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Abstract

We propose a Leibniz algebra, to be called DD+, which is a generalization of the

Drinfel’d double. We find that there is a one-to-one correspondence between a DD+ and

a Jacobi–Lie bialgebra, extending the known correspondence between a Lie bialgebra and

a Drinfel’d double. We then construct generalized frame fields EA
M ∈ O(D,D) × R+

satisfying the algebra £̂EA
EB = −XAB

C EC , where XAB
C are the structure constants

of the DD+ and £̂ is the generalized Lie derivative in double field theory. Using the

generalized frame fields, we propose the Jacobi–Lie T -plurality and show that it is a

symmetry of double field theory. We present several examples of the Jacobi–Lie T -plurality

with or without Ramond–Ramond fields and the spectator fields.
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1 Introduction

Recently the Poisson–Lie T -duality [1,2] or T -plurality [3] and their U -duality extensions [4–11]

have been studied and developed by using the duality-covariant formulations, such as double

field theory (DFT) [12–15] and its U -duality extensions. The Poisson–Lie T -duality is based

on a Lie algebra called the Drinfel’d double while the U -duality variant is based on the

exceptional Drinfel’d algebra (EDA) [4–7,9,16], which is an extension of the Drinfel’d double.

Unlike the Drinfel’d double, the structure constants XAB
C of EDA do not necessarily have

the antisymmetry, XAB
C 6= −XBA

C , and it is a Leibniz algebra rather than a Lie algebra.

In this paper, we study a minimal extension of the Drinfel’d double by allowing the structure

constants to admit the symmetric part X(AB)
C 6= 0 . Using this new Leibniz algebra, we study

an extension of the Poisson–Lie T -duality, which we call the Jacobi–Lie T -plurality.1

The proposed Leibniz algebra has the form

Ta ◦ Tb = fab
c Tc , T a ◦ T b = fc

ab T c ,

Ta ◦ T b =
(
fa
bc + 2 δba Z

c − 2 δca Z
b
)
Tc − facb T c + 2Za T

b ,

T a ◦ Tb = −fbac Tc + 2Za Tb +
(
fbc

a + 2 δab Zc − 2 δac Zb
)
T c ,

(1.1)

where a = 1, . . . , D , and fab
c (= −fbac) and fc

ab (= −fcba) are the structure constants of

two Lie subalgebras g (generated by Ta) and g̃ (generated by T a), respectively. This Leibniz

algebra admits a symmetric bilinear form

〈Ta, T b〉 = δba , 〈Ta, Tb〉 = 〈T a, T b〉 = 0 , (1.2)

and two subalgebras g and g̃ are maximally isotropic with respect to this. If Za = Za = 0 ,

this algebra reduces to the Lie algebra of the Drinfel’d double, but otherwise the “adjoint-

invariance” is relaxed as follows by allowing for a scale transformation:

δA〈TB, TC〉 ≡ 〈TA ◦ TB, TC〉+ 〈TB, TA ◦ TC〉 = 2ZA 〈TB, TC〉 , (1.3)

where TA ≡ (Ta, T
a) (A = 1, . . . , 2D) and ZA ≡ (Za, Z

a) . Since this Leibniz algebra is

an extension of the Drinfel’d double by admitting the scale symmetry R+, we call this an

extended Drinfel’d algebra DD+ . It turns out that this R+ symmetry provides a scale factor

similar to the trombone symmetry in supergravity [19].

In this paper, we show that the DD+ provides an alternative way to define the Jacobi–Lie

algebra, and explain how to construct geometric objects such as the Jacobi–Lie structures

1The Jacobi–Lie T -duality studied in [17, 18] is very similar to our proposal, and this paper is strongly

inspired by these papers. However, our identification of the supergravity fields is different from the one given

in [17,18]. The details are explained in sections 3 and 4.
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from a given DD+. We also show that we can systematically construct the generalized frame

fields EA
M satisfying the frame algebra

£̂EAEB = −XAB
C EC , (1.4)

where £̂ denotes the generalized Lie derivative in DFT and XAB
C are the structure constants

of the DD+. Similar to the recent studies on the Poisson–Lie T -duality/T -plurality in the

context of DFT [20–22], exploiting the relation (1.4), we show that the Jacobi–Lie T -plurality

is a symmetry of type II DFT.

At the level of the supergravity (or more precisely, DFT), the proposed Jacobi–Lie T -

duality is indeed a symmetry of the equations of motion even if the Ramond–Ramond (R–R)

fields or spectator fields are present. However, at the level of the string sigma model, due to

the presence of the scale factor, we find difficulty in showing the covariance of the equations of

motion under the Jacobi–Lie T -plurality. We discuss this issue from several approaches and

also discuss the relation to the Jacobi–Lie T -duality proposed in [17].

This paper is organized as follows. In section 2, after introducing the Leibniz algebra

DD+, we explain how to construct the Jacobi–Lie structures and the generalized frame fields

from the DD+. We find that the generalized frame fields EA
M have a dependence on the

dual coordinates x̃m of the doubled space (although the section condition of DFT is not

broken). We also consider several examples of DD+ and explicitly construct the Jacobi–Lie

structures and the generalized frame fields EA
M . A relation between the DD+ and embedding

tensors in gauged supergravities is also briefly discussed. In section 3, we provide a definition

of the Jacobi–Lie symmetric backgrounds and show that the equations of motion of DFT

have a manifest symmetry under the Jacobi–Lie T -plurality. For convenience, we provide

several concrete examples of the Jacobi–Lie T -plurality with and without the R–R fields or

the spectator fields. In section 4, we discuss the issue of the Jacobi–Lie T -plurality in the

string sigma model. Section 5 is devoted to conclusion and discussion.

2 Jacobi–Lie structures

In this section, we propose a Leibniz algebra DD+ and construct several quantities, such as the

Jacobi–Lie structure, which play an important role in the Jacobi–Lie T -plurality. In section

2.3, we clarify the relation between the DD+ and the Jacobi–Lie bialgebra studied in [23–26].

Several examples are given in section 2.4. In section 2.5, we comment on a relation between

DD+ and embedding tensors in half-maximal 7D gauged supergravity.
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2.1 Algebra

A (classical) Drinfel’d double can be defined as a 2D-dimensional Lie algebra d which admits

an adjoint-invariant metric 〈·, ·〉 and allows a decomposition d = g⊕ g̃, where g and g̃ form Lie

subalgebras that are maximally isotropic with respect to 〈·, ·〉 . We choose the basis Ta ∈ g

and T a ∈ g̃ such that the metric becomes 〈Ta, T b〉 = δba , and denote the subalgebras as

[Ta, Tb] = fab
c Tc and [T a, T b] = fc

ab T c . Then, from the adjoint invariance

〈[TA, TB], TC〉+ 〈TB, [TA, TC ]〉 = 0 , (2.1)

we can determine the mixed-commutator as

[Ta, T
b] = fa

bc Tc − facb T c . (2.2)

The adjoint-invariant metric can be expressed as

〈TA, TB〉 = ηAB , ηAB =

 0 δba

δab 0

 , (2.3)

and we raise or lower the indices A,B by using ηAB and its inverse ηAB .

Now, let us introduce the Leibniz algebra DD+,

TA ◦ TB = XAB
C TC . (2.4)

We keep assuming that g and g̃ are maximally-isotropic Lie subalgebras but relax the adjoint-

invariance as in Eq. (1.3). We then find that the structure constants should have the form

XAB
C ≡ FABC + ZA δ

C
B − ZB δCA + ηAB Z

C , (2.5)

where FAB
C = FABD η

DC , FABC = F[ABC] , and FABC has the only non-vanishing compo-

nents Fab
c and Fa

bc . Defining fab
c and fc

ab through Ta ◦ Tb = fab
c Tc and T a ◦ T b = fc

ab T c ,

we can parameterize FABC as

Fabc = 0 , Fab
c = fab

c − Za δcb + Zb δ
c
a , Fa

bc = fa
bc − δba Zc + Zb δca , F abc = 0 , (2.6)

where ZA = (Za, Z
a) . By substituting these into Eq. (2.4), we obtain the algebra (1.1).

The closure conditions, or the Leibniz identities,

TA ◦ (TB ◦ TC) = (TA ◦ TB) ◦ TC + TB ◦ (TA ◦ TC) , (2.7)

require the following identities for the structure constants:

f[ab
e fc]e

d = 0 , fe
[ab fd

c]e = 0 , (2.8)

4 f[a
e[c fb]e

d] − fabe fecd + 4 f[a
cd Zb] + 4 fab

[c Zd] + 8 fe[a
[c δ

d]
b] Z

e − 16Z[a δ
[c
b] Z

d] = 0 , (2.9)

fab
c Zc = 0 , fa

bc Zc = fac
b Zc , Zc fc

ab = 0 , Za Za = 0 . (2.10)
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2.2 Generalized frame fields

Here we construct the generalized frame fields EA
M . We introduce a group element g = ex

a Ta

and define the left-/right-invariant 1-forms as

` = `am dxm Ta = g−1 dg , r = ram dxm Ta = dg g−1 . (2.11)

Their inverse matrices are denoted as vma and ema (vma `
b
m = δba = ema r

b
m). We then consider

the adjoint-like action as

g . TA ≡ ex
b Tb◦ TA = TA + xb Tb ◦ TA + 1

2! x
b Tb ◦

(
xc Tc ◦ TA

)
+ · · · , (2.12)

and define

g−1 . TA ≡MA
B(g)TB . (2.13)

It turns out that this matrix MA
B can be parameterized as

MA
B ≡

 aa
b 0

−πac acb e−2∆(a−1)b
a

 , (2.14)

where πab is an antisymmetric field: πab = −πba .

Similar to the case of the Drinfel’d double [27] (see also [9] for a general discussion), we

find that aa
b, πab, and ∆ satisfy the algebraic identities

fab
c = aa

d ab
e (a−1)f

c fde
f , (2.15)

fd
[ab πc]d + fde

[a πb|d| πc]e − 2π[ab πc]d Zd + 2π[ab Zc] = 0 , (2.16)

fa
bc = e−2∆ aa

d (a−1)e
b (a−1)f

c fd
ef + 2 fad

[b πc]d + 6 δ[b
a π

cd] Zd , (2.17)

aa
b Zb = Za , Za + πab Zb = e−2∆(a−1)b

a Zb
(
⇔ MA

B ZB = ZA
)
, (2.18)

and the differential identities

Da∆ = Za , Daab
c = −fabd adc , (2.19)

Daπ
bc = fa

bc + 2 fad
[b π|d|c] − 2Za π

bc − 4Z [b δc]a , (2.20)

where Da ≡ ema ∂m . Combining these identities, we also find

£va∆ = Za , £vaab
c = −abd fadc , (2.21)

£vaπ
mn =

(
fa
bc + 2 δba Z

c − 2 δca Z
b
)
vmb v

n
c + 2Za π

mn . (2.22)

Here we have defined

πmn ≡ e2∆ πab ema e
n
b , (2.23)
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which turns out to be a Jacobi–Lie structure.

Now we define the generalized frame fields as

EA
M ≡MA

B VB
M , VA

M ≡

vma 0

0 `am

 , (2.24)

and obtain

EA
M =

 ema 0

−πab emb e−2∆ ram

 . (2.25)

If Za = 0 , these generalized frame fields satisfy the relation

£̂EAEB
M = −XAB

C EC
M , (2.26)

by means of the generalized Lie derivative in DFT,

£̂VW
M ≡ V N ∂NW

M − (∂NV
M − ∂MVN )WN , (2.27)

where ∂M ≡ (∂m, ∂̃
m) are partial derivatives with respect to the doubled coordinates xM ≡

(xm, x̃m) and the indices M,N are raised or lowered with the metric ηMN (which is the same

matrix as ηAB). In the presence of Za , we need to modify the generalized frame fields as

EA
M ≡

 ema 0

−πac emc e−2ω ram

 , e−2ω ≡ e−2∆ σ̃ , (2.28)

where σ̃ is supposed to be positive. If this σ̃ satisfies

∂mσ̃ = 0 , ∂̃mσ̃ ≡ −2Zm ≡ −2Za vma , (2.29)

we find that the new generalized frame fields satisfy the desired relation (2.26).

