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Abstract1

An exact description of integrable spin chains at finite temperature is provided using an2

elementary algebraic approach in the complete Hilbert space of the system. We focus on3

spin chain models that admit a description in terms of free fermions, including paradig-4

matic examples such as the one-dimensional transverse-field quantum Ising and XY models.5

The exact partition function is derived and compared with the ubiquitous approximation in6

which only the positive parity sector of the energy spectrum is considered. Errors stemming7

from this approximation are identified in the neighborhood of the critical point at low tem-8

peratures. We further provide the full counting statistics of a wide class of observables at9

thermal equilibrium and characterize in detail the thermal distribution of the kink number10

and transverse magnetization in the transverse-field quantum Ising chain.11
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1 Introduction26

Quantum many-body spin systems that are exactly solvable and exhibit a quantum phase transi-27

tion have been key to advance our understanding of critical phenomena in the quantum domain.28

Among them, the one-dimensional XY model and the closely-related transverse-field quantum29

Ising model (TFQIM) occupy a unique status, and are paradigmatic test-beds of quantum critical30

behavior [1–4]. They belongs to a family of models that admit an exact diagonalization by a com-31

bination of Jordan-Wigner and Fourier transformations, yielding a formulation of the system in32

terms of free fermions [5, 6]. These family of quasi-free fermion models include as well the Ki-33

taev spin model in one dimension and on a honeycomb lattice [7], among other examples [1,2,4].34

35

Quasi-free fermion models have indeed been instrumental in exploring both equilibrium and36

nonequilibrium properties. At equilibrium, the study of the ground-state critical behavior was37

shown to be of relevance to the characterization of the system at finite temperature [8–10]. Out38

of equilibrium, these models have been used to explore the dynamics following a sudden quench39

(e.g., of the magnetic field). The study of finite-time quenches was key to establish the valid-40

ity of the universal Kibble-Zurek mechanism in the quantum domain, and confirm the power-law41

scaling of the number of kinks by driving the ground-state of a paramagnet across the phase tran-42

sition [11, 12], as reported in a variety of experiments [13–16]. These results have also been43

extended to nonlinear quenches [17, 18] and inhomogeneous systems [19–23], while their break-44

down has been characterized in open systems [24–26]. More recently, it has been shown that45

signatures of universality are present in the full kink-number distribution and that all cumulants46

scale as a universal power-law of the quench time [16, 27–31]. The universal dynamics of defect47

formation is not always desirable, and a variety of works have been devoted to circumvent it us-48

ing diverse control protocols [32–42], beyond the use of nonlinear quenches and inhomogeneous49

driving. In addition, quasi-free fermion models have been discussed in the context of quantum50

thermodynamics, as a test-bed to explore work statistics and fluctuation theorems [43–46] and as51

a working substance in a quantum thermodynamic cycle [47].52

53

Quasi-free fermion models provided an effective description of a variety of condensed-matter54

systems, where they can be realized with high accuracy in [48]. They are further amenable to55

quantum simulation with trapped ions [49–53], ultracold gases in optical lattices [54] and super-56

conducting qubits [55]. Digital quantum simulation provides yet another avenue for their study in57

the laboratory [15, 56–58].58

59

In many applications, it is generally desirable to consider a thermal state and analyze the finite-60

temperature behavior. For a given observable, full information about the eigenvalue distribution61

and its cumulants can be extracted from the characteristic function. An ubiquitous approximation62

in such description exploits the parity symmetry of the TFQIM and XY modes, focusing on the63

positive-parity subspace, while disregarding the rest of the spectrum [1–4,44,59–62]. We refer to it64

as the positive-parity approximation or PPA for short. The PPA is considered to be accurate in the65

thermodynamic limit [63], invoked in many works [6, 64]. However, even in the thermodynamic66

limit, an exact treatment requires taking into account parity properly and at finite temperature both67

subspaces are populated. Katsura derived the exact partition function for a finite-size spin chain68

in 1962 [63]. Kapitonov and Il’inskii provided an alternative derivation of the closed form expres-69

sion of the exact partition function using functional integrals over Grassmann variables [65]. More70

recently, Fei and Quan [45] used group theory methods to calculate the exact partition function71

and quantum work distribution.72

73

In this manuscript, we first elaborate on these results providing an elementary derivation of the74
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exact partition function based on the structure of the Hilbert space. Using this approach, we next75

provide exact expressions for the eigenvalue distribution (full counting statistics) of a wide class of76

observables at thermal equilibrium. We present step-by-step worked examples deriving the exact77

moment generating function for important observables: the kink number and transverse magne-78

tization. In addition, we analyze finite-size effects and illustrate discrepancies between results79

obtained using the PPA for the partition function and the exact partition function for small systems80

spins. These discrepancies are of direct relevance to typical system sizes in current experimen-81

tal realizations of spin systems [66, 67]. For convenience of the reader interested in using the82

final results of a calculation, the corresponding explicit formulas are summarized in boxes that are83

self-contained and make little or no reference to the rest of the manuscript.84

2 Full Diagonalization of Spin-1
2 XY Model85

We consider the anisotropic one-dimensional XY Hamiltonian for spins 1/2 in a transverse mag-86

netic field g. The Hamiltonian reads:87

Ĥ (g, γ) = −J

 L∑
n=1

(
1 + γ

2

)
X̂nX̂n+1 +

(
1 − γ

2

)
ŶnŶn+1 + gẐn

 . (1)

Here, J parameterizes the ferromagnetic (J > 0) or antiferromagnetic (J < 0) exchange interaction88

between nearest neighbors; we set the energy scale by taking J = 1. The dimensionless anisotropic89

parameter in the XY plane is given by γ > 0 and L is the number of sites in the chain. For γ = 1, the90

Hamiltonian (1) corresponds to the Ising model in a transverse magnetic field, which possesses91

a Z2 symmetry. The limit γ = 0 describes the isotropic XY model. For the anisotropic case92

0 < γ ≤ 1 the model belongs to the Ising universality class, and its phase diagram is determined93

by the ratio ν = g/J. When ν > 1, the magnetic field dominates over the nearest-neighbor94

coupling, polarizing the spins along the z direction. This corresponds to a paramagnetic state, with95

zero magnetization in the xy plane. By contrast, in the regime 0 ≤ ν < 1 the ground state of the96

system corresponds to a ferromagnetic configuration with polarization along the xy plane. These97

phases are separated by a quantum phase transition (QPT) at the critical point ν = 1. Finally, for98

the isotropic case γ = 0, a QPT is observed between gapless (ν < 1) and ferromagnetic (ν > 1)99

phases.100

The operators X̂n, Ŷn, and Ẑn are matrices of order 2L defined by the relations101

X̂n = Î1 ⊗ . . . ⊗ În−1 ⊗ σ̂
x
n ⊗ În+1 ⊗ . . . ⊗ ÎL,

Ŷn = Î1 ⊗ . . . ⊗ În−1 ⊗ σ̂
y
n ⊗ În+1 ⊗ . . . ⊗ ÎL,

Ẑn = Î1 ⊗ . . . ⊗ În−1 ⊗ σ̂
z
n ⊗ În+1 ⊗ . . . ⊗ ÎL.

(2)

Here, σ̂αn denotes the Pauli operator at site n along the axis α = x, y, z, În is the identity matrix of102

order 2 at the site n, and periodic boundary conditions are assumed, σ̂αL+1 = σ̂α1 . A standard way103

to diagonalize the Hamiltonian in Eq. (1) relies on introducing a new set of Fermionic operators104

given by105

σ̂x
n =

(
ĉ†n + ĉn

)∏
m<n

(
Îm − 2ĉ†mĉm

)
,

σ̂
y
n = −i

(
ĉ†n − ĉn

)∏
m<n

(
Îm − 2ĉ†mĉm

)
,

σ̂z
n = În − 2ĉ†nĉn.

(3)

These expressions represent the well-known Jordan-Wigner transformation [68]. Here, ĉn and ĉ†n106

are ladder Fermionic operators at site n, which satisfy anti-commutation relations
{
ĉi, ĉ

†

j

}
= δi, j107
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and
{
ĉi, ĉ j

}
=

{
ĉ†i , ĉ

†

j

}
= 0. This is in contrast to the Pauli matrices, which satisfy commutation108

relations
[
σ̂†n, σ̂

−
m

]
= δn,mσ̂

z
n and

[
σ̂z

n, σ̂
±
m
]

= ±2δn,mσ̂
±
n with σ̂±n = σ̂x

n±iσ̂y
n. With periodic boundary109

conditions in the spin representation, the Fermionic operators ĉn and ĉ†n satisfy nontrivial boundary110

conditions111

ĉ†L+1 = (−1)N̂ ĉ†1, ĉL+1 = (−1)N̂ ĉ1, (4)

where N̂ =
∑L

n=1 ĉ†nĉn is the Fermionic number operator. By direct substitution of Eq. (3) into112

Eq. (1), the Hamiltonian can be written as a quadratic form113

Ĥ (g, γ) = −

L−1∑
n=1

[
ĉ†nĉn+1 + ĉ†n+1ĉn + γ

(
ĉ†nĉ†n+1 + ĉn+1ĉn

)]
+ Π̂

[
ĉ†Lĉ1 + ĉ†1ĉL + γ

(
ĉ†Lĉ†1 + ĉ1ĉL

)]
− g

L∑
n=1

(
În − 2ĉ†nĉn

)
.

