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Abstract

We further explore a recent proposal that the vector mesons in QCD have a special

role as Chern-Simons fields on various QCD objects such as domain walls and the one

flavored baryons. We compute contributions to domain wall theories and to the baryon

current coming from a generalized Wess-Zumino term including vector mesons. The

conditions that lead to the expected Chern-Simons terms and the correct spectrum of

baryons, coincide with the conditions for vector meson dominance. This observation

provides a theoretical explanation to the phenomenological principle of vector domi-

nance, as well as an experimental evidence for the identification of vector mesons as the

Chern-Simons fields. By deriving the Chern-Simons theories directly from an action,

we obtain new results about QCD domain walls. One conclusion is the existence of a

first order phase transition between domain walls as a function of the quarks’ masses.

We also discuss applications of our results to Seiberg duality between gluons and vector

mesons and provide new evidence supporting the duality.
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1 Introduction

QCD is a theory that we understand very well at the two edges of the RG flow. At

very high energies it is described as a weakly interacting SU(N) gauge theory coupled

to Nf fundamental fermions. By assuming confinement and chiral symmetry breaking,

the low energy theory is described as an SU(Nf ) non-linear sigma model with a level N

Wess-Zumino (WZ) term [1, 2]. The WZ term is fixed uniquely by anomaly matching

conditions. This model and in particular the WZ term are extremely successful in

combining deep theoretical ideas with concrete measurements. Once we leave the deep

infrared (IR) limit and increase the energy, we lose theoretical control over the physics.

In addition to higher derivatives terms, a zoo of mesons come back to life, which results

in many possible interactions. Ideally, we would like to find theoretical arguments that

reveal a hidden order in the theory and restrict the space of couplings. In particular,

we will be interested here in the effective theory containing in addition to pions, also

the η′ field and the U(Nf ) vector mesons known as ρ and ω which we will denote

collectively by V . The most controlled way to add the η′ to the chiral Lagrangian is

by taking the large N limit. When N is large, the axial symmetry U(1)A becomes a

good symmetry of the theory. The spontaneous breaking of U(1)A leads to an extra

Nambu-Goldstone (NG) boson which is the η′ meson. Indeed, the mass of the η′ field

is suppressed in the large N limit, m2
η′ ∼

1
N [3, 4]. For the vector mesons, there are

two phenomenological principles that are commonly used when writing their effective

theory. The first is the hidden local symmetry (HLS) principle [5, 6] which will be
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reviewed in section 2, and the second is Vector Dominance (VD) [7, 8] which will be

reviewed in section 3. These two principles restrict the space of couplings and increase

the predictive power of the theory. Yet, a good theoretical explanation for why these

principles are correct is absent. Recently [9, 10], it has been conjectured that the

vector mesons have a special role as the Chern-Simons (CS) vector fields on various

QCD objects, such as domain walls (DWs), interfaces, and Nf = 1 baryons. In this

work we show that the identification of the vector mesons as the CS fields is intimately

related to HLS and VD, at least in the large N limit. This story can be told in two

ways,

1. Phenomenology→Theory: The effective theory for vector mesons can be written

using the assumptions of HLS and VD. The emergent theory on domain walls

can be derived classically from this effective Lagrangian. The emergent theory

contains a CS term with vector mesons as the vector fields. In addition, correc-

tions to the baryon current can be computed. The full baryon current reproduces

the correct baryonic spectrum in the sense that both skyrmions and the Nf = 1

baryon introduced in [11] have charge 1 under it. When telling the story in this

direction, we can say that the experimental results prove the conjecture that the

vector mesons are indeed the CS fields.

2. Theory→Phenomenology: Assuming that the vector mesons are the CS fields,

we can demand that the low energy effective theory will reproduce the correct

domain wall theories and baryonic spectrum, as expected from theory. Then VD

is automatically satisfied. When telling the story in this direction, we can say

that our demand provides a theoretical explanation to the 50 year old idea of VD.