Since the modified generalized frame fields depend on the dual coordinates x̃m , one may

be concerned about the section condition (i.e., a consistency condition in DFT). However, we

can easily show that the section condition is not broken. As we discuss later, the supergravity

fields are constructed from EA
M which is composed of the fields {∆, σ̃, ema , πmn} .2 Using

£Z = Za £va , the differential identities, and the Leibniz identities, we find

£Z∆ = Za Za = 0 , £Ze
m
a = Zb £vbe

m
a = 0 ,

£Zπ
mn = Za

(
fa
bc + 2 δba Z

c − 2 δca Z
b
)
vmb v

n
c + 2Za Za π

mn = 0 .
(2.30)

Therefore, Z is a Killing vector field and we can choose the coordinate system such that

Z = ∂w is realized. Then all of the fields φ are independent of the coordinate w . In this

2In the presence of the dilaton and the Ramond–Ramond fields, there are additional fields which should be

chosen such that the section condition is not broken.

6



coordinate system, we can explicitly find σ̃ = −2 w̃ + const., and then the section condition

reduces to

0 = ηMN ∂M σ̃ ∂Nφ = −2 ∂wφ . (2.31)

This is indeed satisfied because fields φ are independent of w due to the Killing equation.

Let us also show several properties of the bi-vector field π ≡ 1
2 π

mn ∂m ∧ ∂n . By using the

differential and algebraic identities, we can show

[π, π]S = 2E ∧ π , [E, π]S = 0 , (2.32)

where E ≡ −2Za ea and we have defined the Schouten–Nijenhuis bracket for a p-vector v and

a q-vector w as

[v, w]
m1···mp+q−1

S ≡ (p+q−1)!
(p−1)! q! v

p[m1···mp−1 ∂pw
mp···mp+q−1]

+ (−1)pq(p+q−1)!
(q−1)! p! wp[m1···mq−1 ∂pv

mq ···mp+q−1] ,
(2.33)

or more explicitly,

[π, π]S ≡ πq[m ∂qπnp] ∂m ∧ ∂n ∧ ∂p , [E, π]S ≡ 1
2! £Eπ

mn ∂m ∧ ∂n . (2.34)

The first property is equivalent to the absence of the non-geometric R-flux

Xabc = 3πd[aDdπ
bc] + 3 fde

[a πb|d| πc]e − 6π[ab πc]dDd∆− 3 ad
[a πbc] rdm ∂̃

m σ̃ = 0 , (2.35)

and the second one follows from

£eaπ
mn = e2∆

(
fa
bc − 4Z [b δc]a

)
emb e

n
c . (2.36)

If we define a bracket

{f, g} ≡ πmn ∂mf ∂ng + f Em ∂mg − g Em ∂mf , (2.37)

for any functions f and g , the Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 , (2.38)

becomes (
3π[m|q| ∂qπ

np] + 3E[m πnp]
)
∂mf ∂ng ∂ph

+
(
f ∂mg ∂nh+ g ∂mh ∂nf + h ∂mf ∂ng

)
£Eπ

mn = 0 .
(2.39)

In particular, by choosing a constant function f = const. , the Jacobi identity requires

£Eπ
mn = 0 , and then the Jacobi identity is equivalent to the conditions (2.32). The bracket

(2.37) is known as the Jacobi bracket and accordingly, the pair of the bi-vector field πmn and
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the vector field E satisfying Eq. (2.32) is called the Jacobi structure. In particular, when

E = 0 , the Jacobi bracket/structure reduces to the usual Poisson bracket/structure. To

consistently define the Jacobi structure on a group manifold G = exp g , properties (2.22),

called the multiplicativity [24], need to be satisfied. In our construction, the multiplicativ-

ity is automatically satisfied, and then this kind of Jacobi structure is called the Jacobi–Lie

structure.

As it has been studied in [23,24,26], the Leibniz identity (2.9) can be regarded as a cocycle

condition, and it is automatically satisfied if we consider the coboundary ansatz

fa
bc = 2 r[b|d| fad

c] − 2Za r
bc + 4Z [b δc]a , (2.40)

where rab is a skew-symmetric constant matrix. The other Leibniz identities (under f[ab
e fc]e

d =

0 and fab
c Zc = 0) are equivalent to3

rab Zb = Za , Zc fcd
[a rb]d = 0 , CYBEabc ≡ 3 fde

[a rb|d| rc]e − 6Z [a rbc] = 0 , (2.41)

which are known as the generalized classical Yang–Baxter equations [24]. For this type of

algebra, we can find the solution of the differential equation (2.22) as

πmn = rab
(
vma v

n
b − e2∆ ema e

n
b

)
. (2.42)

We note that this type of Jacobi–Lie structures (associated with coboundary-type algebras)

has been studied in [24] (see also [17,26]).

2.3 Jacobi–Lie bialgebra

Let us explain the relation between DD+ and the Jacobi–Lie bialgebra studied in [23–26]. We

begin with a Lie algebra g with commutation relation [Ta, Tb] = fab
c Tc . We introduce the

dual space g∗ spanned by {T a} and suppose that they form a Lie algebra [T a, T b] = fc
ab T c .

We introduce the differentials d and d∗ which acts on g∗ and g as

dT a = −1
2 fbc

a T b ∧ T c , d∗Ta = −1
2 fa

bc Tb ∧ Tc , (2.43)

and 1-cocycles X0 ∈ g and φ0 ∈ g∗ satisfying d∗X0 = 0 and dφ0 = 0 . We then define

d∗X0 ≡ d∗ +X0∧ , (2.44)

and a bracket [·, ·]φ0 for x ∈ ∧pg and y ∈ ∧qg as

[x, y]φ0 = [x, y] + (−1)p−1(p− 1)x ∧ ιφ0y − (q − 1) ιφ0x ∧ y , (2.45)

3The first equation is implied by
(
fac

b − 2Za δ
b
c

) (
Zc − rcd Zd

)
= 0 . The last equation can be relaxed as

fde
[a CYBE|e|bc] = 0 if Za = 0 . Indeed, in the case of six-dimensional Jacobi–Lie bialgebras [26], an algebra

satisfying CYBEabc 6= 0 (i.e., a quasitriangular coboundary Jacobi–Lie bialgebra) is realized only when Za = 0 .

8



where [·, ·] is the algebraic Schouten bracket and ιφ0 denotes the contraction. Using these, we

can define a Jacobi–Lie bialgebra as a pair ((g, φ0), (g∗, X0)) which satisfies

d∗X0 [x, y] = [x, d∗X0y]φ0 − [y, d∗X0x]φ0 ,

〈φ0, X0〉 = 0 , ιφ0(d∗x) + [X0, x] = 0 ,
(2.46)

for any elements x, y ∈ g . If we expand X0 and φ0 as

X0 = αa Ta , φ0 = βa T
a , (2.47)

the 1-cocycle conditions d∗X0 = 0 and dφ0 = 0 are equivalent to

αa fa
bc = 0 , βa fbc

a = 0 , (2.48)

and the conditions (2.46) can be expressed as

4 f[a
e[c fb]e

d] − fabe fecd + 2 f[a
cd βb] + 2 fab

[c αd] + 4 fe[a
[c δ

d]
b] α

e − 4β[a δ
[c
b] α

d] = 0 ,

αa βa = 0 , αc fca
b − βc facb = 0 .

(2.49)

They are exactly the same as the Leibniz identities of the DD+ under the identification

αa = 2Za , βa = 2Za . (2.50)

This shows that there is a one-to-one correspondence between a Leibniz algebra DD+ and a

Jacobi–Lie bialgebra. In [25], by using a generalized Courant bracket, commutation relations

[Ta, Tb] = fab
c Tc , [T a, T b] = fc

ab T c ,

[Ta, T
b] =

(
fa
bc + 1

2 α
c δba − αb δca

)
Tc +

(
fca

b − 1
2 βc δ

b
a + βa δ

b
c

)
T c ,

(2.51)

are introduced, but in general, the Jacobi identities are not satisfied and this bracket does not

define a Lie algebra. Rather, this can be regarded as the antisymmetric part of the Leibniz

algebra DD+ ,

[TA, TB] ≡ 1
2

(
TA ◦ TB − TB ◦ TA

)
. (2.52)

As we discussed in section 2.2, a DD+ allows us to systematically construct the Jacobi–

Lie structure πmn for a general Jacobi–Lie bialgebra. In [17], a similar construction has

been attempted by using the commutation relations (2.51). However, due to the absence of

the symmetric part X(AB)
C of the structure constants, it was not successful, and only the

coboundary-type algebras have been studied, where πmn has the simple expression (2.42). A

DD+ also allows us to obtain the scale factor ∆ from a straightforward computation of the

matrix MA
B , and these are the advantage of our approach based on the Leibniz algebra. In

the next subsection, as a demonstration, we explicitly compute the Jacobi–Lie structures for

several concrete examples.
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2.4 Examples of Jacobi–Lie structures

The low-dimensional Jacobi–Lie groups have been classified in [25], and in particular, classifica-

tions of the coboundary-type Jacobi–Lie groups have been given in [26]. For the coboundary-

type algebras, there is a general formula (2.42) for the Jacobi–Lie structures, and here we

consider two examples of Leibniz algebras that are not of the coboundary type.

(I) ((IV,−εX̃1), (IV.i,−εαX3))

Let us consider ((IV,−εX̃1), (IV.i,−εαX3)) (α > 0) in Table 6 of [25], which corresponds to

f12
2 = −f12

3 = f13
3 = −1 , f1

13 = f2
23 = α , f1

23 = 1 , Z3 = − ε α
2 , Z1 = − ε

2 . (2.53)

The Leibniz identities require ε = 1 or ε = 2. While ε = 1 gives a coboundary algebra, here

we consider the non-coboundary case ε = 2 .

Using g = exT1 ey T2 ez T3 , the left-/right-invariant vectors are found as

v1 = ∂x + y ∂y + (z − y) ∂z , v2 = ∂y , v3 = ∂z ,

e1 = ∂x , e2 = ex(∂y − x ∂z) , e3 = ex ∂z ,
(2.54)

and by computing the matrix MA
B , we find

π =
[
α (e−x−1) ∂x + (x− α y) ∂y

]
∧ ∂z , e−2∆ = e2x . (2.55)

From ∂̃mσ̃ = −2Za vma we can easily find

σ̃ = 2α z̃ + const., (2.56)

and then we find that the generalized frame fields enjoy the algebra £̂EAEB = −XAB
C EC .

(II) ((III,−2 X̃1), (III.ii,−(X2 +X3)))

Another example is ((III,−2 X̃1), (III.ii,−(X2 +X3))) of [25], which corresponds to

f12
2 = f12

3 = f13
2 = f13

3 = −1 , f1
12 = f1

13 = 1 , Z2 = Z3 = −1
2 , Z1 = −1 . (2.57)

Using g = exT1 ey T2 ez T3 , the left-/right-invariant vectors are found as

v1 = ∂x + (y + z) (∂y + ∂z) , v2 = ∂y , v3 = ∂z ,

e1 = ∂x , e2 = ex(coshx ∂y + sinhx ∂z) , e3 = ex(sinhx ∂y + coshx ∂z) .
(2.58)

From the matrix MA
B and ∂̃mσ̃ = −2Za vma , we find

π = (z − y) ∂y ∧ ∂z , e−2∆ = e2x , σ̃ = ỹ + z̃ + const., (2.59)

and then the generalized frame fields satisfy the algebra £̂EAEB = −XAB
C EC .

In this way, for a given Leibniz algebra, we can easily compute the Jacobi–Lie structure

and the generalized frame fields.
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2.5 Embedding tensor in half-maximal 7D gauged supergravity

As a side remark, we here clarify the relation between six-dimensional DD+s and the em-

bedding tensors in half-maximal 7D gauged supergravity. In [28], embedding tensors in half-

maximal 7D gauged supergravity have been classified, where the duality group is O(3, 3)×R+ .

In our convention, their embedding tensor can be expressed as

XAB
C ≡ FABC + ZA δ

C
B − ZB δCA + ηAB Z

C ,

Fabc = Habc , Fab
c = fab

c − Za δcb + Zb δ
c
a ,

Fa
bc = fa

bc − δba Zc + Zb δca , F abc = Rabc ,

(2.60)

where the non-vanishing components are

H123 = Q11 , f1
23 = Q22 , f2

13 = −Q33 , f3
12 = Q44 , Z1 = −ξ0 ,

R123 = Q̃11 , f23
1 = Q̃22 , f13

2 = −Q̃33 , f12
3 = Q̃44 , f12

2 = f13
3 = −ξ0 .

(2.61)

The possible values of Qij , Q̃
ij , and ξ0 have been classified in Table 2 of [28] and there are 13

inequivalent solutions, which are called orbits (see Appendix A).