(5)

Here, the parity operator Π̂ is given by (−1)N̂ = exp
(
iπN̂

)
and has eigenvalues ±1. The parity op-114

erator anticommmutes with the creation ĉ†n and annihilation ĉn Fermionic operators,
{
(−1)N̂ , ĉ†n

}
=115 {

(−1)N̂ , ĉn
}

= 0, and therefore, it commutes with any operator bilinear in ĉ†n and ĉn. The Hamil-116

tonian given by Eq. (5) does not conserve the number of Fermionic excitations. However, it is117

well-known that the TFQIM has a global Z2 symmetry and, thus, the parity operator Π̂ commutes118

with the Hamiltonian. As a result, the total Hilbert space is split into the direct sum of two 2L−1
119

dimensional subspaces of positive (+1) and negative (−1) parity. Using the projectors Π̂±,120

Π̂± =
1
2

[
Î ± (−1)N̂

]
, (6)

the Hamiltonian in Eq. (5) is represented in the form121

Ĥ = Ĥ+Π̂+ + Ĥ−Π̂−, (7)

with the reduced Hamiltonians Ĥ± being given by122

Ĥ± (g, γ) = −

L∑
n=1

[
ĉ†nĉn+1 + ĉ†n+1ĉn + γ

(
ĉ†nĉ†n+1 + ĉn+1ĉn

)
+ g

(
În − 2ĉ†nĉn

)]
. (8)

A subtle difference between Ĥ+ and Ĥ− is found in the boundary conditions for the Fermion123

operators. Ĥ+ obeys antiperiodic boundary conditions (ĉL+1 = −ĉ1 and ĉ†L+1 = −ĉ†1) while Ĥ−124

satisfies periodic boundary conditions (ĉL+1 = ĉ1 and ĉ†L+1 = ĉ†1). The Hamiltonian given by125

Eq. (8) is quadratic in the Fermionic operators and is thus exactly diagonalizable using Fourier and126

Bogoliubov transformations [64, 69–71]. We expand the operator ĉn via a Fourier transformation127

in momentum space,128

ĉn =
e−iπ/4
√

L

∑
k∈K±

ĉk exp (ink) , ĉ†n =
eiπ/4
√

L

∑
k∈K±

ĉ†k exp (−ink) . (9)

The wavevector k takes values in the positive
(
K+) and negative

(
K−

)
parity sectors129

K+ =

{
k
∣∣∣∣∣πL (2m − 1) , m = −

L
2

+ 1,−
L
2

+ 2, . . . ,
L
2
− 1,

L
2

}
, (10)

K− =

{
k
∣∣∣∣∣2πL m , m = −

L
2

+ 1,−
L
2

+ 2, . . . ,
L
2
− 1,

L
2

}
. (11)
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We emphasize that Eqs. (10) and (11) are valid for an even and odd number of particles in the130

chain. In the following analysis, we consider even L. In this way, the modes k = 0 and k = π131

are included in the negative parity sector. For even L, we can rewrite conveniently the momentum132

values as133

K+ =

{
±
π

L
,±

3π
L
,±

5π
L
, . . . ,±

π (L − 1)
L

}
= k+ ∪ {−k+},

K− =

{
0,±

2π
L
,±

4π
L
, . . . ,±

π (L − 2)
L

, π

}
= k− ∪ {−k−} ∪ {0, π},

with134

k+ =

{
π

L
,

3π
L
, . . . ,

π (L − 1)
L

}
, and k− =

{
2π
L
,

4π
L
, . . . ,

π (L − 2)
L

}
. (12)

By direct substitution of Eq. (9) into Eq. (8), the reduced Hamiltonians Ĥ+ and Ĥ− are expressed135

in terms of ĉk and ĉ†k as136

Ĥ+ (g, γ) =
∑
k∈k+

Ĥk (g, γ) ,

Ĥ− (g, γ) =
∑
k∈k−

Ĥk (g, γ) + Ĥ0 (g) + Ĥπ (g) ,
(13)

where137

Ĥk (g, γ) = 2
[
(g − cos (k))

(
ĉ†k ĉk − ĉ−kĉ†

−k

)
+ γ sin (k)

(
ĉ†k ĉ†
−k − ĉ−kĉk

)]
,

Ĥ0 (g) = (g − 1)
(
ĉ†0ĉ0 − ĉ0ĉ†0

)
,

Ĥπ (g) = (g + 1)
(
ĉ†πĉπ − ĉπĉ†π

)
.

(14)

We next make use of a Bogoliubov transformation, and define a new set of fermion operators γ̂k138

and γ̂†k given by139

γ̂k = ukĉk − ivkĉ†
−k, γ̂†k = ukĉ†k + ivkĉ−k, (15)

where the real numbers uk and vk satisfy uk = u−k, vk = −v−k and |uk|
2 + |vk|

2 = 1. The canonical140

anti-commutation relations for the operators ĉk and ĉ†k imply that the same relations are also sat-141

isfied by γ̂k and γ̂†k , that is,
{
γ̂k, γ̂

†

k′
}

= δk,k′ , and
{
γ̂†k , γ̂

†

k′
}

= {γ̂k, γ̂k′} = 0. By direct substitution of142

the Bogoliubov transformations into Eq. (13), after a some algebra, we obtain143

Ĥk (g, γ) = 2γ̂†k γ̂k
[
u2

k (cos (k) − g) + γ sin (k) ukvk
]

+ 2γ̂kγ̂
†

k

[
(cos (k) − g) v2

k − γ sin (k) ukvk
]

− iγ̂kγ̂−k
[
γ sin (k)

(
u2

k − v2
k

)
+ 2 (cos (k) − g) ukvk

]
− iγ̂†k γ̂

†

−k

[
γ sin (k)

(
u2

k − v2
k

)
+ 2 (cos (k) − g) ukvk

]
+ g.

(16)

The terms proportional to γ†kγ
†

−k and γkγ−k should vanish for the Hamiltonian to acquire a diagonal144

form. Writing uk = cos (ϑk/2) and vk = sin (ϑk/2), the Bogoliubov angles satisfy145

tan (ϑk) =
γ sin (k)

g − cos (k)
. (17)

5
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For numerical simulations, the last condition can be rewritten as γ sin (k)
{
u2

k − v2
k

}
+2 (cos (k) − g) ukvk =146

0. Finally, the Hamiltonian (13) can be rewritten as a sum of noninteracting terms147

Ĥ+ (g, γ) =
∑
k∈k+

εk (g, γ) (n̂k + n̂−k − 1) ,

Ĥ− (g, γ) =
∑
k∈k−

εk (g, γ) (n̂k + n̂−k − 1) + (g − 1) (2n̂0 − 1) + (g + 1) (2n̂π − 1) ,
(18)

with n̂k = γ̂†k γ̂k denoting the fermion number operator and εk (g, γ) = 2
√

(g − cos k)2 + γ2 sin2 k148

being the quasiparticle energy of mode k , 0, π per particle.149

2.1 Mathematical tools for the complete Hilbert space150

To simplify the presentation, we focus on the positive-parity subspace in this subsection. However,151

the methods presented are applicable in the negative-parity sector too. In order to keep the notation152

clear, we use the following conventions:153

• Hilbert spaces are denoted by letters in blackboard bold style, for example �k.154

• Operators are denoted by letters with a hat, such as Ôk and ĥki .155

• Operations on tensor products of Hilbert spaces are denoted with calligraphic letters P and156

N .157

To begin with, we note that the positive-parity Hilbert subspace�+ can be written as the tensor158

product of subspaces corresponding to each pair of momenta (k and −k)159

�
+ =

⊗
k∈k+

�k. (19)

Each subspace �k is the linear span of the vacuum and states involving one and two Fermionic160

excitations with a given momentum161

�k = span{|0〉k , ĉ
†

k ĉ†
−k |0〉k , ĉ

†

k |0〉k , ĉ
†

−k |0〉k}

= {|00〉k , |11〉k , |10〉k , |01〉k}, ∀ k ∈ k+.
(20)

Here, |0〉k is the vector annihilated by both ĉk and ĉ−k. Each of the subspaces can be divided into162

the sectors with even �(p)
k and odd �(n)

k number of excitations163

�
(p)
k = span{|0〉k , ĉ

†

k ĉ†
−k |0〉k} = {|00〉k , |11〉k},

�
(n)
k = span{ĉ†

−k |0〉k , ĉ
†

k |0〉k} = {|01〉k , |10〉k}.
(21)

Note that the dimension of the right hand side of equation (19) is equal to 4L/2 = 2L, as there are164

