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Abstract: In this work, we present a lattice study of an axion - dark photon system

in the early Universe and show that the stochastic gravitational wave (GW) background

produced by this system may be probed by future GW experiments across a vast range of

frequencies. The numerical simulation on the lattice allows us to take into account non-

linear backreaction effects and enables us to accurately predict the final relic abundance

of the axion or axion-like particle (ALP) as well as its inhomogeneities, and gives a more

precise prediction of the GW spectrum. Importantly, we find that the GW spectrum has

more power at high momenta due to 2→ 1 processes. Furthermore, we find the degree of

polarization of the peak of the GW spectrum depends on the ALP-dark photon coupling

and that the polarization can be washed out or even flipped for large values thereof. In line

with recent results in the literature, we find the ALP relic abundance may be suppressed

by two orders of magnitude and discuss possible extensions of the model that expand the

viable parameter space. Finally, we discuss the possibility to probe ultralight ALP dark

matter via spectral distortions of the CMB.
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1 Introduction

The axion as a solution to the strong CP problem of quantum chromodynamics (QCD) is

a highly motivated ultraviolet (UV) extension of the Standard Model (SM) [1]. It arises

as the Nambu-Goldstone boson of a spontaneously broken U(1) Peccei-Quinn (PQ) global

chiral symmetry that is anomalous under QCD. Effects due to QCD instantons explicitly

break the PQ symmetry, generating a periodic potential for the axion with a CP-conserving

minimum, thus providing a dynamical solution to the strong CP problem. In the process,

the continuous shift symmetry of the axion is broken down to a discrete one and the

axion acquires a mass, potentially allowing it to be identified as a cold dark matter (DM)

candidate [2–4] 1. While this particular type of axion is intimately tied to QCD, axion-

like particles (ALPs) are generic features of new high energy physics. Indeed, ALPs arise

1The abundance of the QCD axion with a PQ-breaking scale f & 1012 GeV overcloses the universe

unless the initial axion field value is unexpectedly small.
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routinely from spontaneously broken global symmetries and have been proposed as e.g.

a dynamical solution to the hierarchy problem [5], natural inflaton candidates [6], and

fantastic cold DM candidates.

Axion-like particles also appear as a generic prediction of string theory, arising as

the Kaluza-Klein zero-modes of higher dimensional anti-symmetric tensors required for

anomaly cancellation [7–10]. Such ALPs are expected to have their corresponding PQ

symmetries spontaneously broken at scales f ranging from the grand-unification scale

MGUT ∼ 1016 GeV to the reduced Planck scale MP = 2.44 × 1018 GeV. Additionally,

instanton effects which explicitly break the PQ symmetries can be exponentially small,

leading to a colossal range of possible ALP masses [9]. Axion-like particles on the ul-

tralight end of this spectrum become “fuzzy” with important implications for structure

formation if they constitute all of DM [11]. 2 Interestingly, a generic string compactifi-

cation is expected to result in a large number (& 10) of ALPs, potentially allowing for a

linear combination that couples to some gauge field with enhanced strength [12, 13].

While such ALPs are still too weakly coupled to be probed via couplings to SM fields,

it was recently shown in Ref. [14] that such models can produce a large, stochastic grav-

itational wave (GW) signal in the early universe if the enhanced coupling is to a hidden

U(1) gauge boson.3 In this case, a tachyonic instability is induced when the ALP be-

gins to oscillate for a specific range of “dark photon” momenta controlled by the ALP

mass m. Dark photon modes in this range have their underlying vacuum fluctutations

(ρvac ∼ m4) exponentially amplified until their energy density becomes of order that of

the ALP (ρALP ∼ m2f2), a growth factor of O(f2/m2) that results in a classical, highly

anisotropic dark photon energy distribution that sources GWs. Furthermore, the ampli-

fication of vacuum fluctuations occurs in a parity-asymmetric way due the non-vanishing

expectation value of the parity-violating ALP-dark photon operator. As a result, the pro-

duced GW spectrum is typically highly chiral in the peak region and is expected to be a

smoking gun for and indeed may be the unique probe of such models.

As dark photon production occurs at the expense of energy in the ALP field, some

parameter space where the ALP relic abundance would normally overclose the universe

can be opened up. However, care here is required as these dynamics also backreact on the

ALP field due to inverse decay and scattering processes involving ALPs and dark photons.

These processes introduce a limit to how much energy can be transferred from the ALP

to dark photons, and introduce anisotropies in the initially homogeneous ALP field. Thus,

linear analyses of the system such as that of Ref. [14] break down and one must perform a

detailed lattice study to correctly capture the dynamics. This fact was previously pointed

out in Refs. [26–28], where it was found that the ALP relic abundance can be suppressed

at most by a factor of O(10−2).

In this work, we perform our own lattice study in order to further understand the non-

perturbative dynamics of the system and its impact on the GW spectrum. We solve the

equations of motion for the full axion, dark photon, and GW system in position space on a

2Here ultralight means m . 10−18 eV as set by the Jeans scale of the baryons [10].
3Dark photons of this type can appear in UV complete axion models [15]. GW probes of axion models

have also been explored in the context of phase transitions [16–20] and inflation/preheating [21–25].
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discretized spacetime lattice. In particular, our implementation is based on the staggered

grid algorithm of Refs. [29, 30] which ensures that the discretized theory respects all the

same symmetries of the continuous one, importantly including gauge invariance and the

shift symmetry of the ALP. Additionally, our entire lattice implementation reproduces the

continuum version of the theory up to an error which is quadratic in the lattice spacing.

We are able to confirm previous work suggesting that the ALP relic abundance can

be suppressed by roughly 2 orders of magnitude, in addition to robustly establishing the

existence of the GW spectrum predicted in Ref. [14]. We find that the main changes to the

GW spectrum when compared to the results of the linear analysis are: i) an enhancement

of power at higher momenta due to 2 → 1 processes not present in the linear analysis

and ii) a dependence of the polarization of the GW spectrum on the ALP-dark photon

coupling α. The second point is expected since the two dark photon helicities are coupled

through the ALP, so depending on the value of α the polarization tends to be washed out

or “frozen-in” at some value depending on when backscattering processes decouple. We

discuss extensions to the original model which allow for additional suppression of the ALP

relic abundance and update the viable parameter space in the f vs. m plane. We also

comment on the possibility to probe ultralight ALPs via spectral distortions of the CMB

induced by gravitational waves.

2 Model Review

Here, we give a brief overview of the Audible Axion model introduced in Ref. [14]. The

original simplified model consisted of an axion field φ and a massless dark photon Xµ of

an unbroken U(1)X Abelian gauge group

S =

∫
d4x
√
−g
[

1

2
∂µφ∂

µφ− V (φ)− 1

4
XµνX

µν − α

4f
φXµνX̃

µν

]
, (2.1)

where the parameter f is the scale at which the global PQ symmetry corresponding to

the Nambu-Goldstone field φ is spontaneously broken. The dark photon field strength is

Xµν with X̃µν = εµναβXαβ/2 its dual 4. The strength of the axion-dark photon coupling is

parameterized by α, which in general can be larger than the fundamental U(1)X coupling 5.

