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Abstract

We propose a Leibniz algebra, to be called DD+, which is a generalization of the

Drinfel’d double. We find that there is a one-to-one correspondence between a DD+ and

a Jacobi–Lie bialgebra, extending the known correspondence between a Lie bialgebra and

a Drinfel’d double. We then construct generalized frame fields EA
M ∈ O(D,D) × R+

satisfying the algebra £̂EA
EB = −XAB

C EC , where XAB
C are the structure constants

of the DD+ and £̂ is the generalized Lie derivative in double field theory. Using the

generalized frame fields, we propose the Jacobi–Lie T -plurality and show that it is a

symmetry of double field theory. We present several examples of the Jacobi–Lie T -plurality

with or without Ramond–Ramond fields and the spectator fields.
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1 Introduction

Recently the Poisson–Lie T -duality [1,2] or T -plurality [3] and their U -duality extensions [4–11]

have been studied and developed by using the duality-covariant formulations, such as double

field theory (DFT) [12–15] and its U -duality extensions. The Poisson–Lie T -duality is based

on a Lie algebra called the Drinfel’d double while the U -duality variant is based on the

exceptional Drinfel’d algebra (EDA) [4–7,9,16], which is an extension of the Drinfel’d double.

Unlike the Drinfel’d double, the structure constants XAB
C of EDA do not necessarily have

the antisymmetry, XAB
C 6= −XBA

C , and it is a Leibniz algebra rather than a Lie algebra.

In this paper, we study a minimal extension of the Drinfel’d double by allowing the structure

constants to admit the symmetric part X(AB)
C 6= 0 . Using this new Leibniz algebra, we study

an extension of the Poisson–Lie T -duality, which we call the Jacobi–Lie T -plurality.1

The proposed Leibniz algebra has the form

Ta ◦ Tb = fab
c Tc , T a ◦ T b = fc

ab T c ,

Ta ◦ T b =
(
fa
bc + 2 δba Z

c − 2 δca Z
b
)
Tc − facb T c + 2Za T

b ,

T a ◦ Tb = −fbac Tc + 2Za Tb +
(
fbc

a + 2 δab Zc − 2 δac Zb
)
T c ,

(1.1)

where a = 1, . . . , D , and this reduces to the Lie algebra of the Drinfel’d double if Za = Za = 0 .

This Leibniz algebra admits a symmetric bilinear form

〈Ta, T b〉 = δba , 〈Ta, Tb〉 = 〈T a, T b〉 = 0 , (1.2)

and two subalgebras g and g̃ (generated by {Ta} and {T a}, respectively) are maximally

isotropic with respect to this bilinear form. Unlike the case of the Drinfel’d double, the

“adjoint-invariance” is relaxed as follows by allowing for a scale transformation:

δA〈TB, TC〉 ≡ 〈TA ◦ TB, TC〉+ 〈TB, TA ◦ TC〉 = 2ZA 〈TB, TC〉 , (1.3)

where TA ≡ (Ta, T
a) (A = 1, . . . , 2D) and ZA ≡ (Za, Z

a) . Since this Leibniz algebra is an

extension of the Drinfel’d double by admitting the scale symmetry R+, we call this extended

Drinfel’d algebra DD+ . It turns out that this R+ symmetry provides a scale factor similar to

the trombone symmetry in supergravity [19].

In this paper, we show that the DD+ provides an alternative way to define the Jacobi–Lie

algebra, and explain how to construct geometric objects such as the Jacobi–Lie structures

from a given DD+. We also show that we can systematically construct the generalized frame

1The Jacobi–Lie T -duality studied in [17, 18] is very similar to our proposal, and this paper is strongly

inspired by these papers. However, our identification of the supergravity fields is different from the one given

in [17,18]. The details are explained in sections 3 and 4.
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fields EA
M satisfying the frame algebra

£̂EAEB = −XAB
C EC , (1.4)

where £̂ denotes the generalized Lie derivative in DFT and XAB
C are the structure constants

of the DD+. Similar to the recent studies on the Poisson–Lie T -duality/T -plurality in the

context of DFT [20–22], exploiting the relation (1.4), we show that the Jacobi–Lie T -plurality

is a symmetry of type II DFT.

To exhibit the O(D,D) covariance of the DFT equations of motion, we are forced to turn

off the structure constants Za . The standard Poisson–Lie T -duality is an exchange of the

generators Ta ↔ T a and this results in Za ↔ Za in our setup. Then if we require Za = 0

both in the original and the dual frame, we are forced to assume Za = Za = 0 and the DD+

reduces to the standard Drinfel’d double. Accordingly, in this paper, instead of considering

the T -duality Ta ↔ T a , we consider O(D,D) transformations which do not produce Za while

keeping Za non-zero. This is the reason why we call this symmetry the Jacobi–Lie T -plurality,

rather than the Jacobi–Lie T -duality.

At the level of the supergravity (or more precisely, DFT), the proposed Jacobi–Lie T -

duality is indeed a symmetry of the equations of motion even if the Ramond–Ramond (R–R)

fields or spectator fields are present. However, at the level of the string sigma model, due to

the presence of the scale factor, we find difficulty in showing the covariance of the equations of

motion under the Jacobi–Lie T -plurality. We discuss this issue from several approaches and

also discuss the relation to the Jacobi–Lie T -duality proposed in [17].

This paper is organized as follows. In section 2, after introducing the Leibniz algebra DD+,

we explain how to construct the Jacobi–Lie structures and the generalized frame fields from

the DD+. Here, Za = 0 is not assumed and we find that the generalized frame fields EA
M

have a dependence on the dual coordinates x̃m of the doubled space. We also consider several

examples of DD+ and explicitly construct the Jacobi–Lie structures and the generalized frame

fields EA
M . A relation between the DD+ and embedding tensors in gauged supergravities

is also briefly discussed. In section 3, we provide a definition of the Jacobi–Lie symmetric

backgrounds and show that the equations of motion of DFT have a manifest symmetry under

the Jacobi–Lie T -plurality. For convenience, we provide several concrete examples of the

Jacobi–Lie T -plurality with and without the R–R fields or the spectator fields. In section

4, we discuss the issue of the Jacobi–Lie T -plurality in the string sigma model. Section 5 is

devoted to conclusion and discussion.
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2 Jacobi–Lie structures

In this section, we propose a Leibniz algebra DD+ and construct several quantities, such as the

Jacobi–Lie structure, which play an important role in the Jacobi–Lie T -plurality. In section

2.3, we clarify the relation between the DD+ and the Jacobi–Lie bialgebra studied in [23–26].

Several examples are given in section 2.4. In section 2.5, we comment on a relation between

DD+ and embedding tensors in half-maximal 7D gauged supergravity.

2.1 Algebra

A (classical) Drinfel’d double can be defined as a 2D-dimensional Lie algebra d which admits

an adjoint-invariant metric 〈·, ·〉 and allows a decomposition d = g⊕ g̃, where g and g̃ form Lie

subalgebras that are maximally isotropic with respect to 〈·, ·〉 . We choose the basis Ta ∈ g

and T a ∈ g̃ such that the metric becomes 〈Ta, T b〉 = δba , and denote the subalgebras as

[Ta, Tb] = fab
c Tc and [T a, T b] = fc

ab T c . Then, from the adjoint invariance

〈[TA, TB], TC〉+ 〈TB, [TA, TC ]〉 = 0 , (2.1)

we can determine the mixed-commutator as

[Ta, T
b] = fa

bc Tc − facb T c . (2.2)

The adjoint-invariant metric can be expressed as

〈TA, TB〉 = ηAB , ηAB =

 0 δba

δab 0

 , (2.3)

and we raise or lower the indices A,B by using ηAB and its inverse ηAB .

