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Abstract

We study geometric effects in nonadiabatic quantum tunneling and derive
the tunneling formula within the quadratic expansion of the Hamiltonian.
In addition to the rectification effect known previously, we find two novel
effects, namely perfect tunneling and counterdiabaticity at fast sweep speed.
As an application, we study the twisted Schwinger effect, i.e., nonadiabatic
pair production of particles induced by a rotating electric field. In 2D and 3D
Dirac and Weyl fermions, this gives a nonperturbative generation mechanism
for valley polarization and current.
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1 Introduction

Today, geometric effects [1] in electron dynamics have become a central research topic
in condensed matter [2]. In adiabatic processes, it is known that electrons acquiring a
geometric phase provoke exotic effects such as quantum Hall effect [3, 4]. On the other
hand, the importance of geometric effects in nonadiabatic processes have been overlooked
except for a few examples such as the geometric amplitude factor [5–7] and counterdiabatic
driving [8–10]. In a example of a nonadiabatic dynamics governed by a time-dependent
Hamiltonian, M.V. Berry showed that the tunneling probability can depend on the direc-
tion of the parameter sweep due to the geometric amplitude factor [5].

We revisit the problem of nonadiabatic geometric effects with a motivation to ap-
ply it to the twisted Schwinger effect in Dirac and Weyl Fermions. The Schwinger ef-
fect is fermion-antifermion pair production in strong electric fields [11–13] and is known
to originate from nonadiabatic tunneling in the momentum space [14–18]. Previously,
AC extensions of the Schwinger effect were studied for linearly polarized fields Ex =
E cos(Ωt) [19–21]. The results have common nature as the problems of strong field ioniza-
tion [22] and a particle escaping from an oscillating trap [23]. For low frequency, the tun-
neling is exponentially suppressed with a threshold known as the Schwinger limit [11–13].
For higher frequency (but still lower than the excitation gap), multiphoton excitation is
activated and the excitation probability obeys a power law. Nonadiabatic geometric effects
kicks in when we study pair production induced by rotating electric fields (or circularly
polarized laser fields) Ex + iEy = EeiΩt [24,25], which we coin as the “twisted Schwinger
effect”. If we assume momentum conservation, the problem of the twisted Schwinger effect
can be recasted to the Landau-Zener problem with a curved trajectory in the parameter
space. This effective model is reminiscent to the twisted Landau-Zener model studied by
M.V. Berry mentioned above [5]. We perform a numerical analysis of the effective model
dynamics and find three geometric effects. The first is the sweep direction dependence,
which we call rectification. This is the same phenomenon indicated in ref. [5] in terms of
the geometric amplitude factor. The two other effects are perfect tunneling and counter-
diabaticity at fast sweep speed. In order to clarify the origin of the effects, we “untwist”
the model with a unitary transformation, and obtain the standard Landau-Zener model
with an effective gap parameter depending on the geometric amplitude factor (see Eq.(3)
below). We can understand the three nonadiabatic geometric effects in a unified way
through the modulation of the effective gap. Recently, rectification in quantum tunneling
has been studied in solid state systems [26]. However, as far as we know, the perfect
tunneling and counterdiabaticity at fast sweep has not been argued in previous studies.

In a condensed matter framework, a rotating electric field is created by a circularly
polarized laser [27–29], or shaking an optical lattice [30], while in high energy physics,
it mimics the field created by ions passing by each other in heavy ion collision experi-
ments [31]. The rotating electric fields are known to induce valley polarization [32,33] and
photo-currents via circular photogalvanic effect in 2D and 3D Dirac/Weyl materials [34,35],
respectively. Second order perturbation [36] has served as a theoretical framework to de-
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Figure 1: Nonadiabatic geometric effects: (a) Schematic picture of the LZ tunneling
with curvature in parameter space. (b) Instantaneous energy of the Hamiltonian Eq. (1)
with (m, v, κ‖) = (0.1, 1, 1) and schematic picture for quantum tunneling. (c) Tunneling
probability P (F ) for Eq. (1) with a parameter sweep q = −Ft obtained numerically
(marks) compared with the tunneling formula Eq. (2) (lines).

scribe these phenomena. Due to the development of strong coherent laser sources, ex-
tension of the theory to the nonperturbative regime are being awaited. We show that
the three nonadiabatic geometric effects, i.e., rectification, perfect tunneling and counter-
diabaticity, play an important role in understanding the nonperturbative versions of the
opto-valley polarization and photo-currents in 2D and 3D Dirac/Weyl materials which are
microscopically caused by the twisted Schwinger effect.

2 Nonadiabatic geometric effects in quantum tunneling

We demonstrate the nonadiabatic geometric effects in a two level Hamiltonian with a
parameter q defined by

Ĥ(q) = mσ̂z + vqσ̂x +
1

2
κ‖v

2q2σ̂y, (1)

where σ̂j (j = x, y, z) is the Pauli matrix, m is the gap, and v the energy slope. We use the
unit h̄ = c = 1. If we regard the coefficients of the Pauli matrices x(q) = (vq, 1

2κ‖v
2q2,m)

as a trajectory in the three-dimensional (3D) space, it defines a curve and κ‖ is the
curvature around the gap minimum in the parameter space [Fig. 1(a)]. The case of κ‖ = 0
corresponds to the Landau-Zener (LZ) Hamiltonian [14, 37]. The instantaneous energy
of this Hamiltonian is plotted in Fig. 1(b). The tunneling probability P (F ) for a linear
parameter sweep q = −Ft in Eq. (1) can be evaluated and becomes (see subsection 2.1
for derivation)

P (F ) = exp

[
− π

(m+ κ‖vF/4)2

|vF |

]
. (2)

Comparing this expression with the LZ formula, we notice that the effective tunneling gap
becomes

∆eff = 2m+ κ‖vF/2, (3)
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which is modified by the geometric amplitude factor. The model Eq. (1) is a quadratic
expansion of the twisted LZ model introduced by M. V. Berry [5]. The model shows
interesting and couterintuitive nonadiabatic geometric effects as we list below.

