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Abstract

We study the out-of-equilibrium dynamics of the quantum cellular automaton Rule 54
using a time-channel approach. We exhibit a family of (non-equilibrium) product states
for which we are able to describe exactly the full relaxation dynamics. We use this to
prove that finite subsystems relax to a one-parameter family of Gibbs states. We also
consider inhomogeneous quenches. Specifically, we show that when the two halves of the
system are prepared in two different solvable states, finite subsystems at finite distance
from the centre eventually relax to the non-equilibrium steady state (NESS) predicted by
generalised hydrodynamics. To the best of our knowledge, this is the first exact description
of the relaxation to a NESS in an interacting system and, therefore, the first independent
confirmation of generalised hydrodynamics for an inhomogeneous quench.
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1 Introduction

Over the last two decades intense efforts by both experimentalists and theorists have
greatly advanced our understanding of isolated quantum matter out of equilibrium [1–9]. It
is now established that at asymptotically large times expectation values of local observables
relax to time-independent numbers in translationally invariant systems [6, 9], while they
follow slow dynamics governed by emergent classical hydrodynamic equations [10–12] when
the translational invariance is weakly broken. This surprising onset of relaxation in isolated
systems is induced by the effective bath created by the system on its own parts, and the
final (quasi) stationary state of the system is determined by the conservation laws with
local densities [13].

In spite of the aforementioned great progress many questions remain wide open. In
particular, it is still unclear how and when the slow hydrodynamic regime is reached and
what is the role played by the local conservation laws in the relaxation process. This
question is related to the more general problem of describing the dynamics of out-of-
equilibrium quantum matter for large but finite times. This is arguably one of the key
challenges of modern theoretical physics and no general method to address it is currently
known. In particular, while generic interacting many-body systems are clearly out of
the scope of analytical methods, available computational approaches can reach late times
only by introducing drastic approximations of the microscopic dynamics [14–16]. Exact
methods are limited to small systems [4, 17] or to initial states with ultra-short-ranged
correlations [18]. Even in one dimension, where advanced techniques based on matrix
product states [19–21] are able to tackle large systems in an exact fashion, numerical
studies are limited by the rapid growth of entanglement and can only describe short
times. Furthermore, continuum models — which describe many cold-atom experiments
— provide even more serious challenges for the numerics.

Surprisingly, the situation is no better in the case of interacting integrable systems,
i.e. systems characterised by an extensive number of local conservation laws. Indeed, even
though integrability gives direct access to thermodynamics [22], it is generically of little
help when it comes to address the finite-time dynamics in the presence of interactions.
This is essentially due to the fact that the eigenstates of integrable models, although in
principle known, have a very complicated structure [22], which prevents most practical
manipulations. In fact, in recent years a substantial number of non-trivial results con-
cerning quantum many-body dynamics have not come from integrable systems, but rather
from the opposite limiting case of minimally structured (or maximally chaotic) systems,
i.e. systems without local conservation laws [23–39]. In particular, the so called dual-
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unitary circuits [40] have been shown to offer an invaluable testing ground where many
dynamical quantities [40–49], including the time evolution of local observables [43,47], can
be determined exactly.

Understanding the dynamics of integrable systems remains, however, of crucial impor-
tance, for instance it could unveil the role played by conservation laws in the relaxation.
An interesting route to achieve this goal has recently been pointed out in Refs. [50–56],
which showed that in some special integrable models one can indeed access the full time
evolution of local observables. In particular Ref. [50] adopted a tensor network formulation
to compute the full (local) dynamics of a class of “solvable” initial states in the quantum
cellular automaton Rule 54 [57], up to their eventual relaxation to the infinite temperature
state. The main observation leading to exact results has been that the dynamics of the
system are simple when observed from the time channel, i.e. when propagating in space
rather than in time.

Here we provide a highly non-trivial extension of these results computing the exact
local dynamics of a larger class of initial states that, at infinite times, relax to non-trivial
Gibbs ensembles. A very interesting consequence of our results is that we can study ex-
actly settings originating non-trivial transport of conservation laws at asymptotically large
times, when the system is expected to follow the prediction of generalized hydrodynamics
(GHD) [58, 59]. This gives the unprecedented possibility of testing this expectation. In
particular, here we derive ab initio the prediction of GHD for the non-equilibrium steady
state attained by the system following a bipartitioning protocol, i.e. the sudden junction
of two halves of the system prepared in different homogeneous states.

This is the first of two papers devoted to the study of the dynamics of Rule 54 from
the aforementioned extended family of solvable initial states. While here we consider the
dynamics of local observables, in Ref. [60] (from now on Paper II) we study the growth of
entanglement.

The rest of the paper is laid out as follows. In Sec. 2 we introduce the general time-
channel approach that we adopt to find our results. In Sec. 3 we specialise the treatment
to the case of Rule 54. In Sec. 4 we determine the extended family of solvable initial states
and in Sec. 5 we present an exact solution of the quench dynamics. In Sec. 6 we compare
our exact results with the asymptotic description of GHD and, finally, in Sec. 7 we report
our conclusions. Several technical points and proofs are relegated to the two appendices.

2 Time-channel formulation of the local dynamics

In this section we introduce a general time-channel (or dual) description of the dynamics of
local operators. It is based on the simple observation that the time evolution generated by
a unitary matrix product operator (MPO) can be thought of as an evolution in space rather
than in time. Even though this applies very widely — the evolution generated by a local
Hamiltonian can be approximated arbitrary well by a unitary MPO [61,62] — it generically
gives no clear computational advantage [42,63–65]. Interestingly, however, in certain cases
this alternative picture becomes extremely powerful leading to exact results [40,41,43,44,
47,50,66–70] and efficient computations [47,71–79].

Let us consider a one-dimensional chain of 2L qudits (with d internal states) defined
in the Hilbert space

HL =

2L⊗
x=1

Cd , (2.1)

and study the situation in which the system is driven out of equilibrium through a standard
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quantum quench protocol [80, 81]. First it is prepared in a non-stationary state |Ψ0〉 and
then let to evolve according to a unitary propagator U. Here we consider the case in which
the initial state is a two-site shift invariant matrix product state (MPS)

|Ψ0〉 =
∑
rj∈Zd

tr
[
Rr1Sr2Rr3 · · ·Sr2L

]
|r1r2 . . . r2L〉 , (2.2)

where Rr and Sr are χ′×χ′ matrices — χ′ is commonly referred to as bond dimension —
and the propagator has a staggered structure in time

U = UoUe. (2.3)

Moreover, we assume that the propagators for even and odd times are expressed in the
following MPO-form

Ue =
∑

sj ,rj∈Zd
tr
[
Es1r1F s2r2Es3r3 · · ·F s2Lr2L

]
|r1r2 . . . r2L〉〈s1s2 . . . s2L| ,

Uo =
∑

sj ,rj∈Zd
tr
[
F s1r1Es2r2F s3r3 · · ·Es2Lr2L

]
|r1r2 . . . r2L〉〈s1s2 . . . s2L| ,

(2.4)

where Esr and F sr, are χ×χ matrices (the bond dimension χ of those matrices is generi-
cally different from χ′). The objects introduced above admit an intuitive graphical repre-
sentation given respectively by

|Ψ0〉 =

2L

, (2.5)

and

Ue =

2L

, (2.6a)

Uo =

2L

, (2.6b)

where we introduced the tensors

s
= Rs,

s
= Ss,

s

r

= Esr,

s

r

= F sr. (2.7)

Note that the space-time staggering considered here is inessential and can be easily re-
moved by fusing the two time-steps Uo and Ue, and, at the same time, merging together
two local sites. This results in a homogeneous MPO with larger bond dimension and qu-
dits with more internal states. Here, however, we prefer to keep the staggering because it
arises naturally in the quantum cellular automaton Rule 54 (see Sec. 3), which is the con-
crete example considered in this paper. We also remark that in the case of an MPO (2.3)
describing local interactions (which is e.g. the case of Rule 54 – see Sec. 3), the tensors
fulfil additional constraints. Since the upcoming discussion is largely independent of these
constraints, we ignore them for the sake of simplicity. The only assumption that we make
on the tensors (2.7) is
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Assumption 1. The state transfer matrix

τ =
∑
s,r

(Ss∗⊗ Ss)(Rr∗⊗Rr) , (2.8)

has a unique maximal eigenvalue, which, without loss of generality, can be taken equal to
one. Namely, the geometric and algebraic multiplicity of the eigenvalue one are equal to
one.