L/2 positive momenta and each corresponding subspace is four-dimensional. However, there is165

an additional condition in the positive-parity subspace: the parity operator Π̂ has eigenvalue +1.166

Thus, the subspace is only spanned by vectors associated with an even number of quasiparticles.167

We denote this subspace by P
(⊗

k∈k+ �k
)

168

P = P

⊗
k∈k+

�k

 = span

⊗
k∈k+

|ik jk〉 : ik, jk ∈ {0, 1},
∑
k∈k+

(ik + jk) is even

 . (22)

Similarly, we define the subspace spanned by odd number of quasi-particle excitations and denote169

it by N = N
(⊗

k∈k+ �k
)
. It is easy to see that both spaces P

(⊗
k∈k+ �k

)
and N

(⊗
k∈k+ �k

)
170

have dimension 2L−1 and satisfy171

�
+ = P

⊗
k∈k+

�k

 ⊕ N
⊗

k∈k+

�k

 . (23)

6
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For the positive-parity subspace only P is relevant; vectors in N have no physical meaning for172

the system described by the Hamiltonian Ĥ+. However, the spaces P and N (defined for proper173

momenta) exchange their roles for Ĥ−; see Eq. (18). These considerations suggest that to obtain174

correct results in the positive-parity subspace, it is sufficient to redefine the tensor product to take175

into account only vectors fromP. This can be done for states and observables. Before dealing with176

observables, we introduce an alternative recursive definition of the spaces P and N , equivalent177

to Eq. (22). We shall make use of it in deriving the exact partition function and characteristic178

functions of observables. We start by defining the subspaces for one momentum, see Eq. (21),179

P
(
�k1

)
= �

(p)
k1
, N

(
�k1

)
= �

(n)
k1
. (24)

Next, we specify how to construct spaces P and N when a mode with momentum kn+1 is added:180

P

 n+1⊗
i=1

�ki

 = P

 n⊗
i=1

�ki

 ⊗�(p)
kn+1
⊕ N

 n⊗
i=1

�ki

 ⊗�(n)
kn+1

, n ≥ 1,

N

 n+1⊗
i=1

�ki

 = N

 n⊗
i=1

�ki

 ⊗�(p)
kn+1
⊕ P

 n⊗
i=1

�ki

 ⊗�(n)
kn+1

, n ≥ 1.

(25)

The intuitive meaning of these equations is that in order to obtain an even number of excitations181

one has to add an even number of excitations to an even number, or an odd number of excitations182

to an odd number.183

184

We can extend these definitions for operators and density matrices. We assume that operators185

Ôk act independently on each subspace �k and each Ôk can be written as a sum of an even part186

Ô(p)
k and an odd part Ô(n)

k as187

Ôk = Ô(p)
k + Ô(n)

k , Ô(p)
k

∣∣∣∣∣
�

(n)
k

= 0, Ô(n)
k

∣∣∣∣∣
�

(p)
k

= 0. (26)

The operators Ô(p)
k and Ô(n)

k act on the total space�k, but have a 2×2 zero block 02 in the respective188

subspace. The proper restrictions of the tensor product of operators Ôk can be defined in a similar189

way as in Eqs. (24) and (25) for P
(
Ôk1

)
= Ô(p)

k1
and N

(
Ôk1

)
= Ô(n)

k1
, and are given by190

P

 n+1⊗
i=1

Ôki

 = P

 n⊗
i=1

Ôki

 ⊗ Ô(p)
kn+1

+N

 n⊗
i=1

Ôki

 ⊗ Ô(n)
kn+1

, n ≥ 1,

N

 n+1⊗
i=1

Ôki

 = N

 n⊗
i=1

Ôki

 ⊗ Ô(p)
kn+1

+ P

 n⊗
i=1

Ôki

 ⊗ Ô(n)
kn+1

, n ≥ 1.

(27)

Example 2.1: Even and odd parity parts of the Hamiltonian

For Ĥk given by Eq. (14), note that for a each mode kn the Hamiltonian can be rewritten as

Ĥk = P
(
Îk1 ⊗ Îk2 ⊗ . . . ⊗ ĥkn ⊗ . . . ⊗ ÎkL/2

)
,

where, in the basis {|00〉k , |11〉k , |01〉k , |10〉k},

ĥkn = 2


cos (kn) − g γ sin (kn) 0 0
γ sin (kn) g − cos (kn) 0 0

0 0 0 0
0 0 0 0

 .
Here, ĥ(n)

kn
is 4 × 4 zero matrix (with no odd part), and ĥ(p)

kn
= ĥkn .

191
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As the odd part of Hamiltonian is zero, the description using ordinary tensor products instead192

of over P is valid for pure states. However, the canonical thermal Gibbs state has a non-vanishing193

odd-parity contribution:194

Example 2.2: Even and odd-parity contributions to the exact Gibbs state

Consider the part of the thermal Gibbs state corresponding to momentum k:

ρ̂k = exp
(
−βĥk

)
. (28)

Using the expression for ĥk in the the basis {|00〉k , |11〉k , |01〉k , |10〉k},

ρ̂k = exp
[
−2β

(
cos(k) − g γ sin(k)
γ sin(k) g − cos(k)

)]
⊕ I2. (29)

Therefore, the even and odd parts read:

ρ̂
(p)
k = exp

[
−2β

(
cos(k) − g γ sin(k)
γ sin(k) g − cos(k)

)]
⊕ 02, ρ̂(n)

k = 02 ⊕ I2. (30)

Using the fact that ĥk has eigenvalues ±εk, we have:

Tr
(
ρ̂

(p)
k

)
= 2 cosh (βεk (g, γ)) , Tr

(
ρ(n)

k

)
= 2. (31)

195

Next, we state three propositions helpful in calculating the complete and exact expression of196

the partition function and the full counting statistics of observables:197

Proposition 2.3: Identities for product of operators

Consider two operators Ôk and R̂k acting independently on each subspace �k. Then, the
following identities are true for operator multiplication

P

 n⊗
i=1

Ôki

 P  n⊗
i=1

R̂ki

 = P

 n⊗
i=1

Ôki R̂ki

 ,
N

 n⊗
i=1

Ôki

 N  n⊗
i=1

R̂ki

 = N

 n⊗
i=1

Ôki R̂ki

 . (32)

198

The following proposition is useful in calculations involving Gibbs states and time-evolutions:199

Proposition 2.4: Identities for exponentials of operators

For every set of operators Ok acting on the subspace �k, the following identities for expo-
nents of operators hold:

exp

P  n⊗
i=1

Ôki

 = P

 n⊗
i=1

exp
(
Ôki

) ,
exp

N  n⊗
i=1

Ôki

 = N

 n⊗
i=1

exp
(
Ôki

) . (33)

200

Lastly, the use of traces turns out to be essential to determine expectation values of observables,201

and, more generally, their full counting statistics:202
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Proposition 2.5: Trace identities

Consider operators Ôk that act independently on each subspace �k. Then, the traces of the
restricted tensor products can be expressed as follows,

tr

P  n⊗
i=1

Ôki

 =
1
2

 n∏
i=1

tr
(
Ôki

)
+

n∏
i=1

(
tr

(
Ô(p)

ki

)
− tr

(
Ô(n)

ki

)) ,
tr

N  n⊗
i=1

Ôki

 =
1
2

 n∏
i=1

tr
(
Ôki

)
−

n∏
i=1

(
tr

(
Ô(p)

ki

)
− tr

(
Ô(n)

ki

)) . (34)

We present a proof ot Eq. (34) in the Appendix A.
203

Negative-parity subspace. In the negative-parity subspace, all formulas derived for the positive-204

parity subspace remain valid. In particular, for all momenta k , 0, π expressions from examples205

2.1, 2.2 apply. The only difference is that one has to treat carefully the parts of the Hilbert space206

associated with momenta 0 and π. They are spanned by the following bases:207

�0 = span{|0〉0 , ĉ†0 |0〉0},

�π = span{|0〉π , ĉ†π |0〉π}.
(35)

As a result, matrices describing the Hamiltonian and Gibbs state are 2 × 2 instead of 4 × 4. In the208

following example we give formulas for the even- and odd-parity parts of the Gibbs state in modes209

k = 0, π:210

Example 2.6: Even- and odd-parity parts of the exact Gibbs state for 0, π momenta

Using equation (16), the explicit form of the Gibbs state of the modes with momenta 0, π,
in the bases {|0〉0 , ĉ†0 |0〉0}, {|0〉π , ĉ†π |0〉π}, are respectively given by

ρ̂0 =

(
e−β(g−1) 0

0 eβ(g−1)

)
, ρ̂π =

(
e−β(g+1) 0

0 eβ(g+1)

)
. (36)

Thus, the corresponding even- and odd-parity parts read

ρ̂
(p)
0 =

(
e−β(g−1) 0

0 0

)
, ρ̂

(p)
π =

(
e−β(g+1) 0

0 0

)
, (37a)

ρ̂(n)
0 =

(
0 0
0 eβ(g−1)

)
, ρ̂(n)

π =

(
0 0
0 eβ(g+1)

)
. (37b)