The main actor in this story is the ”hidden” part of the WZ action, we will denote by

the hWZ action. The hWZ action contains all the additional terms that are odd under

the intrinsic parity U → U †, when vector mesons are included. Here U ∈ U(Nf ) is the

matrix of pions+the η′ meson. Unlike the regular WZ term which is uniquely fixed by

topology and anomalies, there is a family of consistent hWZ actions, parametrized by

three real numbers.1 When coupling the theory to (background or dynamical) gauge

field for some global U(1) symmetry, there is an extra improvement term such that the

hWZ action is then parametrized by four real parameters. The hWZ action has been

studied a lot mainly from the phenomenological point of view. See for example [12]

for a comprehensive review. The focus in the existing literature is on the application

of the hWZ action to processes odd under the intrinsic parity U → U †. The full

WZ action is the only part of the action violating the intrinsic parity, and as such, it

is solely responsible for all odd processes such as ω → πππ, π0 → γγ where γ is the

photon field, and more. VD in this context is the observation that certain processes are

dominated by an exchange of an internal vector meson. This will happen if the direct

1This is true in the large N limit. At finite N one can write also multi-trace operators and the freedom

is larger. We will comment about it in section 7.
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vertices don’t appear explicitly in the Lagrangian. In particular, we will be interested

in a specific type of VD where the following three vertices are absent: γγπ, γV π,

and V πππ. This means for example that the decay π0 → γγ is mediated by vector

mesons π0 → V V → γγ. On the same way, ω → πππ is mediated by ω → ρπ → πππ.

The elimination of these three vertices gives three conditions, which leave one free

parameter in the hWZ action+photon consistent with this type of VD.

In this work, we study additional applications of the hWZ action such as its con-

tribution to the 3d effective theory on domain walls, and to the baryon current.

Baryon current: At low energies, the baryon current can be extracted from the WZ

term [2]. The hWZ term gives corrections to the skyrmion current that involve the

vector mesons. The correction is a total derivative and doesn’t contribute to the baryon

charge of any smooth configuration. The importance of these corrections comes when

studying singular charged configurations such as the Nf = 1 baryons [10, 11]. The

idea to derive the baryon current for Nf = 1 baryons from the hWZ action was also

mentioned in [13, 14]. Very briefly, these baryons are made out of a finite η′ = π disc

with a U(1)N CS theory living on the disc. On the ring that bounds the disc, η′ is not

well defined which makes the configuration singular. As in the quantum Hall effect,

the CS field gives rise to a chiral edge mode on the ring. The charge of the baryon

comes from two orthogonal windings- η′ around the ring, and the edge mode along the

ring. For the baryon current derived from the full WZ term to reproduce the correct

baryonic spectrum, the CS fields should be identified with the ω vector meson, and one

condition on the parameters of the hWZ action must be imposed. Surprisingly, this

condition is satisfied if one assumes VD.

η′ Domain walls: The vacuum of massive QCD at θ = π breaks time reversal sym-

metry, which implies the existence of DWs connecting the two vacua [15]. Given the

effective theory of pions and vector mesons, the emergent theory on the DW can be

extracted classically. First, we can make connection with the Nf = 1 baryons, by

requiring that on the η′ = π DW, indeed there will be an emergent U(1)N CS theory.

This demand gives another condition on the hWZ parameters. This condition is also

satisfied if one assumes VD. The two other parameters can be fixed by demanding

that the emergent theory on the η′ = π wall will have the form of a CS action also for

Nf ≥ 2. This gives two extra conditions. All together we have four conditions based on

theoretical arguments that fix the hWZ action+ external U(1) gauge field completely.2

The three conditions for VD are contained inside these four conditions.