We remark that, since
〈Ψ0|Ψ0〉 = tr

[
τL
]
, (2.9)

the above assumption ensures that |Ψ0〉 is normalised to one in the thermodynamic limit.
Let us consider the expectation value of a local operator Ox on the state at time t,

where the subscript x denotes the position of the left edge of the operator’s support. Using
our graphical representation, we can depict it as follows

〈Ψt|Ox|Ψt〉
〈Ψ0|Ψ0〉

=
1

〈Ψ0|Ψ0〉
O

2L

2t

, (2.10)

where we defined
|Ψt〉 = Ut |Ψ0〉 , (2.11)

and introduced the symbols

=
∗
, =

∗
, =

∗
, =

∗
, (2.12)

for the complex conjugate of the tensors (3.7).
We now interpret the tensor network (2.10) in terms of an evolution in the space

direction [63–65]. Specifically, by defining space transfer matrices as

W̃ = , W̃ [O] = O , (2.13)
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we can rewrite Eq. (2.10) as

〈Ψt|Ox|Ψt〉
〈Ψ0|Ψ0〉

=
tr
(
W̃L−sO/2W̃[O]

)
〈Ψ0|Ψ0〉

, (2.14)

where sO is support of O (e.g. sO = 4 in (2.10) and (2.13)), which we conveniently take
to be even.

To characterise the behaviour of the r.h.s. of (2.14) in the limit of large system sizes,
we should then understand the spectral properties of the space transfer matrix W̃. The
latter are summarised by the following general property.

Property 1. Whenever the time evolution is unitary and the state transfer matrix has
unique maximal eigenvalue 1, the transfer matrix W̃ (2.31) has also a unique eigenvalue
λ0 = 1 while all other eigenvalues of W̃ are strictly contained in the unit circle.

Proof. The unitarity of time-evolution implies

1 =
〈Ψt|Ψt〉
〈Ψ0|Ψ0〉

=
1

〈Ψ0|Ψ0〉
tr
[
W̃L
]

=
1

〈Ψ0|Ψ0〉
∑
j≥0

λLj , (2.15)

where the second equality follows from unitarity and the third one from the defini-
tion (2.31). Since

lim
L→∞

〈Ψ0|Ψ0〉 = 1 (2.16)

in the limit L→∞ the above equality is satisfied only if λ0 = 1 and |λj≥1| < 1.

As a consequence of Property 1 we have

lim
L→∞

〈Ψt|Ox|Ψt〉
〈Ψ0|Ψ0〉

=
〈L|W̃ [Ox]|R〉
〈L|R〉 , (2.17)

where we respectively denoted by 〈L| and |R〉 the left and right leading eigenvectors of W̃
(also referred to as fixed points), i.e. the vectors fulfilling

〈L| W̃ = 〈L| , W̃ |R〉 = |R〉 . (2.18)

Property 1 ensures that these vectors are unique up to a multiplicative constant. Since
(2.17) holds for any local observable O, we can represent the density matrix reduced to a
subsystem S by means of the following diagram

ρS(t) = lim
L→∞

trS̄ |Ψt〉〈Ψt| =
1

〈L|R〉 〈L| |R〉 , (2.19)

where blue rectangles denote 〈L| and |R〉 and S̄ indicates the complement of S.

6



SciPost Physics Submission

The above equations give us an intuitive interpretation of fixed-points: they describe
quantitatively the effective bath created by S̄ in the thermodynamic limit (with S remain-
ing finite). The emergence of such an effective bath is what allows S to reach a stationary
state, see e.g. Refs. [6, 42,50].

The practical utility of the representations (2.17) and (2.19) in determining the relax-
ation dynamics of S depends on the form of the fixed points. For instance, they become
extremely useful when the fixed points can be represented as MPSs with a constant (in
time) bond dimension. Indeed, as demonstrated in Ref. [50], in this case the full dynamics
of any local observable can be accessed by diagonalising a finite-dimensional matrix.

The bond dimension of the fixed points directly reflects the nature of the effective
bath. Specifically, when the bath is Markovian the fixed points become product states [42].
This is expected to occur at large times in systems with no local conservation laws. For
intermediate times, however, the bond dimension of the fixed points is typically observed
to grow exponentially [63, 64]. An important exception are dual-unitary circuits evolving
from solvable states, where the bath is Markovian for all times [43,67].

The situation is even more complicated in integrable systems: since the bath is never
expected to become Markovian, the fixed points have no reason to be simple even for
large times. Nevertheless, approaches based on the space transfer matrix (also called
quantum transfer matrix in this context) have a relative long history in the literature
of integrable models [82–84]. In particular, Refs. [68–70] have proposed a programme
aiming at combining time channel approaches with Bethe Ansatz to access the finite time
dynamics. Up to now, however, this only led to the calculation of the so-called Loschmidt
echo, which is easier to treat but less physically transparent than, for instance, local
observables or entanglement.

Remarkably, as we discuss below, Rule 54 represents an exception. Even though the
system is integrable, there exist a class of initial states for which its fixed points are simple
(MPSs with bond dimension three) for all times [50].

Before concluding this general discussion we will show that, besides homogeneous quan-
tum quenches, the formalism described here can be directly applied to two additional
physically relevant quench problems

- Bipartitioning protocols [10,11,85,86], i.e. quenches from inhomogeneous states that
are composed by joining two different homogeneous pieces (or “leads”).

- Dynamical correlation functions in a stationary state, i.e. local quenches.

2.1 Bipartitioning protocols

In the case of bipartitioning protocols one considers an initial state of the form

|Ψ0〉 =
L L L L L L R R R R R R

L L

, (2.20)

where

R
,

R
, (2.21)

and

L
,

L
, (2.22)
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are different tensors (all fulfilling Assumption 1). Repeating the steps above we have that
the expectation value of an observable at distance x ≥ 0 from the junction is given by

〈Ψt|Ox|Ψt〉
〈Ψ0|Ψ0〉

=
tr
(
W̃L/4

L W̃x/2
R W̃R[O]W̃(L−2sO−2x)/4

R

)
〈Ψ0|Ψ0〉

, (2.23)

where we introduced the space transfer matrices of the two leads

W̃R/L =

R/L

R/L

R/L

R/L

, W̃R/L [O] =

R/L

R/L

R/L

R/L

R/L

R/L

R/L

R/L

O . (2.24)

Considering the thermodynamic limit, for finite x ≥ 0 we find

lim
L→∞

〈Ψt|Ox|Ψt〉
〈Ψ0|Ψ0〉

=
〈LL|W̃x/2

R W̃R[O]|RR〉
〈LL|RR〉

, (2.25)

where the normalisation can be fixed by choosing Ox equal to the identity operator. This
gives access to the reduced density matrix of any finite subsystem at distance x from the
junction

ρS,x(t) =
1

〈LL|RR〉

R

R

R

R

R

R

R

R

R

R

R

R

〈LL| |RR〉

x

. (2.26)

2.2 Dynamical correlations at equilibrium
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The dynamical correlation function between two generic local observables O1,0 and O2,x

in a stationary state ρs can be represented by means of the following diagram

tr
(
ρsO1,0U−tO2,xUt

)
=

1

Z

O2

O1

. (2.27)

Here we considered a stationary state written as an MPO with the same (two-site) trans-
lational symmetry as the time-evolution operator, i.e. we represented it as

ρs =
1

Z
, (2.28)

where Z is the normalisation. We again assume that the state transfer matrix of ρs, i.e.

τs = , (2.29)

has unique maximal eigenvalue one. Therefore

lim
L→∞

Z = lim
L→∞

tr
[
τL
]

= 1 . (2.30)

As before, we introduce the transfer-matrix in the space direction

W̃s = , (2.31)

which fulfils Property 1 (the proof is completely analogous). This implies that, in the
thermodynamic limit, the correlation function can again be expressed as a finite tensor-
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network with the fixed-points 〈Ls|, |Rs〉 on the left and right edge

lim
L→∞

tr
(
ρsO1,0U−tO2,xUt

)
=

1

〈Ls|Rs〉

O2

O1

〈Ls| |Rs〉

2x

. (2.32)

3 A solvable case: quantum cellular automaton Rule 54

In this paper we adopt the time channel approach summarised in the previous section
to describe the non-equilibrium dynamics of a specific integrable system: the reversible
cellular automaton given by the Rule 54 in the classification of Ref. [87] (it corresponds
250R in the earlier classification of Ref. [88]), which can be seen as a deterministic discrete-
time limit of the Fredrickson-Andersen model [89]. In recent years, this model has been
recognised as one of the simplest examples of interacting integrable systems, where many
non-equilibrium properties can be described exactly, both in the classical [90–97] (see also
a recent review [57]), and in the quantum realm [50,98–102]. The integrability of the model
was conjectured already in [87], and later confirmed in Ref. [100], which derived its Bethe
Ansatz equations. However, many exact results obtained in this model (including the ones
discussed here) go beyond what is possible for typical interacting integrable systems and,
furthermore, they do not explicitly use any integrability-related property.