211

In closing this section, we point out that when L is odd, the momenta 0 and π appear in the212

positive-parity subspace; the general formulas (24) and (26) are always valid.213

3 The Canonical Partition Function214

The partition function is a fundamental object in statistical mechanics from which all equilibrium215

thermal properties of a system can be derived. It further facilitates the study of critical phenomena216

through the study of its zeroes in the complex plane, know as Lee-Yang zeros [72].217

218

For its study, we consider a linear spin−1/2 chain described by Eq. (1). The system is prepared219

in a canonical thermal Gibbs state at finite inverse temperature β and characterized by the initial220

9
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density operator221

ρ̂Gibbs (β, g, γ) =
exp

(
−βĤ (g, γ)

)
Z (β, g, γ)

, (38)

where Z (β, g, γ) is the canonical partition function given by222

Z (β, g, γ) = tr
[
exp

(
−βĤ (g, γ)

)]
. (39)

In a Gibbs state, the system is in a mixture of positive- and negative-parity states and both sub-223

spaces should be taken into account. To this end, we consider the operator ρ̂ = exp
(
−βĤ

)
, where224

Ĥ is given by Eq. (1). According to the exact diagonalization (see Sec. 2), the total Hamiltonian225

can be mapped to a set of independent mode operators in each parity sector. For fixed even L , the226

operator ρ̂ is given by227

ρ̂ = exp
[
−β

(
Ĥ+Π̂+ + Ĥ−Π̂−

)]
= ρ̂+ ⊕ ρ̂−, (40)

where228

ρ̂+ = P

⊗
k∈k+

ρ̂k

 , ρ̂− = N

⊗
k∈k−

ρ̂k ⊗ ρ̂0 ⊗ ρ̂π

 , (41)

and ρ̂k are defined in Examples 2.2, with the sets k+ and k− given in Eq. (12). For these operators229

the corresponding reduced partition functions are230

Z+(β, g, γ) = tr

P
⊗

k∈k+

ρ̂k


 , and Z−(β, g, γ) = tr

N
⊗

k∈k−
ρ̂k ⊗ ρ̂0 ⊗ ρ̂π


 . (42)

For simplicity, we calculate Z+ and Z− separately, and focus on Z+ first. Using the formulas from231

Example 2.2, one finds232

tr (ρ̂k) = 2 cosh (βεk) + 2 = 4 cosh2
(
βεk

2

)
,

tr
(
ρ̂

(p)
k

)
− tr

(
ρ̂(n)

k

)
= 2 cosh (βεk) − 2 = 4 sinh2

(
βεk

2

)
.

(43)

Making use of the first identity in (34), we obtain an expression for canonical partition function233

in the positive-parity sector234

Z+ (β, g, γ) =
1
2

∏
k∈k+

22 cosh2
(
β

2
εk (g, γ)

)
+

∏
k∈k+

22 sinh2
(
β

2
εk (g, γ)

) . (44)

The computation of the negative-parity part of the partition function proceeds in the same way; we235

use the second of the trace identities (34) and the expressions from the example 2.1 to find236

Z− (β, g, γ) =
1
2

(
22 cosh (β (g + 1)) cosh (β (g − 1))

∏
k∈k−

22 cosh2
(
β

2
εk (g, γ)

)
− 22 sinh (β (g + 1)) sinh (β (g − 1))

∏
k∈k−

22 sinh2
(
β

2
εk (g, γ)

) )
.

(45)

Using (40), the exact partition is the sum of contributions of positive and negative parity: Z(β, g, λ) =237

Z+(β, g, γ) + Z−(β, g, γ). To sum up, one can rewrite exact partition function in closed-form.238
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Summary 3.1: Exact partition function for spin- 1
2 XY model

Z (β, g, γ) =
1
2

( ∏
k∈K+

2 cosh
(
β

2
εk (g, γ)

)
+

∏
k∈K+

2 sinh
(
β

2
εk (g, γ)

)
+

∏
k∈K−

2 cosh
(
β

2
εk (g, γ)

)
−

∏
k∈K−

2 sinh
(
β

2
εk (g, γ)

) )
,

(46)

where

εk (g, γ) = 2
√

(g − cos (k))2 + (γ sin (k))2, εk=0 = 2(g − 1), εk=π = 2(g + 1). (47)
239

In this expression the products run over all momenta, not only those with non-negative values.240

In general, the total partition function can be represented as the sum of four contributions,241

Z (β, g, γ) =
1
2

[
Z+

F (β, g, γ) + Z−F (β, g, γ) + Z+
B (β, g, γ) − Z−B (β, g, γ)

]
(48)

where Z±F (β, g, γ) =
∏

k∈K± 2 cosh (βεk (g, γ) /2) and Z±B (β, g, γ) =
∏

k∈K± 2 sinh (βεk (g, γ) /2) are242

the “Fermionic” and “boundary” contributions. The first term, which takes only into account243

Fermionic and positive-parity contribution is the only term considered in the PPA, widely used in244

the literature as the correct approximation in the limit N → ∞ [1, 44, 59, 60, 62, 64]245

Summary 3.2: PPA partition function

ZPPA(β, g, γ) = Z+
F(β, g, γ) =

∏
k∈K+

2 cosh
(
β

2
εk (g, γ)

)
. (49)

246

In the isotropic case with γ = 0, the exact partition function admits a more compact expres-247

sion [73] but this limit lies outside the Ising universality class, our primary focus. The complete248

expression for the partition function 3.1 was first derived with the aid of creation and annihilation249

operators by Katsura [63]. An alternative approach has been reported using Grassmann variables,250

without a numerical characterization [65]; see as well [45].251

Figure 1: Comparison of the exact and PPA canonical partition functions. The ratio between
the total partition function 3.1 and the PPA Eq. (49) is shown in the β-g plane for finite system size
L = 50, 100, 5000, 10000, increasing from left to right (anisotropic parameter γ = 1). Significant
differences appear close to the critical point g = gc = 1, with the magnitude of Z+

F(β, g, γ) deviating
by 50% from the exact partition function. The paramagnetic phase is correctly reproduced by the
simplified approximation g > gc while errors in the partition function are shown in red in the
ferromagnetic phase at low temperatures.
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It is thus natural to analyze the extent to which the PPA Z+
F(β, g, γ) provides a valid approxi-252

mation to the exact partition function.253

Fig. 1 shows the difference between the ratio Z+
F (β) /Z (β) as a function of the inverse of tempera-254

ture and the magnetic field. The error is negligible away from criticality and at high temperatures.255

However, prominent discrepancies between the exact partition function 48 and the ubiquitously-256

used PPA (49) are manifested in the neighborhood of the critical point in the regime of low-257

temperatures, which is often times the regime studied and of interest. Indeed, in this region errors258

reach sufficiently large values such that Z+
F(β, g, γ) ≈ 0.5 Z (β, g, γ).259

One can provide a simple and intuitive explanation of the magnitude of this discrepancy by260

considering the structure of the spectrum. The complete spectrum consists of two disjoint “lad-261

ders” of levels, spanning the positive-parity and negative-parity subspaces. In the following anal-262

ysis we denote by Eα
g and |gα〉 the lowest energy level and the corresponding eigenstate in the263

subspace of parity α = ±. The diagonalization procedure of the Ising model yields explicit formu-264

las for these eigenvalues. For even number of spins [74]265

E+
g = −

∑
k∈k+

εk,

E−g = −
∑
k∈k−

εk − 2.
(50)

The corresponding eigenstates read266

|g+〉 =
∏
k∈k+

(cos(ϑk/2) − sin(ϑk/2)ĉ†k ĉ†
−k) |vac〉 ,

|g−〉 = c†0
∏
k∈k−

(cos(ϑk/2) − sin(ϑk/2)ĉ†k ĉ†
−k) |vac〉 ,

(51)

where |vac〉 is annihilated by all ĉk for k ∈ K+ ∪ K− (including 0 and π modes). In what follows,267

we restrict ourselves to the TFQIM (γ = 1). In the TFQIM with even number of spins L, the true268

ground state always lies in the positive-parity subspace (this is not necessary true in the XY model,269

see [75]). The energy gap δ(g) between these two lowest energy states plays a crucial role. We270

recall its asymptotic behavior [74]271

δ(0 < g < 1) = O
[
∼ exp (−L/ξ(g))

]
,

δ(g = 1) = 2tan
[
π

4L

]
≈

π

2L
,

δ(g > 1) = 2g − 2 + O
(
g−L

)
,

(52)

where ξ(g) denotes the correlation length. In the low temperature regime, the Gibbs state is ef-272

fectively spanned by the two lowest energy states, |g〉+ and |g〉−. In this truncation, the partition273

function and Gibbs state read274

Zapprox(β, g) = e−βE+
g + e−βE−g , (53)

275

ρGibbs(β, g) ≈
1

Zapprox(β, g)

(
e−βE+

g |g+〉 〈g+| + e−βE−g |g−〉 〈g−|
)
. (54)

