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Abstract

We propose a Leibniz algebra, to be called DD, which is a generalization of the
Drinfel’d double. We find that there is a one-to-one correspondence between a DD and
a Jacobi—Lie bialgebra, extending the known correspondence between a Lie bialgebra and
a Drinfel’d double. We then construct generalized frame fields E4™ € O(D, D) x R
satisfying the algebra .,E?EA Ep = —X5°¢ FE¢ , where X 45 are the structure constants
of the DD* and £ is the generalized Lie derivative in double field theory. Using the
generalized frame fields, we propose the Jacobi—Lie T-plurality and show that it is a
symmetry of double field theory. We present several examples of the Jacobi—Lie T-plurality
with or without Ramond—Ramond fields and the spectator fields.
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1 Introduction

Recently the Poisson-Lie T-duality [1,2] or T-plurality [3] and their U-duality extensions [4-11]
have been studied and developed by using the duality-covariant formulations, such as double
field theory (DFT) [12-15] and its U-duality extensions. The Poisson-Lie T-duality is based
on a Lie algebra called the Drinfel’d double while the U-duality variant is based on the
exceptional Drinfel’d algebra (EDA) [4H7,/9L|16], which is an extension of the Drinfel’d double.
Unlike the Drinfel’d double, the structure constants X 45¢ of EDA do not necessarily have
the antisymmetry, X45¢ # —Xpa®, and it is a Leibniz algebra rather than a Lie algebra.
In this paper, we study a minimal extension of the Drinfel’d double by allowing the structure
constants to admit the symmetric part X4 B)O # 0. Using this new Leibniz algebra, we study

an extension of the Poisson—Lie T-duality, which we call the Jacobi-Lie T—pluralityﬂ

The proposed Leibniz algebra has the form

TyoTy= fu"T.,  T"oT"=fT°,
TooT’ = (fu*+2052°— 265 Z°) T, — fo T+ 22, T, (1.1)
T oTy=—f,"Te+ 22Ty + (fo" + 264 Ze — 262 2Z,) T,

where a = 1,..., D, and this reduces to the Lie algebra of the Drinfel’d double if Z, = Z¢ = 0.

This Leibniz algebra admits a symmetric bilinear form
(T,,T") =0b,  (T,,Ty) = (T T" =0, (1.2)

and two subalgebras g and g (generated by {7,} and {T°}, respectively) are maximally
isotropic with respect to this bilinear form. Unlike the case of the Drinfel’d double, the

“adjoint-invariance” is relaxed as follows by allowing for a scale transformation:
5A<TB, Tc> = <TA oTp, Tc> + <TB, Ty o Tc> =274 (TB, Tc> R (1.3)

where Ty = (T, T%) (A =1,...,2D) and Z4 = (Z,, Z*). Since this Leibniz algebra is an
extension of the Drinfel’d double by admitting the scale symmetry R, we call this extended
Drinfel’d algebra DD . It turns out that this R symmetry provides a scale factor similar to

the trombone symmetry in supergravity [19].

In this paper, we show that the DD provides an alternative way to define the Jacobi-Lie
algebra, and explain how to construct geometric objects such as the Jacobi-Lie structures

from a given DDT. We also show that we can systematically construct the generalized frame

The Jacobi-Lie T-duality studied in |17,|18] is very similar to our proposal, and this paper is strongly
inspired by these papers. However, our identification of the supergravity fields is different from the one given
in [17,/18]. The details are explained in sections [3| and



fields E4™ satisfying the frame algebra
£pEp=—Xap® Ec, (1.4)

where £ denotes the generalized Lie derivative in DFT and X 4% are the structure constants
of the DD*. Similar to the recent studies on the Poisson-Lie T-duality/T-plurality in the
context of DFT [20-22], exploiting the relation , we show that the Jacobi—Lie T-plurality
is a symmetry of type II DFT.

To exhibit the O(D, D) covariance of the DFT equations of motion, we are forced to turn
off the structure constants Z%. The standard Poisson—Lie T-duality is an exchange of the
generators T, <> T% and this results in Z, <> Z% in our setup. Then if we require Z% = 0
both in the original and the dual frame, we are forced to assume Z, = Z% = 0 and the DD*
reduces to the standard Drinfel’d double. Accordingly, in this paper, instead of considering
the T-duality T, <> T, we consider O(D, D) transformations which do not produce Z* while
keeping Z, non-zero. This is the reason why we call this symmetry the Jacobi—Lie T-plurality,

rather than the Jacobi-Lie T-duality.

At the level of the supergravity (or more precisely, DFT), the proposed Jacobi-Lie T-
duality is indeed a symmetry of the equations of motion even if the Ramond-Ramond (R-R)
fields or spectator fields are present. However, at the level of the string sigma model, due to
the presence of the scale factor, we find difficulty in showing the covariance of the equations of
motion under the Jacobi-Lie T-plurality. We discuss this issue from several approaches and

also discuss the relation to the Jacobi-Lie T-duality proposed in [17].

This paper is organized as follows. In section after introducing the Leibniz algebra DD,
we explain how to construct the Jacobi-Lie structures and the generalized frame fields from
the DD*. Here, Z% = 0 is not assumed and we find that the generalized frame fields E4™
have a dependence on the dual coordinates Z,, of the doubled space. We also consider several
examples of DD and explicitly construct the Jacobi-Lie structures and the generalized frame
fields E4™ . A relation between the DDT and embedding tensors in gauged supergravities
is also briefly discussed. In section [3] we provide a definition of the Jacobi-Lie symmetric
backgrounds and show that the equations of motion of DFT have a manifest symmetry under
the Jacobi—Lie T-plurality. For convenience, we provide several concrete examples of the
Jacobi-Lie T-plurality with and without the R—R fields or the spectator fields. In section
[ we discuss the issue of the Jacobi-Lie T-plurality in the string sigma model. Section [f] is

devoted to conclusion and discussion.



2 Jacobi—Lie structures

In this section, we propose a Leibniz algebra DDT and construct several quantities, such as the
Jacobi—Lie structure, which play an important role in the Jacobi—Lie T-plurality. In section
2.3 we clarify the relation between the DDT and the Jacobi-Lie bialgebra studied in [23-26].
Several examples are given in section In section [2.5] we comment on a relation between

DD* and embedding tensors in half-maximal 7D gauged supergravity.

