφj |x⊥=0 .

(45)

Please note that the RG �ow of the boundary mass describes a �ow between Neumann
(M ij = 0) and Dirichlet (M ij →∞) b.c.'s.

13



SciPost Physics Submission

A.1 In spacetime coordinates

We will �nd the Feynman propagator ∆ij
bc(s‖, x⊥, y⊥) ≡ 〈φi(x‖, x⊥)φj(y‖, y⊥)〉. It satis�es

the Dyson-Schwinger equation corresponding to the e.o.m. (45) at separate points(
−δij∂2

x + (m2)ij
)

∆jk
bc (s‖, x⊥, y⊥) = δikδ(s‖, x⊥ − y⊥) ,

∂x⊥∆ik
bc(s‖, 0, y⊥) = M ij∆jk

bc (s‖, 0, y⊥) .
(46)

Here ∂2
x ≡ ∂2

x‖
+ ∂2

x⊥
is the d'Alembert operator and s‖ ≡ x‖ − y‖ is the distance between

the parallel coordinates. Let us �rst study the �rst equation in a homogeneous QFT(
−δij∂2

x + (m2)ij
)

∆jk(s) = δikδ(s) , (47)

where s ≡ sa‖ ⊕ (x⊥ − y⊥) ∈ Rd. To solve this consider the Fourier-transform of ∆jk(s)

∆jk(s) =

∫
Rd

ddk

(2π)d
e−iksGjk(k) , (48)

which yields

∂2∆jk(s) =

∫
Rd

ddk

(2π)d
e−iks(−ik)2Gjk(k) , (49)

and use the de�nition of the Dirac δ-function

δ(s) =

∫
Rd

ddk

(2π)d
e−iks . (50)

We can now compare the integrands in (47) to �nd

Gjk(k) =
(
δjkk2 + (m2)jk

)−1
. (51)

Finding this inverse is di�cult without knowing the speci�c form of mij . Let us assume it
is on the form

(m2)ij = m2
1δ
ij + aφiclφ

j
cl , (52)

where a, m2
1 ∈ R are two constants and φicl is a classical background. The momentum

propagator (51) is then19

Gjk(k) =
δjk

k2 +m2
1

−
aφiclφ

j
cl

(k2 +m2
1)(k2 +m2

2)
, m2

2 ≡ m2
1 + aφ2

cl . (53)

Here φ2
cl ≡ (φicl)

2. In the massless limit the second term vanishes. Using a Julian-Schwinger
and a Feynman parametrization, we �nd ∆jk(s) by performing the integrals in (48)

Idα(m2) ≡
∫
Rd

ddk

(2π)d
e−iks

(k2 +m2)α
=

∫ ∞
0

du

Γα

∫
Rd

ddk

(2π)d
uα−1e−u(k2+m2)−iks

=

∫ ∞
0

du

(4π)d/2Γα

e−m
2u−s2/(4u)

u(d+2)/2−α =
md/2−αKd/2−α(m|s|)

2(d−2)/2+απd/2Γα|s|d/2−α
,

(54)

Jd(m2
1,m

2
2) ≡

∫
Rd

ddk

(2π)d
e−iks

(k2 +m2
1)(k2 +m2

2)
=

∫ 1

0
duId2 (um2

1 + (1− u)m2
2)

= −
m

∆φ

1 K∆φ
(m1|s|)−m

∆φ

2 K∆φ
(m2|s|)

(2π)d/2|s|∆φ(m1 +m2)(m1 −m2)
.

(55)

19Here we used the ansatz
(
δijk2 +mij

)−1
= aδij + bφiφj , and then found the coe�cients a and b by

matching δij and φiφj terms on both sides of
(
δijk2 +mij

)−1 (
δjkk2 +mjk

)
= δik.
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This holds for (27). We �nd

∆jk(s) = δjkId1 (m2
1)− aφjclφ

k
clJ

d(m2
1,m

2
2)

=
δjkm

∆φ

1 K∆φ
(m1|s|)

(2π)d/2|s|∆φ
+
aφjclφ

k
cl

[
m

∆φ

1 K∆φ
(m1|s|)−m

∆φ

2 K∆φ
(m2|s|)

]
(2π)d/2|s|∆φ(m1 +m2)(m1 −m2)

.
(56)

Here Kν(z) is a modi�ed Bessel function of the second kind. Please note that the two
terms are on the form |s|−∆φK∆φ