Now, let us introduce the Leibniz algebra DD+,

TA ◦ TB = XAB
C TC . (2.4)

We keep assuming that g and g̃ are maximally-isotropic Lie subalgebras but relax the adjoint-

invariance as in Eq. (1.3). We then find that the structure constants should have the form

XAB
C ≡ FABC + ZA δ

C
B − ZB δCA + ηAB Z

C , (2.5)

where FAB
C = FABD η

DC , FABC = F[ABC] , and FABC has the only non-vanishing compo-

nents Fab
c and Fa

bc . Defining fab
c and fc

ab through Ta ◦ Tb = fab
c Tc and T a ◦ T b = fc

ab T c ,

we can parameterize FABC as

Fabc = 0 , Fab
c = fab

c − Za δcb + Zb δ
c
a , Fa

bc = fa
bc − δba Zc + Zb δca , F abc = 0 , (2.6)
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where ZA = (Za, Z
a) . By substituting these into Eq. (2.4), we obtain the algebra (1.1).

The closure conditions, or the Leibniz identities,

TA ◦ (TB ◦ TC) = (TA ◦ TB) ◦ TC + TB ◦ (TA ◦ TC) , (2.7)

require the following identities for the structure constants:

f[ab
e fc]e

d = 0 , fe
[ab fd

c]e = 0 , (2.8)

4 f[a
e[c fb]e

d] − fabe fecd + 4 f[a
cd Zb] + 4 fab

[c Zd] + 8 fe[a
[c δ

d]
b] Z

e − 16Z[a δ
[c
b] Z

d] = 0 , (2.9)

fab
c Zc = 0 , fa

bc Zc = fac
b Zc , Zc fc

ab = 0 , Za Za = 0 . (2.10)

2.2 Generalized frame fields

Here we construct the generalized frame fields EA
M . We introduce a group element g = ex

a Ta

and define the left-/right-invariant 1-forms as

` = `am dxm Ta = g−1 dg , r = ram dxm Ta = dg g−1 . (2.11)

Their inverse matrices are denoted as vma and ema (vma `
b
m = δba = ema r

b
m). We then consider

the adjoint-like action as

g . TA ≡ ex
b Tb◦ TA = TA + xb Tb ◦ TA + 1

2! x
b Tb ◦

(
xc Tc ◦ TA

)
+ · · · , (2.12)

and define

g−1 . TA ≡MA
B(g)TB . (2.13)

It turns out that this matrix MA
B can be parameterized as

MA
B ≡

 aa
b 0

−πac acb e−2∆(a−1)b
a

 , (2.14)

where πab is an antisymmetric field: πab = −πba .

Similar to the case of the Drinfel’d double [27] (see also [9] for a general discussion), we

find that aa
b, πab, and ∆ satisfy the algebraic identities

fab
c = aa

d ab
e (a−1)f

c fde
f , (2.15)

fd
[ab πc]d + fde

[a πb|d| πc]e − 2π[ab πc]d Zd + 2π[ab Zc] = 0 , (2.16)

fa
bc = e−2∆ aa

d (a−1)e
b (a−1)f

c fd
ef + 2 fad

[b πc]d + 6 δ[b
a π

cd] Zd , (2.17)

aa
b Zb = Za , Za + πab Zb = e−2∆(a−1)b

a Zb
(
⇔ MA

B ZB = ZA
)
, (2.18)
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and the differential identities

Da∆ = Za , Daab
c = −fabd adc , (2.19)

Daπ
bc = fa

bc + 2 fad
[b π|d|c] − 2Za π

bc − 4Z [b δc]a , (2.20)

where Da ≡ ema ∂m . Combining these identities, we also find

£va∆ = Za , £vaab
c = −abd fadc , (2.21)

£vaπ
mn =

(
fa
bc + 2 δba Z

c − 2 δca Z
b
)
vmb v

n
c + 2Za π

mn . (2.22)

Here we have defined

πmn ≡ e2∆ πab ema e
n
b , (2.23)

which turns out to be a Jacobi–Lie structure.

Now we define the generalized frame fields as

EA
M ≡MA

B VB
M , VA

M ≡

vma 0

0 `am

 , (2.24)

and obtain

EA
M =

 ema 0

−πab emb e−2∆ ram

 . (2.25)

If Za = 0 , these generalized frame fields satisfy the relation

£̂EAEB
M = −XAB

C EC
M , (2.26)

by means of the generalized Lie derivative in DFT,

£̂VW
M ≡ V N ∂NW

M − (∂NV
M − ∂MVN )WN . (2.27)

In the presence of Za , we need to modify the generalized frame fields as

EA
M ≡

 ema 0

−πac emc e−2∆ σ̃ ram

 . (2.28)

If this σ̃ satisfies

∂mσ̃ = 0 , ∂̃mσ̃ ≡ −2Zm ≡ −2Za vma , (2.29)

we find that the new generalized frame fields satisfy the desired relation (2.26).

Since the modified generalized frame fields have the dependence on the dual coordinates

x̃m , one may be concerned about the section condition (i.e., a consistency condition in DFT).
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However, we can easily show that the section condition is not broken. As we discuss later, the

supergravity fields are constructed from EA
M which is composed of the fields {∆, σ̃, ema , πmn} .

Using £Z = Za £va , the differential identities, and the Leibniz identities, we find

£Z∆ = Za Za = 0 , £Ze
m
a = Zb £vbe

m
a = 0 ,

£Zπ
mn = Za

(
fa
bc + 2 δba Z

c − 2 δca Z
b
)
vmb v

n
c + 2Za Za π

mn = 0 .
(2.30)

Therefore, Z is a Killing vector field and we can choose the coordinate system such that Z = ∂z

is realized. Then all of the fields φ are independent of the coordinate z . In this coordinate

system, we can explicitly find σ̃ = z̃ , and then the section condition reduces to

0 = ηMN ∂M σ̃ ∂Nφ = ∂zφ . (2.31)

This is indeed satisfied because φ is independent of z .

Let us also show several properties of the bi-vector field π ≡ 1
2 π

mn ∂m ∧ ∂n . By using the

differential and algebraic identities, we can show

[π, π]S = 2E ∧ π , [E, π]S = 0 , (2.32)

where E ≡ −2Za ea and we have defined the Schouten–Nijenhuis bracket for a p-vector v and

a q-vector w as

[v, w]
m1···mp+q−1

S ≡ (p+q−1)!
(p−1)! q! v

p[m1···mp−1 ∂pw
mp···mp+q−1]

+ (−1)pq(p+q−1)!
(q−1)! p! wp[m1···mq−1 ∂pv

mq ···mp+q−1] ,
(2.33)

or more explicitly,

[π, π]S ≡ πq[m ∂qπnp] ∂m ∧ ∂n ∧ ∂p , [E, π]S ≡ 1
2! £Eπ

mn ∂m ∧ ∂n . (2.34)

The first property is equivalent to the absence of the non-geometric R-flux

Xabc = 3πd[aDdπ
bc] + 3 fde

[a πb|d| πc]e − 6π[ab πc]dDd∆− 3 ad
[a πbc] rdm ∂̃

m σ̃ = 0 , (2.35)

and the second one follows from

£eaπ
mn = e2∆

(
fa
bc − 4Z [b δc]a

)
emb e

n
c . (2.36)

These two properties show that the bi-vector field πmn is a Jacobi structure and the vector

field E may be called the Reeb vector field. Combining this with the property (2.22), we can

conclude that the bi-vector field π constructed from a DD+ is always a Jacobi–Lie structure.

As it has been studied in [23,24,26], the Leibniz identity (2.9) can be regarded as a cocycle

condition, and it is automatically satisfied if we consider the coboundary ansatz

fa
bc = 2 r[b|d| fad

c] − 2Za r
bc + 4Z [b δc]a , (2.37)
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where rab is a skew-symmetric constant matrix. The other Leibniz identities (under f[ab
e fc]e

d =

0 and fab
c Zc = 0) are equivalent to2

rab Zb = Za , Zc fcd
[a rb]d = 0 , CYBEabc ≡ 3 fde

[a rb|d| rc]e − 6Z [a rbc] = 0 . (2.38)

For this type of algebra, we can find the solution of the differential equation (2.22) as

πmn = rab
(
vma v

n
b − e2∆ ema e

n
b

)
. (2.39)

We note that this type of Jacobi–Lie structure (associated with the coboundary-type algebras)

has been studied in [24] (see also [17,26]).