We also assume the PQ symmetry is explicitly broken at the scale Λ ∼
√
mf , generating

the potential V (φ), a mass m for the axion, and breaking the continuous shift symmetry

of the ALP down to a discrete one, φ→ φ+ 2πn. The potential should be invariant under

this discrete shift symmetry, thus for simplicity we choose

V (φ) = m2f2

(
1− cos

φ

f

)
, (2.2)

unless otherwise specified.

4Our convention is ε0123 = 1/
√
−g

5We consider α > 1 in order to have efficient particle production, which can be obtained in several UV

completions, see e.g. [12, 13, 31].
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We limit our analysis to the case of a massless dark photon, which allows us to work

in temporal gauge X0 = 0. In an expanding background ds2 = a2(τ)(dτ2 − dx2), the

equations of motion governing the system are

φ′′ + 2aHφ′ −∇2φ+ a2V ′(φ)− α

fa2
X ′ ·

(
∇×X

)
= 0 , (2.3)

X ′′ + ∇× (∇×X) +
α

f

[
φ′(∇×X)−∇φ ·X ′

]
= 0 , (2.4)

where primes denote derivatives with respect to conformal time τ and H = a′/a2 is the

Hubble rate. Additionally, one has the Gauss constraint

∇ ·
[
X ′ +

α

f
φ (∇×X)

]
= 0 . (2.5)

We assume the PQ symmetry is broken before the end of inflation f > HI , leading to

an axion field that is spatially homogeneous over the visible universe. The initial field

value of the axion is drawn from a uniform random distribution θ = φ0/f ∈ [−π, π], where

θ ∼ O(1) is the initial misalignment angle. While H > m is satisfied, Hubble friction is

important and the axion field is overdamped, thus the initial velocity tracks the slow-roll

attractor. As is well known, massless vector modes are not excited during inflation so

we take the dark photon to be in the Bunch-Davies vacuum initially. We further assume

that the universe is radiation-dominated with the axion contributing sub-dominantly to

the total energy density.

With these initial conditions, one can study the axion-dark photon system by initially

neglecting any spatial dependence of the axion φ(τ,x)→ φ(τ). In this limit, the equation

of motion for the dark photon in momentum space becomes

X ′′±(τ,k) +

(
k2 ± kα

f
φ′(τ)

)
X±(τ,k) = 0 , (2.6)

where X± are the mode functions of the two circular polarizations of the dark photon. This

modification of the dispersion relation leads to the modes k ∼ α|φ′|/(2f) of the polarization

−sgn(φ′) experiencing a tachyonic instability once H drops below m and the axion starts

to freely oscillate. Due to this instability, the energy in the dark photon quickly grows from

the vacuum value k4 ∼ m4 to an O(1) fraction of the axion energy ∝ m2f2. At this point,

one expects a backreaction of the dark photon onto the axion dynamics and for the axion

field to develop anisotropies. Thus, one must study the system on the lattice in order to

correctly capture the dynamics. Throughout this work, it will be useful to compare the

case where the axion is treated as a homogeneous field as in Eq. (2.6) and Refs. [14, 32, 33]

to the fully general lattice study. We thus define the linear analysis as the case where

the axion is treated as a homogeneous field, valid before the dark photon backreacts on

the axion dynamics.

3 Lattice Formulation and Validation

We solve the full equations of motion of the coupled axion and dark photon system by

discretizing space and time. To ensure that we recover the correct theory in the continuum
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Figure 1. Comoving axion (solid) and dark photon (dotted) number densities for different choices

of the lattice parameters with α = 60 and θ = 1 held fixed. Here, the number density refers to

the volume averaged value, which includes the contribution from the zero mode as well as from

fluctuations. In the left panel, L and N are varied while the number of iterations in the implicit

scheme is held fixed at 2. Similarly, the right panel fixes N = 256, L = π/(2m) and varies the

number of iterations in the implicit scheme. The different choices agree to within ∼ 10% except in

the case of the smallest length L = π/(4m).

limit, the discretized theory must have the same symmetry structure as the continuum one.

Ideally, the discretization should reproduce the continuum theory up to an error which is

high order in the lattice spacing to ensure fast convergence. Our implementation meets

the following requirements:

• The continuum versions of the equations are reproduced up to O(dx2
µ), where dxµ

denotes the spatial and temporal distance between lattice sites.

• The discretization admits gauge invariance.

• The shift symmetry φ → φ + ε of the continuum theory is respected on the lattice.

This is equivalent to the discretized version of XµνX̃
µν = ∂µ(2Xν∂αXβε

µναβ) being

a total (lattice) derivative.

We implement these features using a staggered grid algorithm closely following Refs. [29,

30]. The equations of motion for the transverse-traceless metric fluctuations are solved to

obtain the GW spectrum following Refs. [34, 35], where an algorithm is implemented that

also reproduces the continuum up to O(dx2
µ).

We simulate a comoving volume L3 with side length L = π/m and N = 512 lattice

sites along each direction with periodic boundary conditions such that we cover comoving

momenta 2 ≤ k/(maosc) ≤ 512. This comfortably covers the range of momenta experi-

encing tachyonic growth, k ∼ θαmaosc/2 for θ = O(1) and α ∼ 40 − 100 6. The lattice

6For benchmark points with θ = 3, a smaller box L = π/(3m) was used in order to resolve the UV

dynamics properly. When attempting to capture the late time behavior of the axion abundance in Fig. 4,

we used N = 128 and L = π/(2 ·m) as the simulation must be run longer.
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Figure 2. Early evolution of the dark photon (left) and axion (right) spectra. The model param-

eters are α = 60 and θ = 1. The “+” polarization is the first to experience tachyonic instability.

parameters are thus L, N , and the number of iterations in the implicit scheme. We varied

these parameters to ensure that none of our results depend on them, see Fig. 1 where we

show the evolution of the axion and dark photon number densities for different lattice pa-

rameters. To keep the computational cost down, we only go to second order (2 iterations)

in the implicit scheme used to solve the equations of motion as justified in the right panel

of Fig. 1. For a detailed description of the lattice numerics, see Appendix B.

4 Lattice Results

The lattice simulation was performed with m = 10−2 eV and f = 1017 GeV held fixed for

all runs. We then use the scaling relations described in Section 4.2 to adapt the results

to other values of the model parameters. In the left panel of Fig. 2, we show the early

evolution of the comoving dark photon number density for α = 60 and θ = 1, where the

linear analysis holds. We define the start of oscillations a = aosc by the condition H = m,

with the dark photon initially in the Bunch-Davies vacuum such that dn/d ln k ∝ k3.

At the second time step a/aosc = 4, the dark photon spectra perfectly agrees with

the expectation from the linear analysis: during the first period of oscillation we have

φ′ ≈ θmfaosc and therefore according to Eq. 2.6 the modes in the range k ∈ [0, α|φ′|/f ] ≈
[0, αθmaosc] experience a tachyonic instability. These are indeed the modes that are en-

hanced at a/aosc = 4 compared to the Bunch-Davies vacuum. In the first half period of

oscillation, the axion velocity does not change sign and therefore only one helicity experi-

ences tachyonic growth. Without loss of generality, we label the first helicity to experience

tachyonic growth as “+” throughout this work. In the second half period, the “−” po-

larization is excited. However, the damping of the axion velocity due to Hubble friction

results in a smaller range of tachyonic modes. Since the growth rate depends exponentially

on the axion velocity, the amplitude of the “−” polarization is exponentially suppressed

compared to the “+” polarization.
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In the next time step at a/aosc = 7, we see the position of the peak move towards lower

momenta. This is expected since the axion velocity is further decreased by Hubble friction.