(mj |s|), j ∈ {1, 2}.
In the massless limit (m1, m2 → 0) this reduces to the usual correlator in a CFT

lim
m→0

∆jk(s) =
Adδ

jk

|s|2∆φ
, Ad =

1

(d− 2)Sd
, (57)

where Sd is the area of a (d− 1)-dimensional sphere.
Let us now proceed with �nding the Feynman propagator in a BQFT, i.e. we wish to

use (56) to solve the b.c. in (46). To do this we make the ansatz20

∆ik
bc(s‖, x⊥, y⊥) = ∆ik(s‖, x⊥ − y⊥) + ∆ik(s‖, x⊥ + y⊥) +

∫ ∞
0

dzf ij(z)∆jk(s‖, x⊥ + y⊥ + z) .

We want to �nd the function f ij(z) from the b.c. (46). Since all terms in (56) are
on the same form, the function f ij(z) will be the same for all of them. This means

we can let ∆ij(s‖, x⊥) = τ ij(s2
‖ + x2

⊥)−∆φ/2K∆φ
(m
√
s2
‖ + x2

⊥), with the tensor structure

τ ij ∈ {δij , φiclφ
j
cl}, when we �nd f ij(z). The second term in the ansatz above reduces the

normal derivative in the LHS of the b.c. to a single integral using the recursion relation

K∆φ−1(z) = K∆φ+1(z)−
2∆φ

z
K∆φ

(z) . (58)

We �nd

∂x⊥∆ik
bc(s‖, 0, y⊥)

= −m
∫ ∞

0
dzf ij(z)τ jk

z⊥ + y⊥(
s2
‖ + (z⊥ + y⊥)2

)(∆φ+1)/2
K∆φ+1(m

√
s2
‖ + (z⊥ + y⊥)2)

= −f ij(0)∆jk(s‖, y⊥)−
∫ ∞

0
dz∂zf

ij(z)∆jk(s‖, z⊥ + y⊥) .

(59)

Here we used partial integration, and assumed that

lim
z→∞

e−mzf ij(z)

z∆φ+1/2
= 0 . (60)

The RHS of the b.c. at (46) is

M ij∆jk
bc (s‖, 0, y⊥) = 2M ij∆jk(s‖, y⊥) +

∫ ∞
0

dzM ijf jl(z)∆lk(s‖, z⊥ + y⊥) . (61)

We can now match the terms outside and inside the integral with those in (59) to �nd
an ordinary di�erential equation for f ij(z). It tells us that f ij(z) is an exponential of the
matrix M ij {

f ij(0) = −2M ij

∂zf
ij(z) = −M ikfkj(z)

}
⇒ f ij(z) = −2M ik(e−Mz)kj . (62)

20Here we are using the method of images where we consider an in�nite amount of images on the other
side of the boundary. Each image corresponds to adding a Dirac δ-function that is always zero (since
x⊥, y⊥ > 0) on the RHS of (46).
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This function does indeed satisfy (60). It gives us the Feynman propagator

∆ij
bc(s‖, x⊥, y⊥) = ∆ij(s‖, x⊥ − y⊥) + ∆ij(s‖, x⊥ + y⊥)+

− 2M ik

∫ ∞
0

dz(e−Mz)kl∆lj(s‖, x⊥ + y⊥ + z) .
(63)

A.2 Momentum propagator

In this appendix we will Fourier transform the Feynman propagator found in the previous
section with respect to s‖. We call this a momentum propagator, although it depends on
the normal coordinates x⊥ and y⊥, which should be seen as new scales in a BQFT, and
which regulates divergences that may appear in the boundary limit [10]. Since each term
(63) behave in the same way w.r.t. s‖, we will �rst study the Fourier transform of

∆jk(s‖, x⊥) =
m∆φτ jkK∆φ

(m
√
s2
‖ + x2

⊥)

(2π)d/2(s2
‖ + x2

⊥)∆φ/2
, τ jk ∈ {δij , φjclφ

k
cl} . (64)

We will use the following representations of the Bessel function

Kν(z) =

∫
γn

dt

4πi
ΓtΓt−ν

(z
2

)ν−2t
, γn = {t ∈ R | ν + ε+ it , ε > 0} ,

Kν(z) =

(
2

x

)ν Γν+1/2√
π

∫ ∞
0

du
cos(uz)

(u2 + 1)ν+1/2
.