2.3 Jacobi–Lie bialgebra

Let us explain the relation between DD+ and the Jacobi–Lie bialgebra studied in [23–26]. We

begin with a Lie algebra g with commutation relation [Ta, Tb] = fab
c Tc . We introduce the

dual space g∗ spanned by {T a} and suppose that they form a Lie algebra [T a, T b] = fc
ab T c .

We introduce the differentials d and d∗ which acts on g∗ and g as

dT a = −1
2 fbc

a T b ∧ T c , d∗Ta = −1
2 fa

bc Tb ∧ Tc , (2.40)

and 1-cocycles X0 ∈ g and φ0 ∈ g∗ satisfying d∗X0 = 0 and dφ0 = 0 . We then define

d∗X0 ≡ d∗ +X0∧ , (2.41)

and a bracket [·, ·]φ0 for x ∈ ∧pg and y ∈ ∧qg as

[x, y]φ0 = [x, y] + (−1)p−1(p− 1)x ∧ ιφ0y − (q − 1) ιφ0x ∧ y , (2.42)

where [·, ·] is the algebraic Schouten bracket and ιφ0 denotes the contraction. Using these, we

can define a Jacobi–Lie bialgebra as a pair ((g, φ0), (g∗, X0)) which satisfies

d∗X0 [x, y] = [x, d∗X0y]φ0 − [y, d∗X0x]φ0 ,

〈φ0, X0〉 = 0 , ιφ0(d∗x) + [X0, x] = 0 ,
(2.43)

for any elements x, y ∈ g . If we expand X0 and φ0 as

X0 = αa Ta , φ0 = βa T
a , (2.44)

the 1-cocycle conditions d∗X0 = 0 and dφ0 = 0 are equivalent to

αa fa
bc = 0 , βa fbc

a = 0 , (2.45)

2The first equation is implied by
(
fac

b − 2Za δ
b
c

) (
Zc − rcd Zd

)
= 0 . The last equation can be relaxed as

fde
[a CYBE|e|bc] = 0 if Za = 0 . Indeed, in the case of six-dimensional Jacobi–Lie bialgebras [26], an algebra

satisfying CYBEabc 6= 0 (i.e., a quasitriangular coboundary Jacobi–Lie bialgebra) is realized only when Za = 0 .
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and the conditions (2.43) can be expressed as

4 f[a
e[c fb]e

d] − fabe fecd + 2 f[a
cd βb] + 2 fab

[c αd] + 4 fe[a
[c δ

d]
b] α

e − 4β[a δ
[c
b] α

d] = 0 ,

αa βa = 0 , αc fca
b − βc facb = 0 .

(2.46)

They are exactly the same as the Leibniz identities of the DD+ under the identification

αa = 2Za , βa = 2Za . (2.47)

This shows that there is a one-to-one correspondence between a Leibniz algebra DD+ and a

Jacobi–Lie bialgebra. In [25], by using a generalized Courant bracket, commutation relations

[Ta, Tb] = fab
c Tc , [T a, T b] = fc

ab T c ,

[Ta, T
b] =

(
fa
bc + 1

2 α
c δba − αb δca

)
Tc +

(
fca

b − 1
2 βc δ

b
a + βa δ

b
c

)
T c ,

(2.48)

are introduced, but in general, this does satisfy the Jacobi identities and is not a Lie algebra.

Rather, this can be regarded as the antisymmetric part of the Leibniz algebra DD+ ,

[TA, TB] ≡ 1
2

(
TA ◦ TB − TB ◦ TA

)
. (2.49)

As we discussed in section 2.2, a DD+ allows us to systematically construct the Jacobi–

Lie structure πmn for a general Jacobi–Lie bialgebra. In [17], a similar construction has

been attempted by using the commutation relations (2.48). However, due to the absence of

the symmetric part X(AB)
C of the structure constants, it was not successful, and only the

coboundary-type algebras have been studied, where πmn has the simple expression (2.39). A

DD+ also allows us to obtain the scale factor ∆ from a straightforward computation of the

matrix MA
B , and these are the advantage of our approach based on the Leibniz algebra. In

the next subsection, as a demonstration, we explicitly compute the Jacobi–Lie structures for

several concrete examples.

2.4 Examples of Jacobi–Lie structures

The low-dimensional Jacobi–Lie groups have been classified in [25], and in particular, classifica-

tions of the coboundary-type Jacobi–Lie groups have been given in [26]. For the coboundary-

type algebras, there is a general formula (2.39) for the Jacobi–Lie structures, and here we

consider two examples of Leibniz algebras that are not of the coboundary type.

(I) ((IV,−εX̃1), (IV.i,−εαX3))

Let us consider ((IV,−εX̃1), (IV.i,−εαX3)) (α > 0) in Table 6 of [25], which corresponds to

f12
2 = −f12

3 = f13
3 = −1 , f1

13 = f2
23 = α , f1

23 = 1 , Z3 = − ε α
2 , Z1 = − ε

2 . (2.50)
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The Leibniz identities require ε = 1 or ε = 2. While ε = 1 gives a coboundary algebra, here

we consider the non-coboundary case ε = 2 .

Using g = exT1 ey T2 ez T3 , the left-/right-invariant vectors are found as

v1 = ∂x + y ∂y + (z − y) ∂z , v2 = ∂y , v3 = ∂z ,

e1 = ∂x , e2 = ex(∂y − x ∂z) , e3 = ex ∂z ,
(2.51)

and by computing the matrix MA
B , we find

π =
[
α (e−x−1) ∂x + (x− α y) ∂y

]
∧ ∂z , e−2∆ = e2x . (2.52)

From ∂̃mσ̃ = −2Za vma we can easily find

σ̃ = 2α z̃ , (2.53)

and then we find that the generalized frame fields enjoy the algebra £̂EAEB = −XAB
C EC .

(II) ((III,−2 X̃1), (III.ii,−(X2 +X3)))

Another example is ((III,−2 X̃1), (III.ii,−(X2 +X3))) of [25], which corresponds to

f12
2 = f12

3 = f13
2 = f13

3 = −1 , f1
12 = f1

13 = 1 , Z2 = Z3 = −1
2 , Z1 = −1 . (2.54)

Using g = exT1 ey T2 ez T3 , the left-/right-invariant vectors are found as

v1 = ∂x + (y + z) (∂y + ∂z) , v2 = ∂y , v3 = ∂z ,

e1 = ∂x , e2 = ex(coshx ∂y + sinhx ∂z) , e3 = ex(sinhx ∂y + coshx ∂z) .
(2.55)

From the matrix MA
B and ∂̃mσ̃ = −2Za vma , we find

π = (z − y) ∂y ∧ ∂z , e−2∆ = e2x , σ̃ = ỹ + z̃ , (2.56)

and then the generalized frame fields satisfy the algebra £̂EAEB = −XAB
C EC .

In this way, for a given Leibniz algebra, we can easily compute the Jacobi–Lie structure

and the generalized frame fields.

2.5 Embedding tensor in half-maximal 7D gauged supergravity

As a side remark, we here clarify the relation between six-dimensional DD+s and the embed-

ding tensors in half-maximal 7D gauged supergravity. In [28], the embedding tensor in half-

maximal 7D gauged supergravity has been classified, where the duality group is O(3, 3)×R+ .

In our convention, their embedding tensor can be expressed as

XAB
C ≡ FABC + ZA δ

C
B − ZB δCA + ηAB Z

C ,

Fabc = Habc , Fab
c = fab

c − Za δcb + Zb δ
c
a ,

Fa
bc = fa

bc − δba Zc + Zb δca , F abc = Rabc ,

(2.57)
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where the non-vanishing components are

H123 = Q11 , f1
23 = Q22 , f2

13 = −Q33 , f3
12 = Q44 , Z1 = −ξ0 ,

R123 = Q̃11 , f23
1 = Q̃22 , f13

2 = −Q̃33 , f12
3 = Q̃44 , f12

2 = f13
3 = −ξ0 .

(2.58)

The possible values of Qij , Q̃
ij , and ξ0 have been classified in Table 2 of [28].