2.1 Algebra

A (classical) Drinfel’d double can be defined as a 2D-dimensional Lie algebra 9 which admits
an adjoint-invariant metric (-, -) and allows a decomposition @ = g@ g, where g and g form Lie
subalgebras that are maximally isotropic with respect to (-, -). We choose the basis T, € g
and T® € g such that the metric becomes (T, T?) = &%,

[To, Ty] = fu° T and [T%, T?) = f.**T¢. Then, from the adjoint invariance

and denote the subalgebras as

([Ta, TB], Tc) + (I, [Ta, Tc]) =0, (2.1)
we can determine the mixed-commutator as
[T, T") = £ To — fu T°. (2.2)
The adjoint-invariant metric can be expressed as

0 &

(Ta, Tp) =nap,  nap= ‘1, (2.3)
50

and we raise or lower the indices A, B by using n4p and its inverse 5 .
Now, let us introduce the Leibniz algebra DD,
ThoTp = Xap“Te . (2.4)

We keep assuming that g and g are maximally-isotropic Lie subalgebras but relax the adjoint-

invariance as in Eq. (1.3). We then find that the structure constants should have the form
Xap® = Fap® + Za 0% — Z 6§ +nap 2°, (2.5)

where Fap® = Fapp nDC, Fapc = Flapcy and Fapc has the only non-vanishing compo-
nents F,;¢ and F,*°. Defining f,,¢ and f.% through T, o T = fup° T, and T o T = f.20 T

we can parameterize Fapc as

Fue=0, Fub=ful—Za05+ 2,05, F°=fb—622¢4+26¢, F®™ =0, (2.6)



where Z4 = (Z,, Z*). By substituting these into Eq. (2.4), we obtain the algebra (L.1J).
The closure conditions, or the Leibniz identities,
Ty o (TB o Tc) = (TA o TB) ol +Tgo (TA o Tc) , (27)

require the following identities for the structure constants:

f[abe fc]ed =0, fe[ab fdde =0, (28)
4 fia® fige ™ = S £ A S0 Ty + A bl 20+ 8 fal oy 20— 16 2,65 2 =0, (2.9)

farZ. =0, [ Ze = fab Z¢, Z¢ % =0, 77, =0. (2.10)

2.2 Generalized frame fields

Here we construct the generalized frame fields E4™ . We introduce a group element g = " 7o

and define the left- /right-invariant 1-forms as

(=12 dz™T, =g 'dg, r=7r2de™ T, =dgg". (2.11)
Their inverse matrices are denoted as v™ and e (v (5, = 5% = e™rb ). We then consider

the adjoint-like action as
goTa=e" 10Ty =Ta+ 2" TyoTa+ L’ Tyo (¢ To o Ta) + -+, (2.12)
and define
g Ty =MuB(g)Ts. (2.13)

It turns out that this matrix M4? can be parameterized as

: (2.14)

b

where 7% is an antisymmetric field: 7% = —7

Similar to the case of the Drinfel’d double [27] (see also [9] for a general discussion), we

find that a,’, 7%, and A satisfy the algebraic identities

far® = ag® ar® (™) faet (2.15)
filabpdd g la qbld] pee g plabrdd 7o 4 g plab g _ (2.16)
fae=e"2 a2 (™)L (1) ¢ fa + 2 fud® 7+ 660wl 7, (2.17)
a’ Zy =2y, Z°+7"Zy =0 ) 20 (& MAP Zp=Z4), (2.18)



and the differential identities

DyA=Z,,  Duay’ = —fu’as°, (2.19)
Do’ = ¢+ 2 4l nldldd — 2 7, nbe — 4 71059 | (2.20)
where D, = e}’ O, . Combining these identities, we also find
Ly, A =2, £o,05° = —ap? fad® (2.21)
Logm™ = (£ 42085 2° — 265 Z°) vt ol + 2 Z, T (2.22)
Here we have defined
T = @28 pabem et (2.23)
which turns out to be a Jacobi—Lie structure.
Now we define the generalized frame fields as
EM =By, oy [ 0) (2.24)
0 &
and obtain
E M — iz‘: ~ 722 e (2.25)
—m%eyt ey
If Z% =0, these generalized frame fields satisfy the relation
£p,EpM = —X45° EcM, (2.26)
by means of the generalized Lie derivative in DF'T,
LyWM =vNoywM — (a5 VM — oMy ) wh (2.27)
In the presence of Z%, we need to modify the generalized frame fields as
EM=| 0 (2.28)
—mel e 285 re
If this ¢ satisfies
O =0, OM6=-2Z"=-22%", (2.29)

we find that the new generalized frame fields satisfy the desired relation (2.26]).

Since the modified generalized frame fields have the dependence on the dual coordinates

Zm , one may be concerned about the section condition (i.e., a consistency condition in DFT).



However, we can easily show that the section condition is not broken. As we discuss later, the
supergravity fields are constructed from E 4 which is composed of the fields {A, &, e, 7"} .
Using £7 = Z* £,,,, the differential identities, and the Leibniz identities, we find
£gN=2Z,=0, £zem=2£,e" =0, (230)
2.30
Lgm™ = Z%(f2+ 260 2 — 265 Z0) vt ol + 224 Z, 7™ = 0.

Therefore, Z is a Killing vector field and we can choose the coordinate system such that Z = 9,
is realized. Then all of the fields ¢ are independent of the coordinate z. In this coordinate

system, we can explicitly find ¢ = Z, and then the section condition reduces to
0=nMN0y60nd =0.0. (2.31)

This is indeed satisfied because ¢ is independent of z.

Let us also show several properties of the bi-vector field 7 = %Wm” Om A Op, . By using the

differential and algebraic identities, we can show
[m, Mg =2E A, [E, m]ls =0, (2.32)

where E = —2 Z% ¢, and we have defined the Schouten—Nijenhuis bracket for a p-vector v and

a g-vector w as

miMptg-1 _ (ptg—1)! plmi-mp_1 1) wmp"'mp+q—1]
p

b, vls — Dl (2.33)
n Wwp[mlmmqfl apvm‘f'mpﬂ*l] ’
or more explicitly,
[x, 7]g = =™ 8q7rnp} Om N\ Op N\ Oy, [E, 7]s = % LEm™ O N O . (2.34)
The first property is equivalent to the absence of the non-geometric R-flux
X = 3qdle ppbd 4 3 £l gbldl pe _ g plabpdd oA — 3 gyl 1] rd "G =0, (2.35)
and the second one follows from
Le,mM = 22 (f,2¢ — 472 5d) emer. (2.36)

mn

These two properties show that the bi-vector field 7™" is a Jacobi structure and the vector

field E may be called the Reeb vector field. Combining this with the property (2.22)), we can

conclude that the bi-vector field 7 constructed from a DD is always a Jacobi-Lie structure.

As it has been studied in [23}24,26], the Leibniz identity (2.9) can be regarded as a cocycle

condition, and it is automatically satisfied if we consider the coboundary ansatz

fabe=2rlldl gl 27 pbe 44 71059 (2.37)



where 2

0 and fu¢ Z. = 0) are equivalent tﬂ

is a skew-symmetric constant matrix. The other Leibniz identities (under Jiav® fc}ed =

r Zy = 7%, Z¢ £l =0, CYBE®* =3 fleptldpde _ g zlapbd — . (2.38)
For this type of algebra, we can find the solution of the differential equation (2.22)) as
7 = (VT — 2B el ell) (2.39)

a

We note that this type of Jacobi-Lie structure (associated with the coboundary-type algebras)
has been studied in [24] (see also [17}26]).