In addition to establishing the relation between VD, DW, and Baryons, the identi-

fication of vector mesons as the CS fields on DWs has several interesting consequences:

Phase transitions of DWs: It is an open question whether the Yang-Mills (YM) DW

is connected continuously to the m� Λ DW in QCD or not. If the answer is positive,

one could expect to be able to find a 3d theory describing the DW for any value of the

2Notice that the external U(1) gauge field was the photon when discussing VD, and a background field

for U(1)B when deriving the baryon current.
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quarks’ masses [15].3 The other option is that there is a first order phase transition

between DWs such that the YM DW is connected continuously to some metastable

DW when m � Λ. We will argue that this is indeed the case and the YM DW is

connected continuously to the η′ = π DW which is metastable when m� Λ. This can

be done by studying the contribution to DW theories coming from the hWZ action.

The result contradicts the proposal of [15] which is based on the assumption of no phase

transition. We will also provide additional arguments supporting the phase transition

scenario and give a new proposal for the DW theory.

Mesons-Gluons Duality: Another application is related to a conjectured Seiberg-like

duality between gluons and vector mesons [9, 10, 17–19]. Very roughly, the idea is as

follows. You start at high energies from an SU(N) gauge theory of gluons coupled to Nf

quarks. As the energy is lowered, the theory becomes strongly coupled until at some

point a dual description of the theory appears. The dual description contains U(Nf )

gauge theory coupled to some matter. The U(Nf ) gauge fields become massive via the

Higgs mechanism and are identified with the vector mesons. The question is to what

extent this duality is correct. The fact that the two theories flow to the same chiral

Lagrangian in the deep IR is known. Assuming the hidden local symmetry principle is

correct, the two theories give rise to the same physics also above the deep IR when the

vector mesons are treated as dynamical. Can we push this duality even higher along

the RG flow? is there a point (presumably related to the chiral restoration point)

where the Higgs vev goes to zero, and the vector mesons become true massless gauge

fields? It is very tempting to relate this duality to CS dualities on the DWs. Dualities

of the form

U(Nf )N ' SU(N)−Nf , (1.1)

can be used to map the U(Nf ) vector mesons to the SU(N) gluons on the domain

wall.

The outline of the paper is as follows. In section 2 we will review the idea of HLS

and introduce the hWZ action. In section 3 we will review the conditions on the hWZ

parameters for the type of VD we impose. This computation already appeared in [12].

In section 4 we compute corrections to the skyrmion current coming from the hWZ

action. We will find the condition that reproduces the correct baryonic spectrum and

show that it agrees with VD. In section 5 we study domain walls. We start from DWs

in Nf = 1 QCD in 5.1, then move on to Nf ≥ 2 QCD in 5.2. In section 6 we review the

mechanism for generating the cusp potential of η′ [20] and discuss the conjecture for the

dual description using vector mesons. We finish with a summary of the conditions on

the hWZ parameters and some comments about finite N in section 7. Some technical

computations appear in the appendix A.

3There is also the possibility that the 3d theory on the DW is not well defined everywhere. This can

happen if the bulk excitations are comparable or lighter than the DW excitations, and the interactions

between them are not suppressed in any sense. See [16] for a general discussion on this point. We ignore

this issue throughout the paper.
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After the first version of this paper appeared, there appeared a preprint [29] in which

the authors claim they disagree with the proposal made in this work. We comment

about the differences and similarities between the two proposals in appendix B.

2 Generalized WZ term from hidden local sym-

metry

We will begin this section by presenting the hWZ action. Recall that the WZ term can

be written as [2]