This low-temperature two-level approximation relies on (51) and disregards the contribution from276

higher excited states, that are energetically separated from |g+〉 and |g−〉. The energy gap to the next277

excited state can be calculated as the energy of a single-particle excitation in the positive-parity278

subspace, which sufficiently far from the critical point is estimated by279

∆(g) = 4

√
g2 − 2g cos

(
π

L

)
+ 1 = 4|g − 1| + O

(
1
L2

)
, g > 0, g , 1, (55)

12
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Figure 2: Ratio between the low-temperature approximation and exact partition functions as a
function of the inverse temperature. The accuracy of the two-level approximation (53) is consid-
ered for different values of the transverse magnetic field g and two different system sizes. As the
energy gaps δ(g) and ∆(g) in the neighbourhood of gc = 1 are comparable, a lower temperature is
required to obtain a desired level of accuracy. For given β, the accuracy decreases with increasing
system size.

while at the critical point, this gap behaves as280

∆(g = 1) ≈
4π
L
. (56)

In the ferromagnetic phase, the first excited state is separated from the ground state by an expo-281

nentially vanishing gap and the second excited state lies far away from both of them. Therefore,282

the correction from high-energy states is negligible in the low temperature limit β∆(g) � 1. Sim-283

ilarly, in the paramagnetic phase, the ground state is energetically separated from all the excited284

states. At the critical point the two lowest excited states are separated from the ground state by a285

comparable gap,286

∆(g = 1)
δ(g = 1)

−−−−→
L→∞

1
8
. (57)

However, for large β the error is very small. The accuracy of the the two-level approximation for287

different phases is shown in Fig. 2. The validity of this approximation (53) explains the magnitude288

of the errors between the exact and the PPA partition functions shown in Fig. 1. For g < 1, the289

simplified partition function takes into account only the ground state |g+〉 and can be approximated290

by e−βE+
g , while the complete partition function is approximately291

Zapprox(β, g) ≈ e−βE+
g + e−βE−g ≈ 2e−βE+

g . (58)

This explains the observed error of about 50% between the exact and PPA partition functions.292

4 Full Counting Statistics in Integrable Spin Chains293

The characterization of a given observable in a quantum system generally relies on the study of its294

expectation value. To determine it, experiments often collect a number of measurements, and build295

a histogram, from which the eigenvalue distribution is estimated. The full counting statistics of an296

observable focuses on the complete eigenvalue distribution. Its study has proved useful in a wide297

variety of applications and alternative methods for its measurement have been put forward [76]. A298

prominent example concerns the counting statistics of the number of fermions (electrons) travers-299

ing a point contact in a wire, that is described by the Levitov-Lesovik formula [77–79]. Dis-300

tributions of other observables such as the total energy play a key role in quantum chaos [80]301
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and the statistics of related positive-operator valued measures (POVMs, such as work) are at the302

core of fluctuation theorems in quantum thermodynamics [81]. In the context of spin chains, the303

distribution of the order parameter has long been recognized as a probe for criticality and turbu-304

lence [82–90]. Further, the study of the full counting statistics of quasiparticles and topological305

defects has been key to uncover universal dynamics of phase transitions beyond the paradigmatic306

Kibble-Zurek mechanism [16, 27–30, 91].307

308

The full counting statistics is characterized by the probability P (ω) to obtain the eigenvalue ω309

of a general operator Ŵ. It is defined as the expectation value310

P (ω) =

〈
δ
(
Ŵ − ω

) 〉
, (59)

where the δ function is to be interpreted as a Kronecker or Dirac delta function, depending on311

whether the spectrum of Ŵ is point-wise or continuous. The angular bracket denotes the quantum312

expectation value with respect to a general state characterized by a density matrix ρ̂. We introduce313

the Fourier transform representation314

P (ω) =
1

2π

∫ ∞

−∞

dθP̃ (θ) exp (−iθω) , (60)

where P̃ (θ) is the characteristic function given by315

P̃ (θ) = tr
[
ρ̂ exp

(
iθŴ

)]
. (61)

In cases such as the kink number and the transverse magnetization, the eigenvalues are integers316

ω ∈ Z and the range of the integral can be restricted from −π to π. The characteristic function is317

also known as the moment generating function, as it allows to directly compute the mean value318

and higher-order moments of a given observable Ŵ according to319

〈Ŵm〉 =
1
im

dm

dθm P̃(θ)
∣∣∣∣∣
θ=0
. (62)

Further, its logarithm is the cumulant generating function used to derive the cumulants of the320

distribution through the identity321

κm = (−i)m dm

dθm ln P̃(θ)
∣∣∣∣∣
θ=0
. (63)

The first cumulant κ1 is just the mean value, κ2 is the variance, and κ3 coincides with the third322

central moment. Cumulants are useful in characterizing fluctuations in a quantum system. For323

example, since the only distribution with finite κ1, κ2 , 0 and vanishing κm = 0 for m > 2 is the324

Gaussian distribution, higher cumulants quantify non-normal features of the distribution of inter-325

est, e.g., an eigenvalue distribution.326

327

We next derive the general form of characteristic function for a wide class W of observables.328

This class is defined by the property that any operator Ŵ ∈ W, in each parity subspace, can be329

written in the form330

Ŵ =
∑

k

Ŵk, (64)

where331

Ŵk = Ψ̂
†

kŵkΨ̂k, Ψ̂† =
(
ĉ−k, ĉ†k , ĉk, ĉ†

−k

)
(65)

and the matrix ŵk has the block-diagonal form332

ŵk =

 ŵ(1)
k 0
0 ŵ(2)

k

 . (66)
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Here, ŵ(1)
k and ŵ(2)

k are 2×2 are matrices for momenta different from 0, π and 1×1 matrices for 0, π333

momenta. We point out that the notation in equations (65, 66) is compatible with matrix expres-334

sions from Examples 2.1, 2.2, written in the basis {|00〉k , |11〉k , |01〉k , |10〉k}. When off-diagonal335

blocks vanish, the operator Ŵk can be written as a quadratic form in Fermionic operators. How-336

ever, there are relevant observables which have components linear in Fermionic operators. For337

example, the longitudinal magnetizations Xi or Yi do not belong to the classW as these observ-338

ables mix the subspaces with different parities. This leads to severe difficulties. Namely, one has339

to switch between fermionic operators defined for different sets of momenta. For example, for a340

given k ∈ K− one has to perform inverse Fourier transform to express ck as a linear combination341

of fermionic operators in space domain, and then apply Fourier transform with K+ as a set of342

momenta. This will cause, that subspaces with different momenta will be all intertwined, con-343

trary to the basic feature exploited in the systems with periodic boundary conditions - that one can344

perform calculations independently for every momentum. The treatment of such operators is thus345

beyond the scope of this paper. The systematic treatment of longitudinal magnetization in zero346

temperature for Ising model with PBC was conducted in [93], with further extensions including347

observables involving three fermionic operators in [89]. For other approaches, see for example348

[92] (open boundary conditions) or [61] (exploiting methods of field theory).349

350

In the following we present the detailed procedure for computing characteristic function P̃ (θ)351

of a given observable Ŵ in the classW.352

1. First, we fix the state ρ̂ to be the thermal-equilibrium Gibbs state, ρ̂ = ρ̂Gibbs given by353

equation (38). Then, using formulas from Section 2 we can diagonalize the even-parity part354

of ρ̂k355

exp
[
−2β

(
cos(k) − g γ sin(k)
γ sin(k) g − cos(k)

)]
= Ŝ †k diag

(
e−βεk(g,γ), eβεk(g,γ)

)
Ŝ k, (67)

where356

Ŝ k =

 cos
(
ϑk
2

)
sin

(
ϑk
2

)
sin

(
ϑk
2

)
− cos

(
ϑk
2

)  (68)

and the angle ϑk satisfies357

cos (ϑk) =
2(cos(k) − g)
εk(g, γ)

, sin (ϑk) =
2γ sin(k)
εk(g, γ)

. (69)

2. As in the case of the partition function, it is convenient to separate in the full characteristic358

function the contributions of positive and negative parity:359

P̃ (θ) =
1

Z(β, g, γ)

(
P̃+ (θ) + P̃− (θ)

)
. (70)

Using Propositions 2.3 and 2.4, we aim at calculating360

P̃+ (θ) = tr

P
⊗

k∈k+

ρ̂k exp (iθŵk)


 , P̃− (θ) = tr

N
⊗

k∈k−
ρ̂k exp (iθŵk)


 . (71)

Next, we define the matrix361

σ̂k = Ŝ k exp
(
iθŵ(1)

k

)
Ŝ †k . (72)

Denoting the eigenvalues of ŵ(2)
k by µk and λk we find362

tr
[
ρ̂k exp (iθŵk)

]
= σ̂11

k e−βεk(g,γ) + σ̂22
k eβεk(g,γ) + eiθµk + eiθλk ,

tr
[
ρ̂

(p)
k exp

(
iθŵ(p)

k

)]
− tr

[
ρ̂(n)

k exp
(
iθŵ(n)

k

)]
= σ̂11

k e−βεk(g,γ) + σ̂22
k eβεk(g,γ) − eiθµk − eiθλk .