2.3 Jacobi-Lie bialgebra

Let us explain the relation between DD and the Jacobi-Lie bialgebra studied in [23-26]. We
begin with a Lie algebra g with commutation relation [Ty, Tp] = fu“T.. We introduce the
dual space g* spanned by {T?} and suppose that they form a Lie algebra [T¢, T%] = f,*T°.

We introduce the differentials d and d, which acts on g* and g as
AT = -3 2T AT, AT, = -3 fTy AT, (2.40)
and 1-cocycles Xy € g and ¢g € g* satisfying d. Xy = 0 and d¢g = 0. We then define
dix, = ds + XoA, (2.41)
and a bracket [, |4, for € APg and y € Ag as
2, Ylgy =[x, yl + (1P (p =D w Argey — (g — 1) 1gy Ay, (2.42)

where [-, -] is the algebraic Schouten bracket and ¢4, denotes the contraction. Using these, we

can define a Jacobi-Lie bialgebra as a pair ((g, ¢0), (g%, Xo)) which satisfies

d*Xo [l‘, y] = [xv d*Xoy]d)o - [?/7 d*Xox]Qﬁo »

(2.43)
<¢07 X0> =0, L¢0(d*$) + [XOv x] =0,
for any elements x,y € g. If we expand Xy and ¢¢ as
X[) = aa Ta ; ¢0 = Ba Ta ; (244)
the 1-cocycle conditions d, Xy = 0 and d¢g = 0 are equivalent to
a fabc =0, Ba fbca =0, (2'45)

2The first equation is implied by (facb — 27, 6’;) (Zc —red Zd) = 0. The last equation can be relaxed as
fde[a CYBE!¢l’d = o if Zo, = 0. Indeed, in the case of six-dimensional Jacobi—Lie bialgebras [26], an algebra
satisfying CYBE® # 0 (i.e., a quasitriangular coboundary Jacobi-Lie bialgebra) is realized only when Z, = 0.



and the conditions (2.43) can be expressed as

4 fia fige™ = S £ 42 f1a® By + 2 a0 + 4 £ 0 0 — 48, 6 0 = 0,

(2.46)
aaﬁa:07 acfcab_ﬁcfad)zo‘

They are exactly the same as the Leibniz identities of the DD¥ under the identification
ot =27, Bo=22,. (2.47)

This shows that there is a one-to-one correspondence between a Leibniz algebra DD and a

Jacobi-Lie bialgebra. In [25], by using a generalized Courant bracket, commutation relations

To, Ty) = fu°Te, [T T = f00T°,

(2.48)
[T, T%) = (fa" + 3 a8 — a?65) T + (foa* — 5 B0 + Ba 02) T,

are introduced, but in general, this does satisfy the Jacobi identities and is not a Lie algebra.

Rather, this can be regarded as the antisymmetric part of the Leibniz algebra DD,

[TA, TB] = (TA e} TB - TB o) TA) . (249)

1
2

As we discussed in section a DD allows us to systematically construct the Jacobi-
Lie structure 7™" for a general Jacobi-Lie bialgebra. In [17], a similar construction has
been attempted by using the commutation relations . However, due to the absence of
the symmetric part X AB)C of the structure constants, it was not successful, and only the
coboundary-type algebras have been studied, where 7" has the simple expression . A
DD™ also allows us to obtain the scale factor A from a straightforward computation of the
matrix M4P , and these are the advantage of our approach based on the Leibniz algebra. In
the next subsection, as a demonstration, we explicitly compute the Jacobi—Lie structures for

several concrete examples.

2.4 Examples of Jacobi—Lie structures

The low-dimensional Jacobi-Lie groups have been classified in [25], and in particular, classifica-
tions of the coboundary-type Jacobi-Lie groups have been given in [26]. For the coboundary-
type algebras, there is a general formula (2.39) for the Jacobi-Lie structures, and here we

consider two examples of Leibniz algebras that are not of the coboundary type.

(I) (IV, —eX1), (IV.i, —eaX3))
Let us consider ((IV, —eX1), (IV.i, —eaX3)) (o > 0) in Table 6 of [25], which corresponds to

ht=—-f’=fs’=-1, AP=pP=a, H¥=1, Z2°=-9, Z1=-5. (250



The Leibniz identities require € = 1 or ¢ = 2. While € = 1 gives a coboundary algebra, here

we consider the non-coboundary case € = 2.
Using g = e® 11 e¥ 12 ¢* 15 the left- /right-invariant vectors are found as

V=0, +y0+(2—y)0., v2=20y, v3=0,,

(2.51)
e1 =0, ex=¢e"(0y—20,), e3=e"0,,
and by computing the matrix M4? , we find
T=[a(e®=1)0, + (x — ay)dy| N0, e =% (2.52)
From 0™¢ = —2 Z*v" we can easily find
c=2az, (2.53)

and then we find that the generalized frame fields enjoy the algebra £g Ep=—-X 8% Ec .

(IT) ((IIL, —2 X1, (IILii, — (X2 + X3)))
Another example is ((IIT, =2 X1), (ITLii, —(Xo + X3))) of [25], which corresponds to

fit=f12) = i = At =1, AP=AYB=1, Zz:ZB:—%a Zy=-1. (2.54)

Using g = e 1 e¥72 ¢*T5 | the left- /right-invariant vectors are found as

vy =0, + (y+2) (0, +0,), vy = Oy, v3 =0, ,
Y Y (2.55)
e1=0,, ex=¢e"(coshzdy+sinhz0d,), es=e"(sinhazd,+ coshz0,).
From the matrix M4? and 0™ = —2 Z¢ vy, we find
T=(2—y)0y A0, e 2 =2 G=7+z2, (2.56)

and then the generalized frame fields satisfy the algebra £E Ep=—-Xy sY Ec.

In this way, for a given Leibniz algebra, we can easily compute the Jacobi-Lie structure

and the generalized frame fields.

2.5 Embedding tensor in half-maximal 7D gauged supergravity

As a side remark, we here clarify the relation between six-dimensional DD*s and the embed-
ding tensors in half-maximal 7D gauged supergravity. In [28], the embedding tensor in half-
maximal 7D gauged supergravity has been classified, where the duality group is O(3,3) x R .

In our convention, their embedding tensor can be expressed as
Xap® = Fap® + 240G — Zp 6§ +nap 2°€,
Fabc - Habca Fabc = fabc_ Zaélf+Zb527 (257)
Fabc _ fabc _ 52 Z°¢ + Zb 52:“ Fabc — Rabc7

10



where the non-vanishing components are

Hizs=Qu, [®=Qn, £%=-0Qs, f°=Qu, Zi=-%,

~ ~ ~ ~ (2.58)
R =0, fu'=0Q%, fis?=-Q%, fi’=Q", fi’=/fis’=-&.

The possible values of @, Q¥, and & have been classified in Table 2 of [28].