Due to the presence of Fabc and F abc , this is not exactly the algebra of a DD+ , but by

performing an O(3, 3) redefinition of generators, we can obtain a DD+ . As an example, let

us take orbit 10 of [28], where the gauge group is CSO(1, 1, 2), and Qii and Q̃ii are

Qii
cosα = (1,−1, 0, 0) , Q̃ii

sinα = (0, 0, 1,−1)
(
−1 ≤ ξ0 ≤ 1 , −π

4 < α ≤ π
4

)
. (2.59)

Now if we perform a redefinition of the generators TA → CA
B TB with

CA
B =



− 1
cosα

0 0 0 0 0

0 1√
2
− 1√

2
0 0 0

0 0 0 0 1√
2

1√
2

0 0 0 − cosα 0 0

0 0 0 0 1√
2
− 1√

2

0 1√
2

1√
2

0 0 0


, (2.60)

we find that the structure constants become

f12
3 = −1 , f13

2 = −1 , f12
2 = f13

3 =
ξ0 − sinα

cosα
, Z1 =

ξ0

cosα
. (2.61)

For example, if ξ0 = sinα or ξ0−sinα
cosα = −1 is realized, this is equivalent to a Jacobi–Lie

bialgebra ((VI0, bX3), (I, 0)) or ((III, bX1), (I, 0)) given in Table 7 of [25], respectively. By

choosing another matrix CA
B , we will also find another Jacobi–Lie bialgebra classified in [25].

In this way, an embedding tensor classified in [28] can be mapped to several Jacobi–Lie

bialgebras or DD+s. Then, similar to the previous section, we can systematically construct

the generalized frame fields (or twist matrix) by using the Jacobi–Lie structure. Despite some

of the embedding tensor configurations may not be mapped to any DD+, it may be interesting

to identify which gaugings of [28] admit a description as Jacobi–Lie bialgebras. Similarly, this

analysis can be carried out for any (half-)maximal d-dimensional supergravities, because the

T -duality-covariant flux FABC is always contained in the embedding tensor and the role of

ZA can be played by the trombone gauging [29–31] or the dilaton flux. In particular, the

half-maximal d = 6, 5, 4 supergravities explicitly contain an O(10 − d, 10 − d) vector ξA (or

ξ+A) which potentially plays the role of ZA . There, the Leibniz identities Eqs. (2.8)–(2.10)

appear as some components of the quadratic constraints studied in [28,32,33].
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3 Jacobi–Lie T -duality

In [20–22], the Poisson–Lie T -duality/T -plurality has been proven to be a symmetry of DFT.

As a natural extension, non-Abelian U -duality associated with EDA has been discussed in

[4–10, 16], and several examples of the non-Abelian U -duality have been found in [11]. Here,

restricting ourselves to the case Za = 0, we show that the non-Abelian duality based on a

DD+ , i.e., the Jacobi–Lie T -plurality, is a symmetry of the DFT equations of motion. Due to

our assumption Za = 0 , the bi-vector field πmn is a Poisson structure rather than the Jacobi

structure, but due to the existence of the scale factor ∆, this is not a Poisson–Lie structure

and we keep calling πmn the Jacobi–Lie structure.

In type II DFT, the bosonic fields in the NS–NS sector are the generalized metric and the

DFT dilaton

HMN ≡

gmn −Bmp gpq Bqn Bmp g
pn

−gmpBpn gmn

 , e−2d ≡
√
|det gmn| e−2Φ, (3.1)

and the R–R fields can be described as an O(D,D) spinor |F 〉 . By making a certain ansatz for

these bosonic fields, we show the covariance of the equations of motion under the Jacobi–Lie

T–plurality, which is an O(D,D) rotation discussed below.

Let us begin with a simple case where the R–R fields and the spectator fields yµ (which

do not transform under the O(D,D) rotation) are not present. We consider an ansatz for the

NS–NS sector fields,

HMN (x) = EMA(x) ENB(x) ĤAB , e−2d(x) = e−2ϕ(x) e−∆(x)|det `am(x)| , (3.2)

where ĤAB is constant, ϕ(x) is a certain function, and we have defined

EAM ≡ e∆(x)EA
M (x) = e∆

 ema 0

−πac emc e−2∆ ram

 ∈ O(D,D) . (3.3)

When the target space is of this form, this background is called Jacobi–Lie symmetric.

If we parameterize the constant matrix ĤAB as

ĤAB ≡

 ĝab −(ĝ β̂)a
b

(β̂ ĝ)ab (ĝ−1 − β̂ ĝ β̂)ab

 , (3.4)

by comparing the parameterization (3.1) with (3.2), the metric and the B-field can be ex-

pressed as gmn +Bmn = Emn where Emn is the inverse matrix of

Emn ≡ e2∆
(
Êab + πab

)
ema e

n
b = e2∆ Êab ema enb + πmn , Êab ≡ ĝab + β̂ab . (3.5)
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The can be also expressed as

gmn +Bmn = e−2∆ Eab ram rbn , (Eab) ≡ (Êab + πab)−1 . (3.6)

The standard dilaton Φ can be found as

e−2Φ =
√
|det ĝab| e−2ϕ(x)|det(Êab + πab) det(aa

b)| . (3.7)

The structure constants Za , which are not present in the Poisson–Lie T -duality, produce the

overall factor e−2∆ both in the metric and the B-field. We find that Emn satisfies

£vaEmn + 2Za Emn = −
(
fa
bc + 2 δba Z

c − 2 δca Z
b
)
Emp vpb v

q
c Eqn . (3.8)

Here, let us comment on the difference between our proposal and the one studied in [17].

In [17], the metric and the B-field are identified as

gmn +Bmn = Emn , Emn ≡ e2∆ Emn = Eab ram rbn , (3.9)

for which we have

£vaEmn = − e2∆
(
fa
bc + 2 δba Z

c − 2 δca Z
b
)
Emp v

p
b v

q
c Eqn . (3.10)

The difference is only in the overall factor. Below, we show the covariance of the equations

of motion under the Jacobi–Lie T -plurality by adopting the former choice gmn +Bmn = Emn
and using the dilaton (3.7).

The generalized fluxes associated with EAM are defined as

FABC ≡ 3W[ABC] , FA ≡ WB
AB + 2DAd ,

WABC ≡ −DAEBM EMC , DA ≡ EAM ∂M .
(3.11)

Using the algebraic and the differential identities, we find

FABC = e∆ FABC , FA = EAM FM , FM = 2 ∂Md+

∂m ln|det `am| − ∂m∆

−fbba vma

 , (3.12)

where FABC is the one given in (2.6). If fb
ba does not vanish, we make a replacement [21]

∂Md→ ∂Md+ XM , XM =
(
0, 1

2 fb
ba vma

)
, (3.13)

which corresponds to introducing the dual coordinate dependence into the dilaton [34, 35]

and the background becomes a solution of the generalized supergravity equations of motion

[35–37].3 Then, by using (3.2), the single-index flux becomes

FA = e∆ FA , FA = 2EA
M ∂Mϕ = 2

(
Daϕ, −πabDbϕ

)
, (3.14)

3We do not consider such examples in this paper, but in general, choosing the coordinates such that the

Killing vector Im = 1
2
fb
ba vma becomes I = ∂z , we add z̃ to the DFT dilaton d given in Eq. (3.2).
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and we suppose that FA ≡ EAM FM is constant.

In general, the equations of motion of DFT are given by

R = 0 , GAB = 0 . (3.15)

Here, R and GAB, under the section condition, can be expressed as

R ≡ ĤAB
(
2DAFB −FAFB

)
+ 1

12 Ĥ
AD
(
3 ηBE ηCF − ĤBE ĤCF

)
FABC FDEF , (3.16)

GAB ≡ 2 ĤD[ADB]FD − 1
2 Ĥ

DE (ηAF ηBG − ĤAF ĤBG)
(
FD −DD

)
FEFG

− ĤE [A
(
FD −DD

)
FB]DE + 1

2

(
ηCE ηDF − ĤCE ĤDF

)
ĤG[AFCDB]FEFG . (3.17)

In our setup, we find DDFABC = e2∆ ZD FABC and DDFA = e2∆ ZD FA , and we obtain

R = e2∆R , GAB = e2∆GAB , (3.18)

where R and GAB are constants of the form

R ≡ ĤAB (2ZA FB − FA FB) + 1
12 Ĥ

AD (3 ηBE ηCF − ĤBE ĤCF )FABC FDEF , (3.19)

GAB ≡ 2 ĤD[A FB] FD − 1
2 Ĥ

DE (ηAF ηBG − ĤAF ĤBG) (FD − ZD)FEFG

− Ĥ [A
E (FD − ZD)FB]DE + 1

2 (ηCE ηDF − ĤCE ĤDF ) ĤG[A FCD
B] FEFG . (3.20)

Then the equations of motion, namely R = 0 and GAB = 0 , are manifestly covariant under

the O(D,D) rotation

FABC → CA
D CB

E CC
F FDEF , ZA → CA

B ZB ,

ĤAB → CA
C CB

D ĤCD , FA → CA
B FB .

