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Abstract

We apply Witten’s conjugation argument [1] to spin chains, where it allows us
to derive frustration-free systems and their exact ground states from known
results. We particularly focus on Zp-symmetric models, with the Kitaev and
Peschel–Emery line of the axial next-nearest neighbour Ising (ANNNI) chain
being the simplest examples. The approach allows us to treat two Z3-invariant
frustration-free parafermion chains, recently derived by Iemini et al. [2] and
Mahyaeh and Ardonne [3], respectively, in a unified framework. We derive
several other frustration-free models and their exact ground states, including
Z4- and Z6-symmetric generalisations of the frustration-free ANNNI chain.
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1 Introduction

Strongly correlated quantum systems are notoriously hard to study. Even when restricted
to one spatial dimension the applicability of analytical methods is rather limited. Notable
exceptions are provided by systems like the quantum Ising or XY spin chain that can be
mapped to effectively non-interacting models [4], thus allowing the determination of the
full spectrum by elementary means. A second class of systems is provided by integrable
models [5]. They also allow the determination of the full energy spectrum, although
more sophisticated methods like the algebraic Bethe ansatz [6, 7] have to be employed
and simple results in a closed form are usually not available. A third type of systems are
so-called frustration-free models [8]. These are distinguished by the fact that the ground-
state manifold can be given in an exact, closed form. In this paper we will discuss such
frustration-free models and present an overarching framework connecting many of them.

One of the first frustration-free models was described by Peschel and Emery [9]. They
realised that for a constrained set of couplings the ground state of the axial next-nearest
neighbour Ising (ANNNI) [10] model takes the simple form of a product state, thus facili-
tating the straightforward calculation of correlation functions. Along this Peschel–Emery
line the model can be viewed as a deformation of the trivial ferromagnetic Ising model.
Several generalisations to other two-dimensional models including the three-state Potts
model were discovered in the following [11–14]. Recently, frustration-free models of this
type have been investigated in the context of Majorana zero modes [15–17] by employing
the original results of Peschel and Emery.

Another famous example of a frustration-free model is the AKLT chain [8,18,19], which
was originally devised in the context of the Haldane conjecture for integer spin chains [20–
22]. The idea to construct a parent Hamiltonian was subsequently used to construct further
frustration-free models like the q-deformed AKLT model [23,24], valence bond solids with
general Lie group symmetries [25–29], or supersymmetic systems [30, 31]. As the ground
state of the AKLT model can be written as a compact matrix product state it has served
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as the starting point for the development of the general theory of matrix product and
tensor network states [32–37] and their application in numerical simulations [38, 39] as
well as the classification of quantum phases and their symmetry protections [40–44].

Our investigation was motivated in particular by two recent works by Iemini et al. [2]
and Mahyaeh and Ardonne [3]. They constructed two different, frustration-free Z3-clock
models. The motivation for these studies was given by their relation to parafermions, thus
naturally generalising Majorana zero modes to Z3-symmetric systems [45]. Like in the case
of the Peschel–Emery line discussed above, both models can be viewed as deformations
of a simple classical system, in this case the three-state zero-bias Potts chain. One of our
main results is to reformulate both models in a unified framework, thus treating them on
an equal footing and clarifying their relation (illustrated in Figure 3).

This will be achieved by applying Witten’s conjugation argument [1, 46], originally
introduced for supersymmetric systems, to spin chains. Starting from a simple model
with known ground-state manifold, we derive interacting deformations as well as their
exact ground states. The explicit construction then allows the calculation of correlation
functions and, in some cases, the proof of the existence of an energy gap. We will apply
this line of argument to Zp-symmetric systems, with the two specific Z3-symmetric models
mentioned above analysed in detail. Furthermore, we construct several new frustration-
free models, including generalisations of the Peschel–Emery line to Z4- and Z6-symmetric
systems.

In this context we note that a method very similar to the Witten conjugation has
been applied in the field of matrix product states to construct frustration-free models
from the respective parent Hamiltonians [41,42,47,48]. The framework of matrix product
(or generalised valence bond solid) states also provides the starting point to prove the
existence of an energy gap for the corresponding parent Hamiltonians. These proofs are
based either on the martingale method [49] or finite-size criteria [32, 50–52]. The latter
link the energy gap of a finite-size system to a lower bound on the energy gap in the
thermodynamic limit. The first work following such an approach was done by Knabe [53],
who used exact diagonalisation on finite-size systems to obtain a lower bound for the
energy gap in the spin-1 AKLT model. We will use this approach to obtain bounds for the
energy gaps of several models considered in our manuscript. We note that our proofs can
in principle be extended by using more advanced methods [49,51], however, the obtained
bounds are physically less practical as we discuss for instance for the model in Section 6.5.
In order to keep our discussion less abstract, we thus take a more explicit approach not
relying on matrix product states in the following but note that many of the results we
present below can be rephrased in such terms.

This article is organised as follows: In the next section we discuss Witten’s conjugation
argument and tailor it to frustration-free spin chains. Section 3 recalls some known families
of frustration-free models that are rederived using the deformation approach. In Section 4
we introduce the necessary notations to discuss Zp-symmetric clock models. In Sections 5
and 6 we analyse two types of deformations, in particular covering the models introduced
in References [2, 3] in the special case p = 3. In addition, we consider several frustration-
free Zp-models. While Witten’s conjugation argument applied here ensures the form of
the ground state, it does not guarantee the existence of an energy gap. Therefore, in the
appendix we apply Knabe’s method [53] to obtain lower bounds for the energy gap for
some of the considered models.
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2 Conjugation argument

Originally [1] Witten introduced his conjugation argument in the context of supersymmet-
ric quantum mechanical models. More specifically he discussed, given a supersymmetric
Hamiltonian H, how to construct an inequivalent Hamiltonian H̃ with the same number of
zero-energy states. In this section we recall this argument, already tailoring the notation
to the spin-chain systems we will discuss in the following sections. For completeness we
recall Witten’s original argument in Appendix A.

We consider a lattice with a finite-dimensional Hilbert space for each of the lattice
sites. More specifically, in this work we restrict ourselves to one-dimensional chains with
open boundary conditions, and assume the local Hamiltonian to act non-trivially neigh-
bouring sites only. We note, however, that the argument presented here is applicable
more generally, for example, to periodic boundary conditions, higher-dimensional lattices
or longer-ranged models. Coming back to our setup, we consider a Hamiltonian of the
form

H =
N−1∑

j=1

Hj,j+1 =
N−1∑

j=1

L†j,j+1Lj,j+1, (1)

where each term1 Hj,j+1 = L†j,j+1Lj,j+1 acts non-trivially on the neighbouring lattice sites
j and j+ 1 only, and is positive semi-definite, 〈Ψ|Hj,j+1 |Ψ〉 ≥ 0 for all |Ψ〉. Consequently
the ground-state manifold G is spanned by |Ψ1〉 , . . . , |Ψn〉, 1 ≤ n, with Lj,j+1 |Ψi〉 = 0
for all j; in other words, G is the intersection of the kernels of the operators Lj,j+1,
G =

⋂
j ker(Lj,j+1).

The representation (1) now allows us to say something about the ground states of
a deformed/conjugated Hamiltonian. Consider an invertible operator Mj that acts non-
trivially on the local Hilbert space of lattice site j only, with which we define an invertible
operator acting non-trivially on the whole chain via M =

∏
jMj . Using this operator we

can write down the conjugated operators as

L̃j,j+1 = MLj,j+1M
−1 = MjMj+1Lj,j+1M

−1
j+1M

−1
j , (2)

where we used [Lj,j+1,Mk] = 0 for k 6= j, j + 1. Now the deformed/conjugated local
Hamiltonian is given by

H̃ =
N−1∑

j=1

H̃j,j+1 =
N−1∑

j=1

L̃†j,j+1Cj,j+1L̃j,j+1, (3)

where we have introduced the hermitian operator Cj,j+1 as additional degrees of freedom

in the construction. The operator Cj,j+1 = K†j,j+1Kj,j+1 is assumed to be positive definite,
〈Ψ|Cj,j+1 |Ψ〉 > 0 for all |Ψ〉, and thus invertible. The product form of M and the locality
of Cj,j+1 and Lj,j+1 ensure that the resulting Hamiltonian is still local. Note that in general
there is no unique annihilation operator Lj,j+1. Later in this section we will discuss the
interplay between the freedom of Cj,j+1, Lj,j+1 and Mj .

In this setting we can now prove the following theorem (see Reference [1] and Ap-
pendix A for the original supersymmetric case):

Theorem 1. The ground-state manifold G̃ of the conjugated Hamiltonian H̃ is given
by G̃ = span{M |Ψ1〉 , . . . ,M |Ψn〉}, thus the ground-state degeneracies of H and H̃ are
identical.

1We use capital letters to denote operators acting on the Hilbert space of the full chain, with subindices
indicating on which lattice sites they act non-trivially.
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We note that the states M |Ψi〉 do not form an orthonormal basis, but since M is
invertible the states {M |Ψ1〉 , . . . ,M |Ψn〉} are linearly independent.