The model can be defined as a local — brickwork-like — quantum circuit on qubits.
In this system, however, the gates are not applied in the standard two-site shift invariant
pattern but act non-trivially on three consecutive sites, see Fig. 1. More specifically, the
system is defined in a periodic chain of 2L qubits with Hilbert space

HL =

2L⊗
x=1

C2 , (3.1)

and {|sx〉x}sx=0,1 denotes the standard computational basis (i.e. the basis of eigenstates
of all {σ3,x}x∈Z2L

, where σ3,x is the third Pauli matrix at site x). The time evolution is
discrete and generated by the unitary operator

U = UeUo, (3.2)

with
Uo =

∏
x∈ZL

U2x+1, Ue =
∏
x∈ZL

U2x. (3.3)
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x

t

Figure 1: Graphical representation of the time evolution operator up to time t = 2.

Here we introduced the notation

Ux = 1
⊗(x−1) ⊗ U ⊗ 1⊗(2L−x−2) , (3.4)

where 1 denotes the identity operator on one qubit and U is the three-site local gate
defined by the following matrix elements in the computational basis

U
s′1s
′
2s
′
3

s1s2s3
=

s′1 s
′
2 s

′
3

s1 s2 s3

= δs1,s′1δχ(s1,s2,s3),s′2
δs3,s′3 , (3.5)

where the “updated value” of the middle site is determined by

χ(s1, s2, s3) ≡ s1 + s2 + s3 + s1s3 (mod 2). (3.6)

Note that, since Ux and Ux+2 commute, the ordering of the products (3.3) is inessential.
The time evolution operators for even and odd times (cf. (3.3)) can be expressed in

the MPO form (2.4), by identifying tensors (2.7) as

s1

s2

s3

s4

= δχ(s1,s2,s3),s4 , s1

s2

s3

s4

=
3∏
j=1

δsj ,sj+1 . (3.7)

To establish the equivalence between (2.4) and (3.3) we generalise the definition of the
“small circle” tensor to k legs

s1

s2 s3

sk· · · =
k−1∏
j=1

δsj ,sj+1 . (3.8)

Now we are able to express U in terms of small and big circles as

U = = , (3.9)

and the equivalence follows immediately using

= = . (3.10)
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4 Left and right fixed points in Rule 54

Using the fact that the MPO (2.3) is local for Rule 54 (i.e. it can be equivalently represented
in terms of mutually commuting local unitary gates (3.3)), we can immediately express
the left and right fixed points of the space transfer-matrix W̃ (2.13) for any initial MPS
fulfilling Assumption 1 as

〈L| =

·

·

2t

2t

, |R〉 =

·

·

2t

2t+ 1

. (4.1)

where

·
·
, ·

·
, (4.2)

are respectively the left fixed point of τ (cf. (2.8)), and the right fixed point of

τ ′ = , (4.3)

which differs from τ because of the two triangular tensors being swapped. Analogously,
the fixed points of W̃s are expressed as

〈Ls| =

·

2t

2t

, |Rs〉 =

·

2t

2t+ 1

. (4.4)

where we took τs (cf. (2.29)) and

τ ′s = , (4.5)

with a unique maximal eigenvalue 1 and left and right fixed points given by

· , · . (4.6)
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We can immediately verify that 〈L| in (4.1) is indeed a left eigenvector of W̃ corresponding
to eigenvalue 1

〈L| W̃ =

·

·

=

·

·

= · · ·

= · · · =

·

·

= 〈L| ,

(4.7)

where we repeatedly use the unitarity of U , i.e.

= , (4.8)

together with the identity (3.10). In the last step we also used that the first of (4.2) is the
left fixed point of τ . The proof of the relations

W̃ |R〉 = |R〉 , 〈Ls| W̃s = 〈Ls| , and W̃s |Rs〉 = |Rs〉 , (4.9)

is completely analogous.
The general form of the fixed points suggests a more convenient diagrammatic repre-

sentation obtained by bending the top half of tensor networks behind the bottom half and
introducing folded tensors [63]

= , = , = , = , = ,

= , = , · = ·· , · = ·· ,

(4.10)

where the local Hilbert space on which these objects act is effectively doubled — it cor-
responds to two qubits rather than 1. Using the folded representation, the space transfer
matrices W̃ and W̃s, defined in Eqs. (2.13) and (2.31) respectively, take the form

W̃ = 2t , W̃s = 2t , (4.11)

13
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while their fixed-points can be written as

〈L| =

·

, |R〉 =

·

, (4.12a)

〈Ls| =

·

, |Rs〉 =

·

. (4.12b)

The fixed-points given by the diagrams (4.12) generically exhibit bond dimension that
grows exponentially with time t. However, as we argue below (and part of it was shown
in [50]), in Rule 54 we can identify initial states and stationary states for which (4.12)
reduce to an MPS with constant bond dimension χ = 3.

4.1 Efficient MPS-representation of the fixed points

Here we identify a class of initial states (2.5) and stationary states (2.28) for which the
tensor networks (4.12) can be simplified. We begin by writing the following MPS ansatz

〈LA| =

·

, |RA〉 =

·

, (4.13)

where 〈LA| and |RA〉 can be either fixed points of W̃ or of W̃s and we introduced the (so
far unknown) “bulk tensors”

, , , (4.14a)

, , , (4.14b)

and “boundary vectors”

, (4.15a)

· , · , (4.15b)

· , · . (4.15c)

Next, we prove the ansatz (4.13) in two steps.

(i) Find a set of local algebraic conditions for the tensors (4.14) and (4.15) that ensure
invariance of (4.13) under the left/right action of space transfer matrix.
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(ii) Solve them to find explicit representations of the tensors.

The step (ii) can be achieved only for certain initial or stationary states: these will form
the “solvable” class.

To identify the solvable class it is useful to first consider the case of stationary states.
Then, for a given solvable stationary state, we will find a corresponding family of solvable
initial states with fixed points described by the same tensors (4.14) (but different boundary
vectors (4.15)). Intuitively this means that we will search for a family of initial states that
relaxes to a given solvable stationary state.

4.2 Solvable stationary states

4.2.1 Infinite temperature state

It is instructive to begin by reviewing the construction presented in Ref. [50] for the fixed
points corresponding to the infinite temperature state. Namely we consider

ρ∞ =
1

22L
1
⊗2L =

1

22L

2L

, (4.16)

where the tensor

=
†

(4.17)

is nothing but the identity operator in the folded representation. The space transfer
matrix (4.11) corresponding to ρ∞ reads as

W∞ =
1

4
2t . (4.18)

Since the top and bottom boundary vectors for this matrix are the same we simplify the
Ansatz (4.13) and consider

〈LA| = , |RA〉 = , (4.19)

where
=

†
. (4.20)
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At this point we note that if the tensors in (4.14) and (4.15) satisfy the following set of
algebraic relations

1

2
= ,

1

2
= , (4.21a)

= , = , = , (4.21b)

we have

〈LA| W̃∞ =
1

4
=

1

2
= = 〈LA| . (4.22)

Namely 〈LA| is the left fixed point of W̃∞. To establish (4.22) we apply the first identity
in (4.21a), which creates the 2-site tensor

. (4.23)

We then repeatedly move it upwards by the first of (4.21b) until it is absorbed at the top
by the application of the second relation in (4.21b). The second step proceeds analogously
starting with the second equality in (4.21a) and finishing with the last one of (4.21b).

The above construction shows that if one can find some tensors (4.14a) and (4.15a)
solving (4.21) for some given small and large circles (cf. (4.10)), then the state 〈L∞|
(cf. (4.19)) is the left fixed point of W̃∞. Remarkably, when big and small circles are
the time-evolution tensors of Rule 54 (cf. (3.7)) the relations (4.21) admit a solution with
bond dimension 3

7→ , 7→ , 7→ , =
[
1 1 0

]
. (4.24)

In particular the one-site blue tensors are given by

00 =
1

2

1 1 −1
1 1 1
1 −1 −1

 , 01 = 10 =
1

2

0 1 −1
1 0 0
1 0 0

 ,
11 =

0 1 0
1 0 0
0 0 0

 , rs =

δs,0δr,0 0 0
0 δs,1δr,1 0
0 0 δs,1δr,1

 ,
(4.25)

while the two-site one is reported in Eq. (A.1) of Appendix A.
Finally we note that, since (3.7) are symmetric under left-right flips, if the left tensors

(4.14a) fulfil (4.21), then

≡ , ≡ , ≡ , (4.26)
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fulfil

1

2
= ,

1

2
= , (4.27a)

= , = , = , (4.27b)

This immediately implies that the state |RA〉 (cf. (4.19)) built with the tensors (4.26) is a
right fixed point of W̃∞. Namely

W̃∞ |RA〉 = |RA〉 . (4.28)

This gives an explicit expression of both fixed points corresponding to the infinite tem-
perature state.

4.2.2 GGEs

The above construction can be generalised to fixed points of transfer matrices correspond-
ing to the following family of generalised Gibbs ensembles (GGE)s

ρGGE =
e−µ−N−−µ+N+

tr(e−µ−N−−µ+N+)
, (4.29)

where

N+ =
∑
x∈ZL

P−2xP
−
2x+1 +

∑
x∈Z2L

P+
x P

−
x+1P

+
x+2 ,

N− =
∑
x∈ZL

P−2x−1P
−
2x +

∑
x∈Z2L

P+
x P

−
x+1P

+
x+2 ,

where P± :=
1± σ3

2
, (4.30)

are the conserved charges corresponding respectively to the number of left and right moving
solitons, while µ± are the associated chemical potentials.