Using Eq. (2.60). we can define a Leibniz algebra TA◦TB = XAB
C TC that admits the usual

bilinear form 〈TA, TB〉 = ηAB . Due to the presence of Fabc and F abc , this is not an algebra of

a DD+ . However, as we explain in Appendix A, by performing an O(3, 3) redefinition of the

generators, most of the 13 orbits can be mapped to some DD+s. As a demonstration, let us

take orbit 10, where Qii and Q̃ii are given by

Qii
cosα = (1,−1, 0, 0) , Q̃ii

sinα = (0, 0, 1,−1)
(
−1 ≤ ξ0 ≤ 1 , −π

4 < α ≤ π
4

)
. (2.62)

Performing a redefinition of the generators TA → CA
B TB with

CA
B =



− 1
cosα

0 0 0 0 0

0 1√
2
− 1√

2
0 0 0

0 0 0 0 1√
2

1√
2

0 0 0 − cosα 0 0

0 0 0 0 1√
2
− 1√

2

0 1√
2

1√
2

0 0 0


∈ O(3, 3), (2.63)

we find that the structure constants become

f12
3 = −1 , f13

2 = −1 , f12
2 = f13

3 =
ξ0 − sinα

cosα
, Z1 =

ξ0

cosα
. (2.64)

For example, if ξ0 = sinα or ξ0−sinα
cosα = −1 is realized, this is equivalent to a Jacobi–Lie

bialgebra ((VI0, bX3), (I, 0)) or ((III, bX1), (I, 0)) given in Table 7 of [25], respectively. By

choosing another matrix CA
B , we may also find another Jacobi–Lie bialgebra classified in [25].

In this sense, the flux algebra given in Eqs. (2.60) and (2.61) can be mapped to a DD+ . Then,

11



as we discussed in the previous section, we can systematically construct the generalized frame

fields (or twist matrix) by using the Jacobi–Lie structure.

A similar analysis can be carried out for any (half-)maximal d-dimensional supergravities,

because the T -duality-covariant flux FABC is always contained in the embedding tensor and

the role of ZA can be played by the trombone gauging [29–31] or the dilaton flux. In particular,

the half-maximal d = 6, 5, 4 supergravities explicitly contain an O(10−d, 10−d) vector ξA (or

ξ+A) which potentially plays the role of ZA . There, the Leibniz identities Eqs. (2.8)–(2.10)

appear as some components of the quadratic constraints studied in [28,32,33].

3 Jacobi–Lie T -duality

In [20–22], the Poisson–Lie T -duality/T -plurality has been proven to be a symmetry of DFT.

As a natural extension, non-Abelian U -duality associated with EDA has been discussed in

[4–10, 16], and several examples of the non-Abelian U -duality have been found in [11]. Here,

we show that the non-Abelian duality based on a DD+ , i.e., the Jacobi–Lie T -plurality, is a

symmetry of the DFT equations of motion.

3.1 Generalized fluxes

In type II DFT, the bosonic fields in the NS–NS sector are the generalized metric and the

DFT dilaton

HMN ≡

gmn −Bmp gpq Bqn Bmp g
pn

−gmpBpn gmn

 , e−2 d ≡
√
|det gmn| e−2Φ, (3.1)

and the R–R fields can be described as an O(D,D) spinor |F 〉 . By making a certain ansatz for

these bosonic fields, we show the covariance of the equations of motion under the Jacobi–Lie

T -plurality, which is an O(D,D) rotation discussed below.

Let us begin with a simple case where the R–R fields and the spectator fields yµ (which

do not transform under the O(D,D) rotation) are not present. We consider an ansatz for the

NS–NS sector fields,

HMN (x) = EMA(x) ENB(x) ĤAB , e−2 d(x) = e−2ϕ(x) e−∆(x) σ̃D−
3
2 |det `am(x)| , (3.2)

where ĤAB is constant, ϕ(x) is a certain function, and we have defined

EAM ≡ eω(x)EA
M (x) = eω

 ema 0

−πac emc e−2ω ram

 ∈ O(D,D) . (3.3)

When the target space is of this form, this background is called Jacobi–Lie symmetric.

12



If we parameterize the constant matrix ĤAB as

ĤAB ≡

 ĝab −(ĝ β̂)a
b

(β̂ ĝ)ab (ĝ−1 − β̂ ĝ β̂)ab

 , (3.4)

by comparing the parameterization (3.1) with (3.2), the metric and the B-field can be ex-

pressed as gmn +Bmn = Emn where Emn is the inverse matrix of

Emn ≡ e2ω
(
ĝ + β̂ + π

)ab
ema e

n
b . (3.5)

They can be also expressed as

gmn +Bmn = e−2ω Rab r
a
m r

b
n , (Rab) ≡ (ĝab + β̂ab + πab)−1 . (3.6)

The standard dilaton Φ can be found as

e−2Φ =
√
|det ĝab| e−2ϕ(x) e(D−1) ∆ σ̃

D−3
2 |det(ĝab + β̂ab + πab) det(aa

b)| . (3.7)

The structure constants ZA , which are not present in the Poisson–Lie T -duality, produce the

overall factor e−2ω both in the metric and the B-field. We find that Emn satisfies

£vaEmn + 2Za Emn = −σ̃−1
(
fa
bc + 2 δba Z

c − 2 δca Z
b
)
Emp vpb v

q
c Eqn . (3.8)

Here, let us comment on the difference between our proposal and the one studied in [17].

In [17], the metric and the B-field are identified as

gmn +Bmn = Emn , Emn ≡ Rab ram rbn
(
= e2ω Emn

)
, (3.9)

for which we have

£vaEmn = − e−2∆
(
fa
bc + 2 δba Z

c − 2 δca Z
b
)
Emp v

p
b v

q
c Eqn . (3.10)

The difference is only in the overall factor e2ω. Below, we show the covariance of the equations

of motion under the Jacobi–Lie T -plurality by adopting the former choice gmn +Bmn = Emn
and using the dilaton (3.7).

The generalized fluxes associated with EAM are defined as

FABC ≡ 3W[ABC] , FA ≡ WB
AB + 2DAd ,

WABC ≡ −DAEBM EMC , DA ≡ EAM ∂M .
(3.11)

Using the algebraic and the differential identities, we find

FABC = eω FABC , FA = EAM FM ,

FM = 2 ∂Md+

 ∂m ln|det `am| − ∂m∆

−σ̃−1 fb
ba vma + ∂̃m ln σ̃D−

3
2

 = 2 ∂Mϕ+

 0

−fb
ba vma
σ̃

 ,
(3.12)
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where FABC is the one given in (2.6) and we have used Eq. (3.2). When fb
ba does not vanish,

we can remove the last term by making a replacement [21]

∂Md→ ∂Md+ XM , XM =
(
0, 1

2 σ̃ fb
ba vma

)
, (3.13)

and then the single-index flux becomes

FA = eω FA , FA ≡ EAM FM , FM ≡ 2 ∂Mϕ . (3.14)

In the following, we suppose that FA is constant.

3.2 Covariance of the equations of motion

In general, the equations of motion of DFT are given by

R = 0 , GAB = 0 . (3.15)

Here, R and GAB, under the section condition, can be expressed as

R ≡ ĤAB
(
2DAFB −FAFB

)
+ 1

12 Ĥ
AD
(
3 ηBE ηCF − ĤBE ĤCF

)
FABC FDEF , (3.16)

GAB ≡ 2 ĤD[ADB]FD − 1
2 Ĥ

DE (ηAF ηBG − ĤAF ĤBG)
(
FD −DD

)
FEFG

− ĤE [A
(
FD −DD

)
FB]DE + 1

2

(
ηCE ηDF − ĤCE ĤDF

)
ĤG[AFCDB]FEFG . (3.17)

In our setup, we find important relations

DDFABC = e2ω ZD FABC , DDFA = e2ω ZD FA , (3.18)

and we obtain

R = e2ω R , GAB = e2ω GAB , (3.19)

where R and GAB are constants of the form

R ≡ ĤAB (2ZA FB − FA FB) + 1
12 Ĥ

AD (3 ηBE ηCF − ĤBE ĤCF )FABC FDEF , (3.20)

GAB ≡ 2 ĤD[A FB] FD − 1
2 Ĥ

DE (ηAF ηBG − ĤAF ĤBG) (FD − ZD)FEFG

− Ĥ [A
E (FD − ZD)FB]DE + 1

2 (ηCE ηDF − ĤCE ĤDF ) ĤG[A FCD
B] FEFG . (3.21)

Then the equations of motion simply become R = 0 and GAB = 0 , which are manifestly

covariant under the O(D,D) rotation

FABC → CA
D CB

E CC
F FDEF , ZA → CA

B ZB ,

ĤAB → CA
C CB

D ĤCD , FA → CA
B FB .

(3.22)
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The transformations in the first line are equivalent to a redefinition of generators

TA → CA
B TB , (3.23)

while those in the second line determine the transformation rules of ĤAB and ϕ . This O(D,D)

symmetry is the Jacobi–Lie T -plurality and is a manifest symmetry of DFT.

For later convenience, let us also find the transformation rule of the generalized Ricci

tensor SMN . We define the (constant) double vielbein VA
B ≡ (Va

B, Vā
B) ∈ O(D,D) and its

inverse VA
B through

ĤAB = VA
A VB

B ĤAB , ηAB = VA
A VB

B ηAB , VA
C VC

B = δBA , (3.24)

where

(ĤAB) ≡

ηab 0

0 ηāb̄

 , (ηAB) ≡

ηab 0

0 −ηāb̄

 , (3.25)

and ηab ≡ ηāb̄ ≡ diag(−1, 1, . . . , 1) . We suppose that the double vielbein is transformed as

VA
B → CA

C VC
B , (3.26)

under the Jacobi–Lie T -duality, and then the transformation rule for

GAB ≡ VAA VBB GAB , (3.27)

is found as

e−2ω′ G′AB = e−2ω GAB . (3.28)

We find that the only non-vanishing components of GAB are Gab̄ , and using these, we can

express the generalized Ricci tensor as

SMN =
(
EMA ENB + ENA EMB

)
Vc
A Vd̄

B Gcd̄ . (3.29)

Then, using (3.28), we find the transformation rule of the generalized Ricci tensor SMN as

e−2ω′ E ′AM E ′BN S ′MN = e−2ω CA
C CB

D ECM EDN SMN . (3.30)

Namely, under the Jacobi–Lie T -plurality, or a local O(D,D) rotation of the generalized

metric,

HMN (x)→ H′MN (x′) =
[
hH(x)ht

]
MN

, hM
N ≡ E ′MA(x′)CA

B EBN (x) , (3.31)

the generalized Ricci tensor transforms as

SMN (x)→ S ′MN (x′) = e2 (ω′−ω)
[
hS(x)ht

]
MN

. (3.32)

Unlike the case of the Poisson–Lie T -duality, the generalized Ricci tensor is transformed by a

local O(D,D) × R+ rotation. As we discuss later, this additional R+ transformation makes

the transformation rule of the R–R fields slightly non-trivial.
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Comments on a subtle issue

Here, we comment on an issue that may arise in the presence of Za and fb
ba .

Firstly, we consider the case where two vectors I ≡ 1
2 fb

ba va and Z = Za va are proportional

to each other (which includes the case where I = 0 or Z = 0). Since Z is a Killing vector

field, we can choose a coordinate system such that Z = cZ ∂w and I = cI ∂w (where cZ and cI

are constants). In such a coordinate system, recalling ∂̃mσ̃ = −2Zm , we find

σ̃ = c0 − 2 cZ w̃ , (3.33)

where c0 is a constant. Now we consider the following three cases.

1. cI = 0 and cZ = 0

In this case, the shift (3.13) is not necessary, and we can choose σ̃ = 1 by a redefinition

of ϕ(x) . Then the metric and the B-field are independent of the dual coordinates.

The section condition is satisfied if ϕ satisfies ∂M∂
Mϕ = ∂Mϕ∂

Mϕ = ∂Mϕ∂
Md =

∂Mϕ∂
MHPQ = 0. By recalling Eq. (3.14), they are equivalent to

FAFA = FADAd = FADAHMN = 0 . (3.34)

In particular, if ϕ is independent of the dual coordinates, the DFT solution corresponds

to a solution of the usual supergravity.

2. cI 6= 0 and cZ = 0

Again we can choose σ̃ = 1 , and then the metric and the B-field are independent of

the dual coordinates. The shift (3.13) corresponds to introducing the dual-coordinate

dependence into the dilaton [34,35] d→ d+ cI w̃ . Namely, the dilaton becomes

e−2 d(x) = e−2ϕ(x) e−∆(x)−2 cI w̃|det `am| . (3.35)

The section condition is satisfied if £I

(
e−2ϕ(x)|det `am|) = 0 and Eq. (3.34) are satisfied.

In this case, for example if ϕ is independent of the dual coordinates, the DFT solution

corresponds to a solution of the generalized supergravity equations of motion [35–37].