Proof. First we show that since Cj,j+1 is positive definite we have ker(H̃) =
⋂
j ker(L̃j,j+1).

The proof is simple: Note that a priori
⋂
j ker(L̃j,j+1) ⊆ ker(H̃). Now suppose |Ψ〉 ∈

ker(H̃), ie, H̃ |Ψ〉 = 0, then

〈Ψ| H̃ |Ψ〉 =
∑

j

〈Ψ| L̃†j,j+1Cj,j+1L̃j,j+1 |Ψ〉 =
∑

j

∥∥Kj,j+1L̃j,j+1 |Ψ〉
∥∥2 = 0. (4)

This implies Kj,j+1L̃j,j+1 |Ψ〉 = 0 for all j, and consequently K†j,j+1Kj,j+1L̃j,j+1 |Ψ〉 = 0.

Since Cj,j+1 = K†j,j+1Kj,j+1 is invertible we deduce L̃j,j+1 |Ψ〉 = 0 for all j. Thus we have

shown that |Ψ〉 ∈ ⋂j ker(L̃j,j+1), which implies ker(H̃) ⊆ ⋂j ker(L̃j,j+1).

Second we have to show
⋂
j ker(L̃j,j+1) = G̃. Note that for all 1 ≤ j ≤ N − 1 and

1 ≤ i ≤ n we have
L̃j,j+1M |Ψi〉 = MLj,j+1 |Ψi〉 = 0, (5)

yielding G̃ ⊆ ⋂j ker(L̃j,j+1). Conversely, suppose |Ψ̃〉 ∈ ⋂j ker(L̃j,j+1), then for all 1 ≤
j ≤ N − 1 we find

L̃j,j+1 |Ψ̃〉 = MLj,j+1M
−1 |Ψ̃〉 = 0, (6)

from which we conclude that M−1 |Ψ̃〉 ∈ ⋂j ker(Lj,j+1). Consequently we can expand the

state as M−1 |Ψ̃〉 =
∑

i ai |Ψi〉 with suitable ai ∈ C, resulting in

|Ψ̃〉 =
n∑

i=1

aiM |Ψi〉 ∈ G̃. (7)

Therefore
⋂
j ker(L̃j,j+1) ⊆ G̃, which together with the above implies

⋂
j ker(L̃j,j+1) = G̃.

Finally, we note that since H̃ is positive semi-definite, its ground-state manifold is
given by its kernel (provided it is non-zero), thus resulting in G̃ = ker(H̃) as had to be
shown.

We stress that the theorem above provides a direct way to determine the ground-state
degeneracy of the deformed Hamiltonian. On the other hand, the theorem does not make
any statement about the energy gap above the ground-state manifold or the excited states
of the model. Thus, in Appendix B we will discuss a separate approach to prove the
existence of a finite energy gap for some specific models.

Before applying the theorem to the construction of spin chain models, let us discuss
the degree of freedom in the choices for Lj,j+1, Cj,j+1 and Mj . First, assuming a local
Hilbert space of dimension p, we have the freedom to perform a local basis transformation2

vj , with vj ∈ U(p), at each lattice site j. Under this the operators Mj transform as

Mj → VjMjV
†
j , Vj = 1⊗ . . .⊗ 1⊗ vj ⊗ 1⊗ . . .⊗ 1, (8)

and accordingly

Lj,j+1 → VjVj+1Lj,j+1V
†
j V
†
j+1, Cj,j+1 → VjVj+1Cj,j+1V

†
j V
†
j+1. (9)

Using this we can always choose a suitable basis in the local Hilbert spaces to simplify
Mj . Second, recalling that the deformed local Hamiltonian is given by

H̃j,j+1 = (M †)−1L†j,j+1M
†Cj,j+1MLj,j+1M

−1, (10)

2We use small letters to denote operators acting on the Hilbert space of one or two lattice sites.
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we can also perform a transformation on the bonds between lattice sites j and j + 1 with
uj,j+1 ∈ U(p2). Specifically setting

Lj,j+1 → Uj,j+1Lj,j+1, Cj,j+1 → (M †)−1Uj,j+1M
†Cj,j+1MU †j,j+1M

−1, (11)

where
Uj,j+1 = 1⊗ . . .⊗ 1⊗ uj,j+1 ⊗ 1⊗ . . .⊗ 1, (12)

we see that the local Hamiltonian remains invariant. In the examples in the following
sections we will use these freedoms to simplify Lj,j+1.

3 Frustration-free models revisited

In this section we will revisit several known frustration-free models within the framework of
Witten’s conjugation. We first consider two spin-1/2 models: the XY model [54–56] with
transverse magnetic field and the ANNNI model [9, 15]. Then we review the q-deformed
XXZ chain [57–59], and finally we consider the q-deformed AKLT model [23,24].

3.1 XY chain in transverse magnetic field

We rederive the frustration-free line for the XY model in a magnetic field. Our starting
point is the classical Ising chain (which is equivalent to the Kitaev/Majorana chain [60]
in the decoupling limit),

Hj,j+1 = 2− 2σxj σ
x
j+1 (13)

with the exact ground states

|Ψ±〉 =
1

2N/2

⊗

j

(
|↑〉j ± |↓〉j

)
, (14)

where |↑〉j and |↓〉j denote the eigenstates of σzj with eigenvalues ±1. We are looking for
models that have a Z2-symmetry generated by

∏
j σ

z
j . We choose Mj diagonal, real and

positive, thus there is only one independent parameter in Mj ,

Mj = 1⊗ . . .⊗ 1⊗mj ⊗ 1⊗ . . .⊗ 1, mj =

(
1

r

)
, 0 < r <∞. (15)

The operator mj acts at lattice site j only, with the matrix representation given in the
basis {|↑〉j , |↓〉j}. Hence the deformed ground states are

|Ψ̃±〉 = M |Ψ±〉 . (16)

Note that the states above are not orthogonal. Orthonormal ground states are instead
given by

|Φ̃±〉 =
1

N±

(
M |Ψ+〉 ±M |Ψ−〉

)
(17)

with suitable normalisations N±. If we take

Lj,j+1 = σxj − σxj+1, Cj,j+1 = 1, (18)

the deformation (3) gives the frustration-free line for the Kitaev chain [60], ie, the Jordan–
Wigner transform of the XY chain with magnetic field

H̃
(1)
j,j+1 = −Jxσxj σxj+1 − Jyσyj σ

y
j+1 +

B(1)

2
(σzj + σzj+1) + ε, (19)

6
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with the parameters

Jx =
(r + r−1)2

2
, Jy =

(r − r−1)2
2

, B(1) = r2 − r−2, ε = r2 + r−2, (20)

which correspond to the parameters on the Barouch–McCoy circle [54]. Due to Theorem 1

the model H̃(1) =
∑

j H̃
(1)
j,j+1 possesses a two-fold degenerate ground state. In Section 5.3

we will discuss the Z3-generalisation [2] of this model. Section 5 will be dedicated to
generalise the construction to arbitrary Zp-symmetry.

3.2 ANNNI model

For the second example we obtain an interacting parent Hamiltonian of (16) by choosing

Cj,j+1 =
r2

2
M−2j M−2j+1, (21)

which acts non-trivially on the neighbouring lattice sites j and j + 1, with Mj and Lj as
in Section 3.1. The resulting deformed local Hamiltonian is the ANNNI model

H̃
(2)
j,j+1 = −σxj σxj+1 + Jzσ

z
jσ

z
j+1 +

B(2)

2

(
σzj + σzj+1

)
+ ε, (22)

with

Jz =
(r − r−1)2

4
, B(2) =

r2 − r−2
2

, ε =
(r + r−1)2

4
. (23)

The frustration-free line rediscovered here is the well-known Peschel–Emery line [9, 15]
defined by the relation B(2) = 2

√
Jz(1 + Jz). The exact two-fold ground-state degen-

eracy of H̃(2) =
∑

j H̃
(2)
j,j+1 is assured by Theorem 1. In Section 6.1.1 we discuss the

Z3-generalisation [3] of this setup, while in Section 6.4 we extend the construction to
Z4-symmetry.

By construction the models (19) and (22) share the same ground states. Thus their
combination is also a parent Hamiltonian,

H̃j,j+1 = α1H̃
(1)
j,j+1 + α2H̃

(2)
j,j+1, (24)

as long as αi ≥ 0. The parameters in the resulting spin model reproduce the frustration-
free condition for the XYZ model [55,56,61]. Furthermore, the existence of an energy gap
above the ground states for (24) has been proven [15]. We also note that the construction
above can be extended to inhomogeneous magnetic fields, in particular with an alternating
bias [17], or higher-dimensional systems [62,63].