Additionally, we see a second contribution to the dark photon spectrum appearing that is

plateau shaped and falls off at an O(1) multiple of the original peak momentum. Looking

over to the right side of Fig. 2, we note that the appearance of this plateau happens at

the same time as inhomogeneities in the axion field arise with a similar spectrum. From a

particle point of view the origin of this feature is clear, as the axion-dark photon coupling

allows for the (back-)scattering of two photons into an axion. The kinematics of this

process dictate that the resulting spectrum should fall off at twice the dark photon peak

momentum, which is what we observe. The plateau in the dark photon spectrum arises

from further backscattering of dark photons into finite momentum axions and is expected to

be unpolarized. The next time step at a/aosc = 9 was chosen such that ρX = ρφ/2 where

we see the peak from tachyonic growth and the plateau from backscattering becoming

comparable in size. The UV cutoff of the plateau also moves toward higher momenta and

becomes less steep, which in the particle picture results from multiple scattering processes

becoming more important as the number densities grow.

The last time step at a/aosc = 11 is some time after the two energy densities become

comparable in size. Before we take a closer look at the evolution during this period, let us

make two technical comments. We chose a vanishing initial spectrum for the axion which

stays zero during the first two time steps to within working precision. In general, the

initial axion spectrum would depend on the inflation history. However, the axion spectrum

resulting from backscattering processes is uncorrelated with and can be simply added to

any initial spectrum that might exist from inflation. The second point concerns the UV

behavior of the spectra at a/aosc = 7, 9. This behavior corresponds to rounding errors due

to the fact that we are dealing with field amplitudes differing by log10(f/m) = 29 orders

of magnitude while using double precision floats with a precision of only 16 orders of

magnitude. One expects the errors to take a random value in position space, uncorrelated

from site to site. We have checked that this results in the UV part of the spectrum behaving

as ∝ k3 in momentum space.

Fig. 3 shows a close up of the last two time steps from Fig. 2 as well as the final

spectra taken at a/aosc = 200. Also shown is the evolution of the spectrum of gravitational

waves. The close up reveals that at a/aosc = 9 when ρX = ρφ/2, the dark photon spectrum

is still dominated by the sharp, polarized peak resulting from the tachyonic instability.

This initial peak and its polarization are however quickly washed out through scattering

effects, resulting in a flat, unpolarized plateau. The UV cutoff of the plateau behavior is

extended to slightly higher momenta after the two energy densities become comparable due

to multiple scattering processes. Interestingly, another peak at lower momenta appears in

the final spectrum that is dominated by the “−” polarization. We believe this peak, also

present in the study of Ref. [28], is due to the tachyonic enhancement that occurs as the

axion zero mode settles down to the minimum with roughly constant velocity. The axion

velocity at this point is already significantly reduced by the production of dark photons

and the resulting peak is therefore at smaller momenta.
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Figure 3. Evolution of the spectra in the non-linear regime. The model parameters are α = 60

and θ = 1. The “+” polarization is the first to experience tachyonic instability. The dark photon

and axion panels correspond to those in Fig. 2 but within a much smaller range of energy densities.

4.1 Relic Abundance Suppression

Shortly after the dark photon energy density becomes comparable to that of the axion,

the axion velocity becomes too small to allow for efficient production of dark photons

through the tachyonic instability. In the linear analysis, dark photon production continued

nonetheless due to a narrow parametric resonance resulting from the coherent oscillation

of the homogeneous axion field. This effect could lead to a suppression of the axion relic

abundance by more than 10 orders of magnitude relative to the case without any particle

production.

On the lattice however, we see the axion spectrum right after the energy densities

become comparable at a/aosc = 11 has a broad peak as shown in Fig. 3. At late times,

this peak moves to slightly higher momenta (similar to the dark photon), while IR power

is suppressed. Low momentum axions correspond to nearly homogeneous field configura-

tions in position space and it therefore seems plausible that the suppression of the axion

abundance at low momenta is due to a parametric resonance. However, it is clear that

the axion abundance at high momenta is not suppressed and that high momentum axions

are still being produced at late times. This severely limits the amount by which the total

axion abundance can be suppressed.

In particular, we find that the relic abundance suppression relative to the case without

particle production is typically limited to 10−2, in good agreement with Ref. [26]. This can

be seen clearly in Fig. 4, we show the evolution of the comoving axion energy density as

calculated on the lattice compared the result from the linear analysis. They start to differ
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Figure 4. Evolution of the comoving axion energy density for θ = 1. Around a = aosc, the

axion starts oscillating and scaling like matter ρφ ≈ a−3m2f2. Without particle production, this

scaling would persist (blue dot-dashed line) yielding the standard abundance from misalignment.

For α = 60, the backreaction of dark photon production becomes strong around a/aosc ∼ 9. The

thin gray line shows the result from the linear analysis, while the solid orange line gives the lattice

result. The lattice result shows a suppression of the final axion abundance by ≈ 10−2 compared

to the case with no particle production, in stark contrast to the linear analysis which suggests a

much stronger suppresion. The dotted lines show possible further suppression in case where the

final mass is adiabatically reduced, while the brown dashed line corresponds to a time dependent

potential that vanishes around a/aosc = 100 (see Sec. 5 for details).

shortly after the initial backreaction, when the linear analysis predicts a much stronger

depletion of the axion abundance due to the parametric resonance driven by the zero-

momentum condensate. On the lattice, the axion abundance is dominated by relativistic

axions, so the axion energy density scales as radiation until their momenta drops below

the axion mass, locking in a suppression of about 10−2 compared to the scenario without

particle production.

As shown in Fig. 5, we find that the amount of suppression has only weak dependence

on θ and α in the regime where dark photon production is efficient (θα & 30) and friction

from particle production does not cause the axion to slow-roll (θα . 200). In Ref. [26], a

similar study was performed in the QCD axion case (where the axion mass posses a time

dependence) that comes to roughly the same conclusion. The lattice computation results in

a more predictable relic abundance compared to the linear analysis, where the final abun-

dance depended chaotically on the initial conditions [33]. Since an axion overabundance

limits the parameter space with detectable gravitational waves, we discuss two potential

paths to further suppress the axion abundance in Sec. 5.

4.2 Gravitational Wave Spectrum

Since the gravitational wave spectrum is dominantly produced in the short period after

the energy densities of the axion and dark photon become comparable, the main features

of the GW spectrum computed in the linear analysis of Ref. [14] survive on the lattice. In

particular, the linear analysis leads to the expectation that the GW signal resulting from
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Figure 5. Suppression of the axion relic abundance for different values of α and fixed θ = 1

compared to the standard misalignment case where α = 0 and there is no dark photon production.

We see that θα & 30 is required for efficient dark photon production. For values of θα & 200,

friction from particle production causes the axion to slow-roll and behave as vacuum energy, thus

it will quickly come to dominate the energy density of the universe. As we ignore the effect of the

axion-dark photon system on the gravitational background, this regime is beyond the scope of our

simulation, and we simply sketch the expected sharp loss of suppression in this region with the

dashed line.

a polarized vector carries the same polarization as its source. Looking at the bottom panel

of Fig. 3, we see that the GW spectrum is indeed strongly polarized at a/aosc = 9, since

up to this point the anisotropic stress is dominated by the highly polarized dark photon.