Due to the presence of Fy. and F¢ | this is not exactly the algebra of a DD, but by
performing an O(3,3) redefinition of generators, we can obtain a DD*. As an example, let

us take orbit 10 of [28], where the gauge group is CSO(1,1,2), and Q;; and Q% are

cos sin av

Now if we perform a redefinition of the generators T4 — C 4B Ty with

—wea 0 0 0 0 0
1 1
0 NG 0 0 0
0 0 0 0 £ L
CAB — v2ooV2 , (2.60)
0 0 0 —cosa O 0
1 1
0 0 0 0 7 v
1 1
0 7 7 0 0 0
we find that the structure constants become
3 2 2 3 §o—sina )
fi?=-1, fis*=-1, fio"=fiz’="——", Z1= . (2.61)
cos o Ccos o

fo—sina
cos &

bialgebra ((VIp,bX3), (I,0)) or ((III,bX1),(1,0)) given in Table 7 of [25], respectively. By

choosing another matrix C4? | we will also find another Jacobi-Lie bialgebra classified in [25].

For example, if § = sina or

= —1 is realized, this is equivalent to a Jacobi-Lie

In this way, an embedding tensor classified in [28] can be mapped to several Jacobi-Lie
bialgebras or DD*s. Then, similar to the previous section, we can systematically construct
the generalized frame fields (or twist matrix) by using the Jacobi-Lie structure. Despite some
of the embedding tensor configurations may not be mapped to any DD, it may be interesting
to identify which gaugings of [28] admit a description as Jacobi-Lie bialgebras. Similarly, this
analysis can be carried out for any (half-)maximal d-dimensional supergravities, because the
T-duality-covariant flux F4pc is always contained in the embedding tensor and the role of
Z4 can be played by the trombone gauging [29-31] or the dilaton flux. In particular, the
half-maximal d = 6,5, 4 supergravities explicitly contain an O(10 — d, 10 — d) vector &4 (or
&+4) which potentially plays the role of Z4. There, the Leibniz identities Egs. f

appear as some components of the quadratic constraints studied in [28,32}33].

11



3 Jacobi—Lie T-duality

In [20H22], the Poisson—Lie T-duality/T-plurality has been proven to be a symmetry of DFT.
As a natural extension, non-Abelian U-duality associated with EDA has been discussed in
[4-10,|16], and several examples of the non-Abelian U-duality have been found in [11]. Here,
restricting ourselves to the case Z% = 0, we show that the non-Abelian duality based on a
DD, i.e., the Jacobi-Lie T-plurality, is a symmetry of the DFT equations of motion. Due to
our assumption Z% = 0, the bi-vector field 7" is a Poisson structure rather than the Jacobi
structure, but due to the existence of the scale factor A, this is not a Poisson—Lie structure

and we keep calling 7™" the Jacobi-Lie structure.

In type II DFT, the bosonic fields in the NS-NS sector are the generalized metric and the
DFT dilaton

_ B a"MB.  B. gl
Hun = Fmn mp §77 Bqn - Zmp g , e 20 = |det Grmn| e 2%, (3.1)

and the R-R fields can be described as an O(D, D) spinor |F') . By making a certain ansatz for
these bosonic fields, we show the covariance of the equations of motion under the Jacobi-Lie

T—plurality, which is an O(D, D) rotation discussed below.

Let us begin with a simple case where the R-R fields and the spectator fields y* (which
do not transform under the O(D, D) rotation) are not present. We consider an ansatz for the

NS-NS sector fields,
Hun(x) = En(2) EnB(z) Hag, e~ 24®) — ¢720(®) ¢=A[)|det 12 (2)] (3.2)

where Hap is constant, ¢(x) is a certain function, and we have defined
EaM =A@ M () = A “ € O(D, D). (3.3)

When the target space is of this form, this background is called Jacobi—Lie symmetric.

If we parameterize the constant matrix A AB as

- _(aA) b
fap=| Jo W0 (3.4)
Ba)% (G —BgB)"

by comparing the parameterization (3.1) with (3.2)), the metric and the B-field can be ex-

pressed as gmn + Bmn = Emn where &, is the inverse matrix of

gmn — e2A (éab + 7_(_ab) etrln egL — e2A gab 621 62” + ﬂ_mn’ éab = gab + Bab ) (35)

12



The can be also expressed as
Gmn + Bun = €22 Eyriyry . (Ewp) = (E0 477 (3.6)
The standard dilaton ® can be found as
2% = /|det gap| e 27 |det(£% + 1) det(al)] . (3.7)

The structure constants Z, , which are not present in the Poisson—Lie T-duality, produce the

overall factor e 22 both in the metric and the B-field. We find that &,,,, satisfies
Loalmn +2 Zo Emn = —(fa" + 2068 Z° = 205 Z°) Eppp v} 02 Eq - (3.8)
Here, let us comment on the difference between our proposal and the one studied in [17].
In [17], the metric and the B-field are identified as
Imn + Bmn = Emn , Epn = 2 Epp = Eap 12 12 (3.9)
for which we have
LB = — 2 (fP° + 2060 2° — 265 Z°) Epp v} v By . (3.10)

The difference is only in the overall factor. Below, we show the covariance of the equations
of motion under the Jacobi-Lie T-plurality by adopting the former choice gmn + Bmn = Emn
and using the dilaton (3.7)).

The generalized fluxes associated with £4M are defined as

Fapc =3Wupe),  Fa=W ap+2Dad, (3.11)
Wapc = —Daép™ Enc Da=Ea" 0nr.
Using the algebraic and the differential identities, we find
A M Om In|det 2 | — O A
Fapc =€~ Fapo, Fa=EAs" Fy, Fy=20pd+ ,  (3.12)

— [ v
where Fapc is the one given in (2.6). If f,°* does not vanish, we make a replacement |21]
omd — Omd+ Xnr, X = (0,1 o0, (3.13)

which corresponds to introducing the dual coordinate dependence into the dilaton [34,35]

and the background becomes a solution of the generalized supergravity equations of motion
[35737|E| Then, by using (3.2), the single-index flux becomes

Fa=eFa,  Fa=2EM0yp=2(Dup, - Dyp), (3.14)

3We do not consider such examples in this paper, but in general, choosing the coordinates such that the

Killing vector I'™ = % £ ™ becomes I = 9, , we add % to the DFT dilaton d given in Eq. (3.2).
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and we suppose that Fy = F UM Fy is constant.
In general, the equations of motion of DFT are given by
R=0, ¢*¥=o0. (3.15)
Here, R and GAB, under the section condition, can be expressed as

R =HP (2DaFp — FaFp) + 15 H*P (3075 0" = HPPHO) Fapo Fopr,  (3.16)
gAB = 27:[D[A DB}fD . %’,LA[DE (T]AF nBG . ?:[AF r’leG) (JT"D o DD) fEFG
—Hp (Fp — Dp) FAPE L (nCF pPF _ HOEPPTY YA FopB Frpe.  (3.17)
In our setup, we find DpFapc = 22 Zp Fapc and DpF4 = 22 7 F4, and we obtain
R = e2A R, gAB — eQA GAB ’ (318)

where R and GAZ are constants of the form

R=H"B (224 Fp — FaFp) + &5 HAP 30PE 0" — HBEHOT) Fape Fppr,  (3.19)
GA = 9 P PP By — LFPE (A 36 _ AR 59 (Fp — Zp) Ferg