Finally, we note that the states (16) allow a straightforward calculation of correlation
functions. For example, the two-point function of the Ising order parameter is indepen-
dently of the separation j − j′ given by [54]

〈Ψ̃±|σxj σxj′ |Ψ̃±〉
〈Ψ̃±|Ψ̃±〉

=
4

(r + r−1)2
, (25)

which simplifies to unity at the Ising point (r = 1) as expected.
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3.3 q-deformed XXZ chain

As a third example we show that the XXX chain and the q-deformed XXZ chain are
related via Witten’s conjugation. We start with the local Hamiltonian of the spin-1/2
XXX Heisenberg chain

Hj,j+1 = 1−
(
σxj σ

x
j+1 + σyj σ

y
j+1 + σzjσ

z
j+1

)
. (26)

We first note that the local Hamiltonian satisfies (Hj,j+1)
2 = 4Hj,j+1, which means that

the operators Hj,j+1/4 act as projectors. Thus we can write

1

4
Hj,j+1 = |sing〉j,j+1〈sing|j,j+1 (27)

with3 |sing〉j,j+1 = (|↑〉j |↓〉j+1 − |↓〉j |↑〉j+1)/
√

2 denoting the singlet state on the lattice
sites j and j + 1. On all other lattice sites Hj,j+1 acts trivially. To make the link to the
notion introduced above we write

1

4
Hj,j+1 = L†j,j+1Lj,j+1, Lj,j+1 = |↑〉j |↓〉j+1 〈sing|j,j+1. (28)

Next we consider the generators of Uq(sl2) [64]

qS
z
, S±q =

N∑

j=1

qσ
z
1/2 · · · qσzj−1/2 σ±j q

−σzj+1/2 · · · q−σzN/2, (29)

where we assume q ∈ R, q > 0, and

Sz =
1

2

N∑

j=1

σzj , σ±j =
σxj ± iσyj

2
. (30)

These generators satisfy the algebra

qS
z
S±q q

−Sz = q±1S±q , [S+
q , S

−
q ] =

q2S
z − q−2Sz

q − q−1 , (31)

which reduce to the standard relations among the generators of SU(2) in the limit q → 1.
In order to proceed, we next define the operator M via

M(q) = q−σ
z
1/2 · · · q−jσzj /2 · · · q−NσzN/2, (32)

with the inverse given by

M(q)−1 = qσ
z
1/2 · · · qjσzj /2 · · · qNσzN/2. (33)

With this one gets

L̃j,j+1 = M(q)Lj,j+1M(q)−1 =

√
1 + q2

2
|↑〉j |↓〉j+1 〈sing(q)|j,j+1, (34)

where the q-deformed singlet state is given by

|sing(q)〉j,j+1 =
1√

q + q−1
(q−1/2 |↑〉j |↓〉j+1 − q1/2 |↓〉j |↑〉j+1). (35)

3For the tensor product of states on neighbouring lattice sites we use the short-hand notation
|↑〉j |↓〉j+1 = |↑〉j ⊗ |↓〉j+1 and so on.
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Thus we obtain

L̃†j,j+1L̃j,j+1 =
1 + q2

2
|sing(q)〉j,j+1〈sing(q)|j,j+1, (36)

which is manifestly Uq(sl2) invariant as it is the projection onto the q-deformed singlet
state on the bond (j, j+ 1). A straightforward calculation choosing Cj,j+1 = 1 shows that

1

4
H̃j,j+1 = L̃†j,j+1L̃j,j+1 (37)

= −q
4

[
σxj σ

x
j+1 + σyj σ

y
j+1 +

q + q−1

2

(
σzjσ

z
j+1 − 1

)
+
q − q−1

2

(
σzj − σzj+1

)]
, (38)

which, up to the prefactor q, is the local Hamiltonian of the q-deformed XXZ chain [57–
59,64].

After deriving the Hamiltonian, let us consider the ground states in more detail. The
ground states of the Heisenberg chain (26) are given by4

(S−1 )i |⇑〉 , i = 0, 1, . . . , N, with |⇑〉 = |↑ · · · ↑〉 . (39)

Consequently, according to Theorem 1 the ground states of the q-deformed model read

M(q) (S−1 )i |⇑〉 ∝ (S̃−1 )i |⇑〉 with S̃−1 = M(q)S−1 M(q)−1 =
N∑

j=1

qjσ−j . (40)

However, the Uq(sl2) algebra dictates that the ground-state manifold is spanned by

(S−q )i |⇑〉 . (41)

By induction we will show that there is a correspondence (up to normalisation) between
these sets of states, ie,

(S−q )i |⇑〉 ∝ (S̃−1 )i |⇑〉 . (42)

Obviously this relation holds for i = 0. Now suppose that (42) is true up to i − 1. If we
write

S±q = q−S
z± 1

2

N∑

j=1

qσ
z
1 · · · qσzj−1 σ±j , (43)

then

(S−q )i |⇑〉 ∝ S−q (S̃−1 )i−1 |⇑〉 = (i− 1)!S−q
∑

j1<···<ji−1

qj1+···+ji−1σ−j1 · · ·σ
−
ji−1
|⇑〉 (44)

= (i− 1)!q−
N+1

2
qi − q−i
q − q−1

∑

j1<···<ji

qj1+···+jiσ−j1 · · ·σ
−
ji
|⇑〉 (45)

=
q−

N+1
2

i

qi − q−i
q − q−1 (S̃−1 )i |⇑〉 , (46)

where the precise prefactor is in fact irrelevant for our purpose. This shows that the
relation (42) is indeed fulfilled, and thus that the ground states of the q-deformed model
are given by M(q) (S−1 )i |⇑〉.

4We note that the subscript refers to the deformation parameter, ie, S−1 ≡ S−q=1.
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3.4 q-deformed AKLT chain

Arguably one of the most prominent frustration-free models is the AKLT chain [8,18,19].
Even though the ground state of this system is a matrix product state, we will see that we
can still employ the tools outlined above to derive its q-deformed generalisation [23,24,65].

We start with the original AKLT chain written as

H =
∑

j

Hj,j+1, Hj,j+1 ≡
2∑

m=−2
|ψm〉j,j+1 〈ψm|j,j+1 , (47)

where Hj,j+1 is the projector onto the subspace of total spin-2 on the neighbouring lattice
sites j and j + 1. It can be written in terms of the corresponding eigenstates |ψm〉j,j+1

and acts trivially on all other lattice sites. The eigenstates are explicitly given by

|ψ2〉j,j+1 = |+〉j |+〉j+1 , |ψ1〉j,j+1 =
1√
2

(
|+〉j |0〉j+1 + |0〉j |+〉j+1

)
,

|ψ0〉j,j+1 =
1√
6

(
|+〉j |−〉j+1 + |−〉j |+〉j+1 + 2 |0〉j |0〉j+1

)
,

|ψ−1〉j,j+1 =
1√
2

(
|0〉j |−〉j+1 + |−〉j |0〉j+1

)
, |ψ−2〉j,j+1 = |−〉j |−〉j+1 , (48)

with |±〉j , |0〉j denoting the eigenstates of the spin-1 operator Szj at a given lattice site
j. Note that since Hj,j+1 is a projector, we can match our convention by simply setting
Lj,j+1 = Hj,j+1. For the deformation we choose (q ∈ R, q > 0)

M(q) =
∏

j

Mj(q), Mj(q) = q−2jS
z
j

(
q + q−1

2

)(Szj )
2/2

. (49)

and we define q-deformed states

|ψ̃q2〉j,j+1 = |+〉j |+〉j+1 , |ψ̃q1〉j,j+1 =
1√

1 + q4

(
|+〉j |0〉j+1 + q2 |0〉j |+〉j+1

)
,

|ψ̃q0〉j,j+1 =
q−2 |+〉j |−〉j+1 + q2 |−〉j |+〉j+1 + (q + q−1) |0〉j |0〉j+1√

q4 + q−4 + (q + q−1)2
,

|ψ̃q−1〉j,j+1
=

1√
1 + q4

(
|0〉j |−〉j+1 + q2 |−〉j |0〉j+1

)
, |ψ̃q−2〉j,j+1

= |−〉j |−〉j+1 . (50)

We can then work out that the conjugated annihilation operator L̃j,j+1 is given by

L̃j,j+1 ≡ |ψ̃q
−1

2 〉j,j+1 〈ψ̃
q
2|j,j+1 + |ψ̃q−1

−2 〉j,j+1
〈ψ̃q−2|j,j+1

+ a(q)
(
|ψ̃q−1

1 〉j,j+1 〈ψ̃
q
1|j,j+1 + |ψ̃q−1

−1 〉j,j+1
〈ψ̃q−1|j,j+1

)
+ b(q) |φ̃0〉j,j+1 〈ψ̃

q
0|j,j+1

(51)

with the auxiliary state

|φ̃0〉j,j+1 = q2 |+〉j |−〉j+1 + q−2 |−〉j |+〉j+1 +
4

q + q−1
|0〉j |0〉j+1 (52)

and the parameters

a(q) =
q2 + q−2

2
, b(q) =

(q2 + q−2)(q2 + q−2 + 1)