On the lattice, we are now consistently including the axion scalar perturbations as a GW

source. This can lead to a washout of polarization in the final spectrum, although as we

will see some parts of the GW spectrum can remain strongly polarized.

In Ref. [14], we presented some basic scaling relations which allow for the estimation

of the peak amplitude and frequency of the GW spectrum via naive dimensional analysis

(NDA)

kpeak ∼ 2k∗ ≈ θαm
√
aosc
a∗

aosc

ΩGW(kpeak) = ceff (Ω∗φ)2

(
a∗H∗
k∗

)2

=
ceff

9

(
f

MP

)4( θ
α

)2 a∗
aosc

, (4.1)

where ceff is a factor quantifying the efficiency of GW emission and stars denote the cor-

responding quantity at the time of the initial backreaction t∗ where the GW spectrum is

dominantly produced. Up to this time, the linear analysis roughly holds and t∗ can be

calculated from the analytic approximations found in Ref. [36], see Appendix A for details.

In Figs. 6 and 7, we show the GW spectrum computed on the lattice for several values

of θ and α, where the NDA prediction from the scaling relation Eq. (4.1) with ceff = 1 is

indicated by a green cross. We report a final GW spectrum at a/aosc = 40 at which point

the GW signal has fully converged for all choices of the model parameters. Also shown is

the spectrum at the end of the perturbative phase t = t∗ when ρX = ρφ/2 for the first

time. We see that the NDA scaling relation predicts the peak of the spectrum at t = t∗
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Figure 6. Gravitational wave spectra computed on the lattice for different values of α with θ = 1

held fixed. The light dashed lines show the two polarizations (red, blue) when ρX = ρφ/2 (roughly

the end of the perturbative regime). The solid lines are the final spectra taken at a/aosc = 40 when

the GW spectrum has fully converged. The solid black line gives the sum of the two polarizations

in the final spectrum and green crosses mark the NDA scaling relation from Eq. 4.1 with ceff = 1.

The source material includes the final spectra in tabulated form.

to within a factor of 2, but in general fails to predict the peak of the final spectrum 7.

We suspect that 2 → 1 scattering processes in the phase t > t∗ are prolonged for large

values of θ and α, leading to larger signal amplitudes and peak momenta. These processes

also tend to smooth out and broaden the dark photon and axion spectra, which in turn

leads to the appearance of a softened UV cutoff in the GW spectrum, as compared to

the rapid exponential falloff we found in the linear analysis. The IR behavior for modes

k/(maosc) . 1 with wavelengths larger than the lattice size L is expected to approach k3

scaling from causality.

Another important difference between the linear and lattice studies is that while the

peak of the GW spectrum at the end of the perturbative phase t∗ is highly polarized, the

polarization of the peak of the final spectrum on the lattice shows a strong dependence

on θ and α. In particular, we see the polarization of the final spectrum is diminished for

θα & 60. For θα . 60 the GW amplitude grows by a factor of . 10 in the late stages

t > t∗, while for θα & 60 the final spectrum can surpass the spectrum at t∗ by up to

3 orders of magnitude. The fact that the peak is largely unpolarized in cases where it is

predominantly sourced after t∗ fits well with our earlier observation that the polarization in

the dark photon spectrum is washed out after t∗ due to backscattering processes coupling

the two dark photon helicities. The unpolarized dark photon and axion spectra thus lead

to unpolarized gravitational waves. A similar suppression of polarization for large coupling

7For large θ ∼ 3, the scaling relation also differs from the early spectrum because the approximation of

the cosine potential as quadratic fails, invalidating the analytic solution found in Ref. [36].
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Figure 7. Same as Fig. 6 except α = 40 is held fixed while θ is varied. In the case of θ = 3 we

chose a smaller sized box L = π/(3maosc) to better resolve the UV part of the spectrum.

constants α has been observed in models of natural steep inflation [37], while a study that

appeared during the completion of this work found that the final polarization is limited

to 10% roughly independent of θ and α [28]. That study considered 40 ≤ θα ≤ 60, which

is the region where, in contrast, we find up to 90% polarization in the peak region. In

addition, while the peak amplitude and momentum agree with our findings within roughly

a factor of two, the overall shape of the spectra show significant differences.

As a final point, for θα & 100, the backreaction becomes sizeable within the first

period of oscillation and the regimes of tachyonic growth and non-perturbative interaction

of fluctuations are not well separated. This leads to the initially subdominant helicity

surpassing the dominant one already by t = t∗ in the case of θ = 1, α = 100 and some

strongly polarized features in the IR tail of the final spectra.

5 Model Extensions

As previously discussed, the axion relic density can be suppressed by only two orders of

magnitude via production of dark photons once inhomogeneities in the axion field are

taken into account. Overproduction of DM thus renders a sizeable part of the parameter

space leading to detectable gravitational waves inconsistent with cosmology. Solutions

which simply reduce the initial axion abundance such as tuning the initial misalignment

angle are inappropriate in our case, as they also suppress the GW source. Instead, a

mechanism is needed that reduces the axion abundance once the tachyonic phase of dark

photon production (responsible for the majority of the GW signal) has ended. This could

be achieved if the axion potential is in some way time-dependent or flattens out around

the minimum. In both cases, the axion mass can be suppressed at late times. Let us first

explore the latter scenario in the context of a monodromy-inspired potential [38–43]

V (φ) =
1

2
m2f2

(
φ

f

)2

−m2
wf

2
w

[
1− cos

(
φ

fw

)]
, (5.1)
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where the first term corresponds to Eq. (2.2) expanded to quadratic order in φ/f , and we

take fw < f . Expanding for small φ, the ALP mass at late times is given by

m2
0 = m2 −m2

w , (5.2)

which can be small if mw ∼ m. Defining m2
w = m2(1 − ε2) with ε � 1 and ϕ = φ/f , we

can write
V (ϕ)

m2f2
=

1

2
ϕ2 − f2

w

f2
(1− ε2)

[
1− cos

(
f
ϕ

fw

)]
. (5.3)

In this form, we can easily see that when ϕ ∼ θ ∼ O(1), the argument of the cosine term is

large and its overall contribution to V is suppressed by f2
w/f

2. Thus, ALP dynamics in this

regime are controlled by the ϕ2 term and the axion mass is approximately m. However,

once the ALP amplitude becomes of order ϕ . fw/f , we can expand the cosine and see

that the ALP mass changes from m to the final mass m0. Our simulations confirm that

during this process the axion number density is conserved to a good approximation, leading

to a suppression of the axion relic abundance which is linear in the ratio m0/m as shown

in Fig. 4.

