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Abstract

We study the entanglement dynamics generated by quantum quenches in the quantum
cellular automaton Rule 54. We consider the evolution from a recently introduced class
of solvable initial states. States in this class relax (locally) to a one-parameter family of
Gibbs states and the thermalisation dynamics of local observables can be characterised ex-
actly by means of an evolution in space. Here we show that the latter approach also gives
access to the entanglement dynamics and derive exact formulas describing the asymptotic
linear growth of all Rényi entropies in the thermodynamic limit and their eventual satura-
tion for finite subsystems. While in the case of von Neumann entropy we recover exactly
the predictions of the quasiparticle picture, we find no physically meaningful quasipar-
ticle description for other Rényi entropies. Our results apply to both homogeneous and
inhomogeneous quenches.
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1 Introduction

The growth of entanglement is arguably the most universal phenomenon observed so far
in studies of quantum many-body dynamics. Whenever a quantum many body system
with short-range interactions is prepared in a non-equilibrium state with low entanglement
and then let to evolve unitarily, the entanglement among neighbouring spatial regions is
observed to grow linearly in time. For instance, this behaviour has been reported in con-
formal field theories, both rational [1] and holographic [2], in free systems of fermions [3]
and bosons [4], as well as in interacting integrable [4,5] and non-integrable systems [6–11].
Remarkably, the growth of entanglement has even been measured in cold-atom experi-
ments [12–14]. In essence, the only exceptions to this empirical rule are systems exhibit-
ing localisation [15–17], confinement [18], or when the dynamics is not purely unitary, for
example if the evolution is monitored with measurements [19–21].

Given such a universal phenomenology a natural direction for the theoretical research
has been to find an equally universal description and identify the seemingly very gen-
eral emergent laws describing it. Recent years have witnessed important progress in this
direction with the proposal of two alternative effective descriptions of the spreading of en-
tanglement which are believed to work in integrable and chaotic systems respectively. The
first, known as the quasiparticle picture [1], explains the growth of entanglement by imag-
ining that correlations are transported by quasiparticle excitations. These excitations,
stable because of integrability, are created when the system is driven out of equilibrium
and are correlated with those created nearby. During the evolution correlated quasipar-
ticles move far apart, effectively spreading correlations and entanglement throughout the
system. The second effective description is known as the membrane picture [22] and inter-
prets the entanglement geometrically. In essence it claims that the entanglement between
two complementary regions is given by the tension of the minimal spacetime surface that
separates the two.

A quantitative verification of these pictures and their predictive power in genuinely
interacting systems, however, has proven to be a daunting task. This is ultimately due to
the fact that the out-of-equilibrium dynamics of interacting many-body quantum systems
are generically too complicated to be characterised analytically and, moreover, the growth
of entanglement provides a great limitation to the most efficient numerical methods at
our disposal to treat quantum many-body systems [23]. For this reason, the benchmark
provided by exact solutions in minimal solvable cases is of rare value.

Surprisingly, such a benchmark has recently become available in the case of quantum
chaotic systems with the discovery of dual-unitary circuits [24]. In these systems one
can exploit a duality between space and time to compute exactly the time-evolution of
many relevant quantities [9–11, 25–30], including that of entanglement, by performing an
evolution in space (or in the “time-channel”) rather than in time. Up to very recently, how-
ever, no such solvable benchmark was known for the case of interacting integrable models.
The situation changed recently, when Ref. [31] presented an exact characterisation of the
growth of entanglement in the quantum cellular automaton Rule 54, which can be consid-
ered one of the simplest examples of interacting integrable models (see also [32–35]). The
result was again based on a time-channel approach and lead to an exact characterisation
of the growth of entanglement when the system is initialised in a particular class of initial
states.

The objective of this paper is to extend the exact results presented in Ref. [31] to a
larger class of initial states. This is the second of two papers dedicated to this task. While
in the first part of our work [36], which in the following we will refer to as “Paper I”,
we focussed on the dynamics of local observables, here we consider the evolution of the
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entanglement. The extension that we present bares a remarkable physical significance.
Indeed, while the states considered in Ref. [31] all relax (locally) to the Gibbs state with
infinite temperature, here we show that exact results can be obtained also for states
relaxing to richer Gibbs ensembles (characterised by an arbitrary chemical potential).
This allows us, for instance, to study exactly inhomogeneous quenches giving rise to a non-
trivial (generalised) hydrodynamic regime at late times [37, 38]. We use our exact results
to test the predictions of the quasiparticle picture for the von Neumann entanglement
entropy, both for homogeneous [5] and inhomogeneous [39, 40] quenches, providing what
is, to the best of our knowledge, the first exact confirmation of this picture in the presence
of either inhomogeneity or interactions. Using our exact results we also argue that no
consistent quasiparticle picture can be designed in the case of Rényi entropies.

The rest of the paper is organised as follows. In Sec. 2 we introduce the time-channel
approach to the entanglement dynamics in generic systems. In Sec. 3 we specialise the
treatment to the case of Rule 54 and recall some of the results of Paper I that are necessary
for our discussion. Sec. 4 contains the derivation of our main results, i.e. exact formulae for
the stationary values eventually approached by the entropies of finite regions and for the
rate of entanglement entropies after a quench from a solvable state. In Sec. 5 we derive
the predictions of the quasiparticle picture for the cases of interest and compare them
with our findings. Finally Sec. 6 contains our conclusions. Some more technical points
and proofs are reported in the two appendices.

2 Entanglement dynamics in the time-channel

In this section we show that the time-channel description of the dynamics introduced
in [41,42] can also be applied to study of entanglement. As discussed in the aforementioned
references (see also Paper I), this approach is based on the simple idea of evolving a many-
body system in space, rather than in time, and can be applied whenever the time-evolution
operator is represented as a matrix product operator (MPO). This approach has a very
general scope, since essentially any evolution generated by a short-range Hamiltonian
can be efficiently represented by a unitary MPO [43, 44], but it does not generically give
a computational advantage. On the contrary in certain special cases it leads to exact
results. In particular, concerning the entanglement dynamics, it provides exact results in
dual-unitary quantum circuits [9–11,24] and in Rule 54 [31].

To describe the main ideas let us consider the setting described in Paper I: 2L qudits
(with d internal states) are arranged along a one-dimensional chain and driven out of
equilibrium through a standard quantum quench protocol [45,46]. Specifically, we prepare
the system in a two-site shift invariant product state denoted by |Ψ0〉 (note that here,
differently from Paper I, we do not consider more general matrix product states) and
evolve it with a unitary MPO (with bond dimension χ2), which we indicate by U. The
regime of interest is L� t and we will eventually take the thermodynamic limit L→∞.

Making use of the graphical representation introduced in Paper I we depict initial state
and time-evolution operator as follows

|Ψ0〉 =

2L

, (2.1)

U =

2L

, (2.2)
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where we assumed periodic boundary conditions and, for the time being, the tensors

α

s

β

r

, α

s

β

r

,
s
,

s
, r, s = 1, . . . , d, α, β = 1, . . . , χ , (2.3)

can be considered generic (the only constraints on them are that U must be unitary and
|Ψ0〉 normalised). As discussed in Paper I, two remarks are in order at this point: (i)
here we are interested in MPOs describing local interactions and hence we should impose
additional constraints on (2.3). However, since the upcoming discussion does not rely upon
these constrains, we ignore them for the sake of simplicity; (ii) the space-time staggering in
(2.1) and (2.2) is inessential and can be easily removed by appropriately merging tensors
and local sites. Nevertheless, here we keep it because it arises naturally in Rule 54 which
is the case of interest in this paper.