6
. (53)

10
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Now we choose Cj,j+1 as

Cj,j+1 = |ψ̃q−1

2 〉j,j+1 〈ψ̃
q−1

2 |j,j+1 + |ψ̃q−1

−2 〉j,j+1
〈ψ̃q−1

−2 |j,j+1

+
1

a(q)2

(
|ψ̃q−1

1 〉j,j+1 〈ψ̃
q−1

1 |j,j+1 + |ψ̃q−1

−1 〉j,j+1
〈ψ̃q−1

−1 |j,j+1

)

+
1

b(q)2
|φ̃0〉j,j+1 〈φ̃0|j,j+1 , (54)

such that the deformed local Hamiltonian becomes the projector

H̃j,j+1 = L̃†j,j+1Cj,j+1L̃j,j+1 ≡
2∑

m=−2
|ψ̃qm〉j,j+1 〈ψ̃qm|j,j+1 . (55)

Hence we obtain the q-deformed AKLT model [23,24,65].
The above result shows the deformation at the level of the Hamiltonian. Let us also

look explicitly at the ground state. The four ground states of the undeformed AKLT chain
can be written in the matrix product state representation as

(
|Ψ1,1

AKLT〉 |Ψ
1,2
AKLT〉

|Ψ2,1
AKLT〉 |Ψ

2,2
AKLT〉

)
= A1 · · ·AL, with Aj =

(
|0〉j −

√
2 |+〉j√

2 |−〉j − |0〉j

)
. (56)

According to Theorem 1, the ground state of the q-deformed model is generated by the
matrix

Ãj =

(
|0〉j −q−2j

√
q + q−1 |+〉j

q2j
√
q + q−1 |−〉j − |0〉j

)
. (57)

Generically a matrix product state is defined up to a gauge freedom. If we take

fj−1,j =

(
qj

q−(j−1)

)
, (58)

we can redefine the matrix representation as

Ãtr
j = fj−1,jÃjf

−1
j,j+1 =

(
q−1 |0〉j −

√
q + q−1 |+〉j√

q + q−1 |−〉j −q |0〉j

)
, (59)

which is identical to the one given in References [24, 65] for the ground state of the q-
deformed AKLT chain.

Finally we note that a similar derivation to the one presented in this section can be
used to relate the AKLT chain (47) to a frustration-free point in the (representation)
symmetry protected phase of S3-invariant chains recently studied by O’Brien et al. [66].

4 Introduction to Zp-clock models

The rest of the paper considers Zp-clock models, and frustration-free systems of this type.
Therefore, let us first briefly review the Zp-clock algebra. Consider a local p-dimensional
Hilbert space and two local operators σ and τ satisfying

σp = τp = 1, σp−1 = σ†, τp−1 = τ †, στ = ωτσ, (60)

11
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where ω = exp(2πi/p) is the pth root of unity. Denoting the eigenstates of σ and τ by
|σ, i〉 and |τ, i〉 with i = 0, . . . , p− 1 respectively, the action of the operators is given by

σ |σ, i〉 = ωi |σ, i〉 , τ |σ, i〉 = |σ, i+ 1〉 , (61)

τ |τ, i〉 = ωi |τ, i〉 , σ |τ, i〉 = |τ, i− 1〉 , (62)

where i± 1 has to be taken modulo p. The states |σ, i〉 can be represented in terms of the
states |τ, i〉 as

|σ, i〉 =
1√
p

(
|τ, 0〉+ ωi |τ, 1〉+ · · ·+ ω(p−1)i |τ, p− 1〉

)
. (63)

The Potts/clock model is a generalisation of the Ising model. Here we start with the
counterpart of the classical Ising chain (13), namely the classical Potts model, whose local
Hamiltonian is given by

Hj,j+1 = 2− σjσ†j+1 − σ
†
jσj+1, (64)

where σj and τj denote the operators σ and τ introduced above, now acting non-trivially
on the local Hilbert space of site j. The classical Potts model possesses a p-fold degenerate
ground state

|Ψi〉 =
⊗

j

|σ, i〉j (65)

with |σ, i〉j denoting the eigenstates of σj . Furthermore, the system has an energy gap
above the ground states.

Finally, we note that the clock operators σj and τj have a parafermionic dual by virtue
of the Fradkin–Kadanoff transformation [67], which is the generalisation of the Jordan–
Wigner transformation to Zp-symmetry. The resulting parafermions can be regarded as
generalisation of Majorana fermions [45].

We can already discuss the most general form of deformation that we consider in the
rest of the paper. So far the only requirement for Mj is the invertibility. In this work we
restrict ourselves to models that preserve Zp-symmetry generated by

ωP =
∏

j

τj . (66)

Since M has to commute with ωP , the local operator mj has to be diagonal in the τ -basis,
ie,

mj =




α0

α1

. . .

αp−1


 =

1

p

p−1∑

k,l=0

αkω
−klτ l (67)

for αk ∈ C. Note that we can take out an overall scaling factor, so we end up with p− 1
independent complex coefficients αk/α0, k = 1, . . . , p− 1. For now we will leave it in the
most general form. In line with the cyclicity of the algebra, the coefficients αk are also
defined modulo p,

αk = αkmod p, (68)

for instance α−k = αp−k. Later we will see that in specific examples we get more con-
straints on the coefficients αk.

Starting with the ground states (65) we obtain the deformed states by acting with the
operator M =

∏
jMj =

⊗
jmj , ie,

|Ψ̃i〉 = M |Ψi〉 =
⊗

j

mj |σ, i〉j . (69)

12
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This form immediately allows us to calculate correlation functions. For example, the
two-point function of the order parameter σ becomes

∣∣∣∣∣
〈Ψ̃i|σjσ†j′ |Ψ̃i〉
〈Ψ̃i|Ψ̃i〉

∣∣∣∣∣ =
|∑k α

∗
kαk+1|2

(
∑

k |αk|2)2
≤ 1, (70)

where the upper bound is obtained by virtue of the Schwarz inequality. Other correlation
functions can be obtained in a similar way. In the following sections we will derive the
parent Hamiltonian for the deformed ground states.

5 Frustration-free Zp-generalisations of the XY chain

In this section we generalise the Z2-XY chain discussed in Section 3.1 to arbitrary Zp-
symmetry. Specifically we use the term XY in the sense that we take Lj,j+1 and Cj,j+1 of
the following form

Lj,j+1 = σj − σj+1, Cj,j+1 = 1. (71)

Furthermore we require the resulting model to possess ωP -symmetry, which fixes mj to be
given by (67). In the case p = 3 we recover a model recently studied by Iemini et al. [2],
see Section 5.2.

For the choices (67) and (71) it is straightforward to work out the conjugated Hamil-
tonian (we set α−1 ≡ αp−1 to lighten the notation)

L̃j,j+1 =
1

p

p−1∑

k,l=0

αk−1
αk

ω−kl
(
σjτ

l
j − σj+1τ

l
j+1

)
, (72)

where we used [see Equation (60)]

MjσjM
−1
j =

1

p2

∑

k,k′,l,l′

αk
αk′

ω−(k+1)l−k′l′σjτ
l+l′

j =
1

p

p−1∑

k,l=0

αk−1
αk

ω−klσjτ
l
j . (73)

With (72) the conjugated local Hamiltonian then becomes

H̃j,j+1 =
1

p2

∑

k,k′,l,l′

α∗k−1
α∗k

αk′−1
αk′

ωkl−k
′l′
[(
τ l
′−l
j + τ l

′−l
j+1

)
−
(
τ−lj σ†jσj+1τ

l′
j+1 + h.c.

)]

= −
(
B†jσ

†
jσj+1Bj+1 + h.c.

)
+

p−1∑

l=0

γl

(
τ lj + τ lj+1

)
, (74)

where

Bj =

p−1∑

l=0

βlτ
l
j , βl =

1

p

p−1∑

k=0

αk−1
αk

ω−kl, γl =
1

p

p−1∑

k=0

∣∣∣∣
αk−1
αk

∣∣∣∣
2

ω−kl. (75)

Admittedly this form is not yet very insightful. Thus in the following sections we will
consider specific cases for which the Hamiltonian simplifies.

5.1 Zp-XY model: most general real coefficients

One simplification occurs with the requirement that the coefficients βl and γl are real. For
odd p this implies the following conditions (we set α0 = r0 = 1 due to the freedom in the
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overall scaling of mj)

αk =




eiθkrk, k = 1, . . . , p−12 ,

eiθp−k−1
r2
(p−1)/2

rp−k−1
, k = p+1

2 , . . . , p− 1,
(76)

for r1, . . . , r(p−1)/2 > 0 and θ1, . . . , θ(p−1)/2 ∈ [0, 2π). Similarly, for p even βl and γl are
real provided

αk =

{
eiθkrk, k = 1, . . . , p2 − 1,

±eiθp−k−1 s
rp−k−1

, k = p
2 , . . . , p− 1,

(77)

for r1, . . . , rp/2−1, s > 0 and θ1, . . . , θp/2−1 ∈ [0, 2π).