. ,;:[E[A (FD _ ZD) FB]DE + % (nCE ,,7DF - 7:[CE /HDF) 7:[G[A FCDB] Frre. (320)

Then the equations of motion, namely R = 0 and GAZ = 0, are manifestly covariant under

the O(D, D) rotation

Fapc — CaAP Cp" Co¥ Fppr,  Za— CaA® Zp, (3.21)
7:[AB—>CACCBD7:[CD, Fy— C4P Fg.
The transformations in the first line are equivalent to a redefinition of generators
Ty — CaP T, (3.22)

while those in the second line determine the transformation rules of H .5 and . This O(D, D)
symmetry is the Jacobi-Lie T-plurality and is a manifest symmetry of DFT. Since we are

assuming Z¢ = 0, the constant O(D, D) matrix C4” needs to satisfy

Cc®Z,=0. (3.23)

For later convenience, let us also find the transformation rule of the generalized Ricci
tensor Syrn . We define the double vielbein V4 ? = (V, B, VzP) € O(D, D) and its inverse V45
through

Hap = Var VB Hus, nap = Vat VB s, Va“ VP =68, (3.24)
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where

> Tlab 0 Nab 0
(H»AB) = ) (U.AB) = ) (325)
0 nap 0 —nga

and ng, = 155 = diag(—1,1,...,1). We suppose that the double vielbein is transformed as
VP — 09 VB, (3.26)
under the Jacobi-Lie T-duality, and then the transformation rule for
gAB = VAA VBB gAB ’ (3.27)
is found as
e 20 GIAB _ (20 GAB. (3.28)

We find that the only non-vanishing components of GA8 are 9“5, and using these, we can

express the generalized Ricci tensor as
Sun = (EvaEng +EnaEnp) VA VP Ge. (3.29)
Then, using , we find the transformation rule of the generalized Ricci tensor Sysn as
e g M NG =22 0,0 P EMERN Sy (3.30)

Namely, under the Jacobi-Lie T-plurality, or a local O(D, D) rotation of the generalized

metric,
Hun(x) = Hyn(@) = [hH@) B, ha™ = E7 ) CaP €N () (3.31)
the generalized Ricci tensor transforms as
Sun(@) = Sy (@) =2 E A [nS(x)h'],, - (3.32)

Unlike the case of the Poisson—Lie T-duality, the generalized Ricci tensor is transformed by a
local O(D, D) x R* rotation. As we discuss below, this additional RT transformation makes
the transformation rule of the R-R fields slightly non-trivial. Before considering the R-R

fields, let us provide several examples.

3.1 An example without Ramond—Ramond flux

Let us consider a eight-dimensional Leibniz algebra with

fie?=-1, fil=1, fs¥=-1, Z,=-2, (3.33)
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which is a direct sum of the six-dimensional Leibniz algebra ((IV, —4X"'), (I, 0)) of [25] and a

two-dimensional Abelian algebra. Using a parameterization g = e* 11 e¥ 72 ¢T3 e T4 we find

V=0, +y0y+(2—y)0., va=0y, v3=0,, vs=20y,

(3.34)
e1 =0, ex=¢e"(0y—20,), e3=¢€"0,, e1=0y.
Computing the matrix M4? , we find
=0, A=-2z. (3.35)
Then, using the constant matrices
0010
=" "0 e, (3.36)
1 0 00
00 01
we obtain a 4D metric
ds? = 2e% dx (dz 4+ 2 dy) + e** dy? + ™ dw?. (3.37)
In order to find a solution of DF'T, we choose the function ¢ as
p=-3%x, (3.38)
which yields
Fy=(-%,0,0,0,0,0,0,0). (3.39)
Then the DFT dilaton and the standard dilaton become
e 2d = o5 , e 2 — o % (3.40)

We can check that this dilaton and the metric (3.37) satisfy the equations of motion. In the

following, we consider the Jacobi—Lie T-pluralities of this solution.

3.1.1 Generalized Yang—Baxter deformation

Let us perform an O(4, 4) rotation Ty — C4” T with

1 0 000000
0 1 0000 O0O0
0 0 100000
B 0 0 010000
CA_00001000’ (3:41)
0 0 ¢ 00100
0 —c 000010
0 0 00000 1
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which corresponds to a generalized Yang—Baxter deformation. After this rotation, the struc-

ture constants becomes
f122 = —1, f123 = 1, f133 = —1, f123 = 20, Zl = —2, (342)

and this corresponds ((IV, —4X1), (IL, 0)) or ((IV.iii,4X), (IL,0)) of [25] (accompanied by the
two-dimensional Abelian algebra), for ¢ =1/2 or ¢ = —1/2, respectivelyﬁ

Again we employ the same parametrization of the group element and the left-/right-

invariant vector fields (3.34]). Here, we find the Jacobi-Lie structure as
T=c(l—e )9, N0D,, (3.43)

and ¢ is not changed because F4 is not deformed under this O(4,4) rotation: Fa = C4® Fp.

Then, we find the deformed supergravity fields as

ds? = 2% dx (dz 4 2 dy) + e** dy? + &' dw? + ** 2 d2?,

" (3.44)
By = ce®dz A dy, e 2P =¢" 3 .
This is again a supergravity solution for an arbitrary value of c.
3.1.2 Another Jacobi—Lie T-plurality
Here we consider another O(4, 4) transformation
10 0 00O O O O
00 -1 00 %2 0 O
00 1 00 L 0 o0
o0 o 10 0 0 O
C4B = (3.45)
oo o0 o1 0 0 O
01 0 00 0 -1 o0
01 0 000 5 O
o0 0 0 0 O 0 1
We then obtain the algebra with
fit=-2, filt=-1, fis?=-1, fiz*=-2, AP =1, Z1=-2. (3.46)

The six-dimensional part of this algebra is known as ((VIy, —4 X1), (I1,0)) . Using the param-

x Ty eyTg ezT3 e

eterization, g = e wTi we obtain

v1:8$+(2y+z)(8y+8z), vQ:(‘)y, v3=0,, Ug=e4 =0y,

’ (3.47)
e1 =0z, e2=% [(ezx +1) 9y + (e** 1) 2., es=% [(eQI ~1) 9y + (e** +1) d.] .

4The algebra with ¢ > 0 or ¢ < 0 can be mapped to to the one with ¢ = 1/2 or ¢ = —1/2, respectively.
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We can compute several quantities as
T=x0yNO0,, A=-2x, g0:—§x. (3.48)

The associated supergravity fields are found as

ds? = e (dw? — 2*d2?) — 2" dw (dy — d2) + $ e *(dy + d2)?, (3.49)
By =1e"xdz A (dy +dz), e 2% =% .

and this is a solution of the supergravity.