As a result of the unitary evolution, the state

|Ψt〉 = Ut |Ψ0〉 , (2.4)

becomes increasingly more entangled as time advances. The growth of entanglement
between a finite region A and the rest of the system is quantitatively characterised by
the Rényi entropies

S
(α)
A (t) =

1

1− α log
[
tr
(
ραA(t)

)]
, α ∈ R , (2.5)

where ρA(t) is the density matrix of the system reduced to the subsystem A. In particular,
the limit α→ 1 of (2.5) gives the von Neumann entropy or entanglement entropy

SA(t) = − tr [ρA(t) log ρA(t)] , (2.6)

which is the standard measure of bipartite entanglement for pure states [47]. The latter,
however, is not the only interesting member of the family. Although Rényi entropies for
α 6= 1 are not entanglement measures in the strict sense, they are attracting increasing
attention. This is because they characterise the spectrum of ρA(t) — the entanglement
spectrum — which contains non-trivial information about the system [48] (e.g. on its
topological properties [49]). Moreover, and perhaps more importantly, they have recently
become experimentally accessible [12–14, 50–52]. The goal of this section is to derive an
alternative representation for these quantities.

Let us start by looking more closely at the expression (2.5). Employing the diagram-
matic representation in (2.1) and (2.2), we can depict the reduced density matrix at time t
as

ρA(t) = trĀ[Ut |Ψ0〉〈Ψ0|U−t] =

2t

2L

, (2.7)

4



SciPost Physics Submission

where we introduced the symbols

=

∗

, =
∗
, (2.8)

for the complex conjugate of the tensors (3.1).
We now interpret the tensor network (2.7) as the result of an evolution in space rather

than in time. Specifically, by defining the space transfer matrices

W̃r1 r2
s1 s2 =

s1 s2

r1 r2

, W̃ =
∑
s1,s2

W̃s1 s2
s1 s2 = , (2.9)

we can express the reduced density matrix (2.7) as the following MPO

ρA(t) =
∑

sj ,rj∈{0,1}

tr
(
W̃r1r2
s1s2 · · · W̃

r|A|−1r|A|
s|A|−1s|A|W̃

L−|A|/2
) ∣∣s1s2 . . . s|A|

〉〈
r1r2 . . . r|A|

∣∣ , (2.10)

where we conveniently consider the case of |A| even.
Inserting (2.10) in the definition (2.5) of Rényi entropies and taking α = n, with n > 1

integer, we have

S
(n)
A (t) =

1

1− n log tr
[
(W̃∗⊗n)|A|/2S†2n(W̃⊗n)L−|A|/2S2n

]
, (2.11)

where the operator S2n denotes a periodic shift by one in the space of the 2n replicas
(of which n correspond to forward (green) and n to backward (red) time-sheets). More
precisely, S2n acts on the tensor product of 2n copies of the qudit chain in the t direction
as follows

S2n |i1〉⊗ |i2〉⊗ · · ·⊗ |i2n−1〉⊗ |i2n〉 = |i2〉⊗ |i3〉⊗ · · ·⊗ |i2n〉⊗ |i1〉 , ij ∈ Z×2t
d , (2.12)

where {|i〉} is a basis of Cd2t , which is the Hilbert space of a qudit chain of length 2t. The
operator S2n appears because the sites of A and Ā are contracted to different replicas in
the calculation of the Rényi entropies, see Fig. 1.

To simplify (2.11) further we use a simple property of W̃ (which is a special case of
Property 1 in Paper I).

Property 1. Whenever the initial state is normalised and the time evolution operator
unitary, the spectrum of W̃ in (2.9) is given by {0, 1} and the algebraic and geometric
multiplicity of the eigenvalue 1 are equal to one.
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,

Figure 1: Pictorial representation of tr
[
ρA(t)3

]
in the folded picture. The portions corre-

sponding to A and Ā are connected together in a “staggered” fashion: this staggering is
implemented the operators S2n and S†2n in (2.11).

Proof. The unitarity of time-evolution implies

1 = 〈Ψt|Ψt〉 = tr
[
W̃L
]

=
∑
j

λLj , (2.13)

where the second equality follows directly from the definition (2.9) and λj are eigenvalues
of W̃. This equality holds for any L, therefore λj ∈ {0, 1} and both the geometric and
algebraic multiplicity of the eigenvalue 1 have to be 1.

An immediate consequence of this is that we can write the thermodynamic limit of
(2.11) as

S
(n)
A,th(t) := lim

L→∞
S

(n)
A (t) =

1

1− n log

[
n〈L|S2n(W̃∗⊗n)|A|/2S†2n|R〉n

n〈L|R〉n

]
, (2.14)

with

n〈L| = n⊗〈L| , |R〉n = |R〉⊗n , (2.15)

and 〈L| and |R〉 respectively denote the left and right fixed points (i.e. eigenvectors cor-
responding to the eigenvalue 1) of W̃. We see that, in the thermodynamic limit, the n-th
Rényi entropy is expressed as a matrix element between n copies of left and right fixed
points. This expression further simplifies if one considers the entanglement of half of the
system

lim
|A|→∞

S
(n)
A,th(t) =

2

1− n log
[∣∣∣∣ 〈L|S2n|R∗〉n n

〈L|R〉n n

∣∣∣∣]. (2.16)

Here we introduced the shorthand notation |R∗〉 = |R〉∗ to denote the complex conjugate
of |R〉 (similarly, 〈L∗| = 〈L|∗) and we implicitly used

〈L∗|S†2n|R〉n n =
(
〈L|S2n|R∗〉n n

)∗
, (2.17)

which follows directly from the permutation symmetry of |R〉n and 〈L|n . Equation (2.16)
implies that the information about the asymptotic growth of entanglement is entirely
encoded in the fixed points. Note that in systems with a strict maximal speed vmax for
the propagation of signals — as it is the case for local quantum circuits — one does not
need to consider the limit |A| → ∞ to obtain the simplified form (2.16): it is sufficient to
take |A| > 2vmaxt so that the two boundaries are causally disconnected.

This approach can also be applied when the initial state is not homogeneous (i.e.
invariant under a small number of shifts), but is composed by the junction of two different
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homogeneous pieces. Namely

|Ψ0〉 =
R R R R R RL L L L L L

L L

, (2.18)

where we took L even. Quantum quenches from this kind of states are known as biparti-
tioning protocols [53–56] and can be thought of as the sudden junction of two homogeneous
leads prepared in different states. In this case, the precise expression for the Rényi en-
tropies depends on the position of A with respect to the junction. For example, if the
subsystem A is starting at the site x ≥ 0 (i.e. on the right of the junction), we have

S
(n)
x,A,th(t) =

1

1− n log
[ 〈LL|(W̃⊗nR )x/2S2n(W̃∗⊗nR )|A|/2S†2n|RR〉n n

〈LL|RR〉n n

]
. (2.19)

For the sake of simplicity in this paper we only consider the special case x = 0, i.e. when
A starts right at the junction, i.e.