5.2 Zp-XY model: compact form with real coefficients

In order to obtain a compact form for the Hamiltonian (74) the results from the previous
section can be further specified. Taking αk = rk with r ∈ R\{0} such that the ratio
between consecutive αk is constant, we obtain for the coefficients

βl =
1

pr
(rp + pδl,0 − 1) , γl =

1

pr2
(
r2p + pδl,0 − 1

)
. (78)

Thus the local Hamiltonian simplifies to

H̃j,j+1 = ε−
[(

1 + b

p−1∑

l=1

τ lj

)
σ†jσj+1

(
1 + b

p−1∑

l=1

τ lj+1

)
+ h.c.

]
− f

2

p−1∑

l=1

(
τ lj + τ lj+1

)
, (79)

with

b =
rp − 1

rp + p− 1
, f =

2p(1− r2p)
(rp + p− 1)2

, ε =
p(r2p + p− 1)

(rp + p− 1)2
, (80)

where we have done a multiplicative rescaling to set the coupling of σ†jσj+1 to −1. For
p = 2 the model simplifies to the XY model (19) discussed in Section 3.1.

We note that for odd p the model parameters depend on the sign of r, while for even p
the coefficients only contain even powers of r. The latter suggests that there are two sets
of ground states for the same Hamiltonian,

|Ψ̃+
i 〉 = M(r) |Ψi〉 , |Ψ̃−i 〉 = M(−r) |Ψi〉 . (81)

However, from the expansion we recognise

|Ψ̃−i 〉 = |Ψ̃+
i+p/2〉 , (82)

so both M(r) and M(−r) provide the same set of ground states. Moreover, the physical
properties do not change under r → 1/r. We can see this from mj = diag(1, r, . . . , rn)→
diag(1, r−1, . . . , r−n) ∝ diag(rn, rn−1, . . . , 1). The latter is related to the original mj by a
conjugation and cyclic rotation of the basis, hence the physical properties remain invariant.

Finally we note that for p = 3 and r > 0 we reproduce the model introduced by
Iemini et al. [2]. There the authors also derive the positive-definite form (3) by the use
of Fock parafermions [68]. Using elementary methods, in Appendix B.2 we show that the
model possesses a finite energy gap for 0.5695 . r . 1/0.5695 ≈ 1.7560, thus confirming
the corresponding numerical results [2]. We note that our proof does not exclude the
existence of an energy gap outside this interval, which can be extended by improving our
analysis or using alternative methods [32,49,51]. We note, however, that special care has
to be taken regarding the treatment of the boundary conditions.
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5.3 Z3-XY model: real coefficients from complex deformation

Our construction allows us to directly generalise the model discussed above. From Sec-
tion 5.1 we see that for p = 3 there is an additional freedom in the choice of mj in the
form of a complex phase, ie, we can choose

mj =




1
eiθr

r2


 , (83)

which results in

H̃j,j+1 = ε−
[(

1 + b+τj + b−τ †j

)
σ†jσj+1

(
1 + b−τj+1 + b+τ †j+1

)
+
f

2
(τj + τj+1) + h.c.

]

(84)
with the parameters

f =
6(1− r6)

(r3 + 2 cos θ)2
, b± =

r3 − cos θ ±
√

3 sin θ

r3 + 2 cos θ
, ε =

6(r6 + 2)

(r3 + 2 cos θ)2
. (85)

For θ = 0 we recover the model studied in Reference [2]. We note that the parameters (85)
possess a divergence at r = 3

√
−2 cos θ provided θ ∈ [π2 ,

3π
2 ]. This divergence is an artefact

of fixing the prefactor of the −σ†jσj+1-term to unity, it can be removed by rescaling the

Hamiltonian by (r3 + 2 cos θ)2.

6 Frustration-free Zp-generalisations of the ANNNI model

In this section we construct Zp-invariant generalisations of the ANNNI model (see Sec-
tion 3.2), for which we will use the term5 axial next-nearest neighbour Potts (ANNNP)
model [14]. More specifically we consider Zp-invariant Hamiltonians where besides the

classical Potts term σjσ
†
j+1 + σ†jσj+1 only terms of the form τ ljτ

l′
j+1 with l, l′ = 0, . . . , p− 1

appear. In particular, there are no terms containing products of σ- and τ -operators.
First we will derive some general results following from this simple set of rules. Then we

discuss several specific examples. We take mj to be defined by (67) and Lj,j+1 = σj−σj+1

as before. Furthermore, generalising (21) we set Cj,j+1 = KjKj+1, where Kj acts non-
trivially at lattice site j with the matrix kj . Now making the ansatz (in the τ -basis)

kj = diag

(
α1

α0
,
α2

α1
, . . . ,

αp−1
αp−2

,
α0

αp−1

)
, (86)

and recalling that Cj,j+1 has to be hermitian and positive definite, we deduce that the αk
have to be real and positive (we set α0 = 1). From the form above we also deduce that
the following identity holds, KjMjσjM

−1
j = σj . Hence we find for the deformed local

Hamiltonian

H̃j,j+1 = L̃†j,j+1KjKj+1L̃j,j+1 = L̃†j,j+1

(
σjKj+1 −Kjσj+1

)

=
(
M−1j σ†jMj −M−1j+1σ

†
j+1Mj+1

) (
σjKj+1 −Kjσj+1

)

= −
(
σjσ

†
j+1 + σ†jσj+1

)
+
(
M−1j σ†jMjσjKj+1 +KjM

−1
j+1σ

†
j+1Mj+1σj+1

)
. (87)

5Alternatively, since the models will be written in terms of the clock operators, we could use the term
axial next-nearest neighbour clock (ANNNC) model [69].
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Here the first two terms represent the classical Potts model. Note that, both Mj and Kj

are diagonal in the τ -basis and can therefore be expanded in powers of τj .

M−1j σ†jMjσj =
∑

l

∆lτ
l
j , Kj =

∑

l

Γlτ
l
j , (88)

where we introduced the abbreviations

∆l =
1

p

∑

k

αk−1
αk

ω−kl, Γl =
1

p

∑

k

αk+1

αk
ω−kl. (89)

Hence, the last two terms in (87) only produce contributions of the form τ ljτ
l′
j+1, as was

intended. We will not write down the explicit expansion, since it is tedious and not
insightful. Instead, in the next sections we will discuss several explicit examples. Doing so
we obtain a general complex Z3-ANNNP model. Furthermore, we rediscover the known
frustration-free line [3,14] in the Z3 case, with purely real coefficients. Finally, we discuss
a frustration-free line for p = 2q even, of which the original ANNNI model (22) is the
simplest representative and Z4- and Z6-ANNNP examples are given below.

6.1 Z3-ANNNP model: with complex coefficients

The simplest non-trivial example (besides ANNNI) we can derive with this construction
is the Z3-ANNNP. The most general deformation for Z3 is

mj =




1
r

s


 , (90)

with the corresponding Cj,j+1 determined by (86). The deformed Hamiltonian takes the
simple form

H̃ = −
∑

j

[
σjσ

†
j+1 +

f

2
(τj + τj+1) + g1τjτj+1 + g2τjτ

†
j+1 + h.c.

]
+ ε, (91)

which is also the quantum limit of the axial next-nearest neighbour Potts model [14].
Since the operators σj and τj are not self-adjoint, more terms and coefficients than in the
original ANNNI model (22) appear. The similarity with the ANNNI model is exemplified
by the following identifications:

ANNNI model Z3-ANNNP model

σxj σ
x
j+1 → σjσ

†
j+1

σzj → τj

σzjσ
z
j+1 → τjτj+1, τjτ

†
j+1

The coefficients generated by the deformation (90) are in general complex

f =
2

9

[
2
(
rs+ ω

r

s2
+ ω̄

s

r2

)
−
(

1

rs
+ ω̄

r2

s
+ ω

s2

r

)]
, (92)

g1 = −2

9

[
ω

(
r2

s
+

s

r2

)
+ ω̄

(
s2

r
+

r

s2

)
+ rs+

1

rs

]
, (93)

g2 =
1

9

[
3 +

(
1

rs
+
s2

r
+
r2

s

)
− 2

(
rs+

s

r2
+

r

s2

)]
. (94)

Even though there is some elegance in the generality of this model, these complex coef-
ficients are not very practical. Therefore in the next sub-sections we discuss two specific
cases.
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6.1.1 Z3-ANNNP model: real coefficients reproducing Reference [3]

The first example features purely real coefficients. This model was originally obtained
by direct calculation by Mahyaeh and Ardonne [3]. We rediscover it by considering the
deformation (90) with s = r, ie,

mj =




1
r

r


 , Lj,j+1 = σj−σj+1, Cj,j+1 = KjKj+1, kj =



r

1
r−1


 , (95)

such that the coefficients become

f =
2(1 + 2r)(1− r3)

9r2
, ε =

2(1 + r + r2)2

9r2
, (96)

g1 = −2(1− r)2(1 + r + r2)

9r2
, g2 =

(1− r)2(1− 2r − 2r2)

9r2
. (97)

The exact ground states originally constructed in Reference [3] follow by direct application
of Theorem 1. Furthermore, in Appendix B.2 we prove that the model possesses an energy

gap above these ground states at least in the interval
√

3
2

√
2− 2 ≈ 0.3483 . r . 3.9912.