(3.21)

The transformations in the first line are equivalent to a redefinition of generators

TA → CA
B TB , (3.22)

while those in the second line determine the transformation rules of ĤAB and ϕ . This O(D,D)

symmetry is the Jacobi–Lie T -plurality and is a manifest symmetry of DFT. Since we are

assuming Za = 0 , the constant O(D,D) matrix CA
B needs to satisfy

Cab Zb = 0 . (3.23)

For later convenience, let us also find the transformation rule of the generalized Ricci

tensor SMN . We define the double vielbein VA
B ≡ (Va

B, Vā
B) ∈ O(D,D) and its inverse VA

B

through

ĤAB = VA
A VB

B ĤAB , ηAB = VA
A VB

B ηAB , VA
C VC

B = δBA , (3.24)
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where

(ĤAB) ≡

ηab 0

0 ηāb̄

 , (ηAB) ≡

ηab 0

0 −ηāb̄

 , (3.25)

and ηab ≡ ηāb̄ ≡ diag(−1, 1, . . . , 1) . We suppose that the double vielbein is transformed as

VA
B → CA

C VC
B , (3.26)

under the Jacobi–Lie T -duality, and then the transformation rule for

GAB ≡ VAA VBB GAB , (3.27)

is found as

e−2∆′ G′AB = e−2∆ GAB . (3.28)

We find that the only non-vanishing components of GAB are Gab̄ , and using these, we can

express the generalized Ricci tensor as

SMN =
(
EMA ENB + ENA EMB

)
Vc
A Vd̄

B Gcd̄ . (3.29)

Then, using (3.28), we find the transformation rule of the generalized Ricci tensor SMN as

e−2∆′ E ′AM E ′BN S ′MN = e−2∆CA
C CB

D ECM EDN SMN . (3.30)

Namely, under the Jacobi–Lie T -plurality, or a local O(D,D) rotation of the generalized

metric,

HMN (x)→ H′MN (x′) =
[
hH(x)ht

]
MN

, hM
N ≡ E ′MA(x′)CA

B EBN (x) , (3.31)

the generalized Ricci tensor transforms as

SMN (x)→ S ′MN (x′) = e2 (∆′−∆)
[
hS(x)ht

]
MN

. (3.32)

Unlike the case of the Poisson–Lie T -duality, the generalized Ricci tensor is transformed by a

local O(D,D)× R+ rotation. As we discuss below, this additional R+ transformation makes

the transformation rule of the R–R fields slightly non-trivial. Before considering the R–R

fields, let us provide several examples.

3.1 An example without Ramond–Ramond flux

Let us consider a eight-dimensional Leibniz algebra with

f12
2 = −1 , f12

3 = 1 , f13
3 = −1 , Z1 = −2 , (3.33)
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which is a direct sum of the six-dimensional Leibniz algebra ((IV,−4X̃1), (I, 0)) of [25] and a

two-dimensional Abelian algebra. Using a parameterization g = exT1 ey T2 ez T3 ewT4 , we find

v1 = ∂x + y ∂y + (z − y) ∂z , v2 = ∂y , v3 = ∂z , v4 = ∂w ,

e1 = ∂x , e2 = ex(∂y − x ∂z) , e3 = ex ∂z , e4 = ∂w .
(3.34)

Computing the matrix MA
B , we find

πab = 0 , ∆ = −2x . (3.35)

Then, using the constant matrices

ĝab =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 , β̂ab = 0 , (3.36)

we obtain a 4D metric

ds2 = 2 e3x dx (dz + x dy) + e2x dy2 + e4x dw2 . (3.37)

In order to find a solution of DFT, we choose the function ϕ as

ϕ = −4
3 x , (3.38)

which yields

FA =
(
−8

3 , 0, 0, 0, 0, 0, 0, 0
)
. (3.39)

Then the DFT dilaton and the standard dilaton become

e−2 d = e
14x
3 , e−2 Φ = e−

4x
3 . (3.40)

We can check that this dilaton and the metric (3.37) satisfy the equations of motion. In the

following, we consider the Jacobi–Lie T -pluralities of this solution.

3.1.1 Generalized Yang–Baxter deformation

Let us perform an O(4, 4) rotation TA → CA
B TB with

CA
B =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 c 0 0 1 0 0

0 −c 0 0 0 0 1 0

0 0 0 0 0 0 0 1


, (3.41)
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which corresponds to a generalized Yang–Baxter deformation. After this rotation, the struc-

ture constants becomes

f12
2 = −1 , f12

3 = 1 , f13
3 = −1 , f1

23 = 2 c , Z1 = −2 , (3.42)

and this corresponds ((IV,−4X̃1), (II, 0)) or ((IV.iii, 4X̃1), (II, 0)) of [25] (accompanied by the

two-dimensional Abelian algebra), for c = 1/2 or c = −1/2 , respectively.4

Again we employ the same parametrization of the group element and the left-/right-

invariant vector fields (3.34). Here, we find the Jacobi–Lie structure as

π = c (1− e−2x) ∂y ∧ ∂z , (3.43)

and ϕ is not changed because FA is not deformed under this O(4, 4) rotation: FA = CA
B FB .

Then, we find the deformed supergravity fields as

ds2 = 2 e3x dx (dz + x dy) + e2x dy2 + e4x dw2 + e2x c2 dz2 ,

B2 = c e5x dx ∧ dy , e−2 Φ = e−
4x
3 .

(3.44)

This is again a supergravity solution for an arbitrary value of c .

3.1.2 Another Jacobi–Lie T -plurality

Here we consider another O(4, 4) transformation

CA
B =



1 0 0 0 0 0 0 0

0 0 −1 0 0 1
2

0 0

0 0 1 0 0 1
2

0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 − 1
2

0

0 1 0 0 0 0 1
2

0

0 0 0 0 0 0 0 1


. (3.45)

We then obtain the algebra with

f12
2 = −2 , f12

3 = −1 , f13
2 = −1 , f13

3 = −2 , f1
23 = 1 , Z1 = −2 . (3.46)

The six-dimensional part of this algebra is known as ((VI2,−4 X̃1), (II, 0)) . Using the param-

eterization, g = exT1 ey T2 ez T3 ewT4 , we obtain

v1 = ∂x + (2y + z) (∂y + ∂z) , v2 = ∂y , v3 = ∂z , v4 = e4 = ∂w ,

e1 = ∂x , e2 = ex

2

[
(e2x +1) ∂y + (e2x−1) ∂z

]
, e3 = ex

2

[
(e2x−1) ∂y + (e2x +1) ∂z

]
.

(3.47)

4The algebra with c > 0 or c < 0 can be mapped to to the one with c = 1/2 or c = −1/2 , respectively.
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We can compute several quantities as

π = x ∂y ∧ ∂z , ∆ = −2x , ϕ = −4
3 x . (3.48)

The associated supergravity fields are found as

ds2 = e4x(dw2 − x2 dx2)− 2 e3x dx (dy − dz) + 1
4 e−2x(dy + dz)2 ,

B2 = 1
2 ex x dx ∧ (dy + dz) , e−2 Φ = e

2x
3 ,

(3.49)

and this is a solution of the supergravity.