(65)

Here Γx ≡ Γ(x) is the Gamma function. The �rst of the identities above, together with a
Julian-Schwinger parametrization yields

Gjk‖ (k‖, x⊥) =

∫
Rd−1

dd−1s‖e
ik‖s‖∆jk(s‖, x⊥)

=
τ jk

π(d−2)/2i

∫
γ∆φ

dt
m2(∆φ−t)ΓtΓt−∆φ

2(d+4)/2+∆φ−2t

∫
Rd−1

dd−1s‖
eik‖s‖

(s2
‖ + x2

⊥)t

=
τ jk

π(d−2)/2i

∫
γ∆φ

dt
m2(∆φ−t)Γt−∆φ

2(d+4)/2+∆φ−2t

∫ ∞
0

duut−1e−ux
2
⊥

∫
Rd−1

dd−1s‖e
−us2‖+ik‖s‖

=
τ jk

π3/2i

∫
γ∆φ

dt
m2(∆φ−t)Γt−∆φ

2(d+4)/2+∆φ−2t

∫ ∞
0

du
e
−ux2

⊥−k
2
‖/(4u)

u(d+1)/2−t

=
τ jk

π3/2i

∫
γ∆φ

dt
m2(∆φ−t)Γt−∆φ

2∆φ−t+3/2

(
x⊥
|k‖|

)(d−1)/2−t
K(d−1)/2−t(|k‖|x⊥) .

(66)

This integrand has simple poles at t = ∆φ − n, n ∈ Z≥0 coming from Γt−∆φ
. As dictated

by the residue theorem, we need to sum over all of the corresponding residues. In order to
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do this summation, we use the second identity in (65)

Gjk‖ (k‖, x⊥) =
τ jk√
π

∑
n≥0

(−1)nm2n

2n+1/2n!

(
x⊥
|k‖|

)(d−1)/2−∆φ+n

K(d−1)/2−∆φ+n(|k‖|x⊥)

=
2(d−2)/2−∆φτ jk

π

∫ ∞
0

du cos(u|k‖|x⊥)
∑
n≥0

(−1)nm2nΓd/2−∆φ+n

n!|k‖|d−1−2∆φ+2n(u2 + 1)d/2−∆φ+n

=
2(d−2)/2−∆φΓd/2−∆φ

|k‖|τ jk

π

∫ ∞
0

du
cos(u|k‖|x⊥)

(k2
‖u

2 + k2
‖ +m2)d/2−∆φ

=
τ jkx

(d−1)/2−∆φ

⊥ K∆φ−(d−1)/2(
√
k2
‖ +m2x⊥)

√
2π(k2

‖ +m2)(d−1)/4−∆φ/2
.

(67)

This simpli�es drastically in the case of fundamental scalars (27)

Gjk‖ (k‖, x⊥) =
τ jke

−
√
k2
‖+m

2x⊥

2
√
k2
‖ +m2

. (68)

Let us now perform the integration over z in (63)

G̃ij(k‖, x⊥ + y⊥) = −2M ik

∫ ∞
0

dz
(
e−Mz

)kl
Glj‖ (k‖, x⊥ + y⊥ + z)

= − M ik√
k2
‖ +m2

∑
n≥0

(Mn)klτ lj

n!

∫ ∞
0

dz(−z)ne−
√
k2
‖+m

2(x⊥+y⊥+z)

= −e−
√
k2
‖+m

2(x⊥+y⊥)
M ik

∑
n≥0

(−1)n(Mn)kl

(k2
‖ +m2)n/2+1

τ lj

= −e
−
√
k2
‖+m

2(x⊥+y⊥)√
k2
‖ +m2

(
M ik +

√
k2
‖ +m2δik −

√
k2
‖ +m2δik

)(
Mkl +

√
k2
‖ +m2δkl

)−1
τ lk

= e
−
√
k2
‖+m

2(x⊥+y⊥)

− τ ij√
k2
‖ +m2

+
(
M ik +

√
k2
‖ +m2δik

)−1
τkj

 .