A similar setup was considered in [44, 45], which relied on the anharmonic part of

the potential for self-resonant axion (and GW) production. In that case, taking ε small

necessarily leads to a weak resonance unless the initial axion field value is very large. As we

rely on the axion-dark photon coupling for particle production (which simply requires a non-

vanishing φ′), this incompatibility does not hold here. Indeed, the model given by Eq. (5.1)

combined with a strong axion-dark photon coupling leads to sizeable GW production even

for φ0/f ∼ 1. We estimated in Ref. [14] that tachyonic production stops once the scale

factor has grown by a/aosc = (αθ/2)2/3. Since the axion amplitude damps at least as fast

as a−3/2 (it falls off even faster when including friction from particle production), one finds

1

fw
&

α

2f
, (5.4)

is required in order to have tachyonic particle production complete before the cosine sub-

structure is resolved. Interestingly, this suggests a possible embedding of the model into a

monodromy construction where the axion couples to the dark photon as f−1
w , with different

UV origins for the quadratic and cosine terms in Eq. (5.1), as in Refs. [46, 47]. Large α in

such a construction could be understood in terms of the separation of scales f/fw.

Another way to reduce the axion relic abundance is via a time-dependent potential.

One possibility is that the axion mass at early times comes dominantly from a potential

induced via U(1)X monopoles through the Witten effect [48, 49]. In this case, the axion

potential is proportional to the monopole number density and thus decays as a−3.

Finally, one could entertain the possibility that the axion is exactly massless at late

times [50]. This would occur if the axion potential arises from some QCD-like dynamics,

where the dark quarks temporarily acquire mass from the VEV of a dark Higgs field that

later vanishes [51]. In such a case, the late time axion potential vanishes in exactly the

same way as in QCD with one massless quark, and the axion relic abundance is subject

only to Neff constraints.
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Figure 8. ALP parameter space in the mass vs. inverse decay constant plane with α = 100 and

θ = 1 held fixed. The parameter space below the bright colored curves could be probed by future

GW experiments, such as pulsar timing arrays (SKA) as well as space- (LISA, DECIGO, BBO,

µAres) and Earth-based (ET) interferometers. The filled orange region corresponds to the present

limits from Planck+BICEP2+Keck and the dashed line shows the possible improvement by the

LiteBird mission. The blue curve is the limit on CMB spectral distortions that could be probed

by the Voyage2050 mission. The purple region is where the model could account for the recently

reported NANOGrav signal. The gray region is excluded in case of a relativistic dark photon by

bounds on Neff , while in the green region a massive dark photon can be a viable DM candidate.

The solid diagonal lines refer to axion dark matter scenarios in which, from left to right, there is no

particle production (standard misalignment), only the suppression from particle production ≈ 10−2

(PP only), or further suppression η from model extensions (PP + η). In the blue shaded area, the

axion is cool enough to be DM, assuming sufficient suppression of the relic abundance.

6 Phenomenology

In Fig. 8, we show an updated overview of the model parameter space as studied in Ref. [32].

We include the regions that result in detectable GW signals as well as cosmological bounds

on the model for fixed α = 100 and θ = 1. The GW detectability curves were computed

using the GW spectrum obtained from the lattice, with the IR scaling for k . maosc taken

to be ∝ k3 as expected from causality. Furthermore, we use the improved scaling relations

from Appendix A to calculate the axion and dark photon relic abundance.

Varying the ALP mass gives detectable GW signals across a vast range of frequencies,

from the earth-based Einstein Telescope (ET) laser interferometer to the space-based in-

terferometers LISA, BBO, DECIGO and µAres as well as the current and future pulsar

timing arrays NANOGrav and SKA. For NANOGrav, we show the 2σ region where the

model could explain the recently observed signal [52]. At even lower masses, gravitational

waves from ALPs can cause spectral distortions in the CMB. The solid blue curve shows
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the parameter space testable by the Voyage2050 mission that will be able to probe these

spectral distortions at the 10−9 level [53]. For even smaller ALP masses, the bounds on

CMB B-mode polarization induced by gravitational waves from Planck+BICEP2+Keck

are already able to constrain the model [54]. We also show the possible improvement of

these bounds by the LiteBird mission [55].

The blue shaded region in Fig. 8 corresponds to the parameter space where the axion

possibly comprises all of DM. The left diagonal bound of the region matches the dark matter

abundance assuming a suppression of two orders of magnitude from particle production.

The region near this line, where no further suppression is need, can be probed by SKA

for m ∼ 10−16 − 10−14 eV and f ∼ 5 × 1016 GeV. As discussed in Section 4, the axion

transitions from the condensate into non-zero momentum states in the process of dark

photon production. Axion dark matter can therefore be warm in this scenario. Requiring

axion dark matter to be cool enough to form structures gives the lower bound on the blue

shaded region. Observable GW signals in the space (ground)-based interferometers require

an additional suppression of the axion abundance by 4 to 7 (10) orders of magnitude

in order to avoid overclosure. As discussed in Section 5 this can be achieved in simple

extensions of our model.

In the case where the dark photon has a sufficiently small mass such that it is relativistic

at late times, it contributes to the number of effective relativistic degrees of freedom Neff .

Requiring the Neff bounds to be satisfied leads to the gray shaded exclusion region in Fig. 8.

We find that the bounds from Neff are in tension with the NANOGrav signal originating

from this model, and similarly for any spectral distortions that might be probed by the

future Voyage2050 mission. Although there has been recent interest in similar models with

ultralight scalars and their GW signals in the context of the Hubble tension [56] as well as

Quintessence [57], none of these studies incorporate the scalar perturbations in a consistent

manner. Their inclusion might considerably strengthen the bounds from CMB fluctuations

and therefore lead to a non-trivial probe of the model via CMB spectral distortions. If

the dark photon mass is larger but still less than the axion mass in order to not interfere

with the tachyonic production, the dark photon can be a viable vector dark matter (VDM)

candidate [27, 58–60] in the green shaded region of Fig. 8. The origin of the lower bound

is again where the dark photon DM would be too warm to be compatible with structure

formation.

While non-planar networks of GW interferometers are inherently sensitive to the po-

larization of gravitational waves, planar interferometers and pulsar timing arrays are also

sensitive to polarization in the case where there are anisotropies in the GW background,

such as the one introduced by peculiar motion [61, 62]. This may offer an opportunity

to distinguish the partially polarized spectrum of this model from other unpolarized sig-

nals, especially for parameter points where θα . 60, where the signal is more than 90%

polarized.
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7 Discussion and Conclusions

The nature of dark matter and how it is produced in the early universe remains a mystery.

Axions or ALPs are viable candidates, and coupled to a dark photon they can induce a

tachyonic instability, efficiently transferring energy from the axion to the dark photon and

thereby widening the viable parameter space for ALP dark matter [33]. In Refs. [14, 32]

we showed that this process can be accompanied by the production of a stochastic GW

background, rendering the model testable for large decay constants.

Backscattering of dark photons into axions is essential to understand the final ALP

relic abundance, however, capturing this non-linear effect requires simulating the system

on a lattice. In this work, we present results of a lattice simulation of the axion-dark

photon system on a 5123 lattice and obtain the resulting gravitational wave spectrum.

Our formulation manifestly preserves the shift symmetry and gauge invariance of the con-

tinuum theory. We confirm the findings of Refs. [26–28] that the ALP relic abundance

cannot be suppressed by more than about two orders of magnitude relative to the ordinary

misalignment mechanism with no particle production.