3.2 Ramond–Ramond fields

We here introduce the R–R fields by considering the case D = 10 . In the presence of the R–R

fields, the equations of motion for the generalized metric and the DFT dilaton become

R = 0 , SMN = EMN , (3.50)

where EMN denotes the energy-momentum tensor of the R–R fields. Obviously, if we transform

the energy-momentum tensor as

e−2∆ EAM EBN EMN = e−2∆′ E ′AM E ′BN E ′MN , (3.51)

the equations of motion for the generalized metric transform covariantly as

e−2∆ EAM EBN
(
SMN − EMN

)
= e−2∆′ E ′AM E ′BN

(
S ′MN − E ′MN

)
. (3.52)

By using the results of the Poisson–Lie T -duality [20–22], we can easily see that the transfor-

mation rule (3.51) can be realized by using the ansatz

|F 〉 = e−d(x) e∆(x) SU |F̂〉 , (3.53)

where U ≡ (EMA) and SU is a matrix representation of U in the spinor representation (see [22]

for our convention). The presence of e∆(x) is the only difference from the Poisson–Lie T -duality.

The O(10, 10) spinor |F̂〉 is constant, and in type IIA/IIB theory, it can be expanded as

|F̂〉 =
∑

p : even/odd

1

p!
F̂a1···ap Γa1···ap |0〉 , (3.54)

where |0〉 is the Clifford vacuum satisfying Γa|0〉 = 0 . Under the ansatz (3.53), the equations

of motion of the R–R fields become the algebraic relation(
1
3! ΓABC FABC − 1

2 ΓA FA + ΓA ZA
)
|F̂〉 = 0 . (3.55)

When we consider an O(D,D) rotation (3.21), by rotating the constant spinor |F̂〉 also as

|F̂〉 → SC |F̂〉
(
ΓB CB

A = SC ΓA S−1
C

)
, (3.56)
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the equations of motion are manifestly covariant. This shows that the whole DFT equations

of motion are covariant under the Jacobi–Lie T -plurality. When the supergravity fields have

the form (3.2) and (3.53), we call the background the Jacobi–Lie symmetric.

For convenience, let us also express (3.53) in terms of the differential form. By using a

polyform

F ≡
∑

p : even/odd

1

p!
Fm1···mp dxm1 ∧ · · · ∧ dxmp , (3.57)

in type IIA/IIB theory, we have

F = e−ϕ(x) e−(p−D+1
2

) ∆(x)|det aa
b|

1
2 e

1
2
πabιaιb

[ ∑
p : even/odd

1
p! Fa1···ap r

a1 ∧ · · · ∧ rap
]
. (3.58)

Note that here we are using the field strength in the A-basis (which satisfies dF = 0) and this

is related to the one in C-basis as

G = e−B2∧ F , (3.59)

that satisfies the Bianchi identity

dG+H3 ∧G = 0 . (3.60)

3.3 An example with Ramond–Ramond fluxes

Let us consider a 20-dimensional DD+ with the structure constants

f12
2 = −1 , f12

3 = −1 , f13
2 = −1 , f13

3 = −1 , Z1 = −2 . (3.61)

The non-trivial subalgebra generated by {T1, T2, T3} are known as ((III,−4X̃1), (I, 0)) . Using

the parameterization g = exT1 ey T2 ez T3 ew4 T4 · · · ew10 T10 , the non-trivial part of vma and ema

are found as (the other components are just va = ea = ∂a)

v1 = ∂x + (y + z) (∂y + ∂z) , v2 = ∂y , v3 = ∂z ,

e1 = ∂x , e2 = 1
2

[
(e2x +1) ∂y + (e2x−1) ∂z

]
, e3 = 1

2

[
(e2x−1) ∂y + (e2x +1) ∂z

]
.

(3.62)

We introduce constants

ĝab =



1 1 0 0 0

1 1 1 0 0

0 1 1 0 0

0 0 0 1 0

. . .

0 0 0 0 1


, β̂ab = 0 , |F̂〉 = 6

√
2 Γ1

[
(Γ2 + Γ3)Γ4···10 − 1

]
|0〉 , (3.63)
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and then, by using ∆ = −2x and supposing ϕ = 0, the supergravity fields are found as

ds2 = e4x
[
dx2 + dx (dy − dz) + ds2

T 7

]
+ e2x dx (dy + dz) + (dy + dz)2 ,

B2 = 0 , e−2 Φ = e−16x, F1 = −6
√

2 e−8x dx ,
(3.64)

where ds2
T 7 ≡ dw2

4 + · · · + dw2
10 is a seven-dimensional flat metric. This is a solution of type

IIB∗ supergravity.

Now we consider a generalized Yang–Baxter deformation with

r23 =
η

2
. (3.65)

The resulting DD+ has the structure constants

f12
2 = −1 , f12

3 = −1 , f13
2 = −1 , f13

3 = −1 , f1
23 = η , Z1 = −2 . (3.66)

The structure constants f1
23 produces the Jacobi–Lie structure π = η

2 (1− e−2x) ∂y ∧ ∂u and

the supergravity fields are

ds2 = e4x
[
dx2 + dx (dy − dz) + ds2

T 7

]
+ e2x dx (dy + dz) + (dy + dz)2 − η2

4 e4x dx2 ,

B2 = −η
2 e2x dx ∧ (dy + dz) , e−2 Φ = e−16x, F1 = −6

√
2 e−8x dx .

(3.67)

This is again a solution of type IIB∗ supergravity and the Jacobi–Lie T -duality indeed works

as a solution generating technique.

3.4 Jacobi–Lie T -plurality with spectator fields

The inclusion of the spectator fields is straightforwardly similar to the case of the Poisson–Lie

T -duality/T -plurality (see Appendix B of [22]). Here, instead of repeating the presentation

of [22], we only comment on some non-trivialities that are specific to the Jacobi–Lie T -plurality.

We consider a ten-dimensional spacetime with the “internal coordinates” xm (m = 1, . . . , D)

and the “external coordinates” yµ (µ = D + 1, . . . , 10). In the string sigma model, the scalar

fields yµ(σ) are called the spectator fields because they are invariant under the non-Abelian

duality. We formally double all of the directions, and the generalized coordinates are given by

xM = (xm, x̃m, y
µ, ỹµ). The “flat” indices A,B and A,B also run over the 20 directions. The

underlying algebra DD+ is associated with the 2D-dimensional doubled coordinates {xm, x̃m} ,

and for example, the generalized frame fields constructed in the previous sections are embed-

ded into the first 2D × 2D-block of the 20 × 20 matrix EAM . We assume that EAM and

the double vielbein VA
B have block-diagonal forms, i.e., they are given by direct sums of the

2D× 2D-block associated with the internal directions and (20− 2D)× (20− 2D)-blocks asso-

ciated with the external directions. In particular, we suppose that the external block of EAM
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is an identity matrix. With such understanding, the conditions for the Jacobi–Lie symmetry

in the presence of the spectator fields, but without the R–R fields, are given by

HMN = EMA(x) ENB(x) ĤAB(y) , ĤAB(y) ≡ VAA(y)VB
B(y) ĤAB , (3.68)

e−2d = e−2d̂(y) e−2d(x), e−2d(x) ≡ e−2ϕ(x) e−∆(x)|det `am| . (3.69)

The difference is that VA
A(y) is no longer constant and that the dilaton also acquires the

y-dependence d̂(y) . By following the same discussion as [22], we can show that the O(D,D)

transformation which rotates the internal indices is a symmetry of the equation of motion.

When the R–R fields are also present, the symmetry becomes slightly subtle. In the

presence of the spectator fields, the tensor GAB becomes

GAB ≡ 2 ĤD[ADB]FD − 1
2 Ĥ
DE (ηAF ηBG − ĤAF ĤBG)

(
FD −DD

)
FEFG

− ĤE [A (FD −DD)FB]DE + 1
2

(
ηCE ηDF − ĤCE ĤDF

)
ĤG[AFCDB]FEFG ,

(3.70)

where DA ≡ VAB EBM ∂M and the fluxes contain both the external and internal parts:

FA = F̂(y) + e∆(x) VA
B(y)FB , (3.71)

FABC = F̂ABC(y) + e∆(x) VA
D(y)VB

E(y)VC
F (y)FDEF . (3.72)

The internal/external parts contribute to the internal/external components of the matrix GAB,

respectively. Then, the internal components of GAB (or SMN ) scale as e2∆ while the external

components are independent of ∆ . In order to realize the equations of motion SMN = EMN ,

the energy-momentum tensor EMN also should scale in the same way, but it is non-trivial.