3.2 Ramond—Ramond fields

We here introduce the R—R fields by considering the case D = 10. In the presence of the R-R

fields, the equations of motion for the generalized metric and the DFT dilaton become
R =0, Sun =Eun, (3.50)

where £y denotes the energy-momentum tensor of the R—R fields. Obviously, if we transform

the energy-momentum tensor as
e e MegN ey =e 22 g MeNgl (3.51)
the equations of motion for the generalized metric transform covariantly as
e PR EMERN (Sun — Emn) = e 2 EWM ELN (Shyn — Ehrw) - (3.52)

By using the results of the Poisson—Lie T-duality [20-22], we can easily see that the transfor-
mation rule (3.51)) can be realized by using the ansatz

|F) = e~4®) A@) 5| FY (3.53)

where U = (£y/”) and Sy is a matrix representation of U in the spinor representation (see [22]

A(x)

for our convention). The presence of e is the only difference from the Poisson—Lie T-duality.

The O(10,10) spinor | F) is constant, and in type IIA/IIB theory, it can be expanded as

T I al-a
F) =" Y 5 Fara, T)0), (3.54)

p:even/odd ©

where |0) is the Clifford vacuum satisfying I';|0) = 0. Under the ansatz (3.53)), the equations

of motion of the R—R fields become the algebraic relation
(748 Fape — ATAFA + T4 Z4) | F) = 0. (3.55)
When we consider an O(D, D) rotation (3.21)), by rotating the constant spinor |F) also as

) = Sc|F)  (TPCpt =Scr4ssh), (3.56)
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the equations of motion are manifestly covariant. This shows that the whole DFT equations
of motion are covariant under the Jacobi-Lie T-plurality. When the supergravity fields have

the form (3.2)) and (3.53)), we call the background the Jacobi—Lie symmetric.

For convenience, let us also express (3.53) in terms of the differential form. By using a

polyform
1
F= Y = Fnom,dd™ A-onda™, (3.57)
p:even/odd
in type ITA/IIB theory, we have
F = e #@ e 0P 80 dot 0,23 oF et | Y L E A AP L (358)

p : even/odd

Note that here we are using the field strength in the A-basis (which satisfies dF' = 0) and this

is related to the one in C-basis as
G=ebBNF, (3.59)
that satisfies the Bianchi identity

dG + H3 AG =0. (3.60)

3.3 An example with Ramond—Ramond fluxes

Let us consider a 20-dimensional DD with the structure constants
ht=-1, ft=-1, fs®=-1, fiss=-1, Z1=-2. (3.61)

The non-trivial subalgebra generated by {T1, Ty, T3} are known as ((IIT, —4X1), (I,0)) . Using
the parameterization g = e* 71 e¥72e*15 gwaTa ... ew0Ti0  the non-trivial part of v™ and e™

are found as (the other components are just v, = e, = 9,)

v =0e+y+2)(0y+08:), va=0y, v3=0;, (3.62)

e1=0,, ex=3 [(eZJU +1) 9y + (e** 1) d.], e3= [(e% ~1) 9y + (e** +1) d.] .

N[

We introduce constants

1 1 0 0 0
11 1 0 0

. 0110 0 Aab a 172 | 13ypd-10

dw=10 o o 1 ol B =0, |F)=6v2r! [+ T ~1]0), (3.63)
0 0 0 O 1
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and then, by using A = —2z and supposing ¢ = 0, the supergravity fields are found as

ds? = e** [dx2 +dz (dy —dz) + ds%ﬂ + e dz (dy + dz) + (dy + dz)?, (3.64)
By =0, e 2% = o167 Fi = —6v2e % dx, '
where ds% = dw? + - -+ + dw?, is a seven-dimensional flat metric. This is a solution of type

IIB* supergravity.

Now we consider a generalized Yang—Baxter deformation with
8= (3.65)
2
The resulting DD has the structure constants
ho®=-1, fi’=-1, fAs®=-1, fi®=-1, A*=n, Z1=-2. (3.66)

The structure constants f;?* produces the Jacobi-Lie structure 7 = Z (1 — e=2*) 9, A 9, and
the supergravity fields are
ds? = e*[d2? + dz (dy — d2) + ds3+]| + e** da (dy + d2) + (dy + d2)? — % ' da? (3.67)
Bgz—ge%dx/\(dy—i—dz), e 2% =107 Fy=—6V2e7 %% dz.
This is again a solution of type IIB* supergravity and the Jacobi-Lie T-duality indeed works

as a solution generating technique.

3.4 Jacobi-Lie T-plurality with spectator fields

The inclusion of the spectator fields is straightforwardly similar to the case of the Poisson—Lie
T-duality /T-plurality (see Appendix B of [22]). Here, instead of repeating the presentation

of [22], we only comment on some non-trivialities that are specific to the Jacobi—Lie T-plurality.

We consider a ten-dimensional spacetime with the “internal coordinates” ™ (m =1,..., D)
and the “external coordinates” y* (u = D + 1,...,10). In the string sigma model, the scalar
fields y# (o) are called the spectator fields because they are invariant under the non-Abelian
duality. We formally double all of the directions, and the generalized coordinates are given by
M = (2™, &, y*, §,). The “flat” indices A, B and A, B also run over the 20 directions. The
underlying algebra DD™ is associated with the 2D-dimensional doubled coordinates {x™, Z,,} ,
and for example, the generalized frame fields constructed in the previous sections are embed-
ded into the first 2D x 2D-block of the 20 x 20 matrix £4M . We assume that £4M and
the double vielbein V4® have block-diagonal forms, i.e., they are given by direct sums of the
2D x 2D-block associated with the internal directions and (20 — 2D) x (20 — 2D)-blocks asso-

ciated with the external directions. In particular, we suppose that the external block of E4M
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is an identity matrix. With such understanding, the conditions for the Jacobi-Lie symmetry

in the presence of the spectator fields, but without the R-R fields, are given by

Hun = En () EnP(2) Han(y) Han(y) = Va™(y) Vs® (y) Has, (3.68)

e 2 = o2dW) o=2(@)  ¢=20() = o=20(e) o= A |det ¢ | (3.69)

The difference is that V4(y) is no longer constant and that the dilaton also acquires the
y-dependence d(y) . By following the same discussion as [22], we can show that the O(D, D)

transformation which rotates the internal indices is a symmetry of the equation of motion.