Finally we note that for r = (
√

3−1)/2 ≈ 0.366 the model (91) simplifies as the parameter
g2 vanishes.

6.1.2 Z3-ANNNP with ground state deformation of Z3-XY model

For the second example we consider the deformation that we encountered before for Z3-
XY, namely s = r2,

mj =




1
r

r2


 . (98)

Thus the deformed ground states are identical to the ones for θ = 0 discussed in Section 5.3.
However, due to the non-trivial choice for Cj,j+1 the Hamiltonian will differ, specifically
we obtain (91) with the coefficients

f = ω̄
(1− r3)

[
(1− r3) + 3

√
3i(1 + r3)

]

9r3
, g1 = −2ωg2, g2 = −(1− r3)2

9r3
. (99)

The coefficient g1 can be chosen to be real via a gauge transformation, ie, a permutation
of diagonal elements of mj .

6.2 Zp-ANNNP model: most general real coefficients

For general Zp we discuss the case when all coefficients take real values. From (88) and
(89) we recognise that the coefficient of τ ljτ

l′
j+1 is ∆lΓl′ + Γl∆l′ . This is real for example if

Γ∗l = ∆l, which yields the constraints (recall that αk > 0)

α−k ≡ αp−k = αk (100)

for all k. Thus there are (p − 1)/2 real degrees of freedom for p odd and p/2 for p even.
The expansion is still not in a compact form. In Section 6.3 we will discuss a Hamiltonian
with a compact form for p even. For p odd we did not obtain a simple compact form,
except for the case p = 3 discussed in the next section.

The condition (100) has another consequence. Under charge conjugation

σj → σ†j , τj → τ †j , (101)
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we see that
M−1j σ†jMjσj → Kj , Kj →M−1j σ†jMjσj . (102)

In this particular case the Hamiltonian (87) is invariant under charge conjugation, and
together with the Zp-symmetry generated by ωP , the full symmetry group is the dihedral
group Dp [70, 71]. Note that for p = 3 the dihedral group is isomorphic to the symmetric
group S3 of all permutations.

6.3 Z2q-ANNNP model: compact form with real coefficients

For even p = 2q it is possible to construct a model depending on a single parameter which
possesses real coefficients and a simple closed form. We start with

mj = diag(1, r, . . . , rq−1, rq, rq−1, . . . , r), kj = diag(r, . . . , r, r−1, . . . , r−1). (103)

Using Equation (67) we see that

M−1j σ†jMjσj =

p−1∑

l=0

[
r−1 + (−1)lr

]
θq(l)τ lj , (104)

Kj =

p−1∑

l=0

(−ω)l
[
r−1 + (−1)lr

]
θq(l)τ lj , (105)

where

θq(l) =
1

2q

q∑

k=1

ω−kl =





1
2 , if l = 0,

0, if l even 6= 0,
1
2q

∑q
k=1 ω

−kl, if l odd.

(106)

Note that both (104) and (105) only contribute odd powers of τ (or the identity), hence
the last two terms in (87) can only give odd powers of τj-operators. The full expression
becomes

M−1j σ†jMjσjkj+1 + kjM
−1
j+1σ

†
j+1Mj+1σj+1

=
∑

l,l′

[
(−ω)l + (−ω)l

′
] [
r−1 + (−1)lr

] [
r−1 + (−1)l

′
r
]
θq(l)θq(l′)τ ljτ

l′
j+1. (107)

Let us consider the different terms individually. First, the term with l = l′ = 0 turns into
an energy shift given by

ε =
(r + r−1)2

2
. (108)

Second, the terms with l = 0 or l′ = 0 turn into a magnetic-field term of the form
−f

2 (τ lj + τ lj+1) for odd l, with the prefactor given by

f = −(r−2 − r2)(1− ωl)θq(l) =
r2 − r−2

2q

q∑

k=1

(
ω−kl − ω−(k−1)l

)
=
r−2 − r2

q
. (109)

Finally, the remaining terms with l, l′ 6= 0′ yield the terms Ull′τ
l
jτ
l′
j+1 with

Ull′ = −
(
ωl + ωl

′
) (
r − r−1

)2
θq(l)θq(l′). (110)
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Note that
[
ωlθq(l)θq(l′)

]∗
= ωl

′
θq(l)θq(l′) and therefore U∗ll′ = Ull′ = Ul′l, such that the

full local Hamiltonian becomes

H̃j,j+1 = −
(
σjσ

†
j+1 + σ†jσj+1

)
− f

2

p−1∑

l=1
l odd

(
τ lj + τ lj+1

)
+

p−1∑

l,l′=1
l,l′ odd

Ull′τ
l
jτ
l′
j+1 + ε. (111)

We note that the Hamiltonian for even p is invariant under r → 1/r and τ → −τ .

6.4 Z4-ANNNP model

The first new non-trivial example originating from the construction of the previous section
is obtained for p = 4. In this case the local Hamiltonian becomes remarkably simple

H̃j,j+1 = −
[
σjσ

†
j+1 +

f

2
(τj + τj+1)− Uτjτj+1 + h.c.

]
+ ε (112)

with the parameters

f =
r−2 − r2

2
, U =

(r − r−1)2
4

, ε =
(r + r−1)2

2
. (113)

Note the absence of terms like τ2j , τjτ
2
j+1 and τjτ

†
j+1, in contrast to the frustration-free Z3-

ANNNP model (91). The correlation functions in the four-fold degenerate ground states
|Ψ̃i〉 are identical to the ones in the ANNNI model, see Equation (25),

∣∣∣∣∣
〈Ψ̃i|σjσ†j′ |Ψ̃i〉
〈Ψ̃i|Ψ̃i〉

∣∣∣∣∣ =
4

(r + r−1)2
, (114)

In Appendix B.3 we prove that the model (112) possesses an energy gap ∆̃ above the
ground states. More specifically, we show that the lower bound for the gap in the ther-

modynamic limit is given by 4min(r2,r−2)
r2+r−2 ≤ ∆̃. For completeness in Figure 1 we compare

this to numerical results for the energy gap. The latter were obtained by extrapolating
finite-size data from system sizes L = 64, 76, 88, 100 to L → ∞, with the finite-size re-
sults being calculated by employing the density matrix renormalisation group (DMRG)
method [38,72] using the TeNPy [73] library.

Closer inspection of the parameters (113) shows that they satisfy the relation f =
2
√
U(1 + U), which is identical to the relation along the Peschel–Emery line in the ANNNI

model. This points towards a closer relation between the models (112) and (22), which we
discuss in the following. In fact, even away from the frustration-free line one can map the
Z4-ANNNP chain to two decoupled ANNNI chains. For simplicity we consider an infinitely
long system (ie, we ignore the boundary conditions) and drop the constant energy shift ε;
thus (112) turns into the Hamiltonian

HANNNP = −
∑

j

(
σjσ

†
j+1 + fτj − Uτjτj+1 + h.c.

)
. (115)

Introducing the dual operators via

σ†jσj+1 → τ̃j , τj → σ̃j−1σ̃
†
j , (116)

which satisfy the clock algebra (60) with p = 4, we can rewrite this as

Hdual
ANNNP = −

∑

j

(
τ̃j + fσ̃j σ̃

†
j+1 − Uσ̃j σ̃

†
j+2 + h.c.

)
. (117)
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Figure 1: Energy gap ∆̃ above the four-fold degenerate ground states |Ψ̃i〉 of the
frustration-free ANNNP model (112). The dots show the energy gap obtained by ex-
trapolating the finite-size data for L = 64, 76, 88, 100 to the thermodynamic limit. The
dashed line is the lower bound for the energy gap proven to exist in Appendix B.3. Inset:
Zoom in to small-r region, logarithmic scale.

Next we introduce two sets of Pauli matrices σ
x/z
i,j , i = 1, 2, per lattice site j, and consider

the mapping [71,74,75]

σ̃j = ei
π
4

(
σx1,j − iσx2,j√

2

)
, τ̃j + τ̃ †j = σz1,j + σz2,j . (118)

From the second relation in (118) we can already infer that the τ̃j-terms are mapped to
a transverse magnetic field on the Ising ladder. For the other terms, we use the following
simple identity

σ̃j σ̃
†
j+j′ + h.c. = σx1,jσ

x
1,j+j′ + σx2,jσ

x
2,j+j′ . (119)

Thus the dual of the Z4-ANNNP model can be written as the sum of two decoupled
ANNNI chains

Hdual
ANNNP = Hdual

ANNNI,1 +Hdual
ANNNI,2 (120)

with
Hdual

ANNNI,i = −
∑

j

(
σzi,j + fσxi,jσ

x
i,j+1 − Uσxi,jσxi,j+2

)
. (121)

Performing another duality transformation (121) can be brought into the form (22) dis-
cussed in Section 3.2. The condition for the parameters f and U to be on the frustration-
free line directly turns intro the Peschel–Emery line for the two ANNNI models.