For the GW signal, we find that the inclusion of backscatterings and GWs sourced from

axion anisotropies broadens the spectrum towards the UV, while the peak frequency and

amplitude are roughly consistent with the results from the linear analysis [14]. Furthermore,

we find that the polarization of the GW spectrum now depends non-trivially on the coupling

strength α and initial misalignment angle θ. While the signal remains strongly polarized

for smaller couplings, for θα & 60 the polarization is washed out due to backscatterings

which couple the dark photon helicities. At even larger couplings, the polarization can flip

from the initially dominant one and exhibit a non-trivial frequency dependence. If these

features could be observed experimentally, they would provide additional information on

the model parameters and potentially even the initial conditions after inflation.

As discussed in detail above, a large fraction of the parameter space of interest for

experimental GW detection is inconsistent with the observed DM relic abundance. In

Section 5, we sketch two simple extensions of the model that could potentially resolve this

tension, which essentially come down to decreasing the axion mass after GW production,

such that the experimental signatures remain unchanged. In the more radical approach,

where the axion is rendered massless at late times, the dark photon can be given a small

mass and play the role of dark matter. While much of the parameter space requires

extending the model, a window remains for pulsar timing arrays to probe the original,

minimal model.
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A Scaling Relations

While the axion is pinned by Hubble friction, its energy is constant and dominated by

the potential. Once the axion starts to oscillate around tosc defined by H(tosc) = m,

its energy and number density decrease as a−3 until the backreaction from dark photon

production becomes sizeable. In the regime of small misalignment angles θ . π/2, where

the quadratic approximation for the potential holds we find that the axion number density

is well approximated as

nφ = θ2mf2
(aosc
a

)3
, (A.1)

after the onset of oscillation. Our analysis shows that the final abundance is suppressed by

a factor typically of order 10−2 through the dark photon production as discussed above.

The abundance of dark photons is set during the initial backreaction at time t∗, when

the majority of energy is transferred from the axion to the dark photon. Afterwards, it

scales as

ρX = ρφ
∣∣
t=t∗

(a∗
a

)4
= θ2m2f2 a∗

aosc

(aosc
a

)4
. (A.2)

The linear analysis describes the dynamics with great precision leading up to the back-

reaction and can be used to find an analytic estimate for a∗/aosc. To do so, we as-

sume that the energy in the dark photon is dominated by the fastest growing mode

k∗ = α|φ′|/(2f) ≈ αθ/2 (aosc/a∗)
3/2a∗m and the energy in the dark photon is therefore

given as ρ∗X ≈ (k∗/a∗)
4|v∗/vBD|2, where v∗ is the dark photon mode function corresponding

to k∗ at t∗ and vBD the Bunch-Davies mode function. Using the analytic estimate for the
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mode function v∗ found in Ref. [36], we can rewrite ρ∗X ≈ ρ∗φ in the form of a transcendental

equation for a∗/aosc

log

(
f

θα2m

(
a∗
aosc

)3/2
)

=
αθ√

2

(
aosc
a∗

)1/4

×
[
0.6− 0.82

√
aosc
2a∗
− 0.49

√
a∗

2aosc
+ 0.45

a∗
aosc
− 0.05

√
a3
∗

2a3
osc

]
.

(A.3)

We compared these two equations to our results on the lattice and found that they track

the scaling to within a factor 2 for 40 ≤ θα ≤ 100. For θα & 100 the backreaction occurs

within the first period of oscillation and keeps the axion from efficiently rolling towards

φ = 0. This leads to a prolonged emission of dark photons that is not taken into account

by these relations.

B Numerics

Below we summarize the details of our lattice implementation. For the axion and dark

photon dynamics we closely followed Refs. [29, 30] while for the gravitational waves we

adhere to Refs. [34, 35].

B.1 Lattice Action

We use a staggered grid algorithm to solve the dynamics of the axion coupled to the dark

photon. At the heart of these algorithms lies the notion of some fields lying between

lattice sites. For example, the axion field, as it is parity odd, is displaced half a time step

forward. We will denote this by φ(x + dx0/2) = φ|x+dx0/2, where x = (x0, x1, x2, x3) is a

point on the lattice. Furthermore, we use a non-compact formulation of the U(1) gauge

dynamics, meaning that we use the field strength as our variable instead of Wilson lines.

Since the gauge field Xµ is associated with the Wilson line linking neighboring lattice sites,

it naturally is displaced by +dxµ/2 (Xµ|x+dxµ/2). We define the forward and backward

derivative of a quantity f(x) as

∆±µ f(x± dxµ/2) =
±f(x± dxµ)∓ f(x)

dxµ
. (B.1)

This reproduces the continuum derivative up to O(dx2
µ), but only if one expands around

the natural lattice site x± dxµ/2 as one can easily check

∆±µ f(x± dxµ/2) = ∂µf(x± dxµ/2) +O(dx2
µ). (B.2)

The last rule needed for building the discretized version of the action in Eq. (2.1) is that

the product of two operators that reproduce their continuum version up to second order is

only of second order if the operators lie on the same lattice site.

We work in conformal time and assume that the contribution of the axion and dark

photon to the total energy density is negligible, i.e. that the evolution of the scale factor
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is independent of the dynamics. We assume the scale factor is a given function a(τ) that

can be evaluated to get a|τ and a|τ+dτ/2. The action we want to discretize reads:

S =

∫
d4x

[
a2

2
∂µφ ∂νφ η

µν − a4V (φ)− 1

4
XµνXαβη

µαηνβ +
α

8f
φXµνXαβε

µναβ

]
, (B.3)

where ∂µ = (∂τ , ∂xi) denotes the derivative with respect to comoving coordinates, ηµν =

diag(1,−1,−1,−1) is the inverse Minkowski metric, Xµν = ∂µXν−∂νXµ is the dark photon

field strength and εµναβ is the totally antisymmetric tensor with sign convention ε0123 = 1.

The discretized version of the axion part of the action is

S ⊃ dτdx3
∑
x

[
(a|τ )2

2
∆−0 φ∆−0 φ

∣∣∣∣
x

−
(a|τ+dτ/2)2

2

∑
i

∆+
i φ∆+

i φ

∣∣∣∣
x+dτ/2+dxi/2

+ (a|τ+dτ/2)4 V (φ)

∣∣∣∣
x+dτ/2

]
,

(B.4)

where we have indicated the exact lattice site of the displaced operators. The lattice version

of the dark photon field strength is

Xµν |x+dxµ/2+dxν/2 = ∆+
µXν −∆+

ν Xµ, (B.5)

which is invariant under the gauge transformation

Xµ → Xµ + ∆+
µα, (B.6)

where α(x) is an arbitrary function of the lattice site. It is convenient to introduce the

electric and magnetic fields as

Ei = X0i|x+dτ/2+dxi/2 (B.7)

Bi =
1

2
εijkXjk|x+dxj/2+dxk/2, (B.8)

as this allows us to write the gauge kinetic term on the lattice as

S ⊃ dτdx3
∑
x,i

1

2

[
EiEi

∣∣∣∣
x+dτ/2+dxi/2

−BiBi
∣∣∣∣
x+dxj/2+dxk/2

]
. (B.9)

Finding a lattice version of the interaction piece is more challenging, since the electric and

magnetic field strengths are associated with different sites on the lattice and therefore the

first guess

S ⊃ dτdx3
∑
x

α

f
φ
∑
i

EiBi, (B.10)

does not reproduce the continuum action up to second order. The solution to this problem is

to introduce averages of operators between lattice sites, since these reproduce the operator

to second order on the site in between. In principle there are several averaging schemes,

but one also needs to check that the shift symmetry φ → φ + ε is respected and that the
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resulting equations of motion allow for an iterative solution. These issues are discussed in

detail in Ref. [29], and we use the scheme found there, employing the following averages:

E
(2)
i |x+dτ/2 =

1

2

(
Ei|x+dτ/2+dxi/2 + Ei|x+dτ/2−dxi/2

)
(B.11)

B
(4)
i |x =

1

4

(
Bi|x+dxj/2+dxk/2 +Bi|x+dxj/2−dxk/2

+Bi|x−dxj/2+dxk/2 +Bi|x−dxj/2−dxk/2
)
. (B.12)

With these definitions, the interaction piece becomes

S ⊃ dτdx3
∑
x

α

f
φ

1

2

∑
i

E
(2)
i

(
B

(4)
i +B

(4)
i |+dτ

)∣∣∣∣
x+dτ/2

. (B.13)

B.2 Equations of Motion and Integration Scheme

We work in temporal gauge where X0 = 0. The dynamical degrees of freedom are Πφ =

∆−0 φ and Xi given at time τ as well as φ and Ei = ∆+
0 Xi at time τ + dτ/2. We use the

defining equation of Ei to find Xi at τ + dτ

Xi

∣∣∣∣
x+dτ

= Xi

∣∣∣∣
x

+ dτ Ei

∣∣∣∣
x+dτ/2

. (B.14)

By varying the action with respect to φ one finds the equation of motion

∆+
0 (a2Πφ) = a2

∑
i

∆−i ∆+
i φ− a

4V ′(φ)

+
α

2f

∑
i

E
(2)
i

(
B

(4)
i +B

(4)
i |x+dτ

)
,

(B.15)

that is used to evolve Πφ

a2(τ + dτ)Πφ|x+dτ = a2(τ)Πφ + dτ

[
a2|τ+dτ/2

∑
i

∆−i ∆+
i φ

− a4|τ+dτ/2 V
′(φ) +

α

2f

∑
i

E
(2)
i

(
B

(4)
i +B

(4)
i |x+dτ

)]
.

(B.16)

Note that since Xi is known at τ and τ+dτ , the calculation of Bi and B
(4)
i at these times is

straightforward and the interaction term can be calculated explicitly. Now that Πφ(τ +dτ)

is known, φ can be evolved

φ|x+dτ ·3/2 = φ|x+dτ/2 + dτ Πφ|x+dτ . (B.17)

Finally, we have the equation of motion of Xi to evolve Ei

∆−0 Ei =−
∑
j,k

εijk∆
−
j Bk −

α

2f

(
ΠφB

(4)
i + Πφ|x+dxiB

(4)
i |x+dxi

)
+

α

8f
(2− dτ∆−0 )

∑
±
εijk(2 + dx∆+

i )
(

∆±j φ E
(2)
k |x±dxj

)
.

(B.18)
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Notice however, that the evolved Ei appears not only on the left-hand side of the equation

but also on the right-hand side in the interaction piece. Furthermore, the interaction piece

features Ei not only at different times but also at different spatial positions due to the

averages, making an explicit solution impossible. We therefore use the following implicit

method. First, we approximate the Ei|x+dτ ·3/2 by the already known Ei|x+dτ/2 in the

interaction piece to get

Ei|x+dτ ·3/2,1 = Ei|x+dτ/2 + dτ

[
−
∑
j,k

εijk∆
−
j Bk

− α

2f

(
ΠφB

(4)
i + Πφ|x+dxiB

(4)
i |x+dxi

)
+

α

4f

∑
±
εijk(2 + dx∆+

i )
(

∆±j φ|x+dτ/2 E
(2)
k |x±dxj+dτ/2

)]
.

(B.19)

This first approximation only satisfies the equation of motion up to O(dτ) and we therefore

have to at least do one more iteration, where we use the Ei|x+dτ ·3/2,1 we just found to

approximate Ei|x+dτ ·3/2.

Ei|x+dτ ·3/2,2 = Ei|x+dτ ·3/2,1

+ dτ

[
α

8f

∑
±
εijk(2 + dx∆+

i )
(

∆±j φ|x+dτ ·3/2 E
(2)
k |x±dxj+dτ ·3/2,1

)
− α

8f

∑
±
εijk(2 + dx∆+

i )
(

∆±j φ|x+dτ/2 E
(2)
k |x±dxj+dτ/2

)]]
.

(B.20)

While this approximation is now correct up to O(dτ2), it still poses a violation to the shift

symmetry φ → φ + ε. This violation can be suppressed via higher order approximations

such as

Ei|x+dτ ·3/2,n+1 = Ei|x+dτ ·3/2,n

+ dτ

[
α

8f

∑
±
εijk(2 + dx∆+

i )
(

∆±j φ|x+dτ ·3/2 E
(2)
k |x±dxj+dτ ·3/2,n

)
− α

8f

∑
±
εijk(2 + dx∆+

i )
(

∆±j φ|x+dτ ·3/2 E
(2)
k |x±dxj+dτ ·3/2,n−1

)]]
.

(B.21)

This concludes one time step in the evolution of the fields. To integrate the equations of

motion, one repeats these steps. One can obtain one more equation of motion, the Gauss

constraint, by varying the action with respect to X0∑
i

∆−i Ei = − α

4f

∑
i

∑
±

∆±i φ (2 + dτ∆+
0 )B

(4)
i |x±dxi . (B.22)

Given the fields at the same times as in the begining of the step, checking this equation

is straightforward, since Bi|x+dτ can be calculated using Eq. (B.14). One has to choose

the initial field configuration such that the Gauss constraint is fulfilled. Evolving the fields

using the exact equations of motion then ensures that it stays fufilled at all times. It can

therefore be used to check the accuracy of the implicit method solving for Ei|x+dτ ·3/2.
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B.3 Fourier Transformation and Polarization

We define the Fourier transformation of fields not spatially displaced from a lattice site

(e.g. φ and Πφ) as

φ(τ,~k) =
L3/2

N3

∑
~x

φ(τ, ~x) exp
(
−i~k · ~x

)
. (B.23)

For fields that are spatially displaced, we take the displacement into account in the ex-

ponential. For example for the Fourier transform of Xi which is displaced by +dxi/2 we

have

Xi(τ,~k) =
L3/2

N3

∑
~x

Xi(τ, ~x+ dxi/2) exp
(
−i~k · (~x+ dxi/2)

)
. (B.24)

Note that this also means that a field and its derivatives transform differently since the

derivative is displaced. The benefit of this convention is that the relation between a field

and its derivative in Fourier space is simply

F
(
∆±i φ

)
(τ,~k) = i pi(ki)φ(τ,~k) , pi(ki) ≡

2

dx
sin

(
dx

2
ki

)
. (B.25)

Note that pi(ki) is real, making the discussion of polarization easier as shown in Ref. [35].