3. cZ 6= 0

We find 1
2 σ̃ fb

ba va = cI
c0−2 cZ w̃

∂w and then the shift (3.13) corresponds to the shift

d→ d− cI
2 cZ

ln(c0 − 2 cZ w̃) . (3.36)

Then, the dilaton becomes

e−2 d(x) = e−2ϕ(x) e−∆(x)(c0 − 2 cZ w̃)
D− 3

2
+
cI
cZ |det `am| . (3.37)
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Here, the Leibniz identities ensures £Z |det `am| = 0 , and the section condition is satisfied

if £Zϕ = 0 (⇔ Za Fa = 0 = πab Za Fb) and Eq. (3.34) are satisfied. Even if this is a

solution of DFT, this does not correspond to a solution of the usual (or the generalized)

supergravity because the metric and the B-field depend on the dual coordinates.

If FA = 0 (or ϕ = 0), we do not need to care about the section condition: only the second

case requires a non-trivial relation fb
ba fac

c = 0 (⇔ £I |det `am| = 0). When FA 6= 0 , a non-

trivial issue can arise. Even if FA = 2EA
M ∂Mϕ is satisfied in the original frame, after the

Jacobi–Lie T -plurality (FA → F ′A = CA
B FB), it may be possible that there is no function ϕ′

that satisfies F ′A = 2E′A
M ∂′Mϕ

′.4 In such a case, we cannot find the DFT dilaton, and it does

not correspond to a solution of the usual DFT.

Secondly, let us consider the problematic case where two vector fields I and Z are linearly

dependent. Using the Leibniz identities (2.8)–(2.10), we can show that they commute with each

other [I, Z] = 0 . Since Z is a Killing vector field, if we suppose that I is also a Killing vector

field, we can choose a coordinate system such that Z = ∂w and I = ∂z . In such a coordinate

system, we find σ̃ = c0 − 2 w̃ (c0: arbitrary constant) and we also find 1
2 σ̃ fb

ba va = 1
c0−2 w̃ ∂z .

After the sift (3.13), the derivative of the dilaton becomes

∂Md = YM , YM ≡ 1
2 ∂M

[
∆− ln(σ̃D−

3
2 |det `am|)

]
+ 1

2 FM +

 0

1
c0−2 w̃ δ

m
z

 , (3.38)

where FM is defined in (3.14). If there exists a function ζ that satisfies YM = ∂Mζ , we

can obtain the DFT dilaton as d = ζ . However, in general, the vector field YM satisfies

∂[MYN ] 6= 0 and then there is no solution for YM = ∂Mζ . In particular, when FA = 0 , due

to the existence of the last term of YM , we find ∂̃[wYz] = −(c0 − 2 w̃)−2 6= 0 . Therefore, only

when a flux FA is introduced such that the last term of YM is canceled out, we can obtain the

DFT dilaton. Moreover, the section condition, such as ∂M∂Md = ∂Md ∂
MHPQ = 0 , are also

not ensured. When I is not a Killing vector field, the situation will be worse. From the above

consideration, we conclude that it is difficult to construct a DFT solution when fb
ba and Za

are linearly independent. In section 3.4.1, we show a concrete example of this type, where the

DFT dilaton d cannot be determined and the section condition is broken by ∂Md .

4In the Poisson–Lie T -plurality, there is a prescription to find ϕ′(x′), which is based on a coordinate trans-

formation on the Drinfel’d double [3]. However, unlike a Lie algebra which can be exponentiated to a Lie group,

it is not clear how to globally extend the Leibniz algebra DD+ to a group-like space. Then the procedure of [3]

does not work and the function ϕ′ needs to be found by solving the differential equation F ′A = 2E′A
M ∂′Mϕ

′.
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3.3 An example without Ramond–Ramond flux

Let us consider an eight-dimensional Leibniz algebra with

f12
2 = −1 , f12

3 = 1 , f13
3 = −1 , Z1 = −2 , (3.39)

which is a direct sum of the six-dimensional Leibniz algebra ((IV,−4X̃1), (I, 0)) of [25] and a

two-dimensional Abelian algebra. Using a parameterization g = exT1 ey T2 ez T3 ewT4 , we find

v1 = ∂x + y ∂y + (z − y) ∂z , v2 = ∂y , v3 = ∂z , v4 = ∂w ,

e1 = ∂x , e2 = ex(∂y − x ∂z) , e3 = ex ∂z , e4 = ∂w .
(3.40)

Computing the matrix MA
B , we find

πab = 0 , ∆ = −2x . (3.41)

Then, using the constant matrices

ĝab =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 , β̂ab = 0 , (3.42)

we obtain a 4D metric

ds2 = 2 e3x dx (dz + x dy) + e2x dy2 + e4x dw2 . (3.43)

In order to find a solution of DFT, we choose the function ϕ as

ϕ = −4
3 x , (3.44)

which yields

FA =
(
−8

3 , 0, 0, 0, 0, 0, 0, 0
)
. (3.45)

Then the DFT dilaton and the standard dilaton become

e−2 d = e
14x
3 , e−2 Φ = e−

4x
3 . (3.46)

We can check that this dilaton and the metric (3.43) satisfy the equations of motion. In the

following, we consider the Jacobi–Lie T -pluralities of this solution.
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3.3.1 Generalized Yang–Baxter deformation

Let us perform an O(4, 4) rotation TA → CA
B TB with

CA
B =

 δba 0

rab δab

 , rab =


0 0 0 0

0 0 c 0

0 −c 0 0

0 0 0 0

. (3.47)

The original algebra (3.39) has vanishing fa
bc , but this O(4, 4) rotation produces the dual

structure constants of the coboundary type (2.40). In the presence of ZA, this type of O(D,D)

rotation characterized by an antisymmetric matrix rab may be called the generalized Yang–

Baxter deformation because the matrix rab is a solution of the generalized classical Yang–

Baxter equations (2.41). After this O(4, 4) rotation, the structure constants becomes

f12
2 = −1 , f12

3 = 1 , f13
3 = −1 , f1

23 = 2 c , Z1 = −2 , (3.48)

and this corresponds ((IV,−4X̃1), (II, 0)) or ((IV.iii, 4X̃1), (II, 0)) of [25] (accompanied by the

two-dimensional Abelian algebra), for c = 1/2 or c = −1/2 , respectively.5

Again we employ the same parametrization of the group element and the left-/right-

invariant vector fields (3.40). Here, we find the Jacobi–Lie structure as

π = c (1− e−2x) ∂y ∧ ∂z , (3.49)

and ϕ is not changed because FA is not deformed under this O(4, 4) rotation: FA = CA
B FB .

Then, we find the deformed supergravity fields as

ds2 = 2 e3x dx (dz + x dy) + e2x dy2 + e4x dw2 + e2x c2 dz2 ,

B2 = c e5x dx ∧ dy , e−2 Φ = e−
4x
3 .

(3.50)

This is again a supergravity solution for an arbitrary value of c .

3.3.2 Another Jacobi–Lie T -plurality

Here we consider another O(4, 4) transformation

CA
B =



1 0 0 0 0 0 0 0

0 0 −1 0 0 1
2

0 0

0 0 1 0 0 1
2

0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 − 1
2

0

0 1 0 0 0 0 1
2

0

0 0 0 0 0 0 0 1


. (3.51)

5The algebra with c > 0 or c < 0 can be mapped to to the one with c = 1/2 or c = −1/2 , respectively.
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We then obtain the algebra with

f12
2 = −2 , f12

3 = −1 , f13
2 = −1 , f13

3 = −2 , f1
23 = 1 , Z1 = −2 . (3.52)

The six-dimensional part of this algebra is known as ((VI2,−4 X̃1), (II, 0)) . Using the param-

eterization, g = exT1 ey T2 ez T3 ewT4 , we obtain

v1 = ∂x + (2y + z) (∂y + ∂z) , v2 = ∂y , v3 = ∂z , v4 = e4 = ∂w ,

e1 = ∂x , e2 = ex

2

[
(e2x +1) ∂y + (e2x−1) ∂z

]
, e3 = ex

2

[
(e2x−1) ∂y + (e2x +1) ∂z

]
.

(3.53)

We can compute several quantities as

π = x ∂y ∧ ∂z , ∆ = −2x , ϕ = −4
3 x . (3.54)

The associated supergravity fields are found as

ds2 = e4x(dw2 − x2 dx2)− 2 e3x dx (dy − dz) + 1
4 e−2x(dy + dz)2 ,

B2 = 1
2 ex x dx ∧ (dy + dz) , e−2 Φ = e

2x
3 ,

(3.55)

and this is a solution of the supergravity.

3.3.3 Jacobi–Lie T -duality

To provide an example with Za 6= 0 , let us consider the T -dual of the previous example. The

non-vanishing structure constants are

f23
1 = 1 , f2

12 = −2 , f3
12 = −1 , f2

13 = −1 , f3
13 = −2 , Z1 = −2 , (3.56)

and the constant metric ĤAB and the flux FA become

ĤAB =



0 − 1
2

1
2

0 0 0 0 0

− 1
2

1 1 0 0 0 0 0
1
2

1 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 −1 1 0

0 0 0 0 −1 1
4

1
4

0

0 0 0 0 1 1
4

1
4

0

0 0 0 0 0 0 0 1


, FA =



0

0

0

0

− 8
3

0

0

0


. (3.57)

Since we find 1
2 fb

ba = −Za , this example corresponds to the third case discussed around

Eq. (3.37). By using a parameterization g = exT1 ey T2 ez T3 ewT4 , we find

e1 = ∂x , e2 = ∂y , e3 = ∂z − y ∂x , e4 = ∂w ,

v1 = ∂x , v2 = ∂y − z ∂x , v3 = ∂z , v4 = ∂w ,
(3.58)

π = ∂x ∧
[
(2 y − z) ∂y − (y − 2 z) ∂z + 4w ∂w

]
, σ̃ = c0 + 4 x̃ . (3.59)
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Then, we can easily compute the generalized frame fields EA
M and EAM . The resulting

generalized metric shows that the metric and the B-fields are

gmn = σ̃


0 2

9(y−z)2−4
− 2

9(y−z)2−4
0

4(4w2+y2−4yz+4z2−1)
9(y−z)2−4

2(−8w2+4y2−10yz+y+4z2−2)
9(y−z)2−4

12w(z−y)
9(y−z)2−4

4(4w2−4yz+y(4y−1)+z2−1)
9(y−z)2−4

12w(y−z)
9(y−z)2−4

1

 ,

Bmn = σ̃


0 3z−3y

9(y−z)2−4
3(y−z)

9(y−z)2−4
0

0 y(3y−3z−4)−4z
9(y−z)2−4

− 8w
9(y−z)2−4

0 8w
9(y−z)2−4

0

 .

(3.60)

The flux FA shows that ϕ(x) = −1
3 ln σ̃ , and by using the formula (3.37), the DFT dilaton is

found as

d = −13
12 ln σ̃ . (3.61)

This dilaton together with the generalized metric (3.60) satisfies the DFT equations of motion.

Since the metric and the B-field have the dual-coordinate dependence through the overall

factor σ̃ , this is not a solution of the usual (or the generalized) supergravity. However, the

section condition is not broken and can be mapped to a DFT solution that does not depend

on dual coordinates.

3.4 Another example without Ramond–Ramond flux

To provide a problematic example, let us consider

f12
2 = −1 , f12

3 = −1 , f13
2 = −1 , f13

3 = −1 , Z2 = −1

2
, Z3 =

1

2
, (3.62)

which corresponds to the T -dual of ((I, 0), (III,−(X̃2 − X̃3))). Using a parameterization,

g = exT1 e(y+z)T2 e(y−z)T3 we find

ea
m =


1 0 0

0 e2x

2
1
2

0 e2x

2 −1
2

 , va
m =


1 2y 0

0 1
2

1
2

0 1
2 −1

2

 ,

e−2∆ = e2z, πmn = 0 ,

(3.63)

and then by introducing

ĝab =


−2 0 0

0 1
4 0

0 0 1
4

 , β̂ab = 0 , (3.64)
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we obtain a 3D metric

ds2 =
1

2
e2z
(
e−4x dy2 + dz2 − 4 dx2

)
. (3.65)

This is a flat Minkowski space and is a trivial solution of supergravity. In order to realize

Φ = 0 , we introduce ϕ(x) = x− z . We then find

FA = (2,−1, 1, 0, 0, 0) . (3.66)

3.4.1 A problematic example

Now we perform the Jacobi–Lie T -duality, T a ↔ Ta . The resulting DD+ has the structure

constants

f2
12 = −1 , f3

12 = −1 , f2
13 = −1 , f3

13 = −1 , Z2 = −1

2
, Z3 =

1

2
, (3.67)

and the flux FA becomes

FA = (0, 0, 0, 2,−1, 1) . (3.68)

In this case, 1
2 fb

ba and Za are linearly independent, which is problematic as we have discussed.