S
(n)
A,th(t) =

1

1− n log
[ 〈LL|(S2n(W̃∗⊗nR )|A|/2S†2n|RR〉n n

〈LL|RR〉n n

]
. (2.20)

If, in addition, the system has a strict maximal velocity, and the subsystem large enough,
|A| > 2vmaxt, the above expression reduces to

S
(n)
A,th(t) =

1

1− n log
[ 〈LL|S2n|R∗R〉n n

〈LL|RR〉n n

]
+

1

1− n log
[( 〈LR|S2n|R∗R〉n n

〈LR|RR〉n n

)∗]
. (2.21)

Note that the two terms on the r.h.s. can be directly interpreted as the entanglement
produced at the two boundary points between A and Ā. Indeed, the second term depends
on the parameters of the right lead only, while the first depends on the parameters of
both left and right lead. Consistently, repeating the same construction in the case of open
boundary conditions and taking A to be semi-infinite one finds [31]

lim
|A|→∞

S
(n)
A,th(t)

∣∣∣
obc

=
1

1− n log
[ 〈LL|S2n|R∗R〉n n

〈LL|RR〉n n

]
. (2.22)

Indeed, in this case there is a single boundary point between A and Ā.
Our main goal will be to exploit the representations (2.16) and (2.21) to find the

asymptotic behaviour of Rényi entropies for large times. Since (2.21) reduces to (2.14) for

R
=

L
= ,

R
=

L
= , (2.23)

we can, without loss of generality, consider the inhomogeneous case (2.21) only.

3 A solvable case: quantum cellular automaton Rule 54

The practical convenience of the representation (2.21) depends on the form of the fixed
points 〈L| and |R〉. For instance, they become extremely useful when the fixed points
are written as matrix product states (MPS)s with a constant (i.e. time independent) bond
dimension. This kind of simplification arises for some particular choices of the tensors (2.3),
i.e. for particular systems and initial states [10,24,31].
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Here we focus on one of such choices. Specifically, we consider the quantum cellular
automaton Rule 54, originally introduced in Ref. [57], which has been recently shown to
offer an exactly solvable benchmark for interacting integrable many-body dynamics, both
in the classical [58–64], and quantum [31, 65–69] realm (see also the recent review [70]).
We can interpret it as a local quantum circuit where the time-evolution operator is written
in the form (2.2) with tensors [31,64]

α

s

β

r

= δχ(s,β,r),α, α

s

β

r

= δs,βδβ,rδr,α, (3.1)

where d = χ = 2 and χ(s, β, r) = (s + β + r + sr) mod 2. Note that, since Rule 54 can
be represented as a local quantum circuit, is has a strict maximal velocity vmax for the
propagation of signals. In particular, for our choice of units we have vmax = 2.

Next, we consider initial-states

|Ψϑ,ϕ〉 =

ϑ

(3.2)

with tensors of the form

s

= eiϕ1δs,0,

s

ϑ

=
√

1− ϑδs,0 +
√
ϑeiϕ2δs,1 , (3.3)

where the parameter ϑ ∈ [0, 1] will be referred to as the filling while ϕ1/2 ∈ [0, 2π] as the
phases.

In Paper I we prove that, choosing tensors of the form (3.1) and (3.3), the fixed points,
〈R| and |L〉, are MPSs of bond dimension 3. The latter depend on the filling but are
independent of the phases. In fact, one can prove that fixed points are the same also
when choosing different phases at each spatial point (as long as ϑ is the same everywhere).
Explicitly, we have

〈Lϑ| =
·
ϑ

, |Rϑ〉 =

·
ϑ

, (3.4)

where the “bulk” tensors are given by

00

ϑ

=


1− ϑ 1− ϑ −(1− ϑ)
ϑ ϑ 1− ϑ
ϑ − ϑ2

1− ϑ −ϑ

 , 0 1

ϑ

= 0 1

ϑ

=

0 1− ϑ −(1− ϑ)
ϑ 0 0
ϑ 0 0

,
s r =

δr,0δs,0 0 0
0 δr,1δs,1 0
0 0 δr,1δs,1

 , 1 1 =

0 1 0
1 0 0
0 0 0

,
(3.5)
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and boundary vectors are

· =

1
0
0

 , ·
ϑ

= − 1

1− ϑ

(1− ϑ)2

ϑ(1− ϑ)
−ϑ2

 , =
1√
2

1
1
0

 . (3.6)

These choices give left and right fixed point fulfilling

〈Lϑ1 |Rϑ2〉 = · ·
ϑ1 ϑ2

= 1, ∀ϑ1, ϑ2. (3.7)

In the above diagrams we explicitly reported ϑ to signal the dependence on the filling. In
the following, however, whenever the choice of ϑ is unambiguous we will ease the notation
by removing it.

As proven in Paper I the state |Ψϑ,ϕ〉 relaxes (locally) to a family of Gibbs states. In
particular considering density matrix reduced to a finite subsystem A we have

ρA(t) ' ρGE,A =
trĀ(e−µ(ϑ)N )

tr(e−µ(ϑ)N )
, N = N+ +N−, (3.8)

where ' denotes the leading contribution for large times, N± are the number of left and
right-moving quasiparticles (solitons) explicitly given by [66,71]

N+ =
∑
x∈ZL

P−2xP
−
2x+1 +

∑
x∈Z2L

P+
x P

−
x+1P

+
x+2 ,

N− =
∑
x∈ZL

P−2x−1P
−
2x +

∑
x∈Z2L

P+
x P

−
x+1P

+
x+2 ,

P± :=
1± σ3

2
, (3.9)

and the chemical potential µ(θ) reads as

e−µ(ϑ) =
ϑ

1− ϑ ⇒ ϑ =
1

1 + eµ(ϑ)
. (3.10)

This shows that ϑ in (3.2) sets the density of quasiparticles in the stationary state.
In fact, the states (3.2) can also be used to design solvable bipartitioning protocols.

Indeed, as proven in Paper I, considering initial states of the form∣∣ΨϑL,ϕL,ϑR,ϕR

〉
=
∣∣ΨϑL,ϕL

〉
⊗
∣∣ΨϑR,ϕR

〉
, (3.11)

one finds 〈LL| = 〈LϑL | and |RR〉 = |RϑR〉 (with both 〈Lϑ| and |Rϑ〉 of the form (3.4)). In
this case any finite subsystem A at finite distance from the junction relaxes to a family of
generalised Gibbs states. Namely

ρA(t) ' ρGGE,A =
trĀ(e−µL(ϑL,ϑR)N−−µR(ϑL,ϑR)N+)

tr(e−µL(ϑL,ϑR)N−−µR(ϑL,ϑR)N+)
, (3.12)

where µR/L(ϑL, ϑR) is given by

e−µR/L(ϑL,ϑR) =
ϑR/L(1− ϑL/R)

(1− ϑR/L)2
. (3.13)

Importantly, in Rule 54 the relaxation happens with finite rate [31] (see also Paper I).
In particular, the finite-time corrections to (3.8) and (3.12) are exponentially small in
t− 3|A|/2.
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Finally, we recall (see e.g. Paper I) that ρGGE,A in Eq. (3.12) (and hence also its
particular case (3.8)) is conveniently expressed in terms of the following MPO

ρGGE,A =
1

ZA
· ·

|A|

, ZA = 1 + ϑL + ϑR. (3.14)

The bulk tensors , are diagonal in the two copies of the physical space, and the
auxiliary space is 3-dimensional,

0

0

=

 1 0 0

e−µR(ϑL,ϑR) 0 0
1 0 0

 , 0

1

=

1

0

= 0,

1

1

=

0 e−µR(ϑL,ϑR) 0
0 0 1

0 0 e−µL(ϑL,ϑR)

 , = (1− ϑL)(1− ϑR)

∣∣∣∣
µL↔µR

.