The state in (4.29) exhibits a staggered MPO representation (2.28) with bond dimen-
sion 3 (see e.g. [96, 97]). In the folded representation the latter reads as

ρGGE =
1

Z
, (4.31)

with
s, r

= δs,rWs(z−, z+),
s, r

= δs,rW
′
s(z−, z+), (4.32)

where
z± = e−µ± , (4.33)

are the fugacities of left and right movers, and the 3× 3 matrices Ws(z, w), W ′s(z, w) are
given by

W0(z, w) =

1 0 0
z 0 0
1 0 0

 , W1(z, w) =

0 z 0
0 0 1
0 0 w

 , W ′s(z, w) =
Ws(w, z)

λ(w, z)
. (4.34)
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Here we introduced λ(z, w) such that the state transfer matrix (cf. (2.29)) has maximal
eigenvalue equal to one. This means that

λ ≡ λ(z−, z+), (4.35)

is given by the largest solution to the following cubic equation

x3 − (1 + 3z−z+)x2 + (3z2
−z

2
+ − z−z+ − z− − z+)x− z−z+(z−z+ − 1)2 = 0. (4.36)

Using the MPS representation (4.31) we can now formulate the algebraic relations for
the tensors constituting the fixed points of the space transfer matrix

W̃s = , (4.37)

with bottom boundary vectors given in Eq. (4.32). For definiteness, let us begin con-
sidering the conditions for the left fixed point in (4.13). We note that, since the bulk
relations (4.21b) do not depend on the state at the bottom, they can be imposed also in
the current case while we replace the boundary relations (4.21a) by

·
=

·
,

·

=

·

. (4.38)

Here, once again, the grey boundary vectors are given in Eq. (4.32). Using the same
reasoning as below Eq. (4.22) we find that, if the tensors (4.14) and (4.15) satisfy (4.21b)
and (4.38), then

〈LA| W̃s =

·

=

·

=

·

= 〈LA| . (4.39)

Therefore, to find an explicit representation of the fixed point we just have to solve (4.21b)
and (4.38).

This can be done by realising that the bulk relations Eq. (4.21b) exhibit a one-
parameter family of solutions with bond dimension 3

7→
ϑ

, 7→
ϑ

, 7→

ϑ

, =
[
1 1 0

]
, ϑ ∈ [0, 1]. (4.40)

In particular, we have

00

ϑ

=


1− ϑ 1− ϑ −(1− ϑ)
ϑ ϑ 1− ϑ
ϑ − ϑ2

1− ϑ −ϑ

, 10

ϑ

= 01

ϑ

=

0 1− ϑ −(1− ϑ)
ϑ 0 0
ϑ 0 0

,
11

ϑ

=

0 1 0
1 0 0
0 0 0

, rs

ϑ

=

δr,0δs,0 0 0
0 δr,1δs,1 0
0 0 δr,1δs,1

,
(4.41)
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while the corresponding two-site tensors are reported in Eq. (A.1) of Appendix A. The
infinite-temperature solution (4.25) is recovered for ϑ = 1/2. In the above diagrams we
explicitly reported ϑ to signal the dependence on this parameter. In the following, however,
whenever the choice of ϑ is unambiguous we will ease the notation by removing it.

Plugging now (4.41) into (4.38) we can then solve for the left boundary vectors (4.15b)
and for ϑ. This admits a unique solution

ϑ 7→ ϑ+ ≡
z+(λ(1 + z−) + z−(1− z+z−))

λ(z+ + z− − z−z+)
, · 7→ · , · 7→ · , (4.42)

where the left boundary vectors · , · are reported in Eq. (A.2) of Appendix A.
The local relations for the right fixed point are again obtained by flipping (4.21b) and

(4.38) to the left. Namely we consider (4.27b) and

·
=

·
,

·

=

·

. (4.43)

Eq. (4.27b) are again solved by (4.26) with the blue tensors given in Eq. (4.41) and
Eq. (A.1) of Appendix A. Plugging now into (4.43) and solving for the right boundary
vectors and ϑ we find a unique solution

ϑ 7→ ϑ− ≡
z−(λ(1 + z+) + z+(1− z+z−))

λ(z+ + z− − z+z−)
, · 7→ · , · 7→ · , (4.44)

where the explicit expression for right boundary vectors · , · is reported in Eq. (A.3)
of Appendix A. Finally, we note that the mapping between z± and ϑ± can be inverted

z− =
ϑ−(1− ϑ+)

(1− ϑ−)2
, z+ =

ϑ+(1− ϑ−)

(1− ϑ+)2
, λ =

1

(1− ϑ−)(1− ϑ+)
, (4.45)

which implies that the GGE can be equivalently parametrised by a pair of independent
parameters ϑ± ∈ [0, 1]. The choice ϑ− = ϑ+ corresponds to the GGE without an imbalance
of particles, i.e. µ− = µ+.

4.3 Solvable initial states

Let us now consider solvable initial states, i.e. initial states for which the fixed points of
the space transfer matrix

W̃ = (4.46)

are of the form (4.13). As anticipated in Sec. 4.1, we require these (pure) states to relax to
the class of solvable GGEs discussed in the previous section. To this aim, we impose again
the conditions (4.21b) and (4.27b) on the tensors (4.14) and (4.15) of the MPS ansatz.
However, we replace the boundary relations (4.21a) and (4.27a) with

·

=

·

,

·

=

·

, (4.47)
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and

·

=

·

,

·

=

·

, (4.48)

respectively. We remark that the difference between (4.21a, 4.27a) and (4.47, 4.48) is that
the boundary vectors are now

= , = , (4.49)

i.e. they are formed by the tensor product of the tensors of the initial MPS (cf. (2.5)).
Once again the bulk relations (4.21b) and (4.27b) are solved by the family (4.41). In

general left and right tensors are parametrised by different ϑs, which we denote by ϑ+

and ϑ−. Solving now separately the left relations using bulk tensors of the form (4.41)
we find a solution for MPS matrices (4.49) of bond dimension one, i.e. for initial states in
product form. Explicitly we have

· 7→ · ≡

1
0
0

 , · 7→ ·
ϑ+

≡


1− ϑ+

ϑ+

−ϑ2
+(1− ϑ+)−1

 , (4.50a)

7→ ≡
[
eiφ1

0

]
, 7→ ≡

[√
1− ϑ+eiφ2√
ϑ+eiφ3

]
. (4.50b)

Proceeding analogously in the case of the right relations we obtain

· 7→ · ≡

1
0
0

 , · 7→ ·
ϑ−

≡


1− ϑ−
ϑ−

−ϑ2
−(1− ϑ−)−1

 , (4.51a)

7→ ≡
[
eiφ1

0

]
, 7→ ≡

[√
1− ϑ−eiφ2√
ϑ−eiφ3

]
. (4.51b)

This immediately implies that the solution is consistent only if

ϑ− = ϑ+ = ϑ, (4.52)

which means that solvable product states cannot relax to a GGE with an imbalance of
particles.

This can be understood by noting that a state |Ψ̃0〉 can relax to a GGE (4.29) with
ϑ− 6= ϑ+ only if

〈Ψ̃0|N+ −N−|Ψ̃0〉 6= 0 , (4.53)

where N+ and N− are reported in Eq. (4.30). In particular, if the state is invariant under
two-site shifts we have

〈Ψ̃0|N+ −N−|Ψ̃0〉 = 〈Ψ̃0|P1P2 − P2P3|Ψ̃0〉 , (4.54)

which is always zero if |Ψ̃0〉 is a product state. Therefore, to find states that relax to
a GGE with z− 6= z+, one should try with initial states in a more general MPS form.
The question of whether there are nontrivial initial MPSs satisfying the set of boundary
relations (4.47,4.48) is so far still open.
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4.4 Summary of diagrammatic relations

We conclude this section by summing up the algebraic relations satisfied by the fixed
points. In particular, the space transfer matrices

W̃s = , W̃ = , (4.55)

corresponding to the stationary Gibbs state (4.32) and solvable initial states (4.50b)
and (4.51b) respectively, exhibit left and right fixed-points that can be represented as
MPSs with bond dimension 3 (4.41)

〈Ls| =

·

, |Rs〉 =

·

, 〈L| =

·

, |R〉 =

·

. (4.56)

Bulk tensors (given by Eq. (4.41) and (A.1)) and boundary vectors (see Eq. (A.2), (A.3),
(4.50a) and (4.51a)) constituting the fixed-points, together with the initial state

|Ψ0〉 =

2L

, (4.57)

and the stationary MPO (4.31), satisfy the following set of local algebraic relations

= , = , (4.58a)

= , = , = , = , (4.58b)

·
=

·
,

·

=

·

,

·
=

·
,

·

=

·

, (4.58c)

·
=

·
,

·

=

·

,

·
=

·
,

·

=

·

. (4.58d)
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S

x l

Figure 2: Sketch of the inhomogeneous quench setup considered in Sec. 5. We consider
the dynamics after a bipartitioning protocol of a finite subsystem S of size l is at distance
x from the junction.