Using a parameterization g = exT1 ey T2 ez T3 , we can straightforwardly compute the generalized

metric as

HMN =



− σ̃
2

0 0 0 −x+y+z
2

x−y−z
2

4 σ̃ 0 −4(x+ y + z) 0 −4(y + z)

4 σ̃ 4(x− y − z) 4(y + z) 0
8x2+8(y+z)2−2

σ̃
4(y+z)(x−y−z)

σ̃
4(y+z)(x+y+z)

σ̃
−2x2−4x(y+z)+14(y+z)2+1

4(c0+ỹ−z̃)
(x−y−z)(x+y+z)

2 σ̃

−2x2+4x(y+z)+14(y+z)2+1
4 σ̃


, (3.69)

where σ̃ ≡ c0 + ỹ − z̃ . One can check that this satisfies the section condition, ∂P∂PHMN = 0

and ∂RHMN ∂RHPQ = 0 , and there is no problem at this stage.

The problem is related to the dilaton. By using ∆(x) = 0 , σ̃ = c0 + ỹ− z̃ , and |det `am| = 1,

the general formula (3.2) gives

e−2 d(x) = e−2ϕ(x)(c0 + ỹ − z̃)
3
2 , (3.70)

By considering the shift (3.13) and using vma = δma , the derivative of the DFT dilaton becomes

∂Md = YM , YM = ∂M ln(c0 + ỹ − z̃)−
3
4 + 1

2 FM +
(
0, 1

c0+ỹ−z̃ δ
m
1

)
. (3.71)

We can easily compute 1
2 FM = 1

2 EM
A FA = 1

2 (c0+ỹ−z̃)(0, 0, 0, 2,−1, 1) , and then, substituting

the generalized metric HMN and

∂Md = YM = 1
c0+ỹ−z̃ (0, 0, 0, 2,−5

4 ,
5
4) , (3.72)
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into the equations of motion, we find that the DFT equations of motion are indeed satisfied.

A problem is that the section condition is broken by the DFT dilaton,

∂Pd ∂
PHMN 6= 0 . (3.73)

Another problem is that we cannot find the DFT dilaton d that solves the differential equation

(3.72). Consequently, this configuration cannot be regarded as a solution of DFT.

3.5 Ramond–Ramond fields

We here introduce the R–R fields by considering the case D = 10 . In the presence of the R–R

fields, the equations of motion for the generalized metric and the DFT dilaton become

R = 0 , SMN = EMN , (3.74)

where EMN denotes the energy-momentum tensor of the R–R fields. Obviously, if we transform

the energy-momentum tensor as

e−2ω EAM EBN EMN = e−2ω′ E ′AM E ′BN E ′MN , (3.75)

the equations of motion for the generalized metric transform covariantly as

e−2ω EAM EBN
(
SMN − EMN

)
= e−2ω′ E ′AM E ′BN

(
S ′MN − E ′MN

)
. (3.76)

By using the results of the Poisson–Lie T -duality [20–22], we can easily see that the transfor-

mation rule (3.75) can be realized by using the ansatz

|F 〉 =
√

det(eω ema ) e−d(x) eω SU |F̂〉 , (3.77)

where U ≡ (EMA) and SU is a matrix representation of U in the spinor representation (see [22]

for our convention). The presence of eω is the only difference from the Poisson–Lie T -duality.

The O(10, 10) spinor |F̂〉 is constant, and in type IIA/IIB theory, it can be expanded as

|F̂〉 =
∑

p : even/odd

1

p!
F̂a1···ap Γa1···ap |0〉 , (3.78)

where |0〉 is the Clifford vacuum satisfying Γa|0〉 = 0 . Under the ansatz (3.77), the equations

of motion of the R–R fields become the algebraic relation

(
1
3! ΓABC FABC − 1

2 ΓA FA + ΓA ZA
)
|F̂〉 = 0 . (3.79)

When we consider an O(D,D) rotation (3.22), by rotating the constant spinor |F̂〉 also as

|F̂〉 → SC |F̂〉
(
ΓB CB

A = SC ΓA S−1
C

)
, (3.80)
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the equations of motion are manifestly covariant. This shows that the whole DFT equations

of motion are covariant under the Jacobi–Lie T -plurality. When the supergravity fields have

the form (3.2) and (3.77), we call the background the Jacobi–Lie symmetric.

For convenience, let us also express (3.77) in terms of the differential form. By using a

polyform

F ≡
∑

p : even/odd

1

p!
Fm1···mp dxm1 ∧ · · · ∧ dxmp , (3.81)

in type IIA/IIB theory, we have

F = e−ϕ(x) e−(p−D+1
2

) ∆ σ̃
D+2p−5

4 |det aa
b|

1
2 e

1
2
πabιaιb

[ ∑
p : even/odd

1
p! F̂a1···ap r

a1 ∧ · · · ∧ rap
]
.

(3.82)

Note that here we are using the field strength in the A-basis (which satisfies dF = 0) and this

is related to the one in C-basis as

G = e−B2∧ F , (3.83)

that satisfies the standard Bianchi identity

dG+H3 ∧G = 0 , (3.84)

when G is independent of the dual coordinates x̃m .

3.6 An example with Ramond–Ramond fluxes

Let us consider a 20-dimensional DD+ with the structure constants

f12
2 = −1 , f12

3 = −1 , f13
2 = −1 , f13

3 = −1 , Z1 = −2 . (3.85)

The non-trivial subalgebra generated by {T1, T2, T3} are known as ((III,−4X̃1), (I, 0)) . Using

the parameterization g = exT1 ey T2 ez T3 ew4 T4 · · · ew10 T10 , the non-trivial part of vma and ema

are found as (the other components are just va = ea = ∂a)

v1 = ∂x + (y + z) (∂y + ∂z) , v2 = ∂y , v3 = ∂z ,

e1 = ∂x , e2 = 1
2

[
(e2x +1) ∂y + (e2x−1) ∂z

]
, e3 = 1

2

[
(e2x−1) ∂y + (e2x +1) ∂z

]
.

(3.86)

We introduce constants

ĝab =



1 1 0 0 0

1 1 1 0 0

0 1 1 0 0

0 0 0 1 0

. . .

0 0 0 0 1


, β̂ab = 0 , |F̂〉 = 6

√
2 Γ1

[
(Γ2 + Γ3)Γ4···10 − 1

]
|0〉 , (3.87)
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and then, by using ∆ = −2x and supposing ϕ = 0, the supergravity fields are found as

ds2 = e4x
[
dx2 + dx (dy − dz) + ds2

T 7

]
+ e2x dx (dy + dz) + (dy + dz)2 ,

B2 = 0 , e−2 Φ = e−16x, F1 = −6
√

2 e−8x dx ,
(3.88)

where ds2
T 7 ≡ dw2

4 + · · · + dw2
10 is a seven-dimensional flat metric. This is a solution of type

IIB∗ supergravity.

Now we consider a generalized Yang–Baxter deformation with

r23 =
η

2
. (3.89)

The resulting DD+ has the structure constants

f12
2 = −1 , f12

3 = −1 , f13
2 = −1 , f13

3 = −1 , f1
23 = η , Z1 = −2 . (3.90)

The structure constants f1
23 produces the Jacobi–Lie structure π = η

2 (1− e−2x) ∂y ∧ ∂u and

the supergravity fields are

ds2 = e4x
[
dx2 + dx (dy − dz) + ds2

T 7

]
+ e2x dx (dy + dz) + (dy + dz)2 − η2

4 e4x dx2 ,

B2 = −η
2 e2x dx ∧ (dy + dz) , e−2 Φ = e−16x, F1 = −6

√
2 e−8x dx .

(3.91)

This is again a solution of type IIB∗ supergravity and the Jacobi–Lie T -duality indeed works

as a solution generating technique.

3.7 Jacobi–Lie T -plurality with spectator fields

The inclusion of the spectator fields is straightforward similar to the case of the Poisson–Lie

T -duality/T -plurality (see Appendix B of [22]). Here, instead of repeating the presentation

of [22], we only comment on some non-trivialities that are specific to the Jacobi–Lie T -plurality.

We consider a ten-dimensional spacetime with the “internal coordinates” xm (m = 1, . . . , D)

and the “external coordinates” yµ (µ = D + 1, . . . , 10). In the string sigma model, the scalar

fields yµ(σ) are called the spectator fields because they are invariant under the non-Abelian

duality. We formally double all of the directions, and the generalized coordinates are given by

xM = (xm, x̃m, y
µ, ỹµ). The “flat” indices A,B and A,B also run over the 20 directions. The

underlying algebra DD+ is associated with the 2D-dimensional doubled coordinates {xm, x̃m} ,

and for example, the generalized frame fields constructed in the previous sections are embed-

ded into the first 2D × 2D-block of the 20 × 20 matrix EAM . We assume that EAM and

the double vielbein VA
B have block-diagonal forms, i.e., they are given by direct sums of the

2D× 2D-block associated with the internal directions and (20− 2D)× (20− 2D)-blocks asso-

ciated with the external directions. In particular, we suppose that the external block of EAM
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is an identity matrix. With such understanding, the conditions for the Jacobi–Lie symmetry

in the presence of the spectator fields, but without the R–R fields, are given by

HMN = EMA(x) ENB(x) ĤAB(y) , ĤAB(y) ≡ VAA(y)VB
B(y) ĤAB , (3.92)

e−2 d = e−2d̂(y) e−2d(x), e−2d(x) ≡ e−2ϕ(x) e−∆ σ̃D−
3
2 |det `am| . (3.93)

The difference is that VA
A(y) is no longer constant and that the dilaton also acquires the

y-dependence d̂(y) . By following the same discussion as [22], we can show that the O(D,D)

transformation which rotates the internal indices is a symmetry of the equation of motion.

When the R–R fields are also present, the symmetry becomes slightly subtle. In the

presence of the spectator fields, the tensor GAB becomes

GAB ≡ 2 ĤC[ADB]FC − 1
2 Ĥ
CD (ηAE ηBF − ĤAE ĤBF )

(
FC −DC

)
FDEF

− ĤD [A (FC −DC)FB]CD + 1
2

(
ηCE ηDF − ĤCE ĤDF

)
ĤG[AFCDB]FEFG ,

(3.94)

where DA ≡ VAB EBM ∂M and the fluxes contain both the external and internal parts:

FA = F̂(y) + eω(x) VA
B(y)FB , (3.95)

FABC = F̂ABC(y) + eω(x) VA
D(y)VB

E(y)VC
F (y)FDEF . (3.96)

The internal/external parts contribute to the internal/external components of the matrix GAB,

respectively. Then, the internal components of GAB (or SMN ) scale as e2ω while the external

components are independent of ω . In order to realize the equations of motion SMN = EMN ,

the energy-momentum tensor EMN also should scale in the same way, but it is non-trivial.

Then we can consider two possibilities: (i) the external components of SMN vanish, or (ii)

the internal components of SMN vanish by themselves. The former is the case studied in the

previous sections. In that case, we choose the R–R fields as

|F 〉 =
√

det(eω ema ) e−d(x) eω(x) SU |F̂(y)〉 , (3.97)

which is a natural extension of (3.77) including the y-dependence into |F̂〉. In the latter case,

the scale factor eω(x) is not necessary and we consider

|F 〉 =
√

det(eω ema ) e−d(x) SU |F̂(y)〉 . (3.98)

In terms of the differential form, this can be expressed as

F = e−ϕ(x) e
D−1
2

∆ σ̃
D−3
4 |det aa

b|
1
2 e

1
2
πabιaιb

[ ∑
p:even/odd

1
p! F̂â1···âp(y) E â1 ∧ · · · ∧ E âp

]
, (3.99)

where we have defined E â ≡ E âm̂ dxm̂ with xm̂ ≡ (xm, yµ) and {â} = {a, µ̇} . Here, the dotted

indices {µ̇} denote the “flat” indices associated with {µ} and E âm̂ is a component of EAM .

The existence of the two options are specific to the Jacobi–Lie T -plurality, and these two

are degenerate in the case of the Poisson–Lie T -duality (where ω = 0). In the next subsection,

we present an example using the latter option (3.98).
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3.8 An example with spectator fields

We consider an eight-dimensional DD+ (D = 4) with the structure constants given in Eq. (3.85).