Rectification Although the instantaneous band structure is symmetric in q → −q,
the tunneling probability depends on the sign of F and rectification happens [5].
The ratio γ(F ) ≡ P (|F |)/P (−|F |) = exp(−πmκ‖) deviates from unity for m 6= 0
[Fig. 1(c)].

Perfect tunneling In conventional LZ tunneling, the tunneling probability monotoni-
cally increase from 0 (adiabatic) to 1 (diabatic limit or perfect tunneling) as the
sweep speed increase. However, in the presence of nonadiabatic geometric effects,
perfect tunneling is realized at finite sweep speed. For m 6= 0, P (F ) peaks out and
becomes unity at a perfect tunneling sweeping speed FPT = −4m/(κ‖v) indicated
by an arrow in Fig. 1(c), which is determined from the condition ∆eff = 0.

Counterdiabaticity at fast sweep For large |F |, P (F ) decreases as exp(−πκ2
‖|vF |/16).

In the extreme case of m = 0, the tunneling probability is a monotonically decreasing
function of speed.

We have performed numerical calculation of the tunneling probability using the Hamil-
tonian Eq. (1) and compared it with the tunneling formula Eq. (2) as depicted in Fig. 1(c).
The results show good agreement and the above three nonadiabatic geometric effect is
clearly seen.

For convenience ,we also consider the two-band Hamiltonian with general operators
up to q2 order,

H = Â+ B̂q + Ĉq2/2. (4)

The gap minimum and velocity extremum conditions at q = 0 require {Â, B̂} = 0 and
{B̂, Ĉ} = 0, respectively. This Hamiltonian is equivalent to the case of Eq. (6) with the
parameters

m = ‖Â‖, v = ‖B̂‖, κ‖v
2 = − i

8

Tr{[Â, B̂], Ĉ}
‖Â‖‖B̂‖

, (5)

where ‖Ô‖ ≡ 1
2

√
Tr{Ô, Ô}.

2.1 Detailed derivation of the tunneling formula Eq. (2)

In this subsection, we explain the derivation of the tunneling formula for the Hamiltonian

Ĥ(q) = mσ̂z + vqσ̂x +
1

2
κ‖v

2q2σ̂y, (6)

where σ̂j (j = x, y, z) is the Pauli matrices, m is the gap, v the energy slope, and κ‖ is the
curvature around the gap minimum in the parameter space. The idea is to move to a local
frame with trivial geometry, which we call the “LZ frame”, and use the LZ formula or its
extension: the Dykhne-Davis-Pechukas (DDP) (also known as the Landau-Dykhne or the
imaginary time) method [38,39] (see Ref. [18] for an extended discussion of the method).

Let us start from a general two-band Hamiltonian

Ĥ(q) = d(q) · σ̂, (7)
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where d(q) defines a curve in the Euclidean space. We consider tunneling at the gap
minimum q = 0, and define the unit directional, tangential, and normal vectors as

r =d(0)/|d(0)|
t =∂qd(0)/|∂qd(0)|
n =r × t.

Note that t ⊥ r. We move to the LZ frame, where the curve d(q) is transformed to a

curve on the plane spanned by r and t using a unitary operator Û = ei
θ(q)
2
r·σ̂. The angle

θ(q) is determined as

Û †Ĥ(q)Û = [a(q)r + b(q)t] · σ̂,

where a(q) = d(q) · r, b(q) =
√
|d(q)|2 − a(q)2, and θ(q) = − arctan d(q)·n

d(q)·t . Then the
Hamiltonian in the LZ frame becomes

ĤLZ(q) =Û †Ĥ(q)Û − iÛ †∂tÛ

=
[(
a(q) +

θ′(q)

2

dq

dt

)
r + b(q)t

]
· σ̂. (8)

In the case of the model Eq. (6), the parameters are a(q) = m, b(q) = vq, and θ′(q) =
−κ‖v/2. Through the transformation, the additional quadratic term is eliminated and the
gap is effectively modified from m to meff = m + κ‖vF/4. The above formulation shows
that the geometric meaning of κ‖ is the curvature of d(q) in the plane spanned by t and n
at q = 0. We remark that vκ‖ corresponds to the quantum geometric potential [40,41] and
also to the shift vector R+− describing the difference of polarization between the upper
and lower bands [26].

With the application of the DDP method [38,39] for Eq. (8), the tunneling probability
is expressed as

P ' exp
[
− 2Im

∫ qc

0

∆(q)

|F (q)|
dq
]
, (9)

where ∆(q) = 2[(a(q)− θ′(q)F (q)/2)2 + b(q)2]1/2 is the energy difference and F (q) = −dq
dt

is the Jacobian (expressed as function of q). In the DDP method, the integration path
is deformed from the real axis, and the singular point closest to the real axis governs the
tunneling probability. In Eq. (9), the integration is performed to qc (on the imaginary
axis), which is defined as a point in complex plane where the gap vanishes ∆(qc) = 0
(the branching point of square root). For the linear sweep q = −Ft, the Jacobian is just
F (q) = −dq

dt = F . Applying Eq. (9) to the model Eq. (6), and noticing a(q) = m, b(q) =√
(vq)2 + (κ‖v2q2/2)2 = vq +O(q3), and θ′(q) = − d

dq arctan(κ‖vq/2) = −κ‖v/2 +O(q2),

we can calculate the tunneling probability as

P (F ) = exp

[
− 4

|F |

∫ 1
|v| (m+κ‖vF/4)