When the R-R fields are also present, the symmetry becomes slightly subtle. In the

presence of the spectator fields, the tensor G“B becomes

gAB = 2/}:[D[A 'DB]]:D _ %7_21)5 (nAJ-' nt _ 7:[A.7: 7_289) (]:D _ DD) ff,‘]—‘g

. o . (3.70)
. 7_‘5[./4 (]:'D . D'D) fB}DE + % (7705 77@]: - HCE HD]:) HQ[A ]:CDB] ]:5]-'(_;’ ’
where D4 = V48 EgM 0y and the fluxes contain both the external and internal parts:
Fa=Fly) + 2O VaP(y) Fi, (3.71)
Fase = Fase(y) + 2P VaP () VP (y) Vo' (y) Foir - (3.72)

The internal /external parts contribute to the internal /external components of the matrix G5,
respectively. Then, the internal components of GAB (or Sysn) scale as €22 while the external
components are independent of A. In order to realize the equations of motion Sy ny = Eun,

the energy-momentum tensor £y n also should scale in the same way, but it is non-trivial.

Then we can consider two possibilities: (i) the external components of Sysn vanish, or (i7)
the internal components of Sysn vanish by themselves. The former is the case studied in the

previous sections. In that case, we choose the R-R fields as
|F) = 4@ B0 5y| F(y)) (3.73)
which is a natural extension of including the y-dependence into |]:' ). In the latter case,
the scale factor e2(*) is not necessary and we consider
|F) = e 40) Sy | F(y)) - (3.74)

In terms of the differential form, this can be expressed as

B3 A@)|det g0 2 €2 et Y A Faa,)EN A NE®|, (3.75)
p:even/odd

where we have defined £ = £%, dz™ with 2™ = (2™, y*) and {a} = {a, i} . Here, the dotted

indices {1} denote the “flat” indices associated with {u} and £%, is a component of E4M .

F = e 9@ ¢

The existence of the two options are specific to the Jacobi-Lie T-plurality, and these two
are degenerate in the case of the Poisson-Lie T-duality (where A = 0). In the next subsection,

we present an example using the latter option (3.74]).
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3.5 An example with spectator fields

We consider an eight-dimensional DD (D = 4) with the structure constants given in Eq. (3.61]).

We introduce the ten-dimensional coordinates

{xm; y'u} = {x,y7u,v; Z7T7£7¢1a¢2a¢3}5 (376)

and y* are the spectator fields. Using the parameterization g = e 71 e¥72 ¢»75 T4 we obtain
the left-/right-invariant vector fields as given in Eq. (3.62). We choose the metric g.(y),
dilaton d(y) , the R-R field | F(y)), and ¢(z) as

% &% 0 0 0
= = —= 0.0
. 0 —% &% 0 0 |0sxs 3ab _ _od cosrcos € sin® rsin €
Jab = 1 ) 5 =U, ¢ - 5 ’
0 0 0 = 0 Z (3.77)
0 0 0 0 =%
O5x5 gss
|F) =4 (—z_5 %292 4 gind r cosrsin & cosfff&m"ﬁz%) , o=-2x,
where the metric ggs on S® corresponds to the line element
dsis = dr® + sin® r (d€? + cos® £ d¢? + sin® £ d¢3) + cos® r de3 . (3.78)
Using 7% = 0 and A = —2x, the generalized frame fields become
e 2® 0 0 0 0 0 0 0
0 e~ % coshzx e ®sinhzx 0 0 0 0 0
0 e ®sinhzx e ®coshz 0 0 0 0 0
M 0 0 0 e”2® 0 0 0 0 0
EaM (z) = 0 0 0 0 e 0 0 0 (3.79)
0 0 0 0 0 e” cosh z —e% sinhz 0
0 0 0 0 0 —e” sinh x e® coshx 0
0 0 0 0 0 0 0 o2
0 li2x12

By acting the twist, we find that this is the AdS5xS® solution of type IIB supergravity,
dSQAdS5><S5 = 272 (dSZD + dZ2) + d3§5 ) B2 = 07 b = 07
dsip = e'*[de? + dedy + dy® + du® — du (dz + 2dy) + do®] + e* da (du+dy),  (3.80)
e dz Ady AduAdoAdz
25

F:4{— +sin3rcosrsin§cos§dr/\df/\dd)l/\dqﬁg/\dqbg}.
Here we have used e#®@) ¢" 7 A@)| det aab]% =1 (where D =4), and

EVN-ANENE =S Az Ady AdundoAdz. (3.81)

Again we perform a generalized Yang—Baxter deformation (3.65]) and obtain the DD given
in Eq. (3.66). The A is not changed and the Jacobi-Lie structure is 7 = Z (1 —e™2%) 9, A 0, .
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The deformed geometry is

2 Ax 2z 21,.2 6z 1 4x
9 19 n°e*(2e** —1)dx _n(e —3 %)
ds® = ds); 45, g5 — 156 , By = o dz A (dy — du),
50, GB:2ne5x(coshm+3s;nhx)dx/\dv/\dz’ (3.82)
z
62 dz Ady Adu AdvAd
Gs =4 & R ATUACY Z+sin3rcosrsin§cos§dr/\d§/\d¢1/\d(bg/\d¢3 .

25
This also satisfies the type IIB supergravity equations of motion.

In order to perform more interesting Jacobi-Lie T-plurality, the classification of the six-
dimensional DD will be useful. The classification of the Jacobi-Lie bialgebra has been done
in [25] but which bialgebras are in the same orbit O(D, D) rotations have not been studied.
If such a classification is worked out, we may find more dual geometries from the AdSsxS®

solution (|3.80)).

4 Jacobi-Lie T-plurality in string theory

In the string sigma model, we can clearly see the symmetry of the Poisson—Lie T-duality by

using a formulation called the £-model [38]. The £-model is defined by a Hamiltonian

_ 1 VAB .
H= Aral /dU'H ja(o) jp(o), (4.1)
and the current algebra
{ja(0).j(c")} = Fap© jo(o) + nap&'(o — o), (4.2)

where HAB is a constant O(D, D) matrix, F4p% is a certain structure constant, and nap is
the O(D, D)-invariant metric. The dynamics is governed by the O(D, D)-manifest equations
(4.1)) and (4.2]), and the time evolution of the currents can be determined by 0-j4 = {ja, H} .

If we consider string theory on a target space with the generalized metric
Hun = Ev® En® Hap, (4.3)

where Hap € O(D, D) are certain constants and E M are the generalized frame fields satisfy-
ing ,@EA Ep = —F1p% Ec with F45¢ the structure constants of a Drinfel’d double, the string
equations of motion can be expressed as Eqgs. (4.1)) and (4.2). Here, the current is given by

pm(0)
Oyx™(0)

ja(o) = Ex™(2(0)) Zu (o), Zu(o) (4.4)

where p,, are the canonical momenta associated with ™. Then we can see the covariance of

the string equations of motion under the Poisson—Lie T-duality /T-plurality.
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Now let us consider the case of the Jacobi—Lie T-plurality by assuming Z* = 0. Here, the

generalized metric is expressed as
Hun = En” En® Has, (4.5)
where £y satisfies
Le, €M = — B (Xap® — 22465 —nap Z29) €M = — ® Fap® &M, (4.6)
and F4g¢ is the one given in with Z% = 0. Then introducing the currents
Ta(o) = EaM(2(0)) Zu (o), (4.7)

we obtain the Hamiltonian and the current algebra as

H= 47:(1, / do HAB Ta(0) Tp(0) (4.8)
{Ta(0), Tp(0")} = 2D Fup€ o (o) + nap (o — o). (4.9)

We find that the explicit z-dependence in e2(*(9))

complicates the right-hand side of the
equation of motion 0,74 = {Ja, H}, and accordingly the covariance under the Jacobi-Lie

T-plurality is not manifest.