Together with (68), we now have the full Fourier transform of (63)

H ik
m (k‖, x⊥, y⊥) ≡

[
Gij‖ (K‖, x⊥ − y⊥) +Gij‖ (K‖, x⊥ + y⊥) + G̃ij(k‖, x⊥ + y⊥)

] (
τ jk
)−1

=
e
−
√
k2
‖+m

2x⊥
sinh(

√
k2
‖ +m2y⊥)δik√

k2
‖ +m2

+ e
−
√
k2
‖+m

2(x⊥+y⊥)
(
M ik +

√
k2
‖ +m2δik

)−1
.

This means that the Fourier transform of (63), with (56) is given by

Gikbc(k‖, x⊥, y⊥) = H ik
m1

(k‖, x⊥, y⊥) + aφiφj
Hjk
m1(k‖, x⊥, y⊥)−Hjk

m2(k‖, x⊥, y⊥)

(m1 +m2)(m1 −m2)
.

In the boundary limit we have

H ik
m (k‖, 0, 0) =

(
M ik +

√
k2
‖ +m2δik

)−1
. (69)

This is the integrand of (23) when there is no mass term in the bulk.
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B β-function

In this appendix we �nd the β-functions for the model (24). This is done in the standard
QFT way. We will study the following correlators up to order two in the coupling constants

Gjklmφ (p) = 〈φ̂j(p1)φ̂k(p2)φ̂l(p3)φ̂m(p4)〉

= −λ0

8
8Djklm +

(
−λ0

8

)2

32
EjklmI12 + EjlkmI13 + EjmklI14

(2π)d−1
+

+
(
−g0

4

)2
8
δjkδlmI12 + δjlδkmI13 + δjmδklI14

(2π)d−1
+ ... ,

(70)

Gabcdχ (p) = 〈χ̂a(p1)χ̂b(p2)χ̂c(p3)χ̂d(p4)〉

= −ξ0

8
8Dabcd +

(
−ξ0

8

)2

32
EabcdI12 + EacbdI13 + EadbcI14

(2π)d−1
+

+
(
−g0

4

)2
8
δabδcdI12 + δacδbdI13 + δadδbcI14

(2π)d−1
+ ... ,

(71)

Gjkabφχ (p) = 〈φ̂j(p1)φ̂k(p2)χ̂a(p3)χ̂b(p4)〉

= −g0

4
4δjkδab +

(
−g0

4

)2
16δjkδab

I13 + I14

(2π)d−1
+

+
(
−g0

4

)(
−λ0

8

)
16(Nφ + 2)δjkδab

I12

(2π)d−1
+

+
(
−g0

4

)(
−ξ0

8

)
16(Nχ + 2)δjkδab

I34

(2π)d−1
+ ... .

(72)

Here λ0, g0 and ξ0 are the bare coupling constants that appear in the action (24). Hatted
operators denote their respective boundary �elds. We have the Wick theorem factors

Djklm = δjkδlm + δjlδkm + δjmδkl ,

Ejklm = (Nφ + 2)δjkδlm +Djklm .
(73)

The master integral Ijk is found using a Julian-Schwinger parametrization and is given by
an Euler-Beta function

Ijk = Id−1
1/2,1/2(pj + pk) ,

Inαβ(p) =

∫
Rn

dnk

|p− k|α|w|β
= πn/2

Γα+β−n/2

ΓαΓβ

Bn/2−α,n/2−β

|p|2(α+β)−n ,
(74)

where in d = 3− ε it has a pole in ε

Id−1
1/2,1/2(p) =

1

2π

(
1

ε
+ log

(√
64π

eγE

)
− log(p)

)
+O(ε) .
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The bare coupling constants that renormalises these correlators21 are given by

λ0 =

(
eγE/2

64π

)ε/2
µε
(
λ+

Nφ + 8

4π

λ2

ε
+
Nχ

4π

g2

ε

)
+ ... ,

ξ0 =

(
eγE/2

64π

)ε/2
µε
(
ξ +

Nχ + 8

4π

ξ2

ε
+
Nφ

4π

g2

ε

)
+ ... ,

g0 =

(
eγE/2

64π

)ε/2
µε
(
g +

g2

πε
+
Nφ + 2

4π

λg

ε
+
Nχ + 2

4π

ξg

ε

)
+ ... .