We introduce the ten-dimensional coordinates

{xm; yµ} = {x, y, u, v ; z, r, ξ, φ1, φ2, φ3} , (3.100)

and yµ are the spectator fields. Using the parameterization g = exT1 ey T2 euT3 ev T4 , we obtain

the left-/right-invariant vector fields as given in Eq. (3.86). We choose the metric ĝab(y) ,

dilaton d̂(y) , the R–R field |F̂(y)〉, and ϕ(x) as

ĝab =



1
z2

1
z2

0 0 0
1
z2

1
z2

− 1
z2

0 0

0 − 1
z2

1
z2

0 0 05×5

0 0 0 1
z2

0

0 0 0 0 1
z2

05×5 gS5


, β̂ab = 0 , e−2d̂ =

cos r cos ξ sin3 r sin ξ

z5
,

|F̂〉 = 4
(
−z−5 Γu̇v̇ẋẏż + sin3 r cos r sin ξ cos ξ Γṙξ̇φ̇1φ̇2φ̇3

)
, ϕ = −2x ,

(3.101)

where the metric gS5 on S5 corresponds to the line element

ds2
S5 ≡ dr2 + sin2 r

(
dξ2 + cos2 ξ dφ2

1 + sin2 ξ dφ2
2

)
+ cos2 r dφ2

3 . (3.102)

Using πab = 0 and ∆ = −2x, the generalized frame fields become

EAM (x) =



e−2x 0 0 0 0 0 0 0

0 e−x cosh x e−x sinh x 0 0 0 0 0

0 e−x sinh x e−x cosh x 0 0 0 0 0

0 0 0 e−2x 0 0 0 0 0

0 0 0 0 e2x 0 0 0

0 0 0 0 0 ex cosh x − ex sinh x 0

0 0 0 0 0 − ex sinh x ex cosh x 0

0 0 0 0 0 0 0 e2x

0 112×12


. (3.103)

By acting the twist, we find that this is the AdS5×S5 solution of type IIB supergravity,

ds2
AdS5×S5 = z−2

(
ds2

4D + dz2
)

+ ds2
S5 , B2 = 0 , Φ = 0 ,

ds2
4D ≡ e4x

[
dx2 + dx dy + dy2 + du2 − du (dx+ 2 dy) + dv2

]
+ e2x dx (du+ dy) , (3.104)

F = 4
[
−e6x dx ∧ dy ∧ du ∧ dv ∧ dz

z5
+ sin3 r cos r sin ξ cos ξ dr ∧ dξ ∧ dφ1 ∧ dφ2 ∧ dφ3

]
.

Here we have used e−ϕ(x) e
D−1
2

ω(x)|det aa
b|

1
2 = 1 (where D = 4), and

E1 ∧ · · · ∧ E4 ∧ E ż = e6x dx ∧ dy ∧ du ∧ dv ∧ dz . (3.105)

Again we perform a generalized Yang–Baxter deformation (3.89) and obtain the DD+ given

in Eq. (3.90). The ω is not changed and the Jacobi–Lie structure is π = η
2 (1− e−2x) ∂y ∧ ∂u .
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The deformed geometry is

ds2 = ds2
AdS5×S5 −

η2 e4x(2 e2x−1)2dx2

4 z6
, B2 =

η
(
e6x−1

2 e4x
)

z4
dx ∧ (dy − du) ,

Φ = 0 , G3 =
2 η e5x (coshx+ 3 sinhx) dx ∧ dv ∧ dz

z5
, (3.106)

G5 = 4
[
−e6x dx ∧ dy ∧ du ∧ dv ∧ dz

z5
+ sin3 r cos r sin ξ cos ξ dr ∧ dξ ∧ dφ1 ∧ dφ2 ∧ dφ3

]
.

This also satisfies the type IIB supergravity equations of motion.

In order to perform more interesting Jacobi–Lie T -plurality, the classification of the six-

dimensional DD+ will be useful. The classification of the Jacobi–Lie bialgebra has been done

in [25] but which bialgebras are in the same orbit O(D,D) rotations have not been studied.

If such a classification is worked out, we may find more dual geometries from the AdS5×S5

solution (3.104).

4 Jacobi–Lie T -plurality in string theory

In the string sigma model, we can clearly see the symmetry of the Poisson–Lie T -duality by

using a formulation called the E-model [38]. The E-model is defined by a Hamiltonian

H =
1

4πα′

∫
dσ ĤAB jA(σ) jB(σ) , (4.1)

and the current algebra

{jA(σ) , jB(σ′)} = FAB
C jC(σ) + ηAB δ

′(σ − σ′) , (4.2)

where ĤAB is a constant O(D,D) matrix and FAB
C are certain structure constants. The dy-

namics is governed by the O(D,D)-manifest equations (4.1) and (4.2), and the time evolution

of the currents can be determined by

∂τ jA = {jA, H} . (4.3)

In fact, Eq. (4.3) is exactly the equations of motion of string theory defined on a target space

with the generalized metric

HMN = EM
AEN

B ĤAB , (4.4)

where EA
M are the generalized frame fields satisfying £̂EAEB = −FABC EC with FAB

C the

structure constants of a Drinfel’d double. Here, the currents have been identified as

jA(σ) = EA
M (x(σ))ZM (σ) , ZM (σ) ≡

 pm(σ)

∂σx
m(σ)

 , (4.5)
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where pm are the canonical momenta associated with xm . The current algebra (4.2) is simply

a rewriting of the canonical commutation relation

{ZM (σ) , ZN (σ′)} = ηMN δ
′(σ − σ′) , (4.6)

by using £̂EAEB = −FABC EC . Under the Poisson–Lie T -duality/T -plurality TA → CA
B TB,

we get a new generalized frame fields E′A
M satisfying £̂E′A

E′B = −F ′ABC E′C (where F ′AB
C ≡

CA
D CB

E (C−1)F
C FDE

F ) and we define the dual currents as j′A(σ) = E′A
M (x(σ))Z ′M (σ)

where Z ′M satisfies the canonical commutation relation (4.6). The Hamiltonian for string

theory on the dual geometry can be expressed as

H ′ =
1

4πα′

∫
dσ Ĥ′AB j′A(σ) j′B(σ) , (4.7)

where Ĥ′AB ≡ (C−1)C
A (C−1)D

B ĤCD and the dual currents satisfies the algebra

{j′A(σ) , j′B(σ′)} = F ′AB
C jC(σ) + ηAB δ

′(σ − σ′) . (4.8)

Then the currents j′A follow the same time evolution as CA
B jB , and we can clearly see the

covariance of the string equations of motion. In [27], the currents jA was regarded as the

phase-space variables and the Poisson–Lie T -duality/T -plurality jA → j′A that preserves the

Hamiltonian was regarded as a canonical transformation.

Now let us consider the case of the Jacobi–Lie T -plurality. Again the generalized metric

is expressed as

HMN = EMA ENB ĤAB , (4.9)

where EMA satisfies

£̂EAEB
M = − eω

(
XAB

C − 2Z[A δ
C
B] − ηAB Z

C
)
ECM = − eω FAB

C ECM , (4.10)

and FAB
C is the one given in (2.5). Then introducing the currents

JA(σ) ≡ EAM (x(σ))ZM (σ) , (4.11)

we obtain the Hamiltonian and the current algebra as

H =
1

4πα′

∫
dσ ĤAB JA(σ)JB(σ) , (4.12)

{JA(σ) ,JB(σ′)} = eω(x(σ)) FAB
C JC(σ) + ηAB δ(σ − σ′) . (4.13)

Due to the appearance of the explicit x-dependence in eω(x(σ)), we cannot treat the currents

as the phase-space variables, but as complicated functions of x(σ) and their canonical con-

jugate momenta. Then the Hamiltonian also needs to be regarded as a non-linear function.

Consequently, the covariance under the Jacobi–Lie T -plurality is not manifest.
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Let us also discuss the covariance from another perspective. If we start with the action

S = − 1

4πα′

∫
Σ

d2σ
√
−γ
(
γαβ − εαβ

) (
gmn +Bmn

)
∂αx

m ∂βx
n , (4.14)

the equations of motion can be expressed as

dJa =
1

2

(
£vagmn dxm ∧ ∗dxn + £vaBmn dxm ∧ dxn

)
, (4.15)

where

Ja ≡ vma
(
gmn ∗ dxn +Bmn dxn

)
. (4.16)

If we identify the metric and the B-field as gmn + Bmn = Emn , by using Eq. (3.10), the

equations of motion can be rewritten in a suggestive form [17]

dJa = 1
2 e−2∆(fa

bc + 2 δba Z
c − 2 δca Z

b) Jb ∧ Jc . (4.17)

However we cannot say anything more from this relation.

In the case of the Poisson–Lie T -duality, where ∆ = 0 and Za = 0 , we can regard the

relation (4.17) as a Maurer–Cartan equation and identify the current Ja as the right-invariant

1-form

dg̃ g̃−1 = Ja T
a , g̃ ≡ ex̃a T

a
. (4.18)

Then, we can rewrite the equations of motion in a manifestly O(D,D)-covariant form as (see

section 6.1 of [22] for the details)

P̂A = ĤAB ∗ P̂B , (4.19)

where P̂A is constructed by using an element of the Drinfel’d double l ≡ g g̃ as

P̂ ≡ P̂A TA ≡ dl l−1 . (4.20)

The equations of motion can be also expressed as the O(D,D) covariant Maurer–Cartan

equation for the Drinfel’d double

dP̂A +
1

2
FBC

A P̂B ∧ P̂C = 0 . (4.21)

In the case of the Jacobi–Lie T -duality of [17], due to the presence of ∆ in Eq. (4.17), Ja

cannot be expressed by using g̃ and it is not clear how to construct a covariant or geometric

object similar to P̂A . If we instead identify the metric and the B-field as gmn + Bmn = Emn
as in the case of the Jacobi–Lie T -plurality, Eq. (3.8) leads to

dJa = − σ̃−1

2 (fa
bc + 2 δba Z

c − 2 δca Z
b) Jb ∧ Jc − 2Zb r

b ∧ Ja . (4.22)
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In this case, there is no scale factor, but due to the presence of the last term, this again cannot

be regarded as a Maurer–Cartan equation. According to the above considerations, we suspect

that the Jacobi–Lie T -plurality is not a symmetry of the string sigma model.

One of the reasons for the issue may be that the DD+ is a Leibniz algebra instead of a

Lie algebra. In the case of the Poisson–Lie T -duality, a string is fluctuating on the Drinfel’d

double and the position of the string is described by a map, l : Σ → D, from the worldsheet

to a Drinfel’d double D . However, in the case of the Leibniz algebra, a group-like global

structure is complicated and it is not clear how to describe the position of the string on the

doubled geometry similar to the case of the Drinfel’d double. A recent study [39] may be

useful in clarifying this point.

5 Conclusions

In this paper, we proposed a Leibniz algebra DD+ and showed that this provides an alter-

native description of the Jacobi–Lie bialgebra. Extending the standard procedure developed

in the Poisson–Lie T -duality, we showed that a DD+ systematically constructs a Jacobi–Lie

structures and the generalized frame fields satisfying £̂EAEB = −XAB
C EC . Using the gen-

eralized frame fields, we proposed a natural extension of the Poisson–Lie T -duality, which we

call the Jacobi–Lie T -plurality. We then showed that the Jacobi–Lie T -plurality (with the

R–R fields and the spectator fields) is a symmetry of the equations of motion of DFT. As a

demonstration, we provided several examples of the Jacobi–Lie T -plurality. At the level of

the string sigma model, we were faced with a difficulty in the realization of the Jacobi–Lie

T -plurality, and this may indicate that the scale symmetry R+ is not a (classical) symmetry

of string theory. To clarify the status of this scale symmetry, it is important to check whether

the Jacobi–Lie T -plurality remains as a symmetry of α′-corrected supergravity by extending

recent works on the Poisson–Lie T -duality [40–42].

In M-theory, the exceptional Drinfel’d algebra (associated with the SL(5) duality group)

has been found as

Ta ◦ Tb = fab
c Tc , T a1a2 ◦ T b1b2 = −2 fc

a1a2[b1 T b2]c ,

Ta ◦ T b1b2 = fa
b1b2c Tc + 2 fac

[b1 T b2]c + 3Za T
b1b2 ,

T a1a2 ◦ Tb = −fba1a2c Tc + 3 f[c1c2
[a1 δ

a2]
b] T c1c2 − 9Zc δ

[c
b T

a1a2] .

(5.1)

If we decompose the index as a = {ȧ, ]} and assume fȧḃ
] = 0 , we find that the generators
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{Tȧ, T ȧ ≡ T ȧ]} satisfy the subalgebra

Tȧ ◦ Tḃ = fȧḃ
ċ Tċ , T ȧ ◦ T ḃ = −fċȧḃ] T ċ ,

Tȧ ◦ T ḃ = −fȧḃċ] Tċ − fȧċḃ T ċ + (3Zȧ − fȧ]])T ḃ ,

T ȧ ◦ Tḃ = fḃ
ȧċ] Tċ + fḃċ

ȧ T ċ − (3Zḃ − fḃ]
])T ȧ + (3Zc − fċ]]) δȧḃ T

ċ .