SWZ,U = − iN

240π2

∫
B5

ΓU , (2.1)

with

ΓU = dUU †dUU †dUU †dUU †dUU † , (2.2)

where U ∈ SU(Nf ) is the matrix of pions. Here and later, there is an implicit trace in

flavor space, and all the forms are assumed to be contracted with the ∧ product. The

integration is over a 5 dimensional manifold B5 whose boundary is the 4 dimensional

world M4 = ∂B5. Miraculously, the theory doesn’t depend on the fifth dimension for

every N ∈ Z in (2.1), thanks to

− in

240π2

∫
M5

ΓU = 2πZ ∀ n ∈ Z , (2.3)

for every closed manifold M5. The integer is fixed to be the number of colors N by

anomaly matching conditions. While (2.1) is uniquely fixed at low energies, we want

to study a more fundamental theory and include in addition to pions, also the vector

mesons. Any consistent action that reduces to (2.1) when integrating out the vector

mesons, is a possible ”orange” completion (as opposed to uv completion here we are

just a little bit above the infrared). We will introduce the vector mesons into the chiral

Lagrangian using the idea of hidden local symmetry and classify the space of allowed

completions for the WZ term. In the next sections, we will use various theoretical

arguments to fix the WZ term completely.

In the hidden local symmetry principle, we write U as a product of two unitary

matrices

U = ξ†LξR , (2.4)

where the redundant transformations ξR,L → hξR,L with h ∈ SU(Nf ) are coupled to

dynamical gauge fields V which transform as V → hV h† + ihdh†. In addition, the

global SU(Nf )L × SU(Nf )R symmetries act as

ξR → ξRg
†
R , ξL → ξLg

†
L . (2.5)

We also introduce the covariant derivative and the field strength

DξIξ
†
I = dξIξ

†
I − iV , F = dV − iV 2 . (2.6)
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A convenient shorthand notation we will use throughout the paper is

R = dξRξ
†
R , L = dξLξ

†
L , RD = DξRξ

†
R , LD = DξLξ

†
L . (2.7)

The most general two derivatives Lagrangian consistent with the above symmetries is

L =
F 2
π

4
tr (∂µ(ξ†RξL)∂µ(ξ†LξR))− aF 2

π

4
tr [DµξLξ

†
L +DµξRξ

†
R]2 − 1

4g2
F 2
µν , (2.8)

where a is some dimensionless free parameter and g is the coupling constant.

In the unitary gauge ξR = ξ†L = ξ, U = ξ2, this is written as

L =
F 2
π

4
tr (∂µU

†∂µU)− aF 2
π

4
tr [∂µξξ

† + ∂µξ
†ξ − 2iVµ]2 − 1

4g2
F 2
µν . (2.9)

In addition to the usual kinetic terms for the pions and the vector fields, the Lagrangian

contains a mass term for the vector fields with m2
V ∼ ag2F 2

π , and interactions between

the vectors and the pions. Now we will present the most general hWZ action in the

theory. By hWZ action we mean all the terms whose Lorentz indices are contracted

using the ε tensor, similar to (2.1). In addition, we demand that the action is gauge in-

variant under the hidden gauge transformations, consistent with the global symmetries

(2.5) and with time reversal symmetry that acts on the fields as

U ↔ U † , ξL ↔ ξR , V → V . (2.10)

We will also simplify the action by taking the large N limit in which only single trace

(in flavor space) operators are considered. The most general hWZ Lagrangian that can

be added to (2.1) is [12]

LhWZ =
N

16π2

3∑
i=1

ciLi ,

L1 = i(LDR
3
D −RDL3

D) , L2 = iLDRDLDRD , L3 = F (RDLD − LDRD) ,

(2.11)

with ci ∈ R. It is straight forward to verify that in the deep IR, upon integrating out

the vector mesons by replacing V → 1
2i(R + L), LhWZ → 0 and we are left only with

(2.1) as expected. Explicitly, we can write (2.11) as

L1 =iLR3 − iRL3 + V (R3 − L3 + L2R−R2L− LRL+RL2 +RLR− LR2)

− 2iV 2(LR−RL)− iV RV R+ iV LV L− 2V 3(R− L) ,

L2 =iLRLR+ 2V (RLR− LRL)− 2iV 2(LR−RL)− iV RV R+ iV LV L− 2V 3(R− L) ,

L3 =(dV − iV 2)(RL− LR) + i(dV V + V dV )(R− L) + 2V 3(R− L) .