6.5 Z6-ANNNP model

Interestingly, in the case p = 6 the deformation (103) leads to another rather simple model
with the local Hamiltonian

H̃j,j+1 =−
[
σjσ

†
j+1 +

f

2

(
τj +

1

2
τ3j + τj+1 +

1

2
τ3j+1

)

−U
(
τjτj+1 +

1

4
τjτ

3
j+1 +

1

4
τ3j τj+1 −

1

2
τjτ
†
j+1 +

1

8
τ3j τ

3
j+1

)
+ h.c.

]
+ ε,

(122)
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Figure 2: Energy gap ∆̃ above the six-fold degenerate ground states of the frustration-
free ANNNP model (122). The dots show the energy gap obtained by extrapolating the
finite-size data for L = 64, 76, 88, 100 to the thermodynamic limit. The dashed line is the
lower bound for the energy gap obtained in Appendix B.4.

where the parameters are given by

f =
r−2 − r2

3
, U =

2

9
(r − r−1)2, ε =

(r + r−1)2

2
. (123)

We note that even though the Z6-symmetry allows a wealth of terms of the form τ ljτ
l′
j+1,

along the frustration-free line the relative prefactors of them are fixed to fairly simple
values. In Figure 2 we show the energy gap above the six-fold degenerate ground state.
The numerical results were obtained by extrapolation from finite-size data, they clearly
indicate the existence of a finite energy gap along the frustration-free line. In addition,
in Appendix B.4 we prove that the model is gapped at least in the interval 0.5754 .
r . 1/0.5754 ≈ 1.7379. We note in passing that using more advanced methods for open
boundary conditions [51] it is possible to enlarge the region for which the existence of a
finite energy gap can be proven. However, the obtained lower bounds are found to be
quite small (< 10−5).

7 Discussion

We have presented a constructive approach to understand and derive one-dimensional
frustration-free spin models. Starting from a simple point, for example a classical system,
we derived the corresponding frustration-free quantum models and their exact ground
states. We have shown that many known frustration-free spin-1/2, spin-1 and Zp-clock
models can be understood in this framework on an equal footing. Hence our approach
provides an overarching framework for many frustration-free systems.

More specifically, the approach allowed us to connect two distinct frustration-free Z3-
clock models recently introduced by Iemini et al. [2] and Mahyaeh and Ardonne [3]. As we
have shown, both models can be interpreted as different deformations of the classical three-
state Potts chain, see Figure 3 for an illustration of their relation. As a side remark, we
analytically showed that the energy gap remains finite in a finite region around the classical
point for both models. This in particular implies that both models (or their parafermion
analogs) are in the same (topological) phase. Furthermore, we have constructed several
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Figure 3: Schematic sketch of the relation between the two frustration-free Z3-clock models
introduced by Iemini et al. [2] (see Sections 5.2 and 5.3) and Mahyaeh and Ardonne [3] (see
Section 6.1.1). Both models can be obtained as deformations of the classical three-state
Potts chain (red dot) using the local deformations mj and central term kj depending on
the parameter r. The green lines indicate the regions in which the systems are proven
to be gapped in Appendix B.2. In particular, within this region the two models can be
connected without closing the energy gap, implying that they are in the same phase.

new frustration-free Zp-clock models, including Z4- and Z6-generalisations of the Peschel–
Emery line of the original ANNNI chain.

We stress that the list of frustration-free clock models considered above is by no means
extensive. On the contrary, the examples discussed here should be regarded as a proof of
principle on how to apply the general construction. Several generalisations come to mind:
First, one may consider chiral classical models [76,77] as starting points in the deformation
construction. However, since in this case the local Hamiltonians are no longer given by
simple projectors, the deformed Hamiltonians so obtained may become quite complicated.
Second, in this paper we have kept the considered deformations to be homogeneous, a
restriction that is not required by Theorem 1. Thus our results can be extended to inho-
mogeneous systems. Third, another generalisation would be to relax the requirement for
the operator Cj,j+1 to be positive definite. In such a case, the ground states of the unde-
formed model are no longer transformed into ground states of the new model. However,
they will still be exact eigenstates, potentially in the middle of the spectrum, and thus
may be relevant in the context of quantum many-body scars [78–83].
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A Witten’s conjugation argument

In this appendix we recall Witten’s original conjugation argument on the ground-state
degeneracy of supersymmetric Hamiltonians. Consider two supercharges Q and Q† as well
as a Hamiltonian H satisfying

Q2 = (Q†)2 = 0, H = Q†Q+QQ†. (124)

First we note that any zero-energy ground state |ψ〉 of H is annihilated by both Q and
Q†. Furthermore, it is not possible to obtain |ψ〉 by action of Q, ie, |ψ〉 6= Q |φ〉 for any
state |φ〉. (To see this assume |ψ〉 = Q |φ〉. But since |ψ〉 is a zero-energy ground state we
have 0 = Q† |ψ〉 = Q†Q |φ〉 which implies 〈φ|Q†Q |φ〉 = ‖Q |φ〉 ‖2 = 0 and thus Q |φ〉 = 0
in contradiction with the assumption that |ψ〉 is a ground state.)

Now let us consider the deformed/conjugated operators Q̃ = MQM−1, Q̃† = (Q̃)†

and H̃ = Q̃†Q̃ + Q̃Q̃† with M being invertible. Obviously, if |ψ〉 is a ground state of H,
the deformed state |ψ̃〉 = M |ψ〉 is annihilated by Q̃. Furthermore, |ψ̃〉 cannot be written
as |ψ̃〉 = Q̃ |φ̃〉 for any |φ̃〉, since this would imply that |ψ〉 = QM−1 |φ̃〉 in contradiction
with the assumption that |ψ〉 was a ground state of H. Thus |ψ̃〉 is a ground state of H̃
establishing a one-to-one correspondence between the ground-state manifolds of H and
H̃.

B Energy gap of some Z3-, Z4- and Z6-models

The conjugation argument does only provide information about the ground-state manifold.
In order to obtain information about the energy gap above it, additional techniques have
to be employed. In Appendix B.1 we recall Knabe’s method [53], which was originally
applied to the AKLT model with periodic boundary conditions. This is then applied in
Appendices B.2, B.3 and B.4 to prove the existence of an energy gap in specific Z3-, Z4-,
and Z6-models.

B.1 Knabe’s method

We consider a system with N sites, open boundary conditions and the Hamiltonian

HN =

N−1∑

j=1

Pj,j+1, (125)

with the Pj,j+1 being two-site projection operators. We assume
⋂
j ker(Pj,j+1) 6= {0}, ie,

the ground state is at zero energy, and denote the energy gap of HN by ∆N . Then we
have

Theorem 2 (Knabe’s method [53]). For the projector Hamiltonian HN the gap above the
ground state (∆N ) is bounded from below by

∆N ≥
m− 1

m− 2

(
min

m′=2,...,m
{∆m′} −

1

m− 1

)
, (126)

where ∆m′ denotes the gap of the m′-site, sub-system Hamiltonian

hj,m′ =

j+m′−2∑

k=j

Pk,k+1. (127)
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Proof. Note that HN is positive semi-definite, therefore H2
N ≥ ∆NHN . In other words, if

we obtain the above inequality with ∆N , the Theorem is proven. We have the analogous
statement for hj,m′ , h

2
j,m′ ≥ ∆mhj,m′ , and moreover realise that P 2

j,j+1 = Pj,j+1 and
[Pj,j+1, Pk,k+1] = 0 for |j − k| > 1.

To prove the bound, we first expand H2
N

H2
N =

N−1∑

j=1

h2j,2 +
m−2∑

m′=1

N−m′−1∑

j=1

(
hj,2hj+m′,2 + h.c.

)
+

∑

|j−k|>m−2

hj,2hk,2 (128)

≥ HN +
m−2∑

m′=1

m−m′ − 1

m− 2

N−m′−1∑

j=1

(
hj,2hj+m′,2 + h.c.

)
, (129)

with the second step following from the fact that hj,2hk,2 is positive semi-definite for
|k − j| > 1. This can be further reduced to

H2
N ≥ HN +

1

m− 2



N−m+1∑

j=1

h2j,m +
m−1∑

m′=2

(
h21,m′ + h2N−m′+1,m′

)
− (m− 1)HN


 (130)

≥
(

1− m− 1

m− 2

)
HN +

1

m− 2


∆m

N−m+1∑

j=1

hj,m +

m−1∑

m′=2

∆m′
(
h1,m′ + hN−m′+1,m′

)

 .