(73)
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Using Proposition 2.5 we obtain363

2P̃+ (θ) =
∏
k∈k+

(
σ̂11

k e−βεk(g,γ) + σ̂22
k eβεk(g,γ) + eiθµ + eiθλ

)
+

∏
k∈k+

(
σ̂11

k e−βεk(g,γ) + σ̂22
k eβεk(g,γ) − eiθµ − eiθλ

)
.

(74)

3. To determine P̃−(θ) it remains to compute the contributions corresponding to 0, π momenta.364

Denoting365

ŵ0 = diag
(
w1

0, w2
0

)
, ŵπ = diag

(
w1
π, w2

π

)
, (75)

one finds366

ρ̂0 exp (iθŵ0) = diag
(
eβ(g−1)+iθw1

0 , e−β(g−1)+iθw2
0
)
,

ρ̂π exp (iθŵπ) = diag
(
eβ(g+1)+iθw1

π , e−β(g+1)+iθw2
π

)
.

(76)

Therefore, the negative-parity part of the characteristic function is367

2P̃− (θ) =P̃F(θ)
∏
k∈k−

(
σ̂11

k e−βεk(g,γ) + σ̂22
k eβεk(g,γ) + eiθµ + eiθλ

)
− P̃B(θ)

∏
k∈k−

(
σ̂11

k e−βεk(g,γ) + σ̂22
k eβεk(g,γ) − eiθµ − eiθλ

)
,

(77)

where368

P̃F(θ) =
(
eβ(g−1)+iθw1

0 + e−β(g−1)+iθw2
0
) (

eβ(g+1)+iθw1
π + e−β(g+1)+iθw2

π

)
,

P̃B(θ) =
(
eβ(g−1)+iθw1

0 − e−β(g−1)+iθw2
0
) (

eβ(g+1)+iθw1
π − e−β(g+1)+iθw2

π

)
.

(78)

Note that this is not the only way to calculate the characteristic function: instead of diagonalizing369

ρ̂k, one could diagonalize an observable ŵk. However, in our approach the role of the Boltzmann370

factor set by βεk(g, γ), which is usually dominant, is clear from the formulas (74) and (77). In371

the following sections we apply this method to characterize the full counting statistics of two372

physically important observables, the number of kinks and the transverse magnetization.373

4.1 Probability distribution of the number of kinks at thermal equilibrium374

We next derive the full generating function for the kink-number operator, which is of fundamental375

importance in the study of quantum phase transitions [12, 16, 27–30]. Although the relevance376

of this operator is most apparent in the Ising model, it is also well-defined for the general XY377

model. In the following, we consider the TFQIM with γ = 1 for simplicity. The explicit form of378

kink-number operator reads379

N̂ =
1
2

L∑
n=1

(
1 − X̂n X̂n+1

)
, (79)

with eigenvalues n = 0, 1, . . . , L under periodic boundary conditions.380

Comparing the Ising Hamiltonian Eq. (1), with γ = 1 and g = 0, with the Bogoliubov Hamil-381

tonian (18) at γ = 1 and g = 0, the kink operator takes a simple form as the sum of the number382

operators of quasiparticles in each momentum [12]. Here, we generalize the kink number operator383

definition for all values of the magnetic field. First, we rewrite the operator (79) in the following384

form:385

N̂ =
L
2

+
∑

k

N̂k. (80)
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By analogy with Eq. (65) and Eq. (66), we define a new set of operators n̂k, n̂0, and n̂π; taking for386

any mode k , 0, π the basis given by {|00〉k , |11〉k , |01〉k , |10〉k}, while selecting for 0, π momenta387

the basis {|0〉0 , c
†

0 |0〉0}, {|0〉π , c
†
π |0〉π}. Therefore, we define the operators388

n̂k =


cos (k) sin (k) 0 0
sin (k) − cos (k) 0 0

0 0 0 0
0 0 0 0

 , n̂0 =

( 1
2 0
0 − 1

2

)
n̂π =

(
− 1

2 0
0 1

2

)
, (81)

and thus389

n̂(1)
k =

(
cos (k) sin (k)
sin (k) − cos (k)

)
, n̂(2)

k = 02. (82)

Note that exp
(
iθn̂(1)

k

)
has the simple form390

exp
(
iθn̂(1)

k

)
=

(
cos(θ) + i sin(θ) cos(k) i sin(θ) sin(k)

i sin(θ) sin(k) cos(θ) − i sin(θ) cos(k)

)
. (83)

Using expressions (68) and (72), one finds391

σ11
k = cos(θ) + i sin(θ) cos(k − ϑk),

σ22
k = cos(θ) − i sin(θ) cos(k − ϑk).

(84)

This yields the explicit expression of the full characteristic function of the kink-number operator.392

Summary 4.1: Full characteristic function for kink number operator

The full characteristic function of the kink number operator Eq. (79) at thermal equilibrium
reads

P̃ (θ) =
1

Z(β, g, γ)

[
P̃+ (θ) + P̃− (θ)

]
. (85)

Positive part of characteristic function:

P̃+ (θ) =
exp (iLθ/2)

2

[ ∏
k∈k+

2 (cos(θ) cosh[βεk(g, γ)] − i sin(θ) sinh[βεk(g, γ)] cos(k − ϑk) + 1)

+
∏
k∈k+

2 (cos(θ) cosh[βεk(g, γ)] − i sin(θ) sinh[βεk(g, γ)] cos(k − ϑk) − 1)
]
.

(86)

Negative part of characteristic function:

P̃− (θ) =
exp (iLθ/2)

2

[
P̃F(θ)

∏
k∈k−

2 (cos(θ) cosh[βεk(g, γ)] − i sin(θ) sinh[βεk(g, γ)] cos(k − ϑk) + 1)

−P̃B(θ)
∏
k∈k−

2 (cos(θ) cosh[βεk(g, γ)] − i sin(θ) sinh[βεk(g, γ)] cos(k − ϑk) − 1)
]
,

(87)

where

P̃F(θ) = 22 cosh
(
βεk=0 + iθ

2

)
cosh

(
βεk=π − iθ

2

)
,

P̃B(θ) = 22 sinh
(
βεk=0 + iθ

2

)
sinh

(
βεk=π − iθ

2

)
.

(88)

The exact total partition function is given by Eq. (48), with the eigenenergies εk (g, γ) and
εk=0 given by Eq. (47), and the Bogoliubov angles ϑk satisfying Eq. (17).

393
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By contrast, in the customary PPA, the characteristic function of the kink-number operator in394

the thermodynamic limit contains only the first term of P̃+(θ):395

396

397

Summary 4.2: PPA characteristic function for kink number

In the thermodynamic limit, Eq. (85) reduces to

P̃PPA(θ) =
exp (iLθ/2)
Z+

F(β, g, γ)

∏
k∈k+

2 (cos(θ) cosh(βεk(g, γ)) − i sin(θ) sinh(βεk(g, γ)) cos(k − ϑk) + 1) ,

(89)
where Z+

F(β, g, γ) is defined in (49).
398

Figure 3: Kink-number distribution at thermodynamic equilibrium. Probability distribution
of the number of kinks P(n) as a function of the magnetic field g and temperature T for a chain of
L = 50 spins. The exact probability distribution Eq. (85) (red bars) is compared with the simplified
expression in Eq. (89) (blue bars). Only in the low-temperature paramagnet the PPA is accurate.
Further, the normal (Gaussian) approximation to the histograms is also shown (dashed lines).

In Figure 3, we characterize the full counting statistics of kinks as a function of the magnetic399

field and inverse temperature. By numerical integration of Eq. (60), we find the exact probability400

distribution function P (n) using Eq. (85). Additionally, we evaluate the PPA probability distribu-401

tion function using Eq. (89). The use of the PPA partition functions is widely extended in the liter-402

ature, e.g., to analyze the formation of kinks after non-equilibrium quenches [1,44,59,60,62,64].403

For a large magnetic field and low temperature, the PPA works well and reproduces essentially404

the exact full counting statistics of kinks. By contrast, when thermal fluctuations are suppressed405

and the magnetic field contribution dominates, the PPA leads to pronounced discrepancies (i.e.406

see Fig. 3 lower-left panels). The PPA also fails to account for momentum conservation. Under407

periodic boundary conditions, kinks appear in pairs. In general, the PPA incorrectly predicts a408

non-zero probability of exciting odd number of kinks:409

PPPA (n = 2` + 1) =
1

2π

∫ π

−π
dθP̃ (θ) exp [−iθ(2` + 1)] , 0, (90)

but for large g and β as shown in 3, when PPPA (n = 2` + 1) ≈ 0.410

The fact that only even number of kinks in the presence of periodic boundary conditions411

can be excited is intuitively clear. For a simple mathematical argument, consider the operator412
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∏L
n=1 X̂nX̂n+1 which is 1 for even kink number and −1 for an odd number. Using X̂L+1 = X̂1 and413 (

X̂n
)2

=
⊗L

n=1 În, it satisfies:414

L∏
n=1

X̂nX̂n+1 = 1. (91)

The PPA characteristic function, P̃+(θ) and P̃−(θ) do not exhibit this feature.415

416

In addition, we note that the magnitude of the exact P(n) for even n can be approximated by417

the coarse-grained PPA approximation, whenever the distribution is symmetric, with tails far from418

the origin, i.e.,419

P (n) ≈ PPPA (n) +
1
2

[PPPA (n − 1) + PPPA (n + 1)] , (92)

as shown in Figure 4.