(2.12)
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In this prescription, there is a family of consistent hWZ actions parameterized by

three real numbers {ci}. In addition, we can couple the theory to a U(1) (dynamical

or background) gauge field for some global U(1),

ξR,L → ξR,Le
−iQα , A→ A− dα , (2.13)

Here Q is the diagonal matrix of charges, and A is the gauge field. Two important cases

we will discuss are when A is the photon (see section 3), and when A is a background

U(1)B field (see section 4). When A is included, we need to redefine the covariant

derivative accordingly,

RA = RD − iAξRQξ†R , LA = LD − iAξLQξ†L . (2.14)

The WZ action is modified due to this gauging in several ways. First, all the covariant

derivatives in (2.11) should be replaced with RD, LD → RA, LA. Second, there are two

(not gauge invariant) four dimensional terms that should be added to (2.1) in order to

maintain gauge invariance as was shown in [2]. Notice that the derivatives in (2.1) are

not replaced by covariant derivatives in this formalism. Third, there is a freedom to

add to the hWZ action, the gauge invariant 4d term

−Nc4

32π2
dAQ[ξ†R(RALA − LARA)ξR + ξ†L(RALA − LARA)ξL] , (2.15)

with c4 ∈ R.

Understanding which completion is the correct one is important both from the

theoretical and phenomenological point of view. Our proposal for the hWZ action is

c1 =
2

3
, c2 = −1

3
, c3 = 1 , c4 = 1 . (2.16)

In the next sections we will discuss some of the applications of the hWZ action and

motivate the choice of (2.16).

3 Intrinsic parity and vector dominance

One of the most important features of the WZ term is that this is the only term that

breaks the intrinsic parity U → U †. As a result, various odd processes in QCD are

fixed by the WZ term. The most famous are the scattering of two kaons to three pions

K+K− → π+π−π0, the decay of π0 to two photons π0 → γγ, and the 4-vertex involving

γπ+π−π0. These three don’t involve vector mesons as one of the external particles,

and the leading contribution indeed comes from ΓU coupled to the photon.[2] Other

processes that contain vector mesons are for example ω → π+π−π0 and ω → γπ0.

Vector dominance (VD) [7] is a related phenomenological principle that states that

when vector mesons are included, some vertices don’t appear explicitly in the La-

grangian and the contribution to them is dominated by an exchange of internal vector
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meson. The study of VD from the hWZ action was considered a lot in the literature,

see for example [8, 12]. In this section we will show that (2.16) implies VD for the

vertices V πππ, AAπ and AV π, where A in this section plays the role of the photon.

We are interested in studying the effective vertices obtained from expanding U around

the identity,

U = 1 +
2iΠ

Fπ
+ ... , R = −L =

idΠ

Fπ
+ ... . (3.1)

As was shown in [2], expanding the gauged version of (2.1) results in

2N

15π2F 5
π

ΠdΠdΠdΠdΠ +
iN

3π2F 3
π

AQdΠdΠdΠ− N

4π2Fπ
AdAQ2dΠ . (3.2)

Together with (2.11) and (2.15) we get

N(8− 15c1 + 15c2)

60π2F 5
π

Π(dΠ)4 +
iN

4π2F 3
π

(c2 − c1 + c3)V (dΠ)3 − iN

4π2Fπ
(c1 + c2 − c3)V 3dΠ

− N

8π2Fπ
c3(dV V + V dV )dΠ +

iN(4− 3c1 + 3c2 − 3c4)

12π2F 3
π

AQ(dΠ)3 − N(1− c4)

4π2Fπ
AdAQ2dΠ

− iN(2c1 + 2c2 − c3)

8π2Fπ
AQ(V 2dΠ + dΠV 2) +

iN(c1 + c2)

4π2Fπ
AQV dΠV − N(c3 − c4)

8π2Fπ
AQ(dΠdV + dΠdV ) .