(131)

Because we have the expansion

HN =
1

m− 1



N−m+1∑

j=1

hj,m +

m−1∑

m′=2

(
h1,m′ + hN−m′+1,m′

)

 (132)

and ∆m′ ≤ 1, the last term of (131) can be simplified to obtain

H2
N ≥ −

1

m− 2
HN +

m− 1

m− 2
min

m′=2,...,m
{∆m′}HN (133)

=
m− 1

m− 2

(
min

m′=2,...,m
{∆m′} −

1

m− 1

)
HN . (134)

This proves the Theorem with the lower bound ∆N ≥ m−1
m−2

(
minm′=2,...,m {∆m′} − 1

m−1

)
.

Remark 3. Given that the models considered here can be viewed as parent Hamiltonians
for general matrix product states, one can apply more powerful tools [32, 49, 51] to prove
the existence of energy gaps. However, as these require a more abstract formulation of the
setup, we have restricted ourselves to the more direct approach initiated by Knabe. We
also note that when analysing the energy gap, special care has to be taken regarding the
treatment of different boundary conditions.

Note that the argument above assumes the Hamiltonian to be the sum of projec-
tors. The systems studied in our paper do not fit that picture. However, since they are
frustration-free we can still obtain a bound using the following observation:
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Corollary 4. For a frustration-free model with an n-fold degenerate zero-energy ground
state and a p-dimensional local Hilbert space, with p2 > n, we can arrange the two-
site eigenvalues ∆̃k

2 and normalised eigenstates |ψ̃k〉 such that ∆̃k
2 ≤ ∆̃l

2 for k < l and
∆̃1

2, . . . , ∆̃
n
2 = 0. Then two-site Hamiltonian can be bounded from below as follows,

H̃j,j+1 =

p2∑

k=n+1

∆̃k
2 |ψ̃k〉 〈ψ̃k| = ∆̃n+1

2

p2∑

k=n+1

|ψ̃k〉 〈ψ̃k|+
p2∑

k=n+1

(
∆̃k

2 − ∆̃n+1
2

)
|ψ̃k〉 〈ψ̃k| (135)

≥ ∆̃n+1
2 Pj,j+1 = ∆̃2Pj,j+1, (136)

with the gap ∆̃2 = ∆̃n+1
2 of the frustration-free Hamiltonian H̃j,j+1 and Pj,j+1 denot-

ing the projector onto the space orthogonal to its ground-state manifold. The min-max
theorem [84] then implies for the gap ∆̃N of the frustration-free model on N sites

∆̃N ≥ ∆̃2∆N . (137)

Thus in order to prove that a frustration-free Hamiltonian possesses an energy gap ∆̃
above its ground states in the thermodynamic limit, we proceed as follows: (i) We consider
projectors Pj,j+1 onto the space orthogonal to the local ground states on the lattice sites
j and j + 1 and determine the gap ∆2 above these ground states. (ii) From that we
construct the auxiliary m-site Hamiltonian h1,m =

∑m
j=1 Pj,j+1 and determine its energy

gap ∆m. (iii) If this gap satisfies minm′=2,...,m {∆m′} > 1/(m − 1), then the auxiliary
N -site Hamiltonian HN will have a gap ∆N satisfying (126). (iv) Due to (137) the gap ∆̃
of the original frustration-free Hamiltonian is bounded from below by

∆̃ = lim
N→∞

∆̃N ≥ lim
N→∞

∆̃2∆N ≥ ∆̃2
m− 1

m− 2

(
min

m′=2,...,m
{∆m′} −

1

m− 1

)
. (138)

Every m > 2 gives a lower bound on the gap, so the supremum over subsysten sizes is
also a lower bound. Usually, the bound increases for increasing m. Since the computation
of ∆m requires exact diagonalization of a pm × pm matrix, the maximal feasible m is
constrained by computational resources. In the following appendices we apply this line of
argument to several models.

B.2 Gap in Z3-models

In order to treat both Z3-models (84) (for θ = 0) and the models discussed in Section 6.1
within the same framework, we consider the general, diagonal deformation with

mj =




1
r

s


 , (139)

where r, s > 0. For each point in the (r, s)-plane we get a lower bound on the thermody-
namic gap by means of (126), provided that for some feasible m the relevant energy gap
of the auxiliary m-site Hamiltonian satisfies minm′=2,...,m {∆m′} > 1/(m − 1). Computa-
tional resources allow us to go up to m = 7. In Figure 4 we have depicted the maximal
lower bound for m = 3, . . . , 7 in the (r, s)-plane obtained from this. Note that this is a
lower bound for the gap of the auxiliary projector Hamiltonian. For a particular parent
Hamiltonian like (84) and (91), the true gap depends on the local gap ∆̃2. As long as
the local parent Hamiltonian has the same degeneracy as the local auxiliary Hamiltonian
it is gapped for the same parameter regime, by virtue of (138). We only consider the
triangle s ≤ r ≤ 1, since due to the dihedral symmetry of the model there is a six-fold
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Figure 4: Log-log contour plot of the lower bound

maxm=3,...,7
m−1
m−2

(
minm′=2,...,m {∆m′} − 1

m−1

)
for the deformation in Equation (139). For

a finite lower bound the system is gapped in the thermodynamic limit N → ∞, ie, all
points above the red line yield gapped systems. The blue and green lines correspond to
the ground states of (84) (for θ = 0) and (91), respectively. The star is the special point
with g2 = 0.

symmetry in the (r, s)-plane. The red line denotes the boundary of the region that is
definitively gapped, ie, for all points above this line in the (r, s)-plane it is assured that
the full system is gapped in the thermodynamic limit. The blue and green lines corre-
spond to the ground states of (84) (for θ = 0) and (91), respectively, with the black star
indicating the model (91) at the special point g2 = 0. Given the six-fold symmetry in the
(r, s)-plane, we have to be careful how to display the green (1, r, r) and blue (1, r, r2) lines.
For the blue line, note that (1, r, r2) ' (r−2, r−1, 1), since the Hamiltonian is invariant
under rescaling of M . Also the freedom in the form of the dihedral symmetry lets us write
(1, r, r2) ' (1, r−1, r−2), permuting the entries. Hence the blue line for r > 1, maps to the
blue line for r < 1 under the symmetry. Using the same reasoning for the green line we
obtain (1, r, r) ' (r−1, 1, 1) ' (1, 1, r−1), mapping (1, r, r) for r > 1 to (1, 1, s) for s = r−1.

Let us zoom in on the two lines s = r2 and s = r that correspond to the ground states
of (84) and (91) respectively. In Table 1 we list the lower and upper limit rlow,up for
the gapped region for different sub-system sizes m. For s = r2 the upper limit is simply
rup = 1/rlow, as follows from the symmetry discussed above. As m increases we see that
the region increases in both directions.

On the other hand, for s = r something peculiar occurs. The lower limit rlow is
significantly better for m = 3 than for m = 4, . . . , 7. This lower limit has the exact value

of rlow = 21/4 − 2−1/4 =
√

3
2

√
2− 2 ≈ 0.3483 The upper limit, on the other hand, does

become more informative as m increases.
In total we deduce that the full system (84) (for θ = 0) is gapped in the thermodynamic

limit for 0.5695 . r . 1/0.5695 and (91) for 0.3483 . r . 3.9912. In particular this implies
that in this parameter regime the models can be adiabatically connected to the classical
model obtained for r = s = 1 as sketched in Figure 3.
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s = r2 (Z3-XY model) s = r (Z3-ANNNP model)
m rlow rup rlow rup

3 0.6337 1.5779 0.3483 2
4 0.6204 1.6119 0.4216 2.6796
5 0.6026 1.6595 0.4259 3.0146
6 0.5853 1.7086 0.4200 3.6233
7 0.5695 1.7560 0.4116 3.9912

Table 1: Lower and upper limit rlow,up for the gapped regions of the Z3-XY model (84)
and Z3-ANNNP model (91) as deduced from different sub-system sizes m. The bold values
indicate the extremal values which are stated in the main text.

B.3 Gap in Z4-ANNNP model

We can apply the same method to analyse the gap of the Z4-ANNNP model (112). For
this model it is sufficient to consider m = 3, since

∆3 =
1

2
+

min(r2, r−2)

r2 + r−2
, (140)

which is strictly larger than 1/2 for 0 < r < ∞. Thus we deduce for the gap in the
thermodynamic limit

∆̃ ≥ 4 min(r2, r−2)

r2 + r−2
. (141)

Instead of using Corollary 4, the lower bound (141) can also be obtained from the mapping
to two decoupled ANNNI chains, together with the lower bound for the energy gap along
the Peschel–Emery line of the ANNNI chain obtained in Reference [15].

B.4 Gap in Z6-ANNNP model

For the Z6-ANNNP model (122) the condition of ∆3 > 1/2 shows that the model is gapped
at least in the interval 0.5754 . r . 1/0.5754, where we have used the invariance of the
model under r → 1/r. The region does not improve for m = 4, 5 and higher sub-systems
sizes are not accessible with our current resources.
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