(3.15)

The boundary tensors · , · are 3-dimensional (row and column) vectors and their
explicit expression is reported in Appendix A of Paper I.

4 Exact results for Rényi entropies

In this section we show that combining the representations (2.21) and (2.22) with the exact
expressions (3.4) the problem of computing the growth of Rényi entropies is mapped into
that of contracting a certain tensor network. This can be done exactly in the asymptotic
limit 1 � t ≤ |A|/4. Moreover, using (3.14), we also show that also the stationary value
reached by the entropies for large times is characterised by a tensor network. As we shall
see, the latter is contracted exactly in the limit of large |A|. Let us begin by proving the
latter statement.

4.1 Stationary values

As a consequence of (3.12) we have that for t > 3|A|/2 the Rényi entropies fulfil

S
(α)
A (t) ' S(α)

GGE,A =
1

1− α log
[
tr
(
ραGGE,A

)]
, (4.1)

where we recall that ' denotes equality up to exponential corrections and ρGGE,A the GGE
reduced to the subsystem A. Using the MPO representation of ρGGE,A (cf. Eq. (3.14))
we can express Rényi entropies with index n (integer and larger than one) in terms of the
following tensor network

tr ρnGGE,A =
1

ZnA

· ·
· ·
· ·
· ·
· ·

|A|

n

Tn

=
1

ZnA
〈 · |⊗n T |A|/2n | · 〉⊗n . (4.2)
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This immediately implies that for large |A| the Rényi entropy is dominated by the leading
eigenvalue Λn of the transfer matrix Tn (defined in the above diagram). Namely

S
(n)
GGE,A =

|A|
2(1− n)

log
(

Λn(ϑ1, ϑ2)
)

+O
(
|A|0

)
, (4.3)

where we used the fact that ZA does not grow with |A| (cf. Eq. (3.14)).
To find Λn we make use of the following relations

= , = , (4.4)

where we introduced the projector defined by

x

y

z

w
= δx,yδy,zδz,w. (4.5)

The identities (4.4) imply that the eigenvalues of Tn coincide with the spectrum of the
reduced transfer matrix T̃n defined by applying the projector (4.5) on all the pairs of
auxiliary legs

T̃n = . (4.6)

Therefore the non-zero eigenvalues of Tn are given by the spectrum of a 3× 3 matrix

Sp(Tn) = Sp(T̃n) = {0} ∪ Sp

ϑ̄n1 ϑ̄n2
1 + e−n(µ1+µ2) e−nµ1 e−nµ2

1 + e−nµ2 e−n(µ1+µ2) e−nµ2

1 + e−nµ1 e−nµ1 e−n(µ1+µ2)

 , (4.7)

where we use the shorthand notation ϑ̄1/2 = 1−ϑ1/2. In particular, the leading eigenvalue
Λn(ϑ1, ϑ2) can be expressed as

Λn(ϑ1, ϑ2) =
(1− ϑ1)n(1− ϑ2)n

(1− ϑ(n)
1 )(1− ϑ(n)

2 )
, (4.8)

where we defined ϑ
(n)
1,2 fulfilling

ϑ
(n)
1,2 (1− ϑ(n)

2,1 )

(1− ϑ(n)
1,2 )2

=

(
ϑ1,2(1− ϑ2,1)

(1− ϑ1,2)2

)n
. (4.9)

Note that ϑ
(n)
1,2 can be understood as generalisations of the filling functions ϑ1,2 to the case

where chemical potentials µ1,2 are replaced by nµ1,2 (see Eq. (3.13)).
The result (4.3) can be analytically continued to D = {z ∈ C : Re[z] > 0}. Indeed, the

function Λz(ϑ1, ϑ2) — obtained by replacing n in Eq. (4.8) with z ∈ C — is holomorphic
and bounded in D. Therefore, Carlson’s Theorem [72] ensures that it is the only analytic
continuation of {Λn(ϑ1, ϑ2)}n=1,2,3,... fulfilling

|Λz(ϑ1, ϑ2)| ≤ Ceτ |z|, z ∈ D, |Λ1+iy(ϑ1, ϑ2)| ≤ Cec|y|, y ∈ R , (4.10)

11
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with C, τ ∈ R and c < π. As this is a requirement that we expect from physical grounds,
we choose Λz(ϑ1, ϑ2) as the relevant analytic continuation. In particular, in the limit
z → 1 we find

SGGE,A = −|A|
2

2∑
j=1

1 + 2ϑ3−j
1 + ϑ1 + ϑ2

(ϑj log ϑj + (1− ϑj) log(1− ϑj)) +O(|A|0), (4.11)

which coincides with the expression of the Yang-Yang entropy in the state (3.12) [67]. In
the homogeneous case, when ϑ1 = ϑ2 = ϑ, Rényi entropies take a free-fermionic form (see
e.g. [73])

S
(n)
GE,A = − |A|

1− n log
(

(1− ϑ)n + ϑn
)

+O(|A|0). (4.12)

4.2 Asymptotic slopes

Let us consider the elementary building blocks

bn(ϑ1, ϑ2) :=
1

1− n log
[ 〈Lϑ1 |S2n|R∗ϑ2〉n n

〈Lϑ1 |Rϑ2〉n n

]
, (4.13)

where 〈Lϑ1 |, |Rϑ2〉 are both of the form (3.4). Recalling (2.21) we see that bn(ϑ1, ϑ2)
can be interpreted as the n-th Rényi entropy generated at one of the boundaries of the
subsystem A. This means that, upon analytic continuation, evaluating (4.13) gives direct
access to all Rényi entropies (including von Neumann) for t ≤ |A|/4.

Considering the graphical representation (3.4) of the fixed points, we can express the
matrix element in (4.13) in terms of the following tensor network

〈
Lϑ1
∣∣S2n

∣∣R∗ϑ2〉n n
=

· · ·· · ·

2n

2t

ϑ1 ϑ1 ϑ1ϑ2 ϑ2 ϑ2

= 〈Un| T tn |Dn〉 , (4.14)

where we introduced

Tn=

2n

ϑ1 ϑ1 ϑ1ϑ2 ϑ2 ϑ2

, |Dn〉= · · · · · ·

2n

ϑ1 ϑ1 ϑ1ϑ2 ϑ2 ϑ2

, 〈Un|=
2n

. (4.15)

From the representation (4.14) we see that the asymptotic behaviour of (4.13) is deter-
mined by the largest eigenvalue of the transfer matrix Tn. Therefore, we proceed by

12
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identifying its spectrum. To this aim it is convenient to merge together the tensors ,

on two consecutive rows and columns, i.e.