5 Solution of inhomogeneous quenches from solvable states

Now that we have the explicit form of fixed-points 〈L| and |R〉 for a class of initial states,
let us focus on the dynamics of local observables after the quenches from these states. In
particular, we consider the bipartitioning protocol, where at time t = 0 the two halves
of the chain are prepared in different solvable product states, parametrised respectively
by ϑL and ϑR

|Ψ0〉 = (|ψ1,L〉 ⊗ |ψ2,L〉)⊗L/2 ⊗ (|ψ1,R〉 ⊗ |ψ2,R〉)⊗L/2 ,∣∣ψ1,L/R

〉
=

[
eiφ1

0

]
,

∣∣ψ2,L/R

〉
=

[
eiφ2
√

1− ϑL/R

eiφ3
√
ϑL/R

]
.

(5.1)

Note that this more general class of initial states includes quenches from homogeneous
solvable initial states (ϑ = ϑL = ϑR), therefore we can focus on initial states (5.1) without
loosing generality.

In our analysis we consider the reduced density matrix of a finite subsystem S, as
it encodes expectation values of all local observables. The length of the subsystem l is
fixed and we denote its relative position with respect to the junction by x, see Fig. 2.
Depending on the scaling of the size of the subsystem and its distance from the junction
with time, several qualitatively different regimes emerge. Specifically here we investigate
two different ones

(i) Both l and x are fixed, i.e. the do not scale with t.

(ii) The subsystem size l is fixed but its position scales linearly with time.

Let us address these two regimes separately beginning with Case (i).

5.1 Subsystem at a fixed distance from the junction

We consider a subsystem S of length l > 0, with the edges at sites −x < 0 and l − x
which, for simplicity, we assume to be even. In this case the density matrix reduced to S
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is represented by the following tensor network

ρl(t) =

2L

x l − x

2t

ϑL ϑR

S

. (5.2)

Note that this is the most general setup, as a subsystem with edges at position x and x+ l
can be always extended to the left so that it contains the junction, and then the additional
sites are traced over at the end, which does not modify the argument presented in this
section (as long as x is fixed).

We assume that the full system-size 2L is strictly larger than 4t, so that we can recast
the reduced density matrix in terms of left and right fixed-points 〈LϑL | and |RϑR〉,

ρl(t) =

· ·

x l − x

ϑL ϑR

= PlCtl |Φx,l−x(Ψ0)〉 , (5.3)

where we introduced the transfer matrix in the time-direction

Cl =

ϑL ϑR

l

, (5.4)

the “bottom state”

|Φx,y(Ψ0)〉 = · ·

x y

ϑL ϑR

, (5.5)
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and the projector

Pl =

l

, (5.6)

which only acts on the auxiliary space. We note that the normalisation factor was omitted
from Eq. (5.3) because the overlap between the two fixed-points is 1 for all ϑL and ϑR (see
Appendix B.1).

Eq. (5.3) implies that the dynamics of the finite subsystem S is completely specified
by a finite dimensional tensor network. The latter can be contracted with a complexity
that is exponential in the subsystem size l but polynomial in time. However, using the
properties of the local tensors, we can characterise the relaxation when t → ∞ of any
finite size.

We start by observing that the map Cl has always an eigenvalue one and two of its
fixed points are easily expressed in terms of the folded identity operator and the stationary
state MPO (4.31).

Property 2. The MPS |1l〉 defined as

|1l〉 =
1

· ·︸ ︷︷ ︸
(1+ϑL+ϑR)−1

· ·
ϑL, ϑR

l

, (5.7)

is a right eigenvector of Cl corresponding to an eigenvalue 1, i.e.

Cl |1l〉 = |1l〉 . (5.8)

Similarly, the left eigenvector 〈1̄l| is diagrammatically expressed as

〈1̄l| =
l

. (5.9)

Property 2 can be understood intuitively by noting that both (5.7) and (5.9) are sta-
tionary when we remove the boundary degrees of freedom and assume periodic boundaries
on l sites: in this case 〈1̄l| reduces to the folded representation of the identity matrix, while
|1l〉 becomes the GGE given by (4.31). The non trivial aspect is that they can be made
stationary also in the presence of a boundary upon choosing appropriate boundary con-
ditions (see Appendix B.2 for details). We also note that by projecting out the auxiliary
degrees of freedom, the right eigenvector |1l〉 is mapped directly to the GGE reduced to a
finite subsystem of l sites

ρGGE,l(ϑL, ϑR) = Pl |1l〉 , (5.10)

which is defined as

ρGGE,l(ϑ+, ϑ−) =
1

1 + ϑ+ + ϑ− · ·
ϑ+, ϑ−

l

. (5.11)

We are now in a position to show that the reduced density matrix ρl(t) relaxes to the
state ρGGE,l(ϑL, ϑR) exponentially fast with a finite rate determined by the spectrum of
the 9× 9 matrix C0 (cf. (5.6)).
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Property 3. If 2t > 3x and 2t > 3(l − x), the reduced density matrix ρl(t) is equal to
ρGGE,l(ϑL, ϑR) up to exponentially small corrections. Explicitly

ρl(t) = ρGGE,l(ϑL, ϑR) +O
(

Λ
t− 3

2
max{x,l−x}

1

)
, (5.12)

where

Λ1 =−ϑL+ ϑR− ϑLϑR

2

(
1+

√
1− 4ϑLϑR

ϑL + ϑR−ϑLϑR

)
, (5.13)

is the largest subleading eigenvalue of C0.

Proof. The idea is to use the “zipping conditions” (4.58a), (4.58b) and (4.58d) to simplify
the diagram (5.3) by absorbing initial states and time-evolution tensors at the boundaries.
In particular, if 2t > 3m, with m = max{x, l − x}, all the dependence on the initial state
can be absorbed into fixed-points, as illustrated by the following diagram

ρl(t) =

· ·

3(l − x)

2t− 3m

3x

x l − x

ϑL ϑR

Ax,l−x

= PlAx,l−xC
t− 3

2
m

0 |Φ0,0(Ψ0)〉 , (5.14)

where we denoted the top part of the tensor network by Ax,l−x.
Since Ax,l−x does not scale with time, the long-time behaviour of the above diagram is

determined by the spectral properties of C0. In particular, by explicitly diagonalising the
9 × 9 matrix (see Appendix B.3), one can straightforwardly verify that it has 3 non-zero
eigenvalues with geometric and algebraic multiplicity 1. These are 1, Λ1, and

Λ2 = −ϑL+ ϑR− ϑLϑR

2

(
1−
√

1− 4ϑLϑR

ϑL + ϑR−ϑLϑR

)
. (5.15)

Moreover, the bottom state in Eq. (5.5) can be expressed in terms of the corresponding
eigenvectors as

|Φ0(Ψ)〉 = |10〉+ γ1 |Λ1,0〉+ γ2 |Λ2,0〉 , (5.16)

with precise values of γ1,2 specified in (B.15). The full reduced density matrix can be
therefore expressed as the sum of all three contributions,

ρl(t) = PlAx,l−x |10〉+ Λ
t− 3

2
m

1 γ1PlAx,l−x |Λ1,0〉+ Λ
t− 3

2
m

2 γ2PlAx,l−x |Λ2,0〉 . (5.17)
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Now we note that the second and third term are exponentially suppressed, as Ax,l−x does
not change with time and only depends on the size of the system l and the distance from
the junction x, which are both fixed. The dominant term is therefore Ax,l−x |10〉 and it can
be again simplified, by repeatedly using the algebraic relations leading from (5.3) to (5.14)
“backwards”, only now the boundary relations used at the bottom are the ones involving
the stationary MPS (4.58c) rather than (4.58d). Explicitly, we obtain

Ax,l−x |10〉 =
1

· ·

· ·

x l − x

=
1

· ·

· ·

l

= C
3m
2
l |1l〉 = |1l〉 .