Figure 4: Exact and Coarse-grained PPA kink-number probability distributions at thermal
equilibrium. The exact kink-number probability distribution evaluated using Eq. (85) (red) is
compared with the coarse-grained PPA probability distribution Eq. (92) (blue). The numerical
histograms are compared with the Gaussian N(κ1, κ2) with fitted numerical values for κ1 and κ2
(dashed lines). In as much as the exact distribution is symmetric and its left tail is negligible
near the origin, the coarse-graining of the PPA distribution in Eq. (92) reproduces accurately the
exact distribution. Deviations are manifested at low g and temperature, when the distribution is
asymmetric.

420

An analysis of the cumulants of the kink-number distribution as a function of the inverse421

temperature is presented in Fig. 5 for various system sizes. In the paramagnetic phase (g >422

1), the mean always exceeds the variance, making the kink-number distribution sub-Poissonian.423

This need not be the case in the ferromagnetic phase, where the distribution changes from sub-424

Poissonian to super-Poissonian as the temperature decreases. This behavior is shown to be robust425

as a function of the system size. The difference between the exact cumulant values and those426

derived from the PPA is systematically studied in Fig. 6 for a system size of L = 12 spins;427

the relative error is reduced with increasing system size. The quality of the PPA improves with428

increasing temperature, in the classical regime, in the ferromagnetic phase. While the dependence429
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Figure 5: Cumulants of the kink-number distribution as a function of the inverse of tempera-
ture β. Using the exact characteristic function given by Eq. (85), the mean kink number κ1 and the
variance κ2 are shown by red circles and blue squares, respectively. The dashed lines correspond
to the numerical results using the PPA characteristic function in Eq. (89). While in the param-
agnetic phase the statistics is sub-Poissonian, in the ferromagnetic phase it changes from sub- to
super-Poissonian as the temperature is decreased. The magnetic field is increased from 0.0 to 2.0,
varying from left to right in steps of 0.5. In the upper panels, the system size is L = 12, while in
the lower ones L = 100.

of the relative error as a function of the magnetic field g is not monotonic, the bigger discrepancies430

between the exact results and the PPA are found in the ferromagnetic phase in the low temperature431

regime, when the relative error can reach 100%. In the paramagnetic phase, the PPA provides an432

accurate description of the cumulants for different temperatures and values of the magnetic field.433

To complete the characterization of the kink-number distribution we consider the limiting434

cases of the ground-state distribution (β → ∞) and the infinite-temperature case (β → 0) in an435

exact approach, without using the PPA. The first can be easily described using (83), while in the436

second we consider a maximally-mixed Gibbs state and apply trace formulas 2.5. For β = 0, the437

exact result and the PPA coincide.438

Summary 4.3: Limiting cases of kink number distribution

Exact ground-state characteristic function of the kink-number distribution:

P̃β→∞(θ) = exp(iLθ/2)
∏
k∈k+

(cos θ − i sin θ cos(k − ϑk)). (93)

Exact infinite-temperature characteristic function of the kink-number distribution:

P̃β→0(θ) = exp(iLθ/2)
(
cosL θ

2
+ (−1)L/2 sinL θ

2

)
. (94)

439

Instances of the corresponding distributions are shown in Fig. 7 for the (pure) ground-state440

as a function the magnetic field. For g = 0 one finds a Kronecker delta distribution centered at441

n = 0, with P(0) = 1 and P(n) = 0 for n > 1, as expected. As the magnetic field is cranked442

up, the distribution broadens and gradually shifts away from the origin, becoming approximately443

symmetric in the paramagnetic phase.444

The right panel in Fig. 7 also shows the corresponding distribution in the infinite-temperature445

case, that is symmetric, centered at n = L/2 and independent of the transverse magnetic field g,446

as can be seen from Eq. (94). In fact, full probability distribution for infinite temperature can447

be found by a combinatorial argument. Working in the basis of eigenstates of σx
i in each site,448

the probability of obtaining n = 2l kinks is related to the number of basis vectors with 2l spin449
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Figure 6: Relative error for the first two cumulants of the kink-number distribution as a
function of magnetic field g. Using the full characteristic function in Eq. (85) and the PPA
characteristic function Eq. (89), the relative error is evaluated as a function of the magnetic field
for a system size L = 12 and different temperatures.

flips, where we use the fact that an even number of kinks is enforced by boundary conditions.450

One can choose the location of 2l kinks in the chain in 2
(

L
2l

)
ways. Therefore, the full probability451

distribution has the form:452

Pβ→0(n = 2l) =
1

2L−1

(
L
2l

)
, l = 0, 1, . . .

L
2
. (95)

The corresponding cumulant values read453

κ1 =
L
2
, κ2 =

L
4
, κ3 = 0, κ4 = −

L
8
, κ5 = 0, κ6 =

L
4
, . . . (96)

By keeping the first two cumulants and setting the rest to zero, Pβ→0(n = 2l) can be approximated454

by a Gaussian distribution N(κ1, κ2) with mean κ1 = L/2 and variance κ2 = L/4. As shown in Fig.455

7 this approximation describes the envelope of the distribution with great accuracy.456

4.2 Probability distribution for the transverse magnetization at thermal equilib-457

rium458

We next focus on the derivation of the explicit form of the characteristic function of the transverse459

magnetization460

M̂ =

L∑
n=1

Ẑn, (97)
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Figure 7: Limiting cases of kink number distribution. Probability distribution of the number of
kinks P(n) as a function of the magnetic field g and inverse temperature β for a chain of L = 50
spins. The left panel shows the kink-number distribution for different values of the magnetic field
and is obtained using the ground-state characteristic function Eq. (93). The right panel shows
the kink number distribution at infinity temperature, computed using the characterization function
given by Eq. (94). The vertical dashed red line is located at κ1 = L/2, while the long-dashed black
line corresponds to the Gaussian approximation N(L/2, L/4).

with eigenvalues m = −L,−L + 2, . . . , L − 2, L for even L. The latter has been studied in the PPA461

and continuous approximations and finds broad applications in the characterization of quantum462

critical behavior [82–86, 88, 89] and the identification of various many-body states in ultracold-463

atom quantum simulators [87].464

In the Fourier representation, it is the sum of two different contributions:465

M̂+ =
∑
k∈k+

2(ĉkĉ†k − ĉ†k ĉk), M̂− =
∑
k∈k−

2(ĉkĉ†k − ĉ†k ĉk) + ĉ0ĉ†0 − ĉ†0ĉ0 + ĉπĉ†π − ĉ†πĉπ. (98)

In parallel with Eq. (81), we define a new set of a single-mode operators m̂k, m̂0, and m̂π,466

m̂k =


2 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 0

 , m̂(1)
k =

(
2 0
0 −2

)
, m̂(2)

k = 02. (99)

In addition, in the negative-parity sector, the matrix m̂k has the same form for the momenta 0, π467

that is given by m̂0 = m̂π = diag (1,−1). We can easily compute exp
(
iθm̂(1)

k

)
and the σ̂k matrix to468

obtain469

σ̂(11)
k = cos(2θ) + i cos(ϑk) sin(2θ),

σ̂(22)
k = cos(2θ) − i cos(ϑk) sin(2θ).

(100)
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Summary 4.4: Full generating function of transverse magnetization

The full characteristic function for the transverse magnetization Eq. (97) at thermal equi-
librium reads

P̃ (θ) =
1

Z(β, g, γ)

(
P̃+ (θ) + P̃− (θ)

)
. (101)

Positive part of characteristic function:

P̃+ (θ) =
1
2

[ ∏
k∈k+

2 (cos(2θ) cosh(βεk(g, γ)) − i sin(2θ) sinh(βεk(g, γ)) cos(ϑk) + 1)

+
∏
k∈k+

2 (cos(2θ) cosh(βεk(g, γ)) − i sin(2θ) sinh(βεk(g, γ)) cos(ϑk) − 1)
]
.

(102)

Negative part of characteristic function:

P̃− (θ) =
1
2

[
P̃F(θ)

∏
k∈k−

2 (cos(2θ) cosh(βεk(g, γ)) − i sin(2θ) sinh(βεk(g, γ)) cos(ϑk) + 1)

−P̃B(θ)
∏
k∈k−

2 (cos(2θ) cosh(βεk(g, γ)) − i sin(2θ) sinh(βεk(g, γ)) cos(ϑk) − 1)
]
,

(103)

with

P̃F(θ) = 22 cosh
(
βεk=0 + 2iθ

2

)
cosh

(
βεk=π + 2iθ

2

)
,

P̃B(θ) = 22 sinh
(
βεk=0 + 2iθ

2

)
sinh

(
βεk=π + 2iθ

2

)
.