0

√
(m+ κ‖vF/4)2 − (vq)2dq

]
= exp

[
− π

4

(2m+ κ‖vF/2)2

|vF |

]
(10)

as given in the main text.
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3 Twisted Schwinger effect in 2D Dirac fermions

We study the effect of rotating electric fields in 2D Dirac fermions. We introduce the
field as gauge potential A = A(− sin(Ωt), cos(Ωt)) [electric field E = E(cos(Ωt), sin(Ωt))
(E = AΩ > 0)], and the effective Hamiltonian for the fermions with chirality ξ = ± is
given as

Ĥ = v[ξ(kx + eAx)σ̂x + (ky + eAy)σ̂
y] +mσ̂z, (11)

where e (> 0) is the elementary charge, v is the Fermi velocity, and m (> 0) is the mass
parameter. This model has implication to valleytronics in 2D materials such as monolayer
transition metal dichalcogenide (TMD) and graphene [42, 43], where laser-induced valley
polarization is demonstrated [32,33,44–48]. In these materials, the chirality ξ corresponds
to the valley index specifying the two Dirac points Kξ in the dispersion.

Energy
k+eA

k

kx

ky

LZ with
curvature

gap minimum

K K

Figure 2: Mapping from the twisted Schwinger effect to the twisted Landau
Zener problem: In rotating electric fields, the electron-hole pairs has a covariant mo-
mentum k + eA(t) which performs a rotating motion in the momentum space. During
this dynamics, the energy gap minimizes when k + eA(t) is closest to the K-point. We
focus to this gap minimum point as depicted in the right box. By performing a quadratic
expansion of the Hamiltonian Ĥ(t) in the time variable (q = Ωt) around the gap minimum
time, we obtain the twisted Landau Zener problem defined by Eq. (4).

We assume that the Fermi energy is zero, and the time evolution starts from a zero
temperature ground state. After the field is switched on at t = 0, nonadiabatic processes
take place creating fermion-antifermion pairs. The tunneling process in momentum space
can be mapped to a twisted Landau Zener problem discussed in the previous section as
depicted in Fig. 2. In this system, the laser frequency Ω plays the role of the speed
parameter F in the twisted LZ model. We allow Ω to be positive or negative which

Table 1: Comparison of the pair creation by tunneling with nonadiabatic geometric effects
and standard optical absorption process

Tunneling creation Optical absorption

Strong field Weak field
Non-perturbative Perturbative

Nonadiabatic geometric effect Selection rule
Non-conserved Energy momentum conservation
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corresponds to the helicity specifying left or right circular polarization. The fermion-
antifermion production probability per cycle of the laser field is given by

Pξ(k) = exp

[
− π

(
M − ξΩm

4M

)2

veE

]
, (12)

where we defined M =
√
v2(|k| − eE/(|Ω|))2 +m2. To derive this expression, we have

expanded the Hamiltonian (11) around the time that minimizes the energy gap up to
quadratic order obtaining the form (5) and used the tunneling formula Eq. (2).

(b)(a) Tunneling creation Optical absorption

strong
field

weak
field

Figure 3: 2D gapped Dirac fermion: Schematic picture of pair excitations at the
two valleys. (a) In tunneling creation, the pairs are produced according to Eq. (12) (see
Fig. 4). (b) In optical absorption, the pairs are concentrated on an equal energy curve
∆E(k) = Ω due to energy conservation.

In Fig. 3, we schematically compare the pair production induced by (a) tunneling
with nonadiabatic geometric effects to (b) standard optical absorption process. In optical
absorption, the electrons in the occupied band are excited to the unoccupied band, and
the energy difference of the electron and hole is given by the photon energy. This is a
consequence of the energy conservation. The momentum dependence of the distribution
is determined by the optical selection rule encoded in the polarization matrix element of
the electron-hole wave functions [32,33,44–48]. This situation is drastically changed when
nonperturbative effects are taken into account. Energy is no longer conserved since the
Hamiltonian Eq. (11) is time dependent. The electron and hole pairs can be created even
when their energy difference is not equal to the photon energy, and in particular, creation
occurs even when the photon energy is below the excitation gap. As we will show below,
the optical selection rule is replaced by the nonadiabatic geometric effects, while the role
of the polarization matrix element is played by the production probability Pξ(k) given in
Eq. (12). We summarize the comparison in Table 1.

3.1 Valleypolarization via tunneling creation

In Fig. 4, we plot the production probability for several Ω. We see that there is a strong
chirality dependence, and the sign of ξΩ determines whether excitations are “optically
allowed” (ξΩ > 0) or “optically forbidden” (ξΩ < 0). This difference originates from the
geometric amplitude factor. In this sense, the optical selection rule [32,33] in perturbative
optics is replaced by the nonadiabatic geometric effects when nonperturbative strong field

7
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Figure 4: 2D gapped Dirac fermion: The wavenumber dependence of the produc-
tion probability Pξ(k). The parameters are (Ω/m, eEa2/v) = (1, 1), (5, 1), (5, 0.01) and
ma/v = 0.5, where a is the lattice constant.

excitations are considered. The ratio of the production rates between the two chiralities

γ =
P+(k)

P−(k)
= exp

(πΩm

veE

)
(13)

is independent of the wavenumber. In the gapless case, as in graphene, γ is unity and
there is no valley dependence. When the gap parameter m is finite, as in monolayer TMD,
imbalance becomes finite and the ratio exponentially grows or decays with increasing
|Ω|/E.