(5.18)

From here the proof of (5.12) follows immediately

ρl(t) = Pl |1l〉+O
(
|Λ1|t−

3
2

max{x,l−x}
)

= ρGGE,l(ϑL, ϑR) +O
(
|Λ1|t−

3
2

max{x,l−x}
)
. (5.19)

Property 3 implies that any local observable O[−x,−x+l], supported on the section of
the lattice between sites −x and −x+ l (see (5.2)), relaxes to the GGE value with a finite
rate

〈Ψt|O[−x,−x+l]|Ψt〉 − tr
(
ρGGEO[−x,−x+l]

)
∝ Λ

t− 3
2

max{x,l−x}
1 . (5.20)

The above result also describes quenches from homogeneous solvable states, if we take
ϑL = ϑR = ϑ. In this case the reduced density matrix relaxes to the Gibbs state

ρGE,l(ϑ) = ρGGE,l(ϑ, ϑ), (5.21)

with the rate Λ1 = Λ1|ϑL=ϑR=ϑ,

〈Ψt|O[0,l]|Ψt〉 − tr
(
ρGEO[0,l]

)
∝ Λ

t− 3
4
l

1 . (5.22)

Before moving to Case (ii) let us briefly comment on the physics of our result. Indeed,
since the exponential relaxation of all local observables is a feature typically associated
with chaotic systems, it can be surprising to see a result like Eq. (5.20) for an integrable
model. Even though the lack of other solvable examples of interacting integrable dynamics
makes it hard to have a comprehensive discussion, we can compare our results with the
picture emerging from a systematic study of the free case, see e.g. [103]. In free systems
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the expectation value of local observables relax either in exponential or power-law fashion,
depending on the specific observable. In particular, operators that are local with respect
to elementary excitations relax algebraically, while the nonlocal ones relax exponentially.
This picture is believed to carry over to the interacting case, but so far it has been tested
only in a handful of examples. For instance, Ref. [104] used a form-factor expansion
to show that a particular observable (nonlocal w.r.t. the elementary excitations) relaxes
exponentially after a quench in the sine-Gordon model, while Ref. [105] used a hybrid
analytic-numerical method to show that “generic” observables in the one-dimensional Bose
gas relax in power-law fashion.

To summarise, the behaviour described in Eq. (5.20) is indeed special, because in a
generic integrable model one expects to see both exponential and power law relaxation.
This is ultimately due to the simple structure of the fixed point states. Moreover, as
we argue later (see Section 6), the exponential decay of all local observables described by
(5.20) can also be understood from the hydrodynamic point of view. Indeed, quasiparticles
in Rule 54 have both a maximal velocity (which is a consequence of the local evolution)
and a minimal one (which is a consequence of the precise rules of the dynamics, see [57]).
This excludes the possibility of power-law relaxation for systems at finite distance from
the junction.

5.2 Position of the subsystem scales with time

Let us now consider the situation in which the subsystem S is at a distance from the
junction that scales linearly with time. Namely

x = ζt+ x0 , (5.23)

with x0 = O(t0). In this case the reduced density matrix is represented as

ρl(x, t) =

2L
x l

2t

ϑL ϑR

S

. (5.24)

Moreover, let us also introduce the symbol ρl,ζ to denote the reduced density matrix in
the scaling limit of infinite time and distance, i.e.

ρl,ζ = lim
|x|,t→∞
x/t=ζ

ρl(x, t). (5.25)
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In the thermodynamic limit the reduced density matrix is given by

ρl(x, t) =

· ·

x l

ϑL ϑR

= Rx,lCtx+l |Φ0,l(Ψ0)〉 , (5.26)

where Cl and |Φx,y〉 are defined as before (cf. (5.6)), while Rx,l projects out the auxiliary
degrees of freedom and the first x physical sites, i.e.

Rx,l =

x l

. (5.27)

As we are now scaling the position x with time, the width of the tensor network is not
constant and we are not directly able to contract it using the results of the previous
subsection. Nonetheless, there are two regimes for which we can find the exact steady
state. The first one is |ζ| > 2 and corresponds to a subsystem positioned outside of the
causal light-cone, which relaxes as if the initial state was homogeneous. The second regime
corresponds to |ζ| < 2/3. Let us describe these two regimes starting from the former.

5.2.1 Out of the lightcone: |ζ| ≥ 2

For |x|/t = |ζ| > 2 we can simplify Eq. (5.26) by using the local structure of the time
evolution. Indeed, we have the identity

ρl(x ≥ 2t, t) =

· ·

x l

ϑL ϑR

=

· ·

2t
l

ϑL ϑR

〈LϑR
|

1
, (5.28)

which follows from the unitarity of the time-evolution and is proven using the local alge-
braic relations (B.10) (which we used in the proof of the second part of Property 2, see
Appendix B.2). After noting that the triangularly shaped part of the tensor network (in
the grey box) is precisely the left fixed-point corresponding to the parameter on the right
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ϑR (cf. (4.12a)), we obtain exactly the homogeneous limit of the diagram (5.3)

ρl(x ≥ 2t, t) =

· ·

l

ϑR

= PlCtl |1l〉
∣∣
ϑL→ϑR . (5.29)

Since there is no explicit dependence on x, we can immediately take the limit x, t → ∞.
In particular, in analogy with the situation considered in Section 5.1, we obtain

ρl,ζ≥2 = ρGGE,l(ϑR, ϑR) = ρGE,l(ϑR). (5.30)

A completely analogous reasoning gives

ρl,ζ≤−2 = ρGE,l(ϑL). (5.31)

5.2.2 Close to the junction: |ζ| < 2/3

In this regime, we can apply an argument analogous to the one used to prove Property 3.
We start by assuming

2t > 3(x+ l), (5.32)

which enables us to reduce the diagram (5.26) to a form analogous to (5.17)

ρl(x, t) = Rx,l |1l+x〉+ γ1Λ
t− 3

2
(x+l)

1 Rx,lA0,l+x |Λ1,0〉+ γ2Λ
t− 3

2
(x+l)

2 Rx,lA0,l+x |Λ2,0〉
= ρGGE,l(ϑL, ϑR) + γ1Λt1Rx,l

∣∣Λ1,(0,x+l)

〉
+ γ2Λt2Rx,l

∣∣Λ2,(0,x+l)

〉
,

(5.33)

where we introduced the following notation for the subleading eigenvectors of Cl+x∣∣Λ1/2,(0,x+l)

〉
= Λ

− 3
2

(x+l)

1/2 A0,x+l

∣∣Λ1/2,0

〉
, (5.34)

and we took into account

Rx,l |1x+l〉 = Pl |1l〉 = ρGGE,l(ϑL, ϑR), (5.35)

which follows from 〈Ls|Ws = 〈Ls|. The main difference with respect to the case described
by Property 3 is that in the scaling regime A0,x+l grows with t, therefore one has to
explicitly verify that

∥∥∣∣Λ1,(0,x+l)

〉∥∥ and
∥∥∣∣Λ2,(0,x+l)

〉∥∥ can be bounded independently of x.
As is shown in Appendix B.3, this is indeed the case. Therefore, the subleading terms
in (5.33) are again exponentially suppressed and the reduced density matrix in the scaling
regime for ζ < 2/3 (cf. (5.32)) relaxes to the GGE

ρl,|ζ|< 2
3

= ρGGE,l(ϑL, ϑR). (5.36)
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6 Comparison with GHD

The scaling regime of the inhomogeneous quench considered in the previous section is
the setup in which GHD applies most directly [11, 58, 59]. This means that our exact
results can be used to provide a, hitherto missing, independent verification of the GHD
predictions. Indeed, up to now, the only predictions of GHD that have been verified by an
independent analytical calculation are those concerning dynamical correlations on homo-
geneous equilibrium states [106,107], which were recovered in Ref. [108] in the context of
a strong coupling expansion. Instead, only partial results [109,110] are currently available
for inhomogeneous quench problems.

Since GHD is expressed in the language of Thermodynamic Bethe Ansatz (TBA) [111,
112] we start by reporting some basic facts about the TBA description of Rule 54 (for
further details see [57] and the supplemental material of Ref. [100]). The basic premise
of TBA is that, in the thermodynamic limit, expectation values of local observables on
eigenstates only depend on some gross macroscopic properties of the eigenstates. In par-
ticular for Rule 54 these macroscopic properties are the densities n+ and n− of right and
left moving particles. One then considers macrostates formed by collections of micro-
scopic eigenstates of the time evolution operator with the same densities. In particular, a
combinatorial calculation reveals that a given macrostate corresponds to NL ' eLs[n+,n−]

eigenstates of the Hamiltonian. Here we introduced the Yang-Yang entropy

s[n+, n−] =
∑
ν∈{±}

nν
nt,ν

log
nν
nt,ν

+

(
1− nν

nt,ν

)
log

(
1− nν

nt,ν

)
, (6.1)

and the density of slots that can be filled by particles

nt,ν = 1− nν + n−ν , ν = ± . (6.2)

The physical meaning of the above equation is that, because of the interactions, the density
of available slots that particles can occupy depends on n+ and n−.