(5.2)

This is noting but the DD+ under the identifications, fȧ
ḃċ = −fȧḃċ], Z ȧ = 0, and 2Zȧ =

3Zȧ− fȧ]] . Similarly, the extended Drinfel’d algebra in the type IIB picture also contains the

DD+ as a subalgebra. Thus, the Jacobi–Lie T -plurality is a subset of the proposed Nambu–

Lie U -duality.6 An issue in the Nambu–Lie U -duality is that the equations of motion of the

exceptional field theory are complicated and the covariance under the Nambu–Lie U -duality

cannot be easily proven. The results of this paper show that the non-Abelian duality works

as a solution generating transformation even when the ZA is present. Further steps towards

the proof of Nambu–Lie U -duality will be taken in future work.

Another future direction is to study a U -duality extension of the Jacobi–Lie structure.

For this purpose, we need to study the Nambu–Jacobi structure [45] on a group manifold.

In this paper, we have constructed the Jacobi–Lie structure π and E from a DD+ , and the

vector field E ∝ Za ea is associated with the vector ZA = (Za, Z
a) . In the case of the EDA

(in the M-theory picture), π is replaced by a tri-vector π(3) and E will be replaced by a bi-

vector E(2) ∝ Zab ea eb because ZA is replaced by ZA = (Za,
Za1a2√

2!
). In the literature, the

non-Abelian U -duality is studied by assuming Za1a2 = 0 , but this assumption may not be

necessary. It will be an interesting future work to keep Za1a2 to find a generalized non-Abelian

U -duality. It is also interesting to study the associated generalized Yang–Baxter deformation.
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A Embedding tensors in half-maximal 7D SUGRA and DD+

In this appendix, we conduct a detailed study of the relationship between the embedding

tensors in half-maximal 7D gauged supergravity and the DD+ . Among the 13 inequivalent

orbits classified in [28], we show that orbits 2, 3, 5, 7, . . . , 13 can be mapped to some DD+s

by performing O(3, 3) redefinitions of generators TA → CA
B TB . For each orbit, the matrix

CA
B (which is not unique) is found by trial and error. For orbit 4 or 6, only when α = 0, we

find such a matrix CA
B but failed to find such matrix for α 6= 0. For orbit 1, as we explain

below, we conclude that this is not related to any DD+.

In the following, we use a short-hand notation,

c ≡ cosα , s ≡ sinα , t ≡ tanα . (A.1)

Because of −π
4 < α ≤ π

4 , we have − 1√
2
< s ≤ c ≤ 1√

2
and 1 < t ≤ 1 . In addition,

as was classified in [43, 44], there are 22 six-dimensional Drinfel’d doubles, which are called

DD1, . . . ,DD22, and we use the notation in the following. As we show in the following, all

of these are related to some embedding tensors with ξ0 = 0 (recall that a DD+ reduces to a

Drinfel’d double when ξ0 = 0).

Orbit 1

Orbit 1 contains the non-vanishing fluxes

H123 = c , f1
23 = c , f2

13 = −c , f3
12 = c ,

R123 = s , f23
1 = s , f13

2 = −s , f12
3 = s .

(A.2)

The 6D Lie algebra [TA, TB] = XAB
C TC has been identified as SO(4) for α 6= π

4 or SO(3)

(times three-dimensional Abelian algebra) for α = π
4 . According to the classification of six-

dimensional Drinfel’d double [43], there is no Drinfel’d double whose Lie algebra is SO(4) or

SO(3) , and thus orbit 1 is not related to any Drinfel’d double.

Orbit 2

Orbit 2 contains the non-vanishing fluxes

H123 = c , f1
23 = c , f2

13 = −c , f3
12 = −c ,

R123 = s , f23
1 = s , f13

2 = −s , f12
3 = −s .

(A.3)

Let us classify the range of parameter α into three categories.
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1. α = 0 In this case, performing an O(3, 3) transformation with

CA
B =



0 1 0 1 0 0

−1 0 0 0 1 0

0 0 0 0 0 1
1
2

0 0 0 1
2

0

0 1
2

0 − 1
2

0 0

0 0 1 0 0 0


, (A.4)

we get a Drinfel’d double with

f13
2 = −1 , f23

1 = 1 , f1
13 = 1 , f2

23 = 1 . (A.5)

According to [43], this corresponds to a Manin triple (70|5.ii|b) with b = 1 , which

corresponds to the Drinfel’d double

DD1: (9|5|b) ∼= (8|5.ii|b) ∼= (70|5.ii|b) (b > 0) . (A.6)

2. 0 < α Here, performing an O(3, 3) transformation with

CA
B =



0 0 − 1
s

0 0 0

0 1
2

0 − 1
2

0 0
1
2

0 0 0 1
2

0

0 0 0 0 0 −s
−1 0 0 0 1 0

0 1 0 1 0 0


, (A.7)

we get a Drinfel’d double with

f12
2 = −1

t
, f12

3 = 1 , f13
2 = −1 , f13

3 = −1

t
,

f2
12 = −s2 , f2

13 = −c s , f3
12 = c s , f3

13 = −s2 .

(A.8)

This corresponds to a Manin triple (7a|71/a|b) with a ≡ 1
t and b = c s = a

1+a2 . This

corresponds to the Drinfel’d double

DD3: (7a|71/a|b) ∼= (71/a|7a|b)
(
a ≥ 1 , b 6= 0

)
. (A.9)

3. α < 0 This case is related to the previous case through T1 → −T1 and T2 ↔ T3 .

As one can see from this example, each orbit of [28] corresponds to several different Drin-

fel’d doubles, each of which has several different decompositions into Manin triples. We also

note that the Lie algebra of the two Drinfel’d doubles, DD1 and DD3, are isomorphic to

SO(3, 1) ∼= SL(2)× SL(2) (see the first paragraph of section 4.1 in [43] for more details). The

difference between DD1 and DD3 is in the definition of the bilinear form 〈TA, TB〉 on the Lie

algebra of SO(3, 1) .
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Orbit 3

Orbit 3 contains the non-vanishing fluxes

H123 = c , f1
23 = c , f2

13 = c , f3
12 = −c ,

R123 = s , f23
1 = s , f13

2 = s , f12
3 = −s .

(A.10)

Again we consider three cases.

1. α = 0 Performing an O(3, 3) transformation with

CA
B =



0 −1 0 −1 0 0

1 0 0 0 −1 0

0 0 0 0 0 1

− 1
2

0 0 0 − 1
2

0

0 − 1
2

0 1
2

0 0

0 0 1 0 0 0


, (A.11)

we get a Drinfel’d double with

f13
2 = 1 , f23

1 = 1 , f1
13 = −1 , f2

23 = −1 . (A.12)

This corresponds to a Manin triple (60|5.iii|b) with b = 1 , which is contained in

DD2: (8|5.i|b) ∼= (60|5.iii|b) (b > 0) . (A.13)

The Lie algebra of this Drinfel’d double is isomorphic to SO(2, 2) .

2. 0 < |α| < π
4 Performing an O(3, 3) transformation with

CA
B =



0 0 − 1
s

0 0 0

0 1
2

0 − 1
2

0 0

− 1
2

0 0 0 − 1
2

0

0 0 0 0 0 −s
−1 0 0 0 1 0

0 −1 0 −1 0 0


, (A.14)

we get a Drinfel’d double with

f12
2 = −1

t
, f12

3 = −1 , f13
2 = −1 , f13

3 = −1

t
,

f2
12 = −s2 , f2

13 = −c s , f3
12 = −c s , f3

13 = −s2 .

(A.15)

This is a Manin triple (6a|61/a.i|b) with a ≡ 1
t and b = c s = a

1+a2 . This corresponds

to the Drinfel’d double

DD4: (6a|61/a.i|b) ∼= (61/a.i|6a|b) (a > 1 , b 6= 0) . (A.16)

The Lie algebra of this Drinfel’d double is also isomorphic to SO(2, 2) although the

bilinear form is defined differently from DD2.
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3. α = π
4 Substituting α = π

4 to (A.15), we obtain a Manin triple (3|3.i|b) with b = 1
2 .

This corresponds to the Drinfel’d double

DD8: (3|3.i|b) (b 6= 0) , (A.17)

whose Lie algebra is isomorphic to SO(2, 1) .

Orbit 4

Orbit 4 contains the non-vanishing fluxes

H123 = c , f12
3 = s , f1

23 = c , f2
13 = −c . (A.18)

Performing an O(3, 3) transformation with

CA
B =



1
c

0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 c 0 0

0 0 0 0 1 0

0 0 1 0 0 0


, (A.19)

this is mapped to a flux configuration

f12
3 = 1 , f23

1 = c2 , f13
2 = −1 , H123 = t . (A.20)

For a general α , due to the presence of H123 , this does not correspond to a Lie algebra of a

Drinfel’d double. Let us consider two cases: α = 0 and α 6= 0.

1. α = 0 Only in this case, we get the Manin triple (9|1), which corresponds to the

Drinfel’d double

DD5: (9|1) . (A.21)

The Lie algebra of DD5 is isomorphic to ISO(3) ∼= CSO(3, 0, 1) [28] .

2. α 6= 0 Here we considered a general O(3, 3) matrix of the form
( α 0

0 (a−1)t
)(

1 β
0 1

)(
1 0
γ 1

)
with detα 6= 0 , βt = −β , and γt = −γ , and tried to realize Fabc = F abc = 0 . However,

there is no real solution. If instead we perform a redefinition with

C ′A
B =



1 0 0 − t
c2

0 0

0 1
c

0 0 − t
c

0

0 0 1
c

0 0 − t
c

0 0 0 1 0 0

0 0 0 0 c 0

0 0 0 0 0 c


6∈ O(3, 3), (A.22)
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Eq. (A.20) becomes the same algebra as α = 0 (i.e., f12
3 = 1, f23

1 = 1, f31
2 = 1) .

Therefore, the 6D Lie algebra is isomorphic to ISO(3) for any value of α as discussed

in [28]. However, since the matrix (A.22) is not an element of O(3, 3) , the redefined

generators T ′A do not have the canonical bilinear form: 〈T ′A, T ′B〉 6= ηAB . According

to [43], the only Drinfel’d double whose Lie algebra is isomorphic to ISO(3) is DD5. We

have tried to find an O(3, 3) transformation which maps the algebra (A.20) to the Lie

algebra of (9|1) but we could not find such an O(3, 3) . We thus conclude that orbit 4 is

related to a Drinfel’d double only when α = 0 .

Orbit 5

Orbit 5 contains the non-vanishing fluxes

H123 = c , f12
3 = s , f1

23 = c , f2
13 = c . (A.23)

Here we consider two cases.

1. α = 0 In this case, performing an O(3, 3) transformation with

CA
B =



0 0 0 0 0 − 1
c

0 0 0 − 1√
2

1√
2

0

1√
2

1√
2

0 0 0 0

0 0 −c 0 0 0

− 1√
2

1√
2

0 0 0 0

0 0 0 1√
2

1√
2

0


, (A.24)

we get a Drinfel’d double with

f13
2 = −t , f12

2 = −1 , f13
3 = −1 , f3

12 = c2 . (A.25)

This is a Manin triple (5|2.ii), which is in the orbit

DD6: (8|1) ∼= (8|5.iii) ∼= (70|5.i) ∼= (60|5.i) ∼= (5|2.ii) . (A.26)

2. α 6= 0 In this case, performing an O(3, 3) transformation with

CA
B =



0 0 0 0 0 − 1
c

− 1√
2 t

− 1√
2 t

0 0 0 0

0 0 0 − 1√
2

1√
2

0

0 0 −c 0 0 0

0 0 0 − t√
2
− t√

2
0

− 1√
2

1√
2

0 0 0 0


, (A.27)

we get a Manin triple (4|2.iii|b) with

f12
2 = −1 , f12

3 = 1 , f13
3 = −1 , f2

13 = −b
(
b ≡ c2

t

)
. (A.28)
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This corresponds to the Drinfel’d double

DD7: (70|4|b) ∼= (4|2.iii|b) ∼= (60|4.i| − b) (b 6= 0) . (A.29)

According to [28], the Lie algebras of both Drinfel’d doubles are isomorphic to CSO(2, 1, 1) .