Mxy
ab = a b

x

y

≡
r1 s1
r2 s2

z1 z2

w1 w2

,
x = 3z1 + z2, y = 3w1 + w2, x, y ∈ Z9,

a = 2r1 + r2, b = 2s1 + s2, a, b ∈ Z4,
(4.16)

so that Tn is rewritten in terms of n horizontally connected tensors M with periodic
boundaries

Tn =

n

. (4.17)

Moreover, we also make a convenient local basis transformation

M̃ = =

−
, = P, − = P−1, (4.18)

where we defined

P =



1
1 1

1 − ϑ2

1− ϑ2
1 1

1 1 1 1

1 − ϑ2

1− ϑ2
1 − ϑ2

1− ϑ2

1 − ϑ1

1− ϑ1

− ϑ1

1− ϑ1
− ϑ1

1− ϑ1
1 1

− ϑ1

1− ϑ1

ϑ1ϑ2

(1− ϑ1)(1− ϑ2)
1 − ϑ2

1− ϑ2



. (4.19)

We denote by T̃n the transfer matrix in the new basis (defined as (4.17), with M replaced
by M̃).

Since T̃n and Tn are related by a similarity transformation, their spectra coincide. To
determine them we make use of the following Lemma (proven in Appendix A).

13
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Lemma 1. For any k ≥ 1

x1

x2

x3

...

xk

x1

y1

y2

y3

...

yk

y1

=
k∏
j=1

δyk,xk

x1

x2

x3

...

xk

x1

x1

x2

x3

...

xk

x1

. (4.20)

This lemma has the remarkable consequence that traces of powers of Tn can be obtained
by considering a simple 9× 9 matrix. Namely we have

tr
(
T kn
)

= tr
(
T̃ kn
)

=
∑

x1,x2,...,xk

n

· · ·

· · ·

· · ·

· · ·

· · ·

x1

x2

x3

...

xk

x1

x1

x2

x3

...

xk

x1

x1

x2

x3

...

xk

x1

x1

x2

x3

...

xk

x1

x1

x2

x3

...

xk

x1

= k

n

n

n

n

n

...

= tr
(
τ̃kn
)
, (4.21)

where we introduced the tensor

n

x

y

ab =
(
M̃xy
ab

)n
. (4.22)

Explicitly, the matrix elements of τ̃n are expressed as[
τ̃n
]
x1,x2

=

4∑
a1,...,an=1

M̃x1x2
a1a2 · · · M̃x1x2

ana1 , (4.23)

which yields

τ̃n=



(1− ϑ1)n(1− ϑ2)n 0 0 0 0 1 (1− ϑ2)n 0 1
ϑn2 (1− ϑ1)n 0 0 0 0 0 ϑn2 0 0

0 0 0 0 1 0 0 1 0
0 ϑn1 ϑn1 0 0 0 0 0 0
0 0 0 ϑn2 0 0 0 0 0
0 0 0 (1− ϑ2)n 0 0 0 0 0
0 (1− ϑ1)n (1− ϑ1)n 0 0 0 0 0 0

ϑn1ϑ
n
2 0 0 0 0 0 0 0 0

ϑn1 (1− ϑ2)n 0 0 0 0 0 0 0 0


. (4.24)
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Since the relation (4.21) holds for any k, the non-zero eigenvalues of Tn and τ̃n coincide.
The eigenvalues of the latter are easily obtained. In particular, it is straightforward to
see that the only three non-zero eigenvalues of τ̃n are the solutions to the following cubic
equation

λ3 = ((1− ϑ1)nλ+ ϑn1 ) ((1− ϑ2)nλ+ ϑn2 ) . (4.25)

The main properties of this equation are studied in Appendix B and can be summarised
as follows

Lemma 2. For ϑ1, ϑ2 ∈ (0, 1) the solution of Eq. (4.25) with strictly larger magnitude is
real and positive. Its explicit expression reads as

λn(ϑ1, ϑ2)=
(1− ϑ1)n(1− ϑ2)n

3
+

3

√
∆n,1 +

√
∆2
n,1 −∆3

n,2+
∆n,2

3

√
∆n,1+

√
∆2
n,1 −∆3

n,2

, (4.26)

where

∆n,1 =
1

6
(1− ϑ1)2n(1− ϑ2)2n

2∑
j=1

(
ϑj

1− ϑj

)n
+

1

2
ϑn1ϑ

n
2 +

1

27
(1− ϑ1)3n(1− ϑ2)3n ,

∆n,2 =
1

3
ϑn1 (1− ϑ2)n +

1

3
ϑn2 (1− ϑ1)n +

1

9
(1− ϑ1)2n(1− ϑ2)2n .

(4.27)

Putting all together and noting that 〈Lϑ1 |Rϑ2〉n n = 1 (cf. (3.7)) we find that for t� 1,
the building block (4.13) displays a linear growth with slope given by

rn(ϑ1, ϑ2) := lim
t→∞

bn(ϑ1, ϑ2)

t
=

1

1− n log[λn(ϑ1, ϑ2)]. (4.28)

For example, in the case of the min-entropy (i.e. n → ∞) we find the following explicit
result

r∞(ϑ1, ϑ2) =



− log[(1− ϑ1)(1− ϑ2)],
ϑ1

1−ϑ1 ≤ (1− ϑ1)(1− ϑ2),
ϑ2

1−ϑ2 ≤ (1− ϑ1)(1− ϑ2),

− log[ϑ
1/2
1 (1− ϑ2)1/2],

ϑ1
1−ϑ1 > ϑ

1/2
1 (1− ϑ2)1/2,

ϑ2
1−ϑ2 ≤ ϑ

1/2
1 (1− ϑ2)1/2,

− log[ϑ
1/2
2 (1− ϑ1)1/2],

ϑ2
1−ϑ2 > ϑ

1/2
2 (1− ϑ1)1/2,

ϑ1
1−ϑ1 ≤ ϑ

1/2
2 (1− ϑ1)1/2,

− log[ϑ
1/3
1 ϑ

1/3
2 ],

ϑ1
1−ϑ1 ≥ ϑ

1/3
1 ϑ

1/3
2 ,

ϑ2
1−ϑ2 ≥ ϑ

1/3
1 ϑ

1/3
2 .

(4.29)

Note that the above characterisation of the spectrum of Tn can also be used to find
the leading corrections to (4.28). To do that, however, one would also need to find the
eigenvector associated to λn(ϑ1, ϑ2).

Substituting (4.28) in (2.21) we arrive at the main result of this paper

lim
t→∞

|A|/t=ζ≥4

S
(n)
A,th(t)

t
= rn(ϑL, ϑR) + rn(ϑR, ϑR). (4.30)
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Figure 2: Growth of the Rényi n-entropy after a homogeneous quench from the state
characterised by (ϑL, ϑR) = (0.65, 0.15), for typical values of n. Solid lines are the asymp-
totic prediction obtained by neglecting the subleading corrections and taking into account
only the largest eigenvalue of the tensor network (4.14), while the dots correspond to exact
finite-time values in the L→∞ limit.

This equation provides a rigorous proof of the fact that Rényi entropies of large subsystems
grow linearly in the asymptotic regime and gives an exact expression for their slope.
A comparison between the asymptotic result (4.30) and the exact numerical evaluation
of (2.21) for finite times is reported in Fig. 2.