One can make elementary excitations on the macrostate {n+, n−} by adding a left/right
moving particle. It turns out that [113], because of the interactions, the velocity of this
excitation is not ±2, as it would be in the vacuum, but it gets renormalised to [57,100]

vν = 2ν

(
1− 2n−ν

1 + nν + n−ν

)
. (6.3)

An interesting macrostate is the one corresponding to the microcanonical representa-
tion of the GGE (4.29). The latter is specified by densities {n+, n−} fulfilling

εν = µν + log
1 + e−εν

1 + e−ε−ν
,

nt,ν − nν
nν

= eεν . (6.4)

Here there are two important things to note. First, exponentiating these relations and
comparing with (4.45) one directly verifies

ϑ± =
n±
nt,±

. (6.5)

Namely ϑ± (cf. (4.42) and (4.44)) are nothing but the filling functions of the GGE (4.29).
Second, since by varying (µ+, µ−) ∈ R2 we can reproduce all (n+, n−) ∈ [0, 1]2, every
macrostate can be thought of as a microcanonical representation of a GGE (4.29). Note
that in the case µ+ = µ− the expressions become

nν =
1

1 + eµ
, nt,ν = nt = 1, ϑν = ϑ =

1

1 + eµ
, vν = 2ν

1 + eµ

3 + eµ
. (6.6)
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ζ−2 −2
3 0 2

3 2

ρGE,l(ϑL) ρGE,l(ϑR)ρGGE,l(ϑL, ϑR)

Figure 3: Summary of the results in the scaling limit. For |ζ| > 2 and |ζ| < 2
3 (rectangles

with darker colours) we independently prove the GHD prediction, while for 2
3 < |ζ| < 2

(light rectangles) the microscopic verification is still missing.

Now we have all the ingredients to find a description of the inhomogeneous quench.
We assume that at large time t, the state at the position x can be locally approximated
by a GGE that depends on the ray ζ = x/t: we describe it by two ray-dependent filling
functions ϑ±,ζ . The two limiting values for ζ → ±∞ are given by the stationary states to
which the initial states on the left and right halves of the chain relax

lim
ζ→−∞

ϑν,ζ = ϑL, lim
ζ→∞

ϑν,ζ = ϑR, ∀ν ∈ {+,−}, (6.7)

while GHD predicts [11,58,59] that the state for an intermediate value of ζ is given by

ϑν,ζ =

{
ϑL, vν(ζ) < ζ

ϑR, vν(ζ) > ζ
, (6.8)

where

vν(ζ) =
2ν

1 + 2ϑ−ν,ζ
. (6.9)

In our case the above relations can be solved exactly and yield

ϑ+,ζ =

{
ϑL, ζ < 2

1+2ϑR
,

ϑR, ζ > 2
1+2ϑR

,
ϑ−,ζ =

{
ϑL, ζ < − 2

1+2ϑL
,

ϑR, ζ > − 2
1+2ϑL

.
(6.10)

This implies that the hydrodynamic prediction for the reduced density matrix in the
scaling regime is

ρl,ζ =


ρGE,l(ϑL), ζ < − 2

1+2ϑL
,

ρGGE,l(ϑL, ϑR), − 2
1+2ϑL

< ζ < 2
1+2ϑR

,

ρGE,l(ϑR), ζ > 2
1+2ϑR

.

(6.11)

As is graphically summarised in Fig. 3 the GHD prediction (6.11) agrees with our exact
results in all regimes that we can access. Indeed, the result (5.36) implies the relaxation to
ρGGE,l(ϑL, ϑR) for |ζ| < 2/3, which is always contained inside the interval −2/(1 + 2ϑL) <
ζ < 2/(1 + 2ϑR). Similarly, 2 > 2/(1 + 2ϑR) and −2 < −2/(1 + 2ϑL), which means
that Eqs. (5.30) and (5.31) are compatible with the GHD prediction. To the best of our
knowledge, this is the first ab initio derivation of the GHD prediction for an inhomogeneous
quench in an interacting system.

Note that for the intermediate values of the scaling ratio, 2/3 < |ζ| < 2, we are not
able to directly contract the tensor network (5.26), and the question of whether or not our
approach can be extended to provide a rigorous confirmation of the result (6.11) over the
whole light cone remains open.
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7 Conclusions

In this paper we studied the out-of-equilibrium dynamics of the quantum cellular automa-
ton Rule 54 using a time-channel approach. We introduced a class of “solvable” initial
states for which we could provide an explicit construction of the fixed-points of the space
transfer matrix. We used the latter to express the time-evolution of all finite subsystems in
terms of finite-dimensional quantum maps and, in turn, to characterise exactly their relax-
ation. For the class of initial states considered, we showed that all local observables relax
exponentially fast to Gibbs states. Furthermore, we considered quenches from piecewise-
homogeneous states built from solvable initial states, and we demonstrated that they relax
to non-equilibrium stationary states whose properties are described by the GGEs with two
chemical potentials (corresponding to left and right movers). In the accessible regimes, our
results agree with the predictions of GHD providing the first independent confirmation of
the latter for an inhomogeneous quench in a simple yet interacting many-body system.

The work presented here opens many exciting directions for future research. In par-
ticular we can envisage three broad classes of questions.

First, even though our results pertain to an integrable system, our approach did not
explicitly rely on integrability. An immediate direction is then to connect our results with
the Bethe-Ansatz-based programme for studying the time channel dynamics put forward in
Refs. [68–70]. In particular, it is interesting to ask whether the solvable initial states found
here correspond to the Bethe-Ansatz “integrable” ones of Ref. [114] (we believe that this
is the case because they only produce pairs of quasiparticles [60]) and if a Bethe-Ansatz
approach can explain the simple form of the fixed points.

The second set of questions concerns a quantitative characterisation of the effect of
conservation laws on the finite-time dynamics. Indeed, even though Rule 54 exhibits ex-
ponentially many (in the volume) local integrals of motion [100, 115], the class of states
that we studied here relaxes to GGEs depending on only two of them. This means in
particular that the hydrodynamic regime discussed here effectively involves only two in-
dependent continuity equations. It would be very interesting to describe the dynamics
(and the eventual hydrodynamic regime) ensuing from states involving increasingly many
conservation laws, as it could reveal potential qualitative effects of conservation laws in
the finite-time dynamics of local observables. This direction seems within the scope of our
approach: one would only need to find fixed points corresponding to more complicated
GGEs. We expect these fixed points to maintain an MPS form with a bond dimension
corresponding to the one of the MPO representing the stationary state — in the case
considered here they are both equal to three.

Finally, and perhaps more interestingly, it is natural to wonder whether our results
can be generalised to other systems. The diagrammatic language employed here is largely
model-independent, and the algebraic relations summarised in Section 4.4 provide a conve-
nient starting point. It would be interesting to understand whether they can be systemat-
ically solved for more general time-evolution tensors and what are precisely the properties
that they have to satisfy to exhibit a simple fixed-point solution. Furthermore, one could
also think of developing a numerical scheme to find approximations to the fixed-points
and hence gaining insights into the relaxation dynamics of a broader class of models (po-
tentially non-integrable).
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A Explicit form of fixed-point bulk and boundary tensors

The two-site fixed-point tensors, which together with tensors (4.41) satisfy the set of local
algebraic relations (4.58), take the following form,

00

00

ϑ

=

(1− ϑ)2 (1− ϑ)2 −(1− ϑ)2

(1− ϑ)ϑ (1− ϑ)ϑ −(1− ϑ)ϑ
(1− ϑ)ϑ −ϑ2 ϑ2

, 00

10

ϑ

=
00

01

ϑ

=

0 0 0
0 ϑ2 (1− ϑ)ϑ
0 ϑ2 (1− ϑ)ϑ

,
00

11

ϑ

=

0 (1− ϑ)2 −(1− ϑ)2

0 (1− ϑ)ϑ −(1− ϑ)ϑ
0 −ϑ2 ϑ2

, 01

01

ϑ

=
10

10

ϑ

=

ϑ 0 0
0 ϑ 1− ϑ
0 0 0

,
01

10

ϑ

=
10

01

ϑ

=

0 1− ϑ 0
0 ϑ 0
0 0 ϑ

, 11

00

ϑ

=

ϑ 0 0
0 0 0
0 0 0

,
11

10

ϑ

=
11

01

ϑ

=

 0 0 0
(1− ϑ)ϑ 0 0
(1− ϑ)ϑ 0 0

, 11

11

ϑ

=

 ϑ 0 0
1− ϑ 0 0

0 0 0

,
01

11

ϑ

=
01

00

ϑ

= 0,
s1r1

s2r2

ϑ

=
r1s1

r2s2

ϑ

.