3.2 Distribution of pair excitation

Next let us study the wavenumber dependence of the production probability as depicted
in Fig. 4. The distribution is rotationally symmetric and only depends on |k|a (a: lattice
constant). They have peaks as shown in Fig. 4 at |k| = kpeak, where

kpeak =



eE

|Ω|
(Ω < 4m),

eE

|Ω|
± 1

v

√
m(ξΩ/4−m) (Ω ≥ 4m; E ≥ Eco),

eE

|Ω|
+

1

v

√
m(ξΩ/4−m) (Ω ≥ 4m; E < Eco).

(14)

(15)

(16)

The crossover field is define by

Eco =
|Ω|
ev

√
m(ξΩ/4−m). (17)

We can understand the peak structure from the wavenumber dependent effective mass
parameter in Eq. (12) defined by

meff = M − ξΩm/(4M). (18)

The peaks are dictated by the wavenumber minimizing the effective mass and their prop-
erties qualitatively change depending on whether the frequency Ω is below or above 4m.
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(a) (b)

(c)

exponential
suppressionexponential
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Figure 5: 2D gapped Dirac fermion: (a) The total pair production rate per unit of
time and volume. We fix ma/v = 0.5 and eEa2/v = 1. (b) The electric field dependence of
the total production rate Ptot

ξ . (c) (E,Ω)-phase diagram of the twisted Schwinger effect.

For Ω < 4m, the distributions have a single peak at the wavenumber where meff > 0 is
minimized. On the other hand, for higher frequencies Ω ≥ 4m, perfect tunneling takes
place at the optically allowed valley (ξΩ > 0) when the effective gap meff close. There
is a crossover when the electric field is increased, The number of perfect tunneling peaks
changes from one for E < Eco to two for E ≥ Eco. This field strength Eco characterizes a
crossover of the total production rate which we will explain below.

3.3 Crossover in the production rate

We define the total fermion-antifermion production rate per unit of time and volume
as Γξ ≡ |Ω|

(2π)3

∫
dkPξ(k) and plot it against frequency in Fig. 5(a). We see clearly the

rectification effect where the imbalance ratio Γ+/Γ− = γ increases exponentially for large
Ω/E following Eq. (13). In the low frequency region, it takes the form (Appendix A)

Γξ '
eE

(2π)2

√
eE

v
exp

(
− π

ES,ξ

E

)
. (19)

Here we define the Schwinger limit of field strength as

ES,ξ ≡ (meff,ξ)
2/(ve) = (m− ξΩ/4)2/(ve), (20)

9
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where meff,ξ is the effective mass at the gap minimizing wavenumber Eq. (14). Equa-
tion (19) is an extension of Schwinger’s production rate evaluated originally for a DC
electric field to the case of rotating electric field. For Ω = 0, Eq. (19) coincides with the
2D version of Schwinger’s result [11, 17] with the QED Schwinger limit ES = m2

ec
3/(h̄e)

obtained by replacing m→ mec
2 and v → h̄c.

Figure 5(b) shows the electric field dependence of the production rate with the optically
allowed chirality (ξΩ > 0) for several frequencies. For strong fields, all curves converge to

the dashed line Γξ → eE
(2π)2

√
eE
v described by the asymptotic form of Eq. (19) independent

of Ω. For weak fields, we observe two different behaviors. The low frequency (Ω < 4m)
curves drop below the dashed line following Eq. (19) due to the exponential suppression
of tunneling at weak fields. In contrast, curves for high frequency (Ω ≥ 4m) turn above
the dashed line and converge to a Γ+ ∝ E1/2 behavior. In Fig. 5(c), we summarize the
tunneling behaviors into a (E,Ω)-phase diagram, which we explain below.

Low frequency (|Ω| < 4m) (Appendix A.1) The Schwinger limit E = ES,ξ [Eq. (20)]
characterizes the crossover from the weak field exponentially suppressed regime to the
Γξ ∝ E3/2 behavior at strong field. Increasing Ω from zero, the Schwinger limit ES,ξ

for the optically allowed chirality (ξΩ > 0) decreases and becomes zero at |Ω| = 4m,
where perfect tunneling starts to happen. In contrast, for the optically forbidden chirality
(ξΩ < 0), ES,ξ monotonically increase against |Ω|. This suppression of tunneling is the
consequence of counterdiabaticity in the twisted LZ tunneling.

High frequency (|Ω| ≥ 4m) (Appendix A.2) For the optically allowed chirality
ξΩ > 0, the effective gap closes and the Schwinger limit vanishes due to perfect tunneling.
There is a crossover taking place around E = Eco defined in Eq. (17) where the number
of the peaks in the distribution function changes (Fig. 4). The production rate shows the
Γξ ∝ E3/2 behavior at strong field E > Eco and changes to a Γξ ∝ E1/2 behavior at weak
fields E < Eco . In particular, in the weak field regime, the production rate shows an
asymptotic form

Γξ '
|Ω|

(4π)2v

√
|Ω|m

√
eE

v
(21)

for optically allowed ξ, which is evaluated in appendix A.2. On the other hand, for the
optically forbidden chirality ξΩ < 0, the Schwinger limit monotonically increases as |Ω|
increases.