Let us also discuss the covariance from another perspective. If we start with the action

S = L / d?0 /=y (’yo‘ﬁ - 50‘5) (gmn + an) Onx™ O™, (4.10)
b

4o/

the equations of motion can be expressed as

dJ, = (,fvagmn dz™ A sdz™ + £, Bpn dz™ A dx”) , (4.11)

1
2
where

Jo = v (gmn *dz"™ + Bon da:”) . (4.12)

If we identify the metric and the B-field as gmn + Bmn = Emn, by using Eq. (3.10), the

equations of motion can be rewritten in a suggestive form [17]
dJ, = Le 22 (f e+ 280 2° — 265 2%) Ty A I (4.13)

However we cannot say anything more from this relation.

In the case of the Poisson—Lie T-duality, where A = 0 and Z® = 0, we can regard the
relation (4.13)) as a Maurer—Cartan equation and identify the current .J, as the right-invariant

1-form

dgg ' =J, T, g=etat", (4.14)



Then, we can rewrite the equations of motion in a manifestly O(D, D)-covariant form as (see

section 6.1 of [22] for the details)
PA— Ry PP (4.15)
where P4 is constructed by using an element of the Drinfel’d double [ = g g as
P=PAT,=dll". (4.16)

The equations of motion can be also expressed as the O(D, D) covariant Maurer—Cartan

equation for the Drinfel’d double

~ 1 N N
P4 + §FBCAPBAPC =0. (4.17)

In the case of the Jacobi-Lie T-duality of [17], due to the presence of A in Eq. , Ja
cannot be expressed by using g and it is not clear how to construct a covariant or geometric
object similar to PA | If we instead identify the metric and the B-field as ¢gyn + Bimn = Emn
as in the case of the Jacobi-Lie T-plurality, Eq. leads to

Ao =3 (fa" +2052° =265 2") Jy A Je+2 27" A Ja. (4.18)

In this case, there is no scale factor, but due to the presence of the last term, this again cannot
be regarded as a Maurer—Cartan equation. According to the above considerations, we suspect

that the Jacobi-Lie T-plurality is not a symmetry of the string sigma model.

One of the reasons for the issue may be that the DD™ is a Leibniz algebra instead of a
Lie algebra. In the case of the Poisson—Lie T-duality, a string is fluctuating on the Drinfel’d
double and the position of the string is described by a map, [ : ¥ — D, from the worldsheet
to a Drinfel’d double D. However, in the case of the Leibniz algebra, a group-like global
structure is complicated and it is not clear how to describe the position of the string on the
doubled geometry similar to the case of the Drinfel’d double. A recent study [39] may be

useful in clarifying this point.

5 Conclusions

In this paper, we proposed a Leibniz algebra DDT and showed that this provides an alter-
native description of the Jacobi-Lie bialgebra. Extending the standard procedure developed
in the Poisson-Lie T-duality, we showed that a DD systematically constructs a Jacobi-Lie
structures and the generalized frame fields satisfying £5 e =—-X4 B¢ Ec . Using the gen-
eralized frame fields, we proposed a natural extension of the Poisson—Lie T-duality, which we

call the Jacobi-Lie T-plurality. We then showed that the Jacobi-Lie T-plurality (with the
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R-R fields and the spectator fields) is a symmetry of the equations of motion of DFT. As a
demonstration, we provided several examples of the Jacobi—Lie T-plurality. At the level of
the string sigma model, we were faced with a difficulty in the realization of the Jacobi-Lie
T-plurality, and this may indicate that the scale symmetry RT is not a (classical) symmetry
of string theory. To clarify the status of this scale symmetry, it is important to check whether
the Jacobi-Lie T-plurality remains as a symmetry of o/-corrected supergravity by extending

recent works on the Poisson-Lie T-duality [40H42].

In M-theory, the exceptional Drinfel’d algebra (associated with the SL(5) duality group)

has been found as

TooTy= fuTe,  TU%oThP2 = 2 faczlpbele,
Tyo T2 = [P0 T, 42 fo [ T + 3 7, T (5.1)
T 0 Ty = — [y T, 43 fi e, 632 T — 0 2,600 T03)

If we decompose the index as a = {a,f} and assume fabﬂ = 0, we find that the generators

{T,, T® = T} satisfy the subalgebra

TyoT,=f,;°T:, T oTh=—fi1¢,
Tyo TP = —f P4 Tp — fo.b TC 4 (37, — farh) T, (5.2)
T*oTy= f;,** T+ f,,° T = 32y — fi,) T* + (3Zc — fu") 67 T°.

This is noting but the DD™ under the identifications, fdbé = — fdi’éﬁ, Z% =0, and 27, =
37y — f(-mﬁ . Similarly, the extended Drinfel’d algebra in the type IIB picture also contains the
DD as a subalgebra. Thus, the Jacobi-Lie T-plurality is a subset of the proposed Nambu-—
Lie U—dualityﬂ An issue in the Nambu-Lie U-duality is that the equations of motion of the
exceptional field theory are complicated and the covariance under the Nambu-Lie U-duality
cannot be easily proven. The results of this paper show that the non-Abelian duality works
as a solution generating transformation even when the Z, is present. Further steps towards

the proof of Nambu-Lie U-duality will be taken in future work.

Another future direction is to study an extension of the Jacobi—Lie structure. An extension
of the Poisson structure is known as the Nambu—Poisson structure, and its further extension
is known as a Nambu-Jacobi structure [43]. In the context of the non-Abelian U-duality,
some generalized Nambu—Lie structures have been introduced and it is interesting to study
the extension by introducing a bi-vector E() that corresponds to the vector E introduced in
. In the case of the Jacobi—Lie structure, the vector fields are constructed as E o« Z%e,
but in the case of the extended Drinfel’d algebras (in the M-theory picture), the bi-vector will

5We note that some DD cannot be embedded into the extended Drinfel’d algebra (see [4,/6]), and accord-

ingly, some Jacobi—Lie T-plurality cannot be realized as a Nambu-Lie U-duality.
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be given by E?) o Z% ¢, e, by using a bi-vector Z%192 which appears in the decomposition of
the gauging Z4 = (Z,, %, -++). In the Nambu-Lie U-duality, we usually restrict ourselves
to keep only the first components Z,, but as we discussed in section 2| this restriction is not
necessary to construct the Jacobi—Lie structures. It will be an interesting future work to keep
Z%9% or higher multi-vectors to formulate a certain bialgebra associated with generalized
Nambu-Jacobi structures. It is also interesting to study the associated generalized Yang-

Baxter equations.
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