(75)

Here the dots represent terms that have more than two coupling constants, µ is the renor-
malisation scale, and λ, g as well as ξ are renormalised coupling constants. Please note
that we have used multiplicative renormalisation of g0, and both multiplicative and addi-
tive renormalisation of λ0 as well as ξ0. We can see that λ0 and ξ0 are the same up to
�avours. To �nd the β-functions we will use

∂ log σ0

∂ logµ
= 0 ,

∂σ

∂ logµ
= βσ ,

∂ log σ

∂ logµ
=
βσ
σ
, (76)

where σ0 ∈ {g0, λ0, ξ0} is any bare coupling, and σ ∈ {g, λ, ξ} is any renormalised coupling.
Taking the logarithm of the coupling constants in (75), and only keeping terms that are
quadratic in couplings yields

log λ0 = ε logµ+ log λ+
Nφ + 8

4πε
λ+

Nχ

4πε

g2

λ
+ ... ,

log ξ0 = ε logµ+ log ξ +
Nχ + 8

4πε
ξ +

Nφ

4πε

g2

ξ
+ ... ,

log g0 = ε logµ+ log g +
g

πε
+
Nφ + 2

4πε
λ+

Nχ + 2

4πε
ξ + ... .

(77)

Now di�erentiate these equations w.r.t. logµ and use the de�nitions (76)

ε+
βλ
λ

+
Nφ + 8

4πε
βλ +

Nχ

4πε

g

λ

(
2βg −

g

λ
βλ

)
= 0 ,

ε+
βξ
ξ

+
Nχ + 8

4πε
βξ +

Nφ

4πε

g

ξ

(
2βg −

g

ξ
βξ

)
= 0 ,

ε+
βg
g

+
βg
πε

+
Nφ + 2

4πε
βλ +

Nχ + 2

4πε
βξ = 0 .

(78)

The solution to these equations yields the β-function

βλ = −ελ+
Nφ + 8

4π
λ2 +

Nχ

4π
g2 + ... ,

βξ = −εξ +
Nχ + 8

4π
ξ2 +

Nφ

4π
g2 + ... ,

βg = −εg +
g2

π
+
Nφ + 2

4π
λg +

Nχ + 2

4π
ξg + ... .

(79)

21And which absorbs the factors of γE and log(π).
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C Functional determinants

In this appendix we path integrate a bosonic O(Nφ) ⊕ O(Nχ)-vector that is massless in
the bulk, but gains a tensor mass mIJ as it approaches the boundary. We will not assume
any speci�c form of the boundary mass until it is needed. We will write the �uctuation
correction to the boundary potential as

V ⊃ ΦImIJΦJ , (80)

mIJ =

(
mij
φ gφjclχ

b
cl

gχaclφ
k
cl mab

χ

)IJ
,

mij
φ ≡ A

λ
gδ
ij + λφ̂iclφ̂

j
cl ,

mab
χ ≡ A

g
ξδ
ab + ξχ̂aclχ̂

b
cl .

(81)

The constant Axy can be found in (34). In this appendix we will not use the exact form of
Axy , although it is important that it is proportional to the coupling constants. Using the
results of section 2, i.e. (23), we have

V 1-loop
e� =

∫
R
d
+

ddxIM +

∫
Rd−1

dd−1x‖I∂M ,

IM =

∫
Rd

ddk

(2π)d
trO(N)

log[GIJ(k)]

2
,

I∂M =

∫
Rd−1

dd−1k‖

(2π)d−1
trO(N)

log[GIJb.c.(k‖)]

2
.

(82)

Here we trace over the O(N)-indices, GIJ is the momentum propagator (53) in the bulk,
and GIJb.c. is the momentum propagator (69) in the boundary limit

GIJ(k) =
δIJ

k2
, GIJb.c.(k‖) =

(
mIJ + |k‖|δIJ

)−1
. (83)

The logarithm of the bulk propagator is

log[GIJ(k)] = −2δIJ log |k| . (84)

This allows us to �nd IM in (82). We will use spherical coordinates and regulate the
divergences using a momentum cuto� Λ� 1. The integral is on the form

Jn(Λ) ≡
∫ Λ

0
drrn−1 log(r) =

Λn

n

(
log(Λ)− 1

n

)
. (85)

Which yields

IM = −
(Nφ +Nχ)Sd

(2π)d
Jd(Λ) . (86)

To compute I∂M we will use that the logarithm of the inverse of a matrix can be expressed
in terms the original matrix via{

A = elog(A) ⇒ A−1 = e− log(A)

A−1 = elog(A−1)