It allows us to define the polarization with respect to the behavior under rotations around

~p(~k), as in the continuum case∑
j,k

εijk pj(kj)X
±
k (~k) = ∓i |~p(~k)|X±i (~k). (B.26)

B.4 Initial Conditions

We investigate the process of particle production during a period of radiation domination,

where the scale factor takes the form a(τ) = mτ . We start the simulation at τ0 = 0.1/m

when H0 = 100m, such that the axion is pinned by Hubble friction and Πφ,0 = 0, and

assume the axion is displaced by φ0 = θf from the minimum of the potential. The dark

photon field is in the Bunch-Davies vacuum at the start of the simulation. This corresponds

to Xi(τ0,~k) and Ei(τ0,~k) being drawn independently from a Gaussian distribution with

widths 1/

√
2|~p(~k)| and

√
|~p(~k)|/2, respectively. Afterwards, the projector

Pij = δij −
pi(ki)pj(kj)

|~p(~k)|2
, (B.27)

is applied to ensure that the Gauss constraint Eq. (B.22) is initially fulfilled. We then take

the inverse Fourier transform to arrive at Xi(τ0, ~x) and Ei(τ0, ~x).

B.5 Lattice Dimensions and Number of Iterations

We choose the time step of our simulations as

dτ =
1

4
min{dx, 1/(ma(τ))} , (B.28)
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in order to avoid instabilities as a result of the discretization. We varied the side lengths

of the simulated volume L and the number of lattice sites along each direction N as well

as the number of iterations used when implicitly solving for Ei. In Fig. 1, we show the

evolution of the comoving number density of the axion and dark photon for a variety of

choices for the above mentioned parameters. Except for the two runs where the length was

chosen particularly small L = π/(4 ·m), the results agree up to ≈ 10% fluctuations.

Aside from the physical quantities we also monitored violations in the Gauss constraint

(B.22). We introduce the quantity〈∣∣∣∑i ∆−i Ei + α
4f

∑
i

∑
±∆±i φ (2 + dτ∆+

0 )B
(4)
i |x±dxi

∣∣∣〉
〈
∑

i |Ei| /dx〉
, (B.29)

where 〈...〉 denote averages over all lattice sites, to measure the relative error in the Gauss

constraint8. In Fig. 9 we show the evolution of this quantity. We note that the relative

error starts out around 10−15 at a = aosc independently of the lattice parameters, close

to the precision of a double precision float of 2−53 ≈ 10−16. This goes to show that our

procedure to initialize the dark photon indeed respects the Gauss constraint as expected.

During the linear regime, when the dark photon energy is negligible compared to the axion,

the relative error stays around 10−15 and only jumps up once the system enters the non

linear regime, when the energy in the axion and dark photon becomes comparable and the

axion field is fully inhomogeneous. The size of this jump heavily depends on the number

of iterations, suggesting that this error arises from the usage of the implicit scheme. As

we can see from Fig. 9, the size of the violation of the Gauss error depends on the lattice

spacing dx = L/N and on the number of iterations. It should be noted that already for

n = 8 iterations the error in the Gauss constraint does not exceed 10−14 significantly and

we expect it to stay at machine precision with only a few more iterations.

Futhermore we monitored the violation of the continuity equation ρ′+ 3aH(ρ+ p) = 0

for the axion-photon system. We found that it holds at the percent level with a small

dependence on the lattice size and spacing and no dependence on the number of iterations.

Since none of the physical quantities showed significant dependence on the number of

iterations n for n ≥ 2, which is necessary to ensure convergence at O(dx2), we set n = 2 for

all the simulations discussed in the main text to minimize the computational effort. The

choices for N and L listed in Section 3 were thus motivated by getting reliable results for

the physical quantities, covering the relevant range of momenta and keeping computational

costs down.

B.6 Gravitational Waves

Following Ref. [34], we calculate the gravitational wave spectrum by solving for the trans-

verse traceless (TT) fluctuations of the metric

1

a2
∂τ (a2∂τhij)−∇2hij =

2

M2
P

Πij . (B.30)

8We checked that the local violation is one to two orders of magnitude bigger and follows the same

evolution as the average.
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Figure 9. Evolution of the relative error in the Gauss constraint Eq. (B.29) for different choices of

the number of lattice sites along each direction N and the side length of the simulated box L with

fixed α = 60, θ = 1. The number of iterations used in the implicit scheme is fixed at 2 for the left

panel while it is varied in the right panel with N = 256, L = π/(2 ·m) held fixed. In all cases, the

error stays close to machine precision ≈ 10−16 up to a/aosc ≈ 8, when the dark photon production

backreacts on the axion. Thereafter, the error is minimized for small lattice spacings dx = L/N

and a high number of iterations.

We note that this equation as well as the TT projection is linear, and for practical purposes

we therefore solve
1

a2
∂τ (a2∂τ h̃ij)−∇2h̃ij =

2

M2
P

Sij , (B.31)

where Sij is the TT part of the energy-momentum tensor

Sij = ∂iφ∂jφ−
1

a2
(EiEj +BiBj) . (B.32)

The metric fluctuation hij can then be obtained by applying the TT projection Π

Π(h̃ij) = hij . (B.33)

From the source term we can immediately see that the corresponding fields on the lattice

are not located on the same lattice site and an averaging scheme has to be employed. An

important criterion when choosing this scheme, aside from practicality, is that it should

allow for coherent interpretation of the TT conditions

∂ihij = 0, hii = 0. (B.34)

There exist many such schemes as discussed in Ref. [35]. Therein the authors find that

the choice of scheme has only marginal influence on the results. In the scheme we employ,

hij sits at x + dτ/2. Since the position of hij is independent of i and j, the trace can

be calculated at each site x + dτ/2. To find a local interpretation of the condition for

transversality, we introduce the symmetric lattice derivative

∆sym
µ φ =

φ(x+ dxµ)− φ(x− dxµ)

2dxµ
. (B.35)
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The symmetric derivative reproduces the continuum derivative with O(dx2
µ) accuracy and

is located at the same site as the field φ in contrast to the one-sided derivatives ∆±. With

this, the transverse condition also takes a local form∑
i

∆sym
i hij

∣∣∣∣
x+dτ/2

= 0,
∑
i

hii

∣∣∣∣
x+dτ/2

= 0 . (B.36)

The equation of motion on the lattice reads

1

a2
∆−τ (a2∆+

τ h̃ij)−∆−k ∆+
k h̃ij =

2

M2
P

Sij . (B.37)

Since the left side of the equation is located at the lattice site x+ dτ/2, we have to employ

an averaging scheme such that Sij is located on the same site. To do so, we introduce

B
(8)
i |x+dτ/2 =

1

2

(
B

(4)
i |x +B

(4)
i |x+dτ

)
, (B.38)

and define on the lattice

Sij = ∆sym
i φ ∆sym

j φ− 1

a2

(
E

(2)
i E

(2)
j +B

(8)
i B

(8)
j

)
. (B.39)

With this explicit expression for the source term Sij , Eq. (B.37) can be solved in a leap

frog scheme to find h̃ij . The associated momentum of the symmetric derivative is

F
(
∆sym
i φ

)
(τ,~k) = i psym

i (ki)φ(τ,~k); psym
i (ki) ≡

1

dx
sin (dx ki) . (B.40)

By replacing ~k in the continuum with ~p sym(~k), the discussion of polarization and the TT

projection is analogous to the continuum. Therefore, the two polarizations are defined by∑
k,l

psym
k (kk)

[
εikl h

±
lj(
~k) + εjkl h

±
il (
~k)
]

= ∓2i |~p sym(~k)| h±ij(~k). (B.41)
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