Then we can consider two possibilities: (i) the external components of SMN vanish, or (ii)

the internal components of SMN vanish by themselves. The former is the case studied in the

previous sections. In that case, we choose the R–R fields as

|F 〉 = e−d(x) e∆(x) SU |F̂(y)〉 , (3.73)

which is a natural extension of (3.53) including the y-dependence into |F̂〉. In the latter case,

the scale factor e∆(x) is not necessary and we consider

|F 〉 = e−d(x) SU |F̂(y)〉 . (3.74)

In terms of the differential form, this can be expressed as

F = e−ϕ(x) e
D−1
2

∆(x)|det aa
b|

1
2 e

1
2
πabιaιb

[ ∑
p:even/odd

1
p! Fâ1···âp(y) E â1 ∧ · · · ∧ E âp

]
, (3.75)

where we have defined E â ≡ E âm̂ dxm̂ with xm̂ ≡ (xm, yµ) and {â} = {a, µ̇} . Here, the dotted

indices {µ̇} denote the “flat” indices associated with {µ} and E âm̂ is a component of EAM .

The existence of the two options are specific to the Jacobi–Lie T -plurality, and these two

are degenerate in the case of the Poisson–Lie T -duality (where ∆ = 0). In the next subsection,

we present an example using the latter option (3.74).
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3.5 An example with spectator fields

We consider an eight-dimensional DD+ (D = 4) with the structure constants given in Eq. (3.61).

We introduce the ten-dimensional coordinates

{xm; yµ} = {x, y, u, v ; z, r, ξ, φ1, φ2, φ3} , (3.76)

and yµ are the spectator fields. Using the parameterization g = exT1 ey T2 euT3 ev T4 , we obtain

the left-/right-invariant vector fields as given in Eq. (3.62). We choose the metric ĝab(y) ,

dilaton d̂(y) , the R–R field |F̂(y)〉, and ϕ(x) as

ĝab =



1
z2

1
z2

0 0 0
1
z2

1
z2

− 1
z2

0 0

0 − 1
z2

1
z2

0 0 05×5

0 0 0 1
z2

0

0 0 0 0 1
z2

05×5 gS5


, β̂ab = 0 , e−2d̂ =

cos r cos ξ sin3 r sin ξ

z5
,

|F̂〉 = 4
(
−z−5 Γu̇v̇ẋẏż + sin3 r cos r sin ξ cos ξ Γṙξ̇φ̇1φ̇2φ̇3

)
, ϕ = −2x ,

(3.77)

where the metric gS5 on S5 corresponds to the line element

ds2
S5 ≡ dr2 + sin2 r

(
dξ2 + cos2 ξ dφ2

1 + sin2 ξ dφ2
2

)
+ cos2 r dφ2

3 . (3.78)

Using πab = 0 and ∆ = −2x, the generalized frame fields become

EAM (x) =



e−2x 0 0 0 0 0 0 0

0 e−x cosh x e−x sinh x 0 0 0 0 0

0 e−x sinh x e−x cosh x 0 0 0 0 0

0 0 0 e−2x 0 0 0 0 0

0 0 0 0 e2x 0 0 0

0 0 0 0 0 ex cosh x − ex sinh x 0

0 0 0 0 0 − ex sinh x ex cosh x 0

0 0 0 0 0 0 0 e2x

0 112×12


. (3.79)

By acting the twist, we find that this is the AdS5×S5 solution of type IIB supergravity,

ds2
AdS5×S5 = z−2

(
ds2

4D + dz2
)

+ ds2
S5 , B2 = 0 , Φ = 0 ,

ds2
4D ≡ e4x

[
dx2 + dx dy + dy2 + du2 − du (dx+ 2 dy) + dv2

]
+ e2x dx (du+ dy) , (3.80)

F = 4
[
−e6x dx ∧ dy ∧ du ∧ dv ∧ dz

z5
+ sin3 r cos r sin ξ cos ξ dr ∧ dξ ∧ dφ1 ∧ dφ2 ∧ dφ3

]
.

Here we have used e−ϕ(x) e
D−1
2

∆(x)|det aa
b|

1
2 = 1 (where D = 4), and

E1 ∧ · · · ∧ E4 ∧ E ż = e6x dx ∧ dy ∧ du ∧ dv ∧ dz . (3.81)

Again we perform a generalized Yang–Baxter deformation (3.65) and obtain the DD+ given

in Eq. (3.66). The ∆ is not changed and the Jacobi–Lie structure is π = η
2 (1− e−2x) ∂y ∧ ∂u .
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The deformed geometry is

ds2 = ds2
AdS5×S5 −

η2 e4x(2 e2x−1)2dx2

4 z6
, B2 =

η
(
e6x−1

2 e4x
)

z4
dx ∧ (dy − du) ,

Φ = 0 , G3 =
2 η e5x (coshx+ 3 sinhx) dx ∧ dv ∧ dz

z5
, (3.82)

G5 = 4
[
−e6x dx ∧ dy ∧ du ∧ dv ∧ dz

z5
+ sin3 r cos r sin ξ cos ξ dr ∧ dξ ∧ dφ1 ∧ dφ2 ∧ dφ3

]
.

This also satisfies the type IIB supergravity equations of motion.

In order to perform more interesting Jacobi–Lie T -plurality, the classification of the six-

dimensional DD+ will be useful. The classification of the Jacobi–Lie bialgebra has been done

in [25] but which bialgebras are in the same orbit O(D,D) rotations have not been studied.

If such a classification is worked out, we may find more dual geometries from the AdS5×S5

solution (3.80).

4 Jacobi–Lie T -plurality in string theory

In the string sigma model, we can clearly see the symmetry of the Poisson–Lie T -duality by

using a formulation called the E-model [38]. The E-model is defined by a Hamiltonian

H =
1

4πα′

∫
dσ ĤAB jA(σ) jB(σ) , (4.1)

and the current algebra

{jA(σ) , jB(σ′)} = FAB
C jC(σ) + ηAB δ

′(σ − σ′) , (4.2)

where ĤAB is a constant O(D,D) matrix, FAB
C is a certain structure constant, and ηAB is

the O(D,D)-invariant metric. The dynamics is governed by the O(D,D)-manifest equations

(4.1) and (4.2), and the time evolution of the currents can be determined by ∂τ jA = {jA, H} .

If we consider string theory on a target space with the generalized metric

HMN = EM
AEN

B ĤAB , (4.3)

where ĤAB ∈ O(D,D) are certain constants and EA
M are the generalized frame fields satisfy-

ing £̂EAEB = −FABC EC with FAB
C the structure constants of a Drinfel’d double, the string

equations of motion can be expressed as Eqs. (4.1) and (4.2). Here, the current is given by

jA(σ) = EA
M (x(σ))ZM (σ) , ZM (σ) ≡

 pm(σ)

∂σx
m(σ)

 , (4.4)

where pm are the canonical momenta associated with xm . Then we can see the covariance of

the string equations of motion under the Poisson–Lie T -duality/T -plurality.
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Now let us consider the case of the Jacobi–Lie T -plurality by assuming Za = 0 . Here, the

generalized metric is expressed as

HMN = EMA ENB ĤAB , (4.5)

where EMA satisfies

£̂EAEB
M = − e∆

(
XAB

C − 2Z[A δ
C
B] − ηAB Z

C
)
ECM = − e∆ FAB

C ECM , (4.6)

and FAB
C is the one given in (2.5) with Za = 0 . Then introducing the currents

JA(σ) ≡ EAM (x(σ))ZM (σ) , (4.7)

we obtain the Hamiltonian and the current algebra as

H =
1

4πα′

∫
dσ ĤAB JA(σ)JB(σ) , (4.8)

{JA(σ) ,JB(σ′)} = e∆(x(σ)) FAB
C JC(σ) + ηAB δ(σ − σ′) . (4.9)

We find that the explicit x-dependence in e∆(x(σ)) complicates the right-hand side of the

equation of motion ∂τJA = {JA, H} , and accordingly the covariance under the Jacobi–Lie

T -plurality is not manifest.