(104)

The exact partition function is given by Eq. (48), with the eigenenergies εk (g, γ) and εk=0
given by Eq. (47), and the Bogoliubov angles ϑk satisfying Eq. (17).

470

By contrast, in the PPA, the characteristic function of the transverse magnetization in the ther-471

modynamic limit contains only the first term of P̃+(θ):472

473

474

Summary 4.5: PPA characteristic function for transverse magnetization

In the thermodynamic limit, Eq. (101) reduces to

P̃PPA(θ) =
1

2Z+
F(β, g, γ)

∏
k∈k+

2 (cos(2θ) cosh(βεk(g, γ)) − i sin(2θ) sinh(βεk(g, γ)) cos(ϑk) + 1) ,

(105)
where Z+

F(β, g, γ) is defined in (49).
475

The magnetization distribution is shown in Fig. 8 for different values of g and β for a fixed476

system size L = 50. The distribution P(m) vanishes for odd values of m for even L. It is naturally477

symmetric for g = 0 and approximately so for finite g in the high-temperature case at low magnetic478

fields, when it approaches a binomial distribution. The accuracy of the PPA is remarkable as a479

function of g and β with discrepancies being noticeable in the pure ferromagnet (g = 0) at low480

temperature. As the magnetic field is cranked up at constant β, the alignment of the spins is favored481

shifting the mean and increasing the negative skewness of the distribution in the paramagnetic482

phase.483
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Figure 8: Magnetization distribution at thermodynamic equilibrium. Probability distribution
of the transverse magnetization P(m) for different values of the magnetic field g and inverse tem-
perature β in a chain of L = 50 spins. The exact probability distribution Eq. (101) (red bars) is
compared with the simplified expression in Eq. (105) (blue bars).

Figure 9 provides a systematic characterization of the first two cumulants as a function of484

the inverse temperature for different values of g. In contrast with the kink-number distribution,485

in the ferromagnetic phase the variance always exceeds the mean, and thus the magnetization486

distribution remains super-Poissonian. In the paramagnetic phase, at any fixed value of g the487

variance decreases with temperature, while the converse is true for the mean magnetization. As a488

result, the character of the distribution changes from super-Poissonian to sub-Poissonian as the the489

temperature is lowered. The behavior of P(m) is shown to be robust as a function of the system490

size, with discrepancies between the exact results and the PPA being restricted to the critical point.491

The relative error of the PPA remains below 10% as a function of g and β as shown in Fig. 10.492

As in the case of kink number distribution, we close with a characterization of the magnetiza-493

tion distribution in the limits of infinite and vanishing inverse temperature β.494

Summary 4.6: Limiting cases of transverse magnetization distribution

Exact ground-state characteristic function of transverse magnetization:

P̃β→∞(θ) =
∏
k∈k+

(cos 2θ − i sin 2θ cosϑk). (106)

Exact infinite-temperature characteristic function of transverse magnetization:

P̃β→0(θ) = cosL θ. (107)
495

The behavior of the ground-state magnetization distribution is the reverse of the kink-number496

distribution in the sense that it becomes approximately symmetric in the ferromagnetic phase and497

sharply peaked at m = L in the paramagnetic phase. Using formulas (106) and (63), one can find498

the first cumulants of the ground-state distribution explicitly. In particular, the first few cumulants499
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Figure 9: Cumulants of the magnetization distribution as a function of the inverse of temper-
ature β. Using the full characteristic function given by Eq. (101), the mean value of the transver-
sal magnetization κ1 and the variance κ2 are shown by red circles and blue squares, respectively.
The dashed lines correspond to the numerical results using the simplified characteristic function
(Eq. (105)). In the ferromagnetic phase the statistics is super-Poissonian, while it changes from
super- to sub-Poissonian in the paramagnetic phase as the temperature is decreased. The magnetic
field varies from 0.0 to 2.0 from left to right in steps of 0.5. The system size is L = 12 in the upper
row and L = 100 in the lower one.

read500

κ1 = −
∑
k∈k+

2 cosϑk, (108)

κ2 = L − 2
∑
k∈k+

cos(2ϑk), (109)

κ3 = 4
∑
k∈k+

[cos(ϑk) − cos(3ϑk)] . (110)

The second cumulant turns out to have a particularly simple form due to its close relation to the501

ground-state fidelity susceptibility [74, 94] and reads502

κ2 = L
1 + gL−2

1 + gL . (111)

503

By contrast, in the infinite-temperature case, in which the PPA is exact, the distribution is sym-504

metric, centered at m = 0 and independent of the magnetic field. The magnetization distribution505

describes in this case the sum of L independent discrete random variables with outcomes ±1 with506

equal probability 1/2. As a result κ1 = 0, κ2 = L/4. In the infinite temperature limit, P(m) is equal507

to that of a classical Ising chain and can be written explicitly:508

Pβ→0(m) =
1
2L

(
L

1
2 (m + L)

)
, m = −L,−L + 2, . . . , L − 2, L. (112)

Odd cumulant identically vanish, while the first even ones read509

κ2 = L, κ4 = −2L, κ6 = 16L, κ8 = −272L, κ10 = 7936L, . . . (113)

As a result, in the normal approximation Pβ→0(n = 2l) is given by Gaussian distribution with510

zero mean and variance κ2 = L. Fig. 11 shows this Gaussian distribution as a black envelope,511

accurately approximating the exact results.512
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Figure 10: Relative error for the first two cumulants of the magnetization distribution as a
function of magnetic field g. Using the full characteristic function in Eq. (101) and the corre-
sponding PPA Eq. (105), the relative error is evaluated as a function of the magnetic field for a
system size L = 12 and different temperatures.

Figure 11: Limiting cases of transverse magnetization distribution. Probability distribution of
the transverse magnetization P(m) as a function of the magnetic field g and inverse temperature
β for a chain of L = 50 spins. The left panel shows the ground-state transverse magnetization
distribution for different values of the magnetic field, and is computed using the characteristic
function Eq. (106). The right panel shows the transverse magnetization distribution at infinity
temperature, obtained using the characterization function given by Eq. (107). The envelope of the
distribution is reproduced by the Gaussian approximation N(0, L) shown as a dashed black line.
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5 Conclusion513

We have provided an exact treatment of the thermal equilibrium properties for a class of integrable514

spin chains that admit a description in terms of free fermions. Instances of this family are the515

one-dimensional transverse-field Ising, XY and Kitaev models, among other examples. Whenever516

the system Hamiltonian commutes with parity operator, the complete Hilbert spaces is the direct517

sum of the corresponding even and odd parity subspaces. For an exact treatment of thermal equi-518

librium, we have detailed an algebraic approach in the complete Hilbert spaces and provided the519

exact expression for the partition function. We have identified the limitations of the approximate520

description of thermal equilibrium in terms of the positive-parity sector, frequently adopted in the521

literature. This approximate approach fails in what can be considered the most interesting regime:522

the neighborhood of a quantum critical point at low temperatures. In particular, we have shown523

that the discrepancies between the exact and approximate results can lead to significant errors in524

this regime.525

Making use of the exact algebraic framework, we have computed as well the eigenvalue prob-526

ability distribution of different observables. As an application, we have characterized in detail the527

distribution of the number of kinks as well as the transverse magnetization, covering all regimes528

from zero temperature (ground-state behavior) to infinite temperature. Our results are of direct529

relevance to the study of thermal equilibrium properties of integrable spin chains as well as the530

study of the nonequilibrium dynamics generated by driving a thermal state out of equilibrium.531

They are thus expected to find applications in the description of quantum simulation experiments,532

quantum annealing and quantum thermodynamics of spin systems. As a prospect, it is interesting533

to extend our results to the generalized Gibbs state whenever the relaxing dynamics of an initial534

state preserves a set of integrals of motion.535
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A Proof Proposition 2: Identities for Traces543

First, the formulas given by Eq. (34) are true for n = 1. We assume that they are true for some544

n ≥ 1 and we compute545

tr

P
 n+1⊗

i=1

Ôki


 = tr

P  n⊗
i=1

Ôki

 · tr [Ô(p)
kn+1

]
+ tr

N  n⊗
i=1

Oki

 · tr [Ô(n)
kn+1

]
=

1
2

[ (
tr

[
Ô(p)

kn+1

]
+ tr

[
Ô(n)

kn+1

]) n∏
i=1

tr
[
Ôki

]
+

(
tr

[
Ô(p)

kn+1

]
− tr

[
Ô(n)

kn+1

]) n∏
i=1

(
tr

[
Ô(p)

ki

]
− tr

[
Ô(n)

ki

]) ]

=
1
2

n+1∏
i=1

tr
[
Ôki

]
+

n+1∏
i=1

(
tr

[
Ô(p)

ki

]
− tr

[
Ô(n)

ki

]) ,
and an inductive step is completed.546
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