(3.3)

The vertices AAΠ, AVΠ, VΠΠΠ vanish for c4 = 1, c3 = c4, c1− c2 = c3 respectively.

The three conditions together fix three out of the four free parameters,

c1 − c2 = c3 = c4 = 1 . (3.4)

Notice that (2.16) is consistent with these three demands with the specific choice of

c1 = 2
3 , c2 = −1

3 . This type of VD means for example that the π0 → γγ decay is

mediated by vector mesons: π0 → V V → γγ. Another example is ω → πππ. Since

there is no direct vertex, the process is dominated by ω → ρπ → πππ. This type of VD

is consistent with the experimental results for π0 → γγ, ω → π0γ and ω → π+π−π0.

See section (3.8) of [12] for the detailed computation.

4 Derivation of the baryon current

Another application of the WZ action is the derivation of the skyrmion current as the

low energy description of the baryon current. We are going to follow the same procedure

and apply it on our hWZ action. The prescription of [2] to derive the baryon current

is as follows:

1. Compute the Noether current for a general vector-like U(1) symmetry that acts

as

U → eiQαUe−iQα . (4.1)

This can be done by coupling the symmetry to a gauge field A and reading the

current from the term −AµJµ in the Lagrangian.
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2. After deriving Jµ, plug in Q = 1
N . U is invariant under this transformation

U → eiα/NUe−iα/N = U . Therefore, most of the contributions to Jµ will vanish.

3. The only exception is the contribution coming from the 5d WZ term. This is due

to some extra integration by parts when going from 5d to its 4d boundary which

changes the relative sign between two terms.

4. As a result, the baryon current is given by the skyrmion current

Sµ =
1

24π2
εµνρσtr(∂νUU

†∂ρUU
†∂σUU

†) . (4.2)

One might be suspicious about the degree of rigorousness of this derivation, since U

is not charged under U(1)B and this ”limit” Q → 1
N is ambiguous. However, at least

in the large N limit we can justify this derivation. The reason is that in the large N

limit, U ∈ U(Nf ) and we can take tr(Q) 6= 0. In this case, we can really approach

Q→ 1
N continuously, and get the skyrmion current no matter how the limit is taken.

We can repeat this procedure for the hWZ action by computing the current asso-

ciated with the transformation

ξR,L → ξR,Le
−iQα ⇒ U = ξ†LξR → eiQαUe−iQα , (4.3)

and take Q = 1
N in the end. At this point the covariant derivative of ξR,L is

DµξR,L = ∂µξR,L − iVµξR,L − iAµξR,LQ . (4.4)

We also accompany this transformation with the gauge transformation

ξR,L → e
i
N
αξR,L , (4.5)

such that ξR,L are themselves invariant under U(1)B. This is done by modifying

V → V − 1
NA such that the covariant derivative now becomes

DµξR,L = ∂µξR,L − iVµξR,L +
i

N
AµξR,L − iAµξR,LQ −→Q→ 1

N
∂µξR,L − iVµξR,L .

(4.6)

Indeed, with this choice the U(1)B gauge field doesn’t appear in the covariant derivative

of ξR,L. Now we can compute the baryon current. We already know that (2.1) gives

rise to the skyrmion current (4.2). We will compute the contribution from the hWZ

action (2.11) including the improvement term (2.15). The terms proportional to c1

and c2 in (2.11) don’t contribute to the baryon current because A doesn’t appear in

the covariant derivatives RD, LD as explained above. We do get contributions from

L3 due to the shift V → V − 1
NA. In addition, the improvement term contains A

explicitly. Together, we have

− c3 + c4

16π2
Ad(RDLD − LDRD)

= −c3 + c4

8π2
A(R2L−RL2 + idV (R− L)− iV (R2 − L2)) ,

(4.7)
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such that the current is

B =
1

24π2
(dUU †)3 +

c3 + c4

8π2
(R2L−RL2 + idV (R− L)− iV (R2 − L2)) . (4.8)

Using (dUU †)3 = (R− L)3 we can write,

B = S + (c3 + c4)(H − S) , (4.9)

where

H =
1

24π2

[
R3
D − L3

D + 3iF (RD − LD)
]
, (4.10)

is the hidden baryon current defined in [10].