Let us also discuss the covariance from another perspective. If we start with the action

S = − 1

4πα′

∫
Σ

d2σ
√
−γ
(
γαβ − εαβ

) (
gmn +Bmn

)
∂αx

m ∂βx
n , (4.10)

the equations of motion can be expressed as

dJa =
1

2

(
£vagmn dxm ∧ ∗dxn + £vaBmn dxm ∧ dxn

)
, (4.11)

where

Ja ≡ vma
(
gmn ∗ dxn +Bmn dxn

)
. (4.12)

If we identify the metric and the B-field as gmn + Bmn = Emn , by using Eq. (3.10), the

equations of motion can be rewritten in a suggestive form [17]

dJa = 1
2 e−2∆(fa

bc + 2 δba Z
c − 2 δca Z

b) Jb ∧ Jc . (4.13)

However we cannot say anything more from this relation.

In the case of the Poisson–Lie T -duality, where ∆ = 0 and Za = 0 , we can regard the

relation (4.13) as a Maurer–Cartan equation and identify the current Ja as the right-invariant

1-form

dg̃ g̃−1 = Ja T
a , g̃ ≡ ex̃a T

a
. (4.14)
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Then, we can rewrite the equations of motion in a manifestly O(D,D)-covariant form as (see

section 6.1 of [22] for the details)

P̂A = ĤAB ∗ P̂B , (4.15)

where P̂A is constructed by using an element of the Drinfel’d double l ≡ g g̃ as

P̂ ≡ P̂A TA ≡ dl l−1 . (4.16)

The equations of motion can be also expressed as the O(D,D) covariant Maurer–Cartan

equation for the Drinfel’d double

dP̂A +
1

2
FBC

A P̂B ∧ P̂C = 0 . (4.17)

In the case of the Jacobi–Lie T -duality of [17], due to the presence of ∆ in Eq. (4.13), Ja

cannot be expressed by using g̃ and it is not clear how to construct a covariant or geometric

object similar to P̂A . If we instead identify the metric and the B-field as gmn + Bmn = Emn
as in the case of the Jacobi–Lie T -plurality, Eq. (3.8) leads to

dJa = 1
2 (fa

bc + 2 δba Z
c − 2 δca Z

b) Jb ∧ Jc + 2Zb r
b ∧ Ja . (4.18)

In this case, there is no scale factor, but due to the presence of the last term, this again cannot

be regarded as a Maurer–Cartan equation. According to the above considerations, we suspect

that the Jacobi–Lie T -plurality is not a symmetry of the string sigma model.

One of the reasons for the issue may be that the DD+ is a Leibniz algebra instead of a

Lie algebra. In the case of the Poisson–Lie T -duality, a string is fluctuating on the Drinfel’d

double and the position of the string is described by a map, l : Σ → D, from the worldsheet

to a Drinfel’d double D . However, in the case of the Leibniz algebra, a group-like global

structure is complicated and it is not clear how to describe the position of the string on the

doubled geometry similar to the case of the Drinfel’d double. A recent study [39] may be

useful in clarifying this point.

5 Conclusions

In this paper, we proposed a Leibniz algebra DD+ and showed that this provides an alter-

native description of the Jacobi–Lie bialgebra. Extending the standard procedure developed

in the Poisson–Lie T -duality, we showed that a DD+ systematically constructs a Jacobi–Lie

structures and the generalized frame fields satisfying £̂EAEB = −XAB
C EC . Using the gen-

eralized frame fields, we proposed a natural extension of the Poisson–Lie T -duality, which we

call the Jacobi–Lie T -plurality. We then showed that the Jacobi–Lie T -plurality (with the
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R–R fields and the spectator fields) is a symmetry of the equations of motion of DFT. As a

demonstration, we provided several examples of the Jacobi–Lie T -plurality. At the level of

the string sigma model, we were faced with a difficulty in the realization of the Jacobi–Lie

T -plurality, and this may indicate that the scale symmetry R+ is not a (classical) symmetry

of string theory. To clarify the status of this scale symmetry, it is important to check whether

the Jacobi–Lie T -plurality remains as a symmetry of α′-corrected supergravity by extending

recent works on the Poisson–Lie T -duality [40–42].

In M-theory, the exceptional Drinfel’d algebra (associated with the SL(5) duality group)

has been found as

Ta ◦ Tb = fab
c Tc , T a1a2 ◦ T b1b2 = −2 fc

a1a2[b1 T b2]c ,

Ta ◦ T b1b2 = fa
b1b2c Tc + 2 fac

[b1 T b2]c + 3Za T
b1b2 ,

T a1a2 ◦ Tb = −fba1a2c Tc + 3 f[c1c2
[a1 δ

a2]
b] T c1c2 − 9Zc δ

[c
b T

a1a2] .

(5.1)

If we decompose the index as a = {ȧ, ]} and assume fȧḃ
] = 0 , we find that the generators

{Tȧ, T ȧ ≡ T ȧ]} satisfy the subalgebra

Tȧ ◦ Tḃ = fȧḃ
ċ Tċ , T ȧ ◦ T ḃ = −fċȧḃ] T ċ ,

Tȧ ◦ T ḃ = −fȧḃċ] Tċ − fȧċḃ T ċ + (3Zȧ − fȧ]])T ḃ ,

T ȧ ◦ Tḃ = fḃ
ȧċ] Tċ + fḃċ

ȧ T ċ − (3Zḃ − fḃ]
])T ȧ + (3Zc − fċ]]) δȧḃ T

ċ .

(5.2)

This is noting but the DD+ under the identifications, fȧ
ḃċ = −fȧḃċ], Z ȧ = 0, and 2Zȧ =

3Zȧ− fȧ]] . Similarly, the extended Drinfel’d algebra in the type IIB picture also contains the

DD+ as a subalgebra. Thus, the Jacobi–Lie T -plurality is a subset of the proposed Nambu–

Lie U -duality.5 An issue in the Nambu–Lie U -duality is that the equations of motion of the

exceptional field theory are complicated and the covariance under the Nambu–Lie U -duality

cannot be easily proven. The results of this paper show that the non-Abelian duality works

as a solution generating transformation even when the Za is present. Further steps towards

the proof of Nambu–Lie U -duality will be taken in future work.

Another future direction is to study an extension of the Jacobi–Lie structure. An extension

of the Poisson structure is known as the Nambu–Poisson structure, and its further extension

is known as a Nambu–Jacobi structure [43]. In the context of the non-Abelian U -duality,

some generalized Nambu–Lie structures have been introduced and it is interesting to study

the extension by introducing a bi-vector E(2) that corresponds to the vector E introduced in

(2.32). In the case of the Jacobi–Lie structure, the vector fields are constructed as E ∝ Za ea
but in the case of the extended Drinfel’d algebras (in the M-theory picture), the bi-vector will

5We note that some DD+ cannot be embedded into the extended Drinfel’d algebra (see [4, 6]), and accord-

ingly, some Jacobi–Lie T -plurality cannot be realized as a Nambu–Lie U -duality.
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be given by E(2) ∝ Zab ea eb by using a bi-vector Za1a2 which appears in the decomposition of

the gauging ZA = (Za,
Za1a2√

2!
, · · · ). In the Nambu–Lie U -duality, we usually restrict ourselves

to keep only the first components Za, but as we discussed in section 2, this restriction is not

necessary to construct the Jacobi–Lie structures. It will be an interesting future work to keep

Za1a2 or higher multi-vectors to formulate a certain bialgebra associated with generalized

Nambu–Jacobi structures. It is also interesting to study the associated generalized Yang–

Baxter equations.

Acknowledgments

We thank Riccardo Borsato and Kentaroh Yoshida for a helpful correspondence. The work of

JJFM is supported by Universidad de Murcia-Plan Propio Postdoctoral, the Spanish Ministe-

rio de Economı́a y Competitividad and CARM Fundación Séneca under grants FIS2015-28521
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