4 Twisted Schwinger effect in 3D massless Dirac and Weyl
fermions

Next, we proceed to an analysis of 3D massless Dirac fermions subject to rotating electric
fields described by the Hamiltonian

Ĥ3D =v
∑

j=x,y,z

γ̂0γ̂j(qj + eAj)

=

(
−v
∑

j=x,y,z(qj + eAj)σ̂
j 0

0 v
∑

j=x,y,z(qj + eAj)σ̂
j

)
(22)

10
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with the 3D wave number q = (k, kz), A = A(− sin(Ωt), cos(Ωt), 0) and the gamma
matrices

γ̂0 =

(
0 I
I 0

)
, γ̂j =

(
0 σ̂j

−σ̂j 0

)
(j = x, y, z).

We can recast this Hamiltonian to the 2D Dirac Hamiltonian studied in the previous
section. By performing the unitary transform

Û =

(
exp(iπ2 σ̂

x) 0
0 I

)
to the Hamiltonian Eq. (22), we obtain

Û †Ĥ3DÛ =

(
Ĥ− 0

0 Ĥ+

)
,

where

Ĥξ = v[ξ(kx − eA sin(Ωt))σ̂x + (ky + eA cos(Ωt))σ̂y + kzσ̂
z] (23)

is the Weyl Hamiltonian with chirality ξ = ±. This Hamiltonian is equivalent to the 2D
Dirac Hamiltonian Eq. (11) studied in the previous section with the replacement of the
mass m by vkz. Thus, the fermion-antifermion production probability per cycle of the
laser field is given by

Pξ(k) = exp

[
− π

(
M − ξΩvkz

4M

)2

veE

]
, (24)

where we defined M = v
√

(|k| − eE/|Ω|)2 + k2
z .

Below, we assume that the Fermi energy is at the Dirac point and exploit the scaling
symmetry rewriting the model with variables t̃ = |Ω|t and q̃ = vq/|Ω|. The Schrödinger

equation is recast to i∂t̃|Ψξ(t̃)〉 = ˆ̃Hξ|Ψξ(t̃)〉 with ˆ̃Hξ = ξ(k̃x − sgn(Ω)Ã sin t̃)σ̂x + (k̃y +
Ã cos t̃)σ̂y + k̃zσ̂

z. Then we can set the frequency |Ω| to unity and

Ã = veA/|Ω| = veE/Ω2 (25)

is the unique scaling parameter that characterizes the field strength.
In Fig. 6, we schematically compare the pair production in the 3D Dirac systems

induced by (a) tunneling creation to (b) standard optical absorption process. Similarly to
the 2D case summarized in Fig. 3 and Table 1, the nonadiabatic geometric effects take the
place of the optical selection rule [49]. Circularly polarized laser field propagating along
the z axis induces vertical transitions that are imbalanced between ±kz. The imbalance
in the created pairs results in a photocurrent Jzξ for each Weyl components ξ = ± as
we will see below. In Dirac systems with chiral and mirror reflection symmetries, the
total photocurrent cancels since the production rate Pξ(q̃) is symmetric under ξ → −ξ,
kz → −kz. On the other hand, if these symmetries are broken, it is possible to realize
finite U(1) photocurrent in a similar way as in the optical absorption mechanism proposed
in [49–51].
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(b)(a) Tunneling creation Optical absorption

strong
field

weak
field

Figure 6: 3D massless Dirac fermion: Schematics of pair production and resulting
photocurrent in the two Weyl components induced by the (a) tunneling creation and (b)
optical excitations. (a) In tunneling creation, the pairs are produced according to Eq. (24).
See Fig. 7 for the results. (b) In optical absorption, the pairs are concentrated on an equal
energy curves due to energy conservation.

4.1 Expression of the total and chiral current

The total U(1) and chiral current operators are represented as

Ĵz = −veÛ †γ̂0γ̂zÛ = −ve
(
σ̂z 0
0 σ̂z

)
,

and

Ĵz5 = −veÛ †γ̂5γ̂
0γ̂zÛ = −ve

(
−σ̂z 0

0 σ̂z

)
,

where γ̂5 =

(
−I 0
0 I

)
. In order to evaluate the expectation value of the currents, we

need to estimate the distribution of the electron-hole pairs. We assume that the system
is on-shell, i.e., the density matrix is diagonal in the eigenstate basis, and the distribution
is obtained by the balance between the creation process characterized by the tunneling
probability and the relaxation time. This can be done by first representing the density
matrix as ρq,ξ(t) = nq,ξ(t)|Ψq,ξ,1〉〈Ψq,ξ,1| + [1 − nq,ξ(t)]|Ψq,ξ,2〉〈Ψq,ξ,2|, where |Ψq,ξ,1〉 and
|Ψq,ξ,2〉 are the states for upper and lower bands with chirality ξ. The master equation is

dnq,ξ(t)

dt
= [1− nq,ξ(t)]Pξ(q)

|Ω|
2π
− nq,ξ(t)/τ, (26)

where τ is the relaxation time. Note that we have the factor |Ω|2π (= inverse of the time
period) in the first term on the r.h.s. since Pξ(q) is defined as the tunneling probability
per cycle. In the steady state dnq,ξ(t)/dt = 0, if we assume that the relaxation time is
short |Ω|τPξ(q)/(2π) � 1, we obtain nq,ξ(t) = |Ω|τPξ(q)/(2π). The current density for
the component of chirality ξ is provided as

Jzξ = −2ve
|Ω|τ
2πa3

( a
2π

)3
∫
dq

kz√
|k|2 + k2

z

Pξ(q) = −2eτ |Ω|4

(2π)4v2

∫
dq̃

k̃z√
|k̃|2 + k̃2

z

Pξ(q̃). (27)

We can calculate the total and chiral (spin) currents as Jz = Jz+ + Jz− and Jz5 = Jz+ − Jz−.