We recall that (4.30) applies to the case of a bipartitioning protocol with two leads
initially prepared in different solvable states (3.2) and where the subsystem A starts at
the junction. The special case ϑL = ϑR = ϑ describes the growth of entanglement after
a homogeneous quench from a solvable state. A remarkable consequence of (4.30) is that
the entanglement velocity

vE
n (ϑL, ϑR) := lim

t→∞
|A|/t=ζ≥4

S
(n)
A,th(t)

ts
(n)
GGE

=
rn(ϑL, ϑR)

s
(n)
GGE

+
rn(ϑR, ϑR)

s
(n)
GGE

, (4.31)

where s
(n)
GGE is the entropy density of the GGE (cf. (4.3)), depends non-trivially on n. See

Fig. 3 for a representative example.
The result (4.28) can again be analytically continued to D = {z ∈ C : Re[z] > 0}.

Indeed, the function λz(ϑ1, ϑ2) — obtained by replacing n in (4.26) with z ∈ C — is
holomorphic and bounded in D. Specifically (see Appendix B)

|λz(ϑ1, ϑ2)| ≤ λRe[z](ϑ1, ϑ2) < 3 . (4.32)

Applying again Carlson’s Theorem [72] we then have that λz(ϑ1, ϑ2) is the only analytic
continuation of {λn(ϑ1, ϑ2)}n=1,2,3,... which fulfils the physically sensible bounds

|λz(ϑ1, ϑ2)| ≤ Ceτ |z|, z ∈ D, |λ1+iy(ϑ1, ϑ2)| ≤ Cec|y|, y ∈ R , (4.33)

with C, τ ∈ R and c < π.
Considering now z = 1 + δ with δ � 1 from (4.26) we find

λ1+δ(ϑ1, ϑ2) = 1 +
δ

1 + ϑ1 + ϑ2

2∑
j=1

(
ϑj log ϑj + (1− ϑj) log(1− ϑj)

)
+O(δ2), (4.34)
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Figure 3: Entanglement velocity (cf. (4.31)) as a function of the filling ϑ (note that here
we are considering a homogeneous case ϑL = ϑR = ϑ), for different Rényi indices n.

which gives the following result for the slope of the von Neumann entropy

r(ϑ1, ϑ2) := lim
z→1

rz(ϑ1, ϑ2)= − 1

1 + ϑ1 + ϑ2

2∑
j=1

(
ϑj log ϑj + (1− ϑj) log(1− ϑj)

)
, (4.35)

or, equivalently

lim
t→∞

|A|/t=ζ≥4

SA,th(t)

t
= r(ϑL, ϑR) + r(ϑR, ϑR). (4.36)

5 The quasiparticle picture

In the famous work [1], Calabrese and Cardy proposed a simple picture that explains the
growth of entanglement in terms of correlated quasiparticles created by the quench. In the
simplest formulation one imagines that at t = 0 the quench produces pairs of quasiparticles
at every point in space and for t > 0 they begin to propagate with opposite velocities ±v.
Quasiparticles forming each pair are correlated or entangled, while those in different pairs
are uncorrelated. Then, one postulates that, for any time t, the entanglement between
a given subsystem A and its complement Ā is proportional to the number of correlated
pairs shared between A and Ā.

Considering a homogeneous quench this picture gives the following expression for the
Von Neumann entropy

SA,th = min(4vt, 2|A|)s , (5.1)

where by s we denoted the contribution to the entanglement of a pair multiplied by the
density of pairs. This expression can be immediately generalised to the case of Ns different
species of quasiparticles with a dispersion relation parametrised by λ ∈ [−Λ,Λ]

SA,th =

Ns∑
n=1

∫ Λ

−Λ
dλmin((vn,λ − vn,−λ)t, |A|)sn,λ . (5.2)
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Here we took correlated pairs formed by particles with the same n and opposite λs, vn,λ
is the velocity of the quasiparticle labelled by (n, λ) and sn,λ the contribution of the pairs
labelled by (n, λ) to the density of entanglement entropy.

This picture can be generalised to describe inhomogeneous quenches by allowing the
contribution to the entanglement of a given pair to depend on the emission point [39] and
the quasiparticles to have a curved trajectory [40], namely

SA,th =

Ns∑
n=1

∫ Λ

−Λ
dλ

∫
dx χA(Xn,λ(t, x))(1− χA(Xn,−λ(t, x)))sn,λ(x) , (5.3)

where Xn,λ(t, x) is the position at time t of the quasiparticle (n, λ) emitted in x at time 0.
Additional refinements accounting for initial states producing n-plets of correlated excita-
tions have also been developed [74,75].

5.1 Von Neumann entropy: exact confirmation of the quasiparticle pic-
ture

The quasiparticle picture is believed to apply whenever the system possesses stable quasi-
particles [76]. In particular, this is the case for integrable models where the“entangling”
quasiparticles have been conjectured to coincide with the stable excitations on the sta-
tionary state reached after the quench [5]. Using this identification one can make (5.2)
and (5.3) predictive by computing all the — yet unknown — functions featured in those
equations by means of thermodynamic Bethe ansatz (TBA) [77,78].

More specifically, let us consider (5.2) which depends on two unknown functions. The
first, vn(λ), is naturally identified with the velocity of the excitations — accessible in
TBA [79] — while the second, sn(λ), can be fixed by imposing the equality between
the entanglement and the thermodynamic entropy in the stationary state [5]. All this
is particularly simple for excitations on the stationary states (3.12) in Rule 54. Indeed,
on these states there is only one species of excitations and λ can take only two values
(λ ∈ {±}) (for further details see Paper I, the Supplemental Material of Ref. [67], and the
review [70]). Therefore, the prediction (5.2) is effectively of the form (5.1) with

v = vϑ =
2

1 + 2ϑ
, s = sϑ = −ϑ log ϑ− (1− ϑ) log (1− ϑ) , (5.4)

where ϑ is precisely the filling characterising the Gibbs state (3.8). Namely, it is written
in terms of the chemical potential as in Eq. (3.10).

We then see that the limits

lim
t→∞

|A|/t=ζ≥4

SA,th
t

= 4vs, lim
t→∞

|A|/t=ζ≤2/3

SA,th
t

= 2sζ, (5.5)

computed with the quasiparticle picture agree with our exact results for all values of ϑ. To
the best of our knowledge this result, together with the special case (ϑ = 1/2) presented
in Ref. [31], provides the first rigorous confirmation of the quasiparticle picture in the
presence of interactions.

The same check can be performed in the case of bipartitioning protocols. In this case,
following [39,40], we impose

Ẋ±(x, t) = v±(x, t), s+(x) = s−(x) = sLΘ(−x) + sRΘ(x), (5.6)

where
sL/R = −ϑL/R log ϑL/R −

(
1− ϑL/R

)
log
(
1− ϑL/R

)
, (5.7)
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and v±(x, t) is the velocity of excitations on the locally quasistationary state at point (x, t)
as computed by Generalized Hydrodynamics [37,38]. In particular, using the explicit result
for v±(x, t) reported in Paper I we have

X−(x, t) =


x− vLt, x < 0,
x
2 (1 + vL

vR
)− vLt, 0 < x ≤ 2vRt,

x− vRt, x ≥ 2vRt,

(5.8)

and

X+ =


x+ vLt, x < −2vLt,
x
2 (1 + vR

vL
) + vRt, −2vLt ≤ x ≤ 0,

x+ vRt, x > 0,

(5.9)

where we introduced

vL/R =
2

1 + 2ϑL/R
. (5.10)

Plugging it into (5.3), a simple (but tedious) calculation gives

SA,th =



2vRvL

vR + vL
t(sR + sL) + 2vRtsR,

|A|
t
≥ vR(vR + 3vL)

(vR + vL)
,

2vRvL

vR + vL
t(sL − sR) + 2|A|sR, vR ≤

|A|
t
≤ vR(vR + 3vL)

(vR + vL)
,

2vL

vR + vL
|A|sL +

2vR

vR + vL
|A|sR,

|A|
t
≤ vR,

(5.11)

where we took A = [0, |A|]. Noting that

vR(vR + 3vL)

(vR + vL)
< 4, vR ≥

2

3
, (5.12)

we have

lim
t→∞

|A|/t=ζ≥4

SA,th
t

=
2vRvL

vR+vL
(sR + sL) + 2vRsR, lim

t→∞
|A|/t=ζ≤2

3

SA,th
t

=
2vL

vR+vL
sLζ +

2vR

vR+vL
sRζ, (5.13)

which, once again, agree with our exact results for all possible values of ϑL/R ∈ [0, 1].
To the best of our knowledge, this is the first rigorous confirmation of the quasiparticle
picture for inhomogeneous quenches.