}
⇒ log(A−1) = − log(A) . (87)
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Using this we �nd the trace of the logarithm of the momentum propagator (83)

log[GIJb.c.(k‖)] = − log

[
|k‖|δIJ

(
mIJ

|k‖|
+ 1

)]
= −δIJ log(|k‖|)− log

(
mIJ

|k‖|
+ 1

)
. (88)

To �nd the second logarithm we diagonalise mIJ . It has four eigenvalues. The �rst two of
these are

λ1 = Aλg , (with multiplicity Nφ − 1),

λ2 = Agξ , (with multiplicity Nχ − 1),
(89)

and the other two have both multiplicity one

λ± =
Aλg + λφ2

cl +Agξ + ξχ2
cl ±

√
(Agξ + ξχ2

cl −Aλg − λφ2
cl)

2 + 4g2φ2
clχ

2
cl

2
.

(90)

We proceed with diagonalising the boundary mass mIJ using some matrix A (as we will
see, the exact form of A does not matter)

mIJ = (A−1DA)IJ , D = diag(λ+
3 , A

λ
g , ..., A

λ
g , λ
−
3 , A

g
ξ , ..., A

g
ξ) . (91)

The second logarithm in (88) can now be found from its Taylor expansion

log

(
mIJ

|k‖|
+ 1

)
=
∑
n≥1

(−1)n+1

n|k‖|n
((A−1DA)n)IJ = (A−1)IK

∑
n≥1

(−1)n+1

n|k‖|n
((D)n)KLALJ

=

(
A−1diag

(
log

(
λ+

3

|k‖|
+ 1

)
, ...

)
A

)IJ
.

(92)
Using cyclicity of the trace, we �nd

tr log[GIJb.c.(k‖)] = − log
(
λ+ + |k‖|

)
− log

(
λ− + |k‖|

)
− (Nφ − 1) log(Aλg + |k‖|)− (Nχ − 1) log(Agξ + |k‖|) .

The boundary integrals in (82) are then on the form

I∂M = −Kλ+
3

(Λ)−Kλ−3
(Λ)− (Nφ − 1)KAλg

(Λ)− (Nχ − 1)KAgξ
(Λ) ,

Kx(Λ) =
Sd−1

2dπd−1

∫ Λ

0
drrd−2 log(x+ r) .

(93)

This integral is a 2F1-hypergeometric function. Its expansion in ε in 3 − ε dimensions
is performed using the HypExp mathematica package [35, 36]. We will keep terms up to
O(ε2) and order two in the coupling constants. After this we expand around large Λ, and
neglect terms that goes as Λ−1

I∂M = −
Nφ +Nχ

2dπd−1
Sd−1Jd−1(Λ)− K̃φ(Λ)− K̃χ(Λ) +O(Λ−1) +O(ε3) ,

Kx(Λ) = −3d2 − 22d+ 43− 2(d2 − 8d+ 19)

16
Λd−1 log(Λ)− (d− 4)Λd−2x+

x2

2

(
log
(x

Λ

)
− 1

2

)
.

This, together with (86) and (82), yields the full path integral over Φ

Z = (2π)d/2 exp

(
−
Nφ +Nχ

(2π)d
SdJd −

Nφ +Nχ

2dπd−1
Sd−1Jd−1 − Ξ1(φ2

cl, χ
2
cl)− Ξ2(φ2

cl, χ
2
cl)

)
,
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Ξ1(φ2
cl, χ

2
cl) = −(d− 4)Λd−2(NφA

λ
g +NχA

g
ξ + λφ2

cl + ξχ2
cl)

= −(d− 4)Λd−2 (Nχg + (Nφ + 2)λ)φ2
cl + (Nφg + (Nχ + 2)ξ)χ2

cl

2
,

Ξ2(φ2
cl, χ

2
cl) =

Nφ − 1

2
(Aλg )2

(
log

(
Aλg
Λ

)
− 1

2

)
+
Nχ − 1

2
(Agξ)

2

(
log

(
Agξ
Λ

)
− 1

2

)

+
λ2

+

2

(
log

(
λ+

Λ

)
− 1

2

)
+
λ2
−
2

(
log

(
λ−
Λ

)
− 1

2

)
.

(94)

Note that the constants Axy at (34) depend on φ2
cl and χ

2
cl. By taking Nφ = Nχ and ξ = λ

we obtain the result relevant for section 3.2.
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