Orbit 6

Orbit 6 contains the non-vanishing fluxes

H123 = c , f13
2 = −s , f12

3 = s , f12
2 = f13

3 = −ξ0 , f1
23 = c , Z1 = −ξ0 . (A.30)

This and the subsequent orbit contain non-vanishing ZA and the structure constants XAB
C

have the symmetric part: X(AB)
C 6= 0 . If α = 0 , the flux configuration coincides with that of

orbit 8 with α = 0 , which can be mapped to a DD+ (which reduces to DD15 when ξ0 = 0).

When α 6= 0 , we fail to find an O(3, 3) transformation which maps this fluxes into any DD+ .7

To be a little more specific, let us consider the case ξ0 = 0 . By considering the eigenvalues

of the Killing form, the only possible Drinfel’d doubles that may be related to orbit 6 are

DD14–DD17. However, we could not find any O(3, 3) transformation which maps the flux

configuration (A.30) with ξ0 = 0 to any of these Drinfel’d double.8 As we see below, DD14–

DD17 rather correspond to orbit 7 or 8. We thus conclude that orbit 6 with ξ0 = 0 can be

related to a Drinfel’d double only when α = 0 .

Orbit 7

Orbit 7 contains the non-vanishing fluxes

H123 = c , f13
2 = −s , f12

3 = −s , f12
2 = f13

3 = −ξ0 , f1
23 = c , Z1 = −ξ0 . (A.31)

7We considered a general O(3, 3) matrix C =
( α 0

0 (a−1)t
)(

1 β
0 1

)(
1 0
γ 1

)
with detα 6= 0 , βt = −β , and γt = −γ ,

and tried to remove the flux components Fabc = F abc = 0 , but we could not find a real solution.
8A non-trivial solution we found is an O(3, 3 ;C) matrix

CA
B =


1
c

0 0 0 0 0

0 0 0 0 1
2

− i
2

0 i
2

1
2

0 0 0

0 0 0 c 0 0

0 1 i 0 0 0

0 0 0 0 −i 1

,

which gives a Manin triple (7a|1) with a = −i t pure imaginary: f12
3 = 1 , f13

2 = −1 , f12
2 = f13

3 = −a .
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If we perform an O(3, 3) transformation with

CA
B =



1
c

0 0 0 0 0

0 0 0 0 1√
2
− 1√

2

0 1√
2

1√
2

0 0 0

0 0 0 c 0 0

0 1√
2
− 1√

2
0 0 0

0 0 0 0 1√
2

1√
2


, (A.32)

we get a DD+ with

f12
3 = 1 , f13

2 = −1 , f12
2 = f13

3 = −t− ξ0

c
, Z1 = −ξ0

c
. (A.33)

If we consider ξ0 = 0 , the DD+ reduces to a Drinfel’d double, which can be classified as

follows depending on the value of α.

1. 0 < α < π
4 This algebra is the Manin triple (7a|1) with a = t , which corresponds to

DD14: (7a|1) ∼= (7a|2.i) ∼= (7a|2.ii) (0 < a < 1) . (A.34)

The Lie algebra of this Drinfel’d double is CSO(2, 0, 2) [28].

2. −π
4 < α < 0 In this case, the algebra can be mapped to the previous one through

T1 → −T1 and T2 ↔ T3 .

3. α = π
4 In this case, the Killing form becomes the zero matrix and the Drinfel’d double

has another name,

DD18: (71|1) ∼= (71|2.i) ∼= (71|2.ii) . (A.35)

In [28], the Lie algebra of this Drinfel’d double is denoted as g0 .

4. α = 0 In this case, the embedding tensor is the same as that of orbit 8 with α = 0 ,

which is studied below.

Orbit 8

Orbit 8 contains the non-vanishing fluxes

H123 = c , f12
3 = s , f12

2 = f13
3 = −ξ0 , f1

23 = c , Z1 = −ξ0 . (A.36)

Performing an O(3, 3) transformation with

CA
B =



0 0 0 0 1 0

0 0 1 0 0 0
1
c

0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 c 0 0


, (A.37)
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we get a DD+ with

f23
1 = 1 , f13

2 = −1 , f13
1 = f23

2 =
ξ0

c
, f3

12 = t , Z3 = −ξ0

c
. (A.38)

Again, let us consider the reduction to the Drinfel’d double ξ0 = 0 , which can be decom-

posed into the following three cases.

1. α = 0 In this case, we have

DD15: (70|1) . (A.39)

2. 0 < α < π
2 Through a rescaling of T1 and T2 , we obtain

DD16: (70|2.i) . (A.40)

3. −π
2 < α < 0 Through a rescaling of T1 and T2 , we have

DD17: (70|2.ii) . (A.41)

In any of these cases, the Lie algebra of the Drinfel’d double is isomorphic to h1 of [28].

Orbit 9

Orbit 9 contains the non-vanishing fluxes

H123 = c , f13
2 = −s , f12

3 = s , f12
2 = f13

3 = −ξ0 , f1
23 = −c , Z1 = −ξ0 . (A.42)

This can be mapped to the following three DD+s.

1. α = 0 In this case, the embedding tensor is the same as that of orbit 11 with α = 0 .

2. α 6= 0 Performing an O(3, 3) transformation with

CA
B =



− 1
s

0 0 0 0 0

0 1√
t

0 0 0 1√
t

0 0 − 1√
t

0 1√
t

0

0 0 0 −s 0 0

0 0 0 0
√
t 0

0 0 0 0 0 −
√
t


, (A.43)

we get a DD+ with

f12
3 = 1 , f13

2 = −1 , f12
2 = f13

3 = −1

t
+
ξ0

s
, f1

23 = −1 , Z1 =
ξ0

s
. (A.44)
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Now, let us consider the case ξ0 = 0 . If 0 < α < π
4 , this is a Manin triple (7a|2.ii) with

a ≡ 1
t , which corresponds to

DD9: (7a|1) ∼= (7a|2.i) ∼= (7a|2.ii) (a > 1) . (A.45)

When α is negative, we can consider a redefinition, such as T1 → −T1 and T2 → −T2 ,

which flips the sign of t , and the Drinfel’d double is always DD9.

3. α = π
4 This case is the same as the previous case by choosing α = π

4 .

When ξ0 = 0 , the Drinfel’d double has another name

DD18: (71|1) ∼= (71|2.i) ∼= (71|2.ii) , (A.46)

because the number of the null eigenvalues of the Killing form is increased.

Orbit 10

Orbit 10 contains the non-vanishing fluxes

H123 = c , f13
2 = f12

3 = −s , f12
2 = f13

3 = −ξ0 , f1
23 = −c , Z1 = −ξ0 . (A.47)

Performing an O(3, 3) transformation with

CA
B =



1
s

0 0 0 0 0

0 1√
2

0 0 0 − 1√
2

0 0 1√
2

0 1√
2

0

0 0 0 s 0 0

0 0 − 1√
2

0 1√
2

0

0 1√
2

0 0 0 1√
2


, (A.48)

we get a DD+ with

f12
3 = f13

2 = −1 , f12
2 = f13

3 = −1

t
− ξ0

s
, Z1 = −ξ0

s
. (A.49)

If we consider the case ξ0 = 0 , we obtain the following Drinfel’d doubles.

1. α = 0 Again, the embedding tensor is the same as that of orbit 11 with α = 0.

2. 0 < α < π
4 This is the Manin triple (6a|1) with a ≡ 1

t , which corresponds to9

DD10: (6a|1) ∼= (6a|2) ∼= (6a|61/a.ii) ∼= (6a|61/a.iii) (a > 1) . (A.50)
9We note that the Manin triple (6a|1) can be mapped to (61/a|1) , for example, through

CA
B =


− 1

a
0 0 0 0 0

0 1
2

− 1
2

0 1
2

1
2

0 − 1
2

1
2

0 1
2

1
2

0 0 0 −a 0 0

0 1
2

1
2

0 1
2

− 1
2

0 1
2

1
2

0 − 1
2

1
2

.
Thus the parameter a of (6a|1) can be restricted to a > 1 .
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3. −π
4 < α < 0 This can be mapped to the previous case through T1 → −T1 , T2 → T3 ,

and T3 → −T2 .

4. α = π
4 (t = 1)

DD13: (3|1) ∼= (3|2) ∼= (3|3.ii) ∼= (3|3.iii) . (A.51)

When α 6= 0 , the Lie algebras of the Drinfel’d doubles are isomorphic to CSO(1, 1, 2) [28].

Orbit 11

Orbit 11 contains the non-vanishing fluxes

H123 = c , f12
3 = s , f12

2 = f13
3 = −ξ0 , f1

23 = −c , Z1 = −ξ0 . (A.52)

Under an O(3, 3) transformation

CA
B =



0 0 0 0 1 0

0 0 −1 0 0 0

− 1
c

0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 −1

0 0 0 −c 0 0


, (A.53)

we get a DD+ with

f13
2 = 1 , f23

1 = 1 , f13
1 = f23

2 = −ξ0

c
, f3

12 = t , Z3 =
ξ0

c
. (A.54)

For the case of the Drinfel’d double (ξ0 = 0) , this can be classified into two Drinfel’d

doubles.

1. α = 0 The Manin triple is (60|1), which is contained in

DD11: (60|1) ∼= (60|5.ii) ∼= (5|1) ∼= (5|2.i) . (A.55)

2. α 6= 0 Performing a rescaling of T1 and T2 , we get the Manin triple (60|2), which is

contained in

DD12: (60|2) ∼= (60|4.ii) ∼= (4|1) ∼= (4|2.i) ∼= (4|2.ii) . (A.56)

The Lie algebras of both Drinfel’d doubles are called h2 [28].
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Orbit 12

Orbit 12 contains the non-vanishing fluxes

H123 = c , f12
3 = s , f12

2 = f13
3 = −ξ0 , Z1 = −ξ0 . (A.57)

Under an O(3, 3) transformation with

CA
B =



0 0 0 0 c 0

0 0 1 0 0 0

1 0 0 0 0 0

0 1
c

0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0


, (A.58)

we get a DD+ with

f23
1 = 1 , f13

1 = f23
2 = ξ0 , f3

12 = t , Z3 = −ξ0 . (A.59)

When ξ0 = 0 , the Drinfel’d double can be classified as follows.

1. α = 0

DD19: (2|1) . (A.60)

2. 0 < α ≤ π
4 Through a rescaling of T1 and T2 , we get

DD20: (2|2.i) . (A.61)

3. −π
4 < α < 0 Through a rescaling of T1 and T2 , we get

DD21: (2|2.ii) . (A.62)

The Lie algebras of these Drinfel’d double are isomorphic to CSO(1, 0, 3) [28].

Orbit 13

Orbit 13 contains only Z1 = −ξ0 . Without any redefinition of generators, this corresponds to

the Jacobi–Lie bialgebra ((I,−2 X̃1), (I, 0)). In the case ξ0, we get an Abelian double, called

DD22.
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DD DD1 DD2 DD3 DD4 DD5 DD6 DD7 DD8 DD9 DD10 DD11
b=1
(b>0)

b=1
(b>0)

b= a
1+a2

(b 6=0)

b= a
1+a2

(b 6=0)

b= 1
2

(b 6=0)

Orbit 2 3 2 3 4 5 5 3 9 10 9,10,11

DD DD12 DD13 DD14 DD15 DD16 DD17 DD18 DD19 DD20 DD21 DD22

Orbit 11 10 7 6,7,8 8 8 7,9 12 12 12 13

Table A.1: Correspondence between 13 orbits of [28] and 22 Drinfel’d doubles classified in [43].

DD1, 2, 3, 4, and 8 contain a parameter b whose range is shown in round brackets. Only a

specific value is realized if we construct the Drinfel’d double from the flux algebras of [28].

Summary

We can summarize the result as in Table A.1. We found that all of the 22 Drinfel’d doubles are

reproduced from the 13 orbits of the embedding tensors in 7D supergravity by choosing ξ0 = 0 .

The parameter b contained in the Lie algebra of several Drinfel’d doubles takes the specific

value listed in Table A.1. This is natural because the Lie algebra of the Drinfel’d double does

not depend on the parameter b , and the classification made in [28] is the classification of the

Lie algebra without considering the bilinear form 〈·, ·〉 . In order to realize a Drinfel’d double

with a different value of b, we need to change the bilinear form 〈·, ·〉, which corresponds to

performing a non-O(3, 3) redefinition of generators. For DD1 and DD2, we can perform a

non-O(3, 3) redefinition of generators, T ′a = Ta and T ′a = b T a , to convert the value of the

parameter b from the special value of 1 to the general value of b. Similarly, for DD3, DD4,

and DD8, the redefinition T ′a = Ta and T ′a = b
c s T

a change the value of b . This way, all of

the Drinfel’d doubles classified in [43] can be reproduced from the orbits classified in [28].
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