5.2 Rényi Entropies: no consistent quasiparticle description

In non-interacting systems the quasiparticle picture can be directly extended to Rényi en-
tropies with α 6= 1. As pointed out in Ref. [73,80], however, in the presence of interactions
this extension becomes far less straightforward. The reason appears to be connected to

the fact that S
(α)
A have a stronger non-linear dependence on the state compared to the Von

Neumann entanglement entropy. This makes it harder to understand which excitations —
or better the excitations over which stationary state — are relevant for the quasiparticle
picture. As a result, a consistent extension of the quasiparticle picture for Rényi entropies
in interacting systems has not yet been found. Here we use our exact results to show
that insisting on a quasiparticle description for higher Rényi entropies one has to take
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Figure 4: Comparison between the two effective n-dependent filling fractions (5.18)
and (5.19), for a few different choices of n. In the case of von Neumann entropy (i.e.
for n = 1), the effective filling fraction is just ϑ, while for n 6= 1 we get two different

predictions: ϑ
(n)
slope coming from the renormalised quasi-particle velocity and ϑ(n) extracted

from the stationary state. The two quantities agree for small ϑ or 1 − ϑ, while for the
intermediate ϑ, the difference between the two increases with |n− 1|.

excitations over a stationary state with unclear physical meaning. For simplicity, we focus
on the homogeneous quench (3.2) as it contains all the basic elements of our reasoning.

Requiring the validity of the quasiparticle picture we find the following asymptotic
formula for the Rényi entropies

S
(α)
A,th = min(4vα(ϑ)t, 2|A|)s(α)(ϑ) , (5.14)

where now vα, s
(α) are unknown functions. The density of Rényi entropy “carried” by

a quasi-particle pair can be fixed using the expression for the stationary-state Rényi en-
tropy (4.12), namely

s(α)(ϑ) = lim
t→∞

|A|/t=ζ≤2/3

S
(α)
A,th

2|A| =
1

1− α log[ϑα + (1− ϑ)α]. (5.15)

Using now the exact expression for the rate of entanglement spreading (4.28) we have that
the quasiparticle velocity must be given by

vα(ϑ) = lim
t→∞

|A|/t=ζ≥4

S
(α)
A,th

4ts(α)
= vE

α(ϑ, ϑ) =
log[λα(ϑ, ϑ)]

log[ϑα + (1− ϑ)α]
. (5.16)

Now we note that

vα 6=1(ϑ) 6= 2

1 + 2ϑ
, (5.17)

which means that the quasiparticles cannot be though of as excitations on the stationary
state (3.12), i.e. the state describing the expectation values of local observables at infinite
times after the quench. Nevertheless, one can interpret vα(ϑ) as the velocity excitations
over the stationary state with filling

ϑ
(α)
slope(ϑ) =

2− vα(ϑ)

2vα(ϑ)
. (5.18)
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Indeed, since vα(ϑ) ∈ [2/3, 2], Eq. (5.18) is always in [0, 1] and hence describes a legitimate
filling.

The physical meaning of (5.18) is, however, unclear. In particular, for α 6= 1 the
filling (5.18) does not coincide with that of the macrostate that describes the stationary
value of the α Rényi entropy in TBA [73, 80]. Indeed, in our case the latter has filling
(cf. (4.8))

ϑ(α)(ϑ) =
ϑα

ϑα + (1− ϑ)α
. (5.19)

Even though (5.18) and (5.19) are close for small and large fillings they are different
functions of ϑ. See the representative example in Fig. 4.

6 Conclusions

In the paper we used a time-channel approach to find exact results for the entanglement
dynamics in the quantum cellular automaton Rule 54, which is arguably the simplest ex-
ample of interacting integrable model. We showed that the entanglement dynamics from a
class of solvable initial states is characterised by a certain tensor network and that, remark-
ably, the latter can be contracted exactly. We used our results to test the quasiparticle
picture for the entanglement spreading in Rule 54. In particular, we confirmed that the
quasiparticle picture provides quantitatively accurate predictions for the evolution of the
von Neumann entanglement entropy in the presence of interactions, both in homogeneous
and inhomogeneous situations. Therefore validating the predictions of both Ref. [5] and
Ref. [40]. We also argued that our results seem to exclude a consistent quasiparticle inter-
pretation for the evolution of other Rényi entropies. Indeed, we showed that the potential
quasiparticles responsible for the spreading of Rényi entropies cannot be interpreted as
excitations on a physically meaningful stationary state.

An interesting direction for future research is to extend the techniques presented here
to the study of the various kinds of operator space entanglement [81, 82]. These include
the entanglement of local operators, of the reduced density matrix, and of the time evolv-
ing operator. The latter is particularly relevant for the questions considered in this paper
because it gives access to the “line tension”, which is the function needed to obtain quan-
titative predictions from the membrane picture (see e.g. [83]). It would be interesting
to also test these predictions against our results, especially those concerning the Rényi
entropies that do not seem to be described by the quasiparticle picture.
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A Proof of Lemma 1

We begin by introducing the following shorthand notation. We call {M̃xy}9x,y=1 the set

of 4× 4 matrices with matrix elements given by the tensor M̃ , i.e.[
M̃xy

]
ab

:= M̃xy
ab . (A.1)

In this new notation the statement of Lemma 1 reads as(
M̃x1x2M̃y1y2

)
⊗
(
M̃x2x3M̃y2y3

)
⊗ · · · ⊗

(
M̃xkx1M̃yky1

)
=

 k∏
j=1

δxj ,yj

(M̃x1x2)2 ⊗
(
M̃x2x3

)2 ⊗ · · · ⊗ (M̃x1x2
)2
.

(A.2)

Before proving this statement in full generality, let us first consider k = 1. In this case
one can explicitly evaluate all the products of pairs of matrices M̃x1x1M̃y1y1 and realise
that the only non-zero combination comes from x1 = y1 = 1, i.e.