(A.1)

To completely specify the left fixed-point corresponding to the stationary state, we also
need the following set of boundary tensors

·
1

=

1
0
0

T, ·
2

=

 0
ϑ+(1−ϑ−)

1−ϑ+
(1−ϑ+)ϑ−

1−ϑ−


T

, ·
3

=

 0
ϑ+(1−ϑ−)

1−ϑ+
−ϑ+ϑ−

1−ϑ−


T

,

·
1

=

1− ϑ+

0
0

T, ·
2

=

 0
(1−ϑ+)2ϑ−

1−ϑ−
(1− ϑ+)ϑ−


T

, ·
3

=

 0

− (1−ϑ+)ϑ+ϑ−
1−ϑ−

ϑ+(1− ϑ−)


T

,

(A.2)
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and the equivalent set for the right fixed point is

·
1

=

 1
ϑ+(1−ϑ−)
(1−ϑ+)2

1

 , ·
2

=


ϑ+

1−ϑ+
1−ϑ−
1−ϑ+
ϑ−

1−ϑ−

 , ·
3

=

 0
1−ϑ+−ϑ−

1−ϑ+
ϑ−(1−ϑ+−ϑ−)

(1−ϑ−)2

 ,

·
1

=

 1− ϑ−
(1−ϑ+)ϑ−

1−ϑ−
1− ϑ−

 , ·
2

=

 ϑ−
1− ϑ+
ϑ+(1−ϑ−)

1−ϑ+

 , ·
3

=

ϑ−(1−ϑ+−ϑ−)
1−ϑ−

0
0

 .
(A.3)

B Properties of fixed-point tensors

B.1 Normalisation of the fixed-point MPS

Property 4. The overlap between left and right fixed-points corresponding to (possibly
different) solvable initial states is 1,

〈Lϑ1 |Rϑ2〉 =

· ·
ϑ1 ϑ2

2t
= 1, (B.1)

independently of the time t and the choice of parameters ϑ1, ϑ2.

Proof. The proof follows from the observation that the two-site state at the top of the
diagram (B.1),

, (B.2)

is a fixed-point of both

, and . (B.3)

Explicitly, independently of parameters ϑ1, ϑ2, the following holds,

= = . (B.4)

Applying this relation to Eq. (B.1), immediately reduces it to the overlap between the top
and bottom vectors, which can be explicitly evaluated as

〈Lϑ1 |Rϑ2〉 = · · = 1. (B.5)

B.2 Proof of Property 2

Proof. To prove Eq. (5.8) diagrammatically, we have to introduce an auxiliary matrix

S =

1
1

1

 = , (B.6)
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which is used to express stationarity of the MPS in terms of local relations (see [57] for
the details),

= . (B.7)

This relation allows us to prove that the MPS is stationary for a finite system with periodic
boundaries. It can be also used to prove (5.8) when combined with the following boundary
identities

·
= (1− ϑL) · ,

·
= (1− ϑL) · ,

·
=

1

1− ϑL · , ·
=

1

1− ϑL · .
(B.8)

The case of C0 has to be treated separately, and one can directly check that the following
holds,

· · = · · , · · = · · . (B.9)

The proof of Eq. (5.9) is analogous and follows directly from the following set of local
relations

= , = , = , = , = . (B.10)

The first is a diagrammatic representation of the unitarity of the local time-evolution
operator, while the rest are the consistency relations that have to be satisfied by the
tensors of the left and the right fixed points.

B.3 Additional details on the proof of Property 3

The 9 × 9 matrix C0 that governs the relaxation to the steady state takes the following
form

C0 =



ϑ̄Lϑ̄R 0 0 ϑ̄Lϑ̄R ϑ̄R −ϑ̄R −ϑ̄Lϑ̄R 0 0
ϑ̄LϑR 0 0 ϑ̄LϑR ϑR ϑ̄R −ϑ̄LϑR 0 0

ϑ̄LϑR 0 0 ϑ̄LϑR −ϑ
2
R

ϑ̄R
−ϑR −ϑ̄LϑR 0 0

0 1 0 0 0 0 0 0 0
ϑL 0 0 ϑL 0 0 ϑ̄L 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

ϑL 0 0 −ϑ
2
L

ϑ̄L
0 0 −ϑL 0 0

0 0 0 0 0 0 0 0 0


, ϑ̄L/R = 1− ϑL/R, (B.11)

and by explicit diagonalisation we confirm that there are exactly three non-zero eigenvalues
with multiplicities 1,

Sp(C0)={0, 1,Λ1,Λ2}, Λ1,2 =−ϑL+ ϑR− ϑLϑR

2

(
1±
√

1− 4ϑLϑR

ϑL+ϑR − ϑLϑR

)
, (B.12)
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with corresponding (right) eigenvectors |10〉 (given by (5.7)) and |Λ1,0〉, |Λ2,0〉,

∣∣Λ1/2,0

〉
=

1

ϑL(1− ϑL)(1 + ϑR + ϑL)



(1− ϑL)(1− ϑR)(ϑLϑR + Λ1/2)

ϑR(1− ϑL)(1− ϑR)(ϑLϑR + Λ1/2)

(1− ϑL − ϑR + 2ϑLϑR)(ϑL + Λ1/2)

ϑR(1− ϑL)((1− ϑL)(1− ϑR)− Λ1/2)

−(1− ϑL)
(
ϑLϑ

2
R + (1− ϑR)(ϑR + Λ1/2)

)
0
0

ϑL(1− ϑL − ϑR + 2ϑLϑR)
0


. (B.13)

Expanding |Φ0(Ψ)〉 in eigenstates of C0 we have

|Φ0(Ψ)〉 = |10〉+ γ1 |Λ1,0〉+ γ2 |Λ2,0〉 , (B.14)

where the constants γ1/2 are given by

γ1/2 =
2ϑLϑR − (1− ϑR − ϑL)Λ1/2

(1− ϑL − ϑR + 2ϑRϑL)(Λ1/2 − Λ2/1)
. (B.15)

As explained in the main-text proof of Property 3 (see the discussion between Eqs. (5.17)
and (5.18)), this allows us to express Ctl |Φx,l−x(Ψ0)〉 for any t satisfying the condition

2t > 3m, m = max{x, l − x}, (B.16)

as

Ctl |Φx,l−x(Ψ0)〉 = |1l〉+ γ1Λ
t− 3

2
m

1 Ax,l−x |Λ1,0〉+ γ2Λ
t− 3

2
m

2 Ax,l−x |Λ2,0〉 . (B.17)

From here it follows that
∣∣Λ1/2,(x,l−x)

〉
, defined as∣∣Λ1/2,(x,l−x)

〉
= Λ−

3
2
mAx,l−x

∣∣Λ1/2,0

〉
, (B.18)

are eigenvectors of Cl, corresponding to the subleading eigenvalues Λ1 and Λ2, and Eq. (B.17)
can be decomposed as

Ctl |Φx,l−x(Ψ0)〉 = |1l〉+ γ1Λt1
∣∣Λ1,(x,l−x)

〉
+ γ2Λt2

∣∣Λ2,(x,l−x)

〉
. (B.19)

To bound the norm of eigenvectors
∣∣Λ1/2,(x,l−x)

〉
, we first observe that they can be equiv-

alently expressed as,

∣∣Λ1/2,(x,l−x)

〉
=

Cl − Λ2/1

γ1/2Λ
3
2
m

1/2 (Λ1/2 − Λ2/1)

(
C

3
2
m

l |Φx,l−x(Ψ0)〉 − |1l〉
)

=
(Cl − Λ2/1)(Cl − 1)

γ1/2Λ
3
2
m

1/2 (Λ1/2 − Λ2/1)(Λ1/2 − 1)
C

3
2
m

l |Φx,l−x(Ψ0)〉 ,
(B.20)

and the prefactors on the r.h.s. of (B.20) are well defined also when Λ1 = Λ2. Then the
norm of the eigenvector can be bounded by noting that the action of Cl on |Φx,l−x(Ψ0)〉
can be equivalently reproduced by

C̄l = |1̄l〉〈1l|+ Λ1

∣∣Λ̄1,(x,l−x)

〉〈
Λ1,(x,l−x)

∣∣+ Λ2

∣∣Λ̄2,(x,l−x)

〉〈
Λ2,(x,l−x)

∣∣ , (B.21)
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with spectrum {1,Λ1,Λ2, 0} (cf. (B.19)),

∥∥∣∣Λ1/2,(x,l−x)

〉∥∥ =
‖C

3
2
m

l (Cl − Λ2/1)(Cl − 1) |Φx,l−x(Ψ0)〉‖

|γ1/2Λ
3
2
m

1/2 (Λ1 − Λ2)(Λ1/2 − 1)|

=
‖C̄

3
2
m

l (C̄l − Λ2/1)(C̄l − 1) |Φx,l−x(Ψ0)〉‖

|γ1/2Λ
3
2
m

1/2 (Λ1 − Λ2)(Λ1/2 − 1)|

≤ ‖|Φx,l−x(Ψ0)〉‖∣∣γ1/2(Λ1 − Λ2)(Λ1/2 − 1)
∣∣ ,

(B.22)

where in the last step we used that C̄kl (C̄l − Λ2/1)(C̄l − 1) has operator norm bounded by

Λk1/2 for each k ≥ 1. As there is no l-dependence in the bound on the eigenvectors (apart

from the norm of |Φx,l−x(Ψ0)〉), the scaling regime discussed in Subsection 5.2.2 is well
defined.
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