12
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We also define total (chiral) production rates as Γ3D
tot = Γ3D

+ + Γ3D
− (Γ3D

5 = Γ3D
+ − Γ3D

− )

using Γ3D
ξ = |Ω|4

(2π)4v3

∫
dq̃Pξ(q̃). Due to the symmetry of Pξ(q̃) under ξ → −ξ, kz → −kz,

Γ3D
5 = Jz = 0 holds.

4.2 Novel crossover between weak-to-strong field behaviors

Now, let us discuss the physical consequence of the geometric nonadiabatic effect in the
tunneling creation in 3D Dirac fermions. In the massless Dirac and Weyl fermions, there
is no tunneling threshold and we expect that the total production rate shows a power law
behavior against the electric field strength. We show that there is a crossover between the
weak and strong field regimes accompanied by a change in the power.

In Figs. 7(a)-7(c), we plot the production probability Pξ(q̃) for ξ = + and Ω > 0
obtained in Eq. (24). It is rotationally symmetric around the k̃z axis. The production
probability for the other chirality ξ = − is a reflection of ξ = + around the k̃z = 0 plane.
The production probability shows peaks around the wavenumber satisfying the perfect
tunneling conditions Eqs. (15) and (16) with m replace by kz. In the plane of (|k̃|, k̃z),
the perfect tunneling peaks define a circle centered at (|k̃|, k̃z) = (Ã, 1/8) with a radius
1/8 and are plotted as black solid curves. We find a crossover in the shape of the perfect
tunneling peaks that occurs at

Ãco = 1/8. (28)

For Ã < Ãco the circle is incomplete and approaches a semicircle in the small Ã limit,
and for large field Ã ≥ Ãco the circle becomes complete. Remembering the definition of Ã

given in Eq. (25), the crossover field strength is Eco = 1
8

(h̄Ω)2

eh̄v , where we have temporally
recovered the Planck constant. For example, in the case of Cd3As2, the velocity parameter
is of the order of v ∼ 105m/s and using h̄ = 6.6×10−16eVs, the crossover fields for photon
energies h̄Ω = 1eV and h̄Ω = 1meV are Eco ∼ 2 × 109V/m and Eco ∼ 2 × 103V/m,
respectively. We stress that these parameters for the laser strength are experimentally
feasible.

Next, we investigate how this crossover is seen in the physically observable quantities.
We plot the total production rate Γ3D

ξ and the chiral current in the z direction Jz5 in
Fig. 7(d). The quantities show a power law behavior in the weak and strong field limits
with different powers. The change of the power occurs around the crossover field Ã = Ãco

and their asymptotic behaviors are given by

Γ3D
tot

/( |Ω|4
v3

)
→

{
1

3(4π)3
Ã1/2 (Ã/Ãco � 1)

2
(2π)3

Ã2 (Ã/Ãco � 1),
(29)

Jz5

/(−eτ |Ω|4
v2

)
→

{
sgn(Ω)
2(4π)3

Ã1/2 (Ã/Ãco � 1)
sgn(Ω)
(2π)3

Ã1 (Ã/Ãco � 1).
(30)

It is possible to analytically evaluate the asymptotic behaviors using the fact that the
distribution around the peak is a Gaussian with a width scaling as Ã1/2. The detailed
calculation is given in appendix B.

This is a novel nonperturbative crossover which originated from the nonadiabatic ge-
ometric effect that has no perturbative analogue. Let us discuss how we can measure the
current as well as the crossover in solid state experiments. We have discussed a general
theory based on Weyl and Dirac Hamiltonians. There are various material realization
of Weyl and Dirac Hamiltonians [52], where the chirality ξ may correspond to degrees of
freedom such as orbitals and spins as well as their mixtures. For example, in Co3Sn2S2 [53]

13
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Figure 7: 3D massless Dirac fermion: (a)-(c) The production probability Pξ(q̃) for
chirality ξ = + plotted for several field strength parameters (a) Ã = veE/Ω2 = 0.001, (b)
Ã = 1/8, and (c) Ã = 10. They are rotationally symmetric around the k̃z axis and the
probability for particles with chirality ξ = − is reflected as k̃z → −k̃z. The solid black
curve denotes wavenumber at which perfect tunneling occurs [Eqs. (15) and (16) with m
replace by kz]. The lower panels show the fermion-antifermion pairs on the Weyl cone
E = ±

√
|q̃| for fixed k̃y = 0. (d) The total production rate and chiral current are plotted

as blue and red solid curves while the dashed lines represent their asymptotic power law
behavior Eqs. (29) and (30).

the chirality ξ corresponds to spin [54] and the chiral current Jz5 can be detected as a spin
current. The generation of U(1) photocurrent due to optical absorption in Weyl semimet-
als with broken symmetry have been studied in refs. [35, 49–51, 55]. If the Fermi energy
is non-zero and the system has finite carrier density, the nonlinear anomalous Hall cur-
rent [56] can also contribute to the current generation in the z-direction [57]. The three
mechanisms, i.e., tunneling creation, optical absorption, nonperturbative Hall current,
have different dependences on the laser and material parameters such as Field strength,
photon energy and Fermi energy. The asymptotic behaviors of the physical observables in
Eq. (29), (30) is useful in identifying the origin of the photoinduced current.