M̃x1x1M̃y1y1 = δx1,0δy1,0
1

16


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (A.3)

and the property (4.20) holds. For k = 2 one can similarly check that the product of two
tensors (

M̃x1x2M̃y1y2
)
⊗
(
M̃x2x1M̃y2y1

)
(A.4)

is nonzero only for the following 5 combinations of indices

x1 y1 x2 y2

0 0 0 0
0 0 8 8
8 8 0 0
1 1 6 6
6 6 1 1

, (A.5)

which proves (4.20) for k = 2.
To prove the lemma for general k we show that for any two different cycles of in-

dices (x1, x2, x3, . . . , xk, x1) and (y1, y2, . . . , yk, y1) at least one of the matrix products
M̃xjxj+1 · M̃yjyj+1 is 0. This can be demonstrated by defining the 81× 81 adjacency ma-
trix A with elements that are 1 if the two pairs (xj , yj) and (xj+1, yj+1) are connected by
a nonzero matrix product, and 0 otherwise,

A(x1y1),(x2y2) :=

{
1, M̃x1x2 · M̃y1y2 = 0,

0, otherwise.
(A.6)

If a pair of cycles (x1, x2, . . . , xk, x1) and (y1, y2, . . . , yk, y1) gives a nonzero value to the
l.h.s. of (4.20), all the matrix elements of A appearing in the following product have to be
1,

A(x1y1),(x2y2)A(x2y2),(x3y3) · · ·A(xkyk),(x1y1) = 1, (A.7)

which is one of the contributions to the diagonal matrix element [Ak](x1,y1),(x1,y1).
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Next, let us define a 9× 9 reduced adjacency matrix Ã that contains only the elements
where xj and yj are the same

Ãx1,x2 := A(x1,x1),(x2,x2). (A.8)

By explicit diagonalisation of A and Ã we find that they have the same non-zero eigen-
values, which are the solutions of the following cubic equation

x3 = (x+ 1)2. (A.9)

This implies
trAk = trÃk, ∀k, (A.10)

or, in other words, that only non-zero contributions to diagonal elements [Ak](x1,y1),(x1,y1)

come from elements with the same values of xj and yj

A(x1y1),(x2y2)A(x2y2),(x3y3) · · ·A(xkyk),(x1y1) = δx1,y1 · · · δxk,ykÃx1,x2Ãx2,x3 · · · Ãxk,x1 . (A.11)

This completes the proof of the lemma.

B Proof of Lemma 2

To prove Lemma 2 we rewrite Eq. (4.25) as

p(λ, n) = 0, (B.1)

where we defined the polynomial

p(λ, n) = λ3 + a2,nλ
2 + a1,nλ+ a0,n, (B.2)

with

a0,n = −ϑn1ϑn2 , a1,n = − (ϑn1 (1− ϑ2)n + ϑn2 (1− ϑ1)n) ,

a2,n = −(1− ϑ1)n(1− ϑ1)n, a3,n = 1.
(B.3)

Since a3,n is positive and all {aj,n}2j=0 are negative for ϑ1, ϑ2 ∈ (0, 1), Descartes’ rule of
signs (see e.g. Ref [84]) implies that Eq. (B.1) has only one real positive solution which
we denote by λn(ϑ1, ϑ2). Moreover, since a3,n is positive, we also have

p(λ, n) > 0, ∀λ > λn(ϑ1, ϑ2) , (B.4)

which implies
λ3 > |a0,n|+ |a1,n|λ+ |a2,n|λ2, ∀λ > λn(ϑ1, ϑ2) . (B.5)

Next, we recall that Rouché’s Theorem (see e.g. Ref. [85]) implies that whenever a poly-
nomial

g(λ) =

m∑
k=0

bkλ
k, (B.6)

has coefficients bk ∈ C fulfilling

|bm|Rm ≤
m−1∑
k=0

|bk|Rk, (B.7)
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for some R ∈ R, all the solutions to g(λ) = 0 are contained in the circle of radius R.
Applying this to (B.5) we find that all solutions to Eq. (B.1) are contained in the circle of
radius λn(ϑ1, ϑ2). To conclude we should prove that the absolute values of the other two
solutions to Eq. (4.25) are strictly smaller than λn(ϑ1, ϑ2).

We proceed by contradiction. Let us assume that all solutions to Eq. (B.1) have
the same absolute value. Since the polynomial has real coefficients this means that the
solutions are

{λn(ϑ1, ϑ2), λn(ϑ1, ϑ2)eiθ, λn(ϑ1, ϑ2)e−iθ}, (B.8)

for some θ ∈ R. This in turn implies that p(λ, n) must coincide with

(λ− λn(ϑ1, ϑ2))(λ− λn(ϑ1, ϑ2)eiθ)(λ− λn(ϑ1, ϑ2)e−iθ)

= λ3 − (1 + 2 cos θ)λn(ϑ1, ϑ2)λ2 + (1 + 2 cos θ)λn(ϑ1, ϑ2)2λ− λn(ϑ1, ϑ2)3.
(B.9)

We see that this cannot happen for any θ because either the coefficient of λ2 or that of λ
are positive, while both a2,n and a1,n are negative. We now assume that there is a single
additional solution to Eq. (B.1) with absolute value equal to λn(ϑ1, ϑ2). This implies that
the set of solutions reads as

{λn(ϑ1, ϑ2), −λn(ϑ1, ϑ2), −λn(ϑ1, ϑ2) + c}, (B.10)

with some c ∈ (0, λn(ϑ1, ϑ2)]. Therefore, p(λ, n) must coincide with

(λ− λn(ϑ1, ϑ2))(λ+ λn(ϑ1, ϑ2))(λ+ λn(ϑ1, ϑ2)− c)
= λ3 + (λn(ϑ1, ϑ2)− c)λ2 − λn(ϑ1, ϑ2)2λ− λn(ϑ1, ϑ2)2(λn(ϑ1, ϑ2)− c) .

(B.11)

This is once again impossible because the coefficient of λ2 is positive, while a2,n is negative.
Therefore the only possibility is that all other solutions to Eq. (B.1) have absolute value
strictly smaller than λn(ϑ1, ϑ2). Finally, the explicit expression (4.26) is found using the
general solution of the cubic equation (one can immediately verify that Eq. (4.26) is indeed
real, positive, and fulfils Eq. (4.25) for all ϑ1, ϑ2 ∈ [0, 1]).

Let us now move on and prove (4.32). We begin recalling that λz(ϑ1, ϑ2) is obtained
replacing n in Eq. (4.26) with z ∈ D = {z ∈ C : Re[z] > 0} and solves Eq. (B.1) with n
replaced by z ∈ D = {z ∈ C : Re[z] > 0}. Next, we observe that

1 ≥ a2,Re[z] ≥ |a2,z|, 2 ≥ a1,Re[z] ≥ |a1,z|, 1 ≥ a0,Re[z] ≥ |a0,z| . (B.12)

Combining these two facts we find

λRe[z](ϑ1, ϑ2)3 = a0,Re[z] + a1,Re[z]λRe[z](ϑ1, ϑ2) + a2,Re[z]λRe[z](ϑ1, ϑ2)2

≥ |a0,z|+ |a1,z|λRe[z](ϑ1, ϑ2) + |a2,z|λRe[z](ϑ1, ϑ2)2 .
(B.13)

Using again Rouché’s Theorem we then have

|λz(ϑ1, ϑ2)| ≤ λRe[z](ϑ1, ϑ2) . (B.14)

Finally we observe that

33 > 1 + 2× 3 + 1× 32 ≥ a0,Re[z] + a1,Re[z]3 + a2,Re[z]3
2 , (B.15)

which implies
3 > λRe[z](ϑ1, ϑ2) . (B.16)
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