5 Conclusion

We studied the nonadiabatic geometric effects in quantum tunneling and found that they
provoke anomalous phenomena such as rectification, perfect tunneling and counterdia-
baticity. We derived the tunneling formula describing these effects through the modula-
tion of the effective mass. We studied the implication of nonadiabatic geometric effects in
the Schwinger effect, i.e., tunneling creation of carriers, induced by rotating electric fields.
Two condensed matter applications are mentioned. One is the valley polarization that can
be induced in 2D Dirac materials, and the other is generation of spin (and charge) current
in 3D Dirac (and Weyl) materials. Our finding adds another example to the rich nonper-
turbative phenomena induced by circularly polarized laser in electronic systems [58–64].
Finally, we comment that the interplay between the nonadiabatic geometric effects and
interaction is an open problem calling for further study. We point out that there is an in-
teresting resemblance between the phase diagram of the twisted Schwinger effect [Fig. 5(c)]
and that of a strongly interacting holographic model [65,66].
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A Detailed calculations for the 2D Dirac fermions

We consider the Hamiltonian

Ĥ = v[ξ(kx − eA sin q)σ̂x + (ky + eA cos q)σ̂y] +mσ̂z.

where q = Ωt. It is expanded as to q up to the second order and can be written in the
form of Eq. (4) with

Â =mσ̂z + ξvkxσ̂
x + v(ky + eA)σ̂y

B̂ =− ξveAσ̂x

Ĉ =− veAσ̂y.

Let us consider the tunneling at kx = 0, ky < 0 for Ω > 0 and kx = 0, ky > 0 for Ω < 0
(i.e., ky = −sgn(Ω)|k|) in the time interval of −π/|Ω| ≤ t ≤ π/|Ω|. Note that the sign of
A is the same as that of Ω. The parameters in Eq. (6) are given as

m→
√
v2(−sgn(Ω)|k|+ eA)2 +m2

v →veA

κ‖v
2 → ξmveA√

v2(−sgn(Ω)|k|+ eA)2 +m2
.

Since F = −Ω and E = AΩ, the tunneling probability for twisted Schwinger effect in 2D
Dirac fermions is given as

Pξ(k) = exp

[
− π

(
M − ξΩm

4M

)2

veE

]
, (31)

where we defined

M =
√
v2(|k| − eE/|Ω|)2 +m2.

We investigate the total probability

Ptot
ξ ≡

( a
2π

)2
∫
dkPξ(k) =

a2

2π

∫ ∞
0

dkkPξ(k).

below focusing on the case of ξΩ > 0.
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A.1 Low frequency region

When the laser frequency is smaller than double the gap |Ω| < 4m, Pξ shows a peak
at |k| = eE/|Ω| in the momentum space. Let expand Eq. (31) around k = eE/|Ω|.
We represent k′ = k − eE/|Ω|, and since vk′ � m, we can approximate as (m/M)2 =
(1 + v2k′2/m2)−1 ' 1− v2k′2/m2. Hence, in the low frequency region,

Pξ(k) ' exp
[
− π

veE

(
m2 + v2k′2 − ξΩm

2
+

Ω2

16
(1− v2k′2/m2)

)]
= exp

[
− π

veE

{
v2
(

1− Ω2

16m2

)
k′2 +

(
m− ξΩ

4

)2}]
, (32)

which is the normal distribution with the standard deviation
√
eE/(2πv)(1−Ω2/(16m2))−1/2.

When
√
eE/(2πv)(1− Ω2/(16m2))−1/2 � eE/(|Ω|), Ptot

ξ can be calculated as

Ptot
ξ ' exp

[
− π

veE

{
v2
(

1− Ω2

16m2

)
k′2 +

(
m− ξΩ

4

)2}]
=
eEa2

2π|Ω|

√
eE

v

(
1− Ω2

16m2

)−1/2
exp

[
− π

veE

(
m− ξΩ

4

)2]
.

Therefore the e-h production rate per unit of time and volume is provided as

Γξ ≡
|Ω|

2πa2
Ptot
ξ ' eE

(2π)2

√
eE

v
exp

[
− π

veE

(
m− ξΩ

4

)2]
. (33)

A.2 High frequency region

In the high frequency region |Ω| > 4m, Pξ(k) have peaks at the perfect tunneling points

k =
eE

|Ω|
± 1

v

√
m(ξΩ/4−m)

instead of k = eE/|Ω|. In the case of strong electric field, however, the broadening of
Pξ(k) is much larger than the distance between the perfect tunneling points

√
eE/(2πv)�√

m(ξΩ/4−m)/v and the contribution to Ptot
ξ mainly comes from k < eE/|Ω|−

√
m(ξΩ/4−m)/v

and k > eE/|Ω|+
√
m(ξΩ/4−m)/v, where the approximation Eq. (32) is still valid. Hence

the e-h production rate per unit of time and volume is provided by Eq. (33).
In the case of weak electric field, the contribution to Ptot

ξ comes from the wavenumber

around the perfect tunneling point k = eE/(|Ω|) +
√
m(ξΩ/4−m)/v. By expanding

Pξ(k) around this wave number, i.e., k = eE/|Ω|+
√
m(ξΩ/4−m)/v + k′, we obtain

Pξ(k) ' exp
[
− ξ 4π

veEΩm

(
vk′
√
m(ξΩ− 4m) + v2k′

2
)2]

' exp
[
− ξ 4πv

eEΩ
(ξΩ− 4m)k′

2
]
. (34)

Thus, by noting eE/|Ω| �
√
m(ξΩ/4−m)/v, the total production rate is given as

Ptot
ξ ' a2

8πv

√
ξΩm

√
eE

v
. (35)

Thus the e-h production rate per unit of time and volume is given as

Γξ =
|Ω|

(4π)2v

√
ξΩm

√
eE

v
. (36)

16



SciPost Physics Submission

B Detailed calculations for the 3D Dirac fermions

In the same way as the 2D case, the tunneling probability for twisted Schwinger effect in
3D Dirac fermions is given as

Pξ(q̃) = exp

[
− π

(
M − ξsgn(Ω)k̃z

4M

)2

Ã

]
, (37)

with

M =

√
(|k̃| − Ã)2 + k̃2

z .

Then the e-h production rate per unit time and volume for each chirality is given as

Γ3D
ξ =

|Ω|
2πa3

( a
2π

)3
∫
dqPξ(q) =

|Ω|4

(2π)4v3

∫
dq̃Pξ(q̃). (38)

We can calculate the total and chiral e-h production rates as Γ3D
tot = Γ3D

+ + Γ3D
− and

Γ3D
5 = Γ3D

+ − Γ3D
− .

The main contribution to the production rates and currents come from the wavenum-
bers around the perfect tunneling points

|k̃| = Ã±
√
k̃z(ξsgn(Ω)/4− k̃z) (ξsgn(Ω)/8− 1/8 ≤ k̃z ≤ ξsgn(Ω)/8 + 1/8). (39)

Equation (39) is rewritten as

(|k̃| − Ã)2 + (k̃z − ξsgn(Ω)/8)2 = (1/8)2,

which forms a circle with the center (Ã, ξsgn(Ω)/8) and the radius 1/8 or a part of it in
the |k|-kz space.

B.1 Weak field regime

In the weak field regime Ã � 1/8, the contribution mainly comes from the positive sign

branch of Eq. (39) |k̃| = Ã +
√
k̃z(ξsgn(Ω)/4− k̃z). The tunneling probability can be

approximated as

Pξ(q̃) ' exp
[
− ξsgn(Ω)

4π

Ã
(ξsgn(Ω)− 4k̃z)k̃

′2
]
, (40)

where k̃′ = |k̃| − Ã −
√
k̃z(ξsgn(Ω)/4− k̃z). Then we can calculate the production rate

Eq. (38) as

Γ3D
ξ

/( |Ω|4
v3

)
' 1

(2π)4

∫
dq̃ exp

[
− ξsgn(Ω)

4π

Ã
(ξsgn(Ω)− 4k̃z)k̃

′2
]

=
1

2(2π)3

∫ ξsgn(Ω)/8+1/8

ξsgn(Ω)/8−1/8
dk̃z

(
Ã+

√
k̃z(ξsgn(Ω)/4− k̃z)

)√ Ã

ξsgn(Ω)(ξsgn(Ω)− 4k̃z)

' 1

4(2π)3

∫ ξsgn(Ω)/8+1/8

ξsgn(Ω)/8−1/8
dk̃z

√
ξsgn(Ω)Ãk̃z =

A1/2

6(4π)3
. (41)
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Therefore

Γ3D
tot

/( |Ω|4
v3

)
=

A1/2

3(4π)3
, Γ3D

5

/( |Ω|4
v3

)
= 0. (42)

For the calculation of currents, noting that

|k̃|2 + k̃2
z '

(
Ã+

√
k̃z(ξsgn(Ω)/4− k̃z)

)2
+ k̃2

z ' ξsgn(Ω)k̃z/4,

we can derive

Jzξ

/(−eτ |Ω|4
v2

)
' 4

(2π)4

∫
dq̃ξsgn(Ω)

√
ξsgn(Ω)k̃zPξ(q̃)

' 1

(2π)3

∫ ξsgn(Ω)/8+1/8

ξsgn(Ω)/8−1/8
dk̃zÃ

1/2k̃z = ξsgn(Ω)
Ã1/2

4(4π)3
(43)

Therefore

Jz
/(−eτ |Ω|4

v2

)
= 0, Jz5

/(−eτ |Ω|4
v2

)
= sgn(Ω)

Ã1/2

2(4π)3
. (44)

B.2 Strong field regime

In the strong field regime Ã� 1/8, the contribution mainly comes from both sign branches
of Eq. (39). The tunneling probability can be approximated as

Pξ(q̃) ' exp
[
− π

Ã

{
k̃′2 +

(
k̃z −

ξsgn(Ω)

4

)2}]
, (45)

where k̃′ = |k̃| − Ã. Then we can calculate the production rate Eq. (38) as

Γ3D
ξ

/( |Ω|4
v3

)
' 1

(2π)4

∫
dq̃ exp

[
− π

Ã

{
k̃′2 +

(
k̃z −

ξsgn(Ω)

4

)2}]
=
Ã3/2

(2π)3

∫ ∞
−∞

dk̃z exp
[
− π

Ã

(
k̃z −

ξsgn(Ω)

4

)2]
=

A2

(2π)3
. (46)

Therefore

Γ3D
tot

/( |Ω|4
v3

)
=

2A2

(2π)3
, Γ3D

5

/( |Ω|4
v3

)
= 0. (47)

For the calculation of currents, noting that |k̃|2 + k̃2
z ' Ã2, we can derive

Jzξ

/(−eτ |Ω|4
v2

)
' 2

(2π)4Ã

∫
dq̃k̃zPξ(q̃)

'2Ã1/2

(2π)3

∫ ∞
−∞

dk̃zk̃z exp
[
− π

Ã

(
k̃z −

ξsgn(Ω)

4

)2]
= ξsgn(Ω)

Ã

2(2π)3
(48)

Therefore

Jz
/(−eτ |Ω|4

v2

)
= 0, Jz5

/(−eτ |Ω|4
v2

)
= sgn(Ω)

Ã

(2π)3
. (49)
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