In the mV →∞ limit, we can integrate out the vector mesons and get

H → 1

24π2
(R− L)3 = S ⇒ B → S , (4.11)

as expected. In addition, it has been shown in [10] that H and S differ only by a total

derivative term and therefore give rise to the same charge for any smooth configuration.

Except for the definition of the current density, the physical difference between S and

B comes when computing the baryon charge of singular configurations, such as the

Nf = 1 baryons [10, 11]. In particular, for Nf = 1, the baryon current B can be

written as

B(Nf=1) = −c3 + c4

8π2
dωdη′ , (4.12)

where ω = tr(V ) , eiη
′

= det(U) are the fields that survive when we take Nf = 1. In

section 3, VD led us to choose c3 = c4 = 1. With this choice, B = 2H − S and at

Nf = 1 it simplifies to

B(Nf=1) = − 1

4π2
dωdη′ . (4.13)

An example of a charged configuration is the Nf = 1 baryon introduced in [11]. This

is a configuration constructed out of a finite η′ = π domain wall. On the boundary

of the domain wall, η′ is not well defined and the chiral condensate is expected to

vanish. η′ winds once around the ring that forms the boundary of the domain wall∮
dη′ = 2π. Due to a conjectured emergent U(1)N CS theory on the domain wall, this

system behaves as a boundary CS theory. The boundary is expected to carry edge

modes, similar to the quantum Hall effect. The baryon charge of this configuration

comes from the two orthogonal windings- the winding of η′ around the ring, and the

winding of the CS field along the ring (the edge mode). (4.13) hints that the CS field

on the DW is actually the ω vector meson. Indeed, configurations characterized by two

orthogonal windings of the form∮
η′ = 2πZ ,

∮
ω = 2πZ , (4.14)
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have integer baryon charge under (4.13),4

− 1

4π2

∫
dωdη′ ∈ Z , (4.15)

where the integration is over the 3d space.

This quantization of charge fails to work for generic c3,4 in (4.12). The charge is

properly quantized for c3 + c4 = 2. In the next sections we will also show that the

identification of ω as the U(1)N CS field on the η′ = π DW fixes c3 = 1. The two

demands together fix c3 = c4 = 1. Surprisingly, these are exactly the same parameters

that give rise to VD.

5 Domain walls

In this section we will discuss QCD domain walls. Using the HLS Lagrangian with

the hWZ action (2.12), we can study the DW theories when the vector mesons are

included. Following [15], we will separate our discussion to Nf = 1 and Nf ≥ 2. The

different types of domain walls are described in the next sections.

5.1 Nf = 1 domain wall

In this section we will study domain wall configurations in Nf = 1 QCD with θ = π

where we take the quark’s mass m to be real and positive. In the large N small m/Λ

limits, we can write an effective Lagrangian for η′[20, 21]

Lη′ =
F 2
π

2
(∂η′)2 +mΛF 2

πcos(η
′ + θ)− 1

2
F 2
πM

2
η′η
′2 + ... , (5.1)

with

F 2
π ∼ O(N) , Λ ∼ O(1) , M2

η′ ∼ O(N−1) . (5.2)

For generic θ this potential has a unique global minimum, but for θ = π and m > m0 =
M2
η′

Λ there are two degenerate vacua related by time reversal symmetry η′ → −η′. The

vacua are solutions to

msin(η′) = m0η
′ . (5.3)

For m close to m0 we can expand in small η′ and find the vacua

η′20 ' 6(1−m0/m) . (5.4)

On the other hand when m0 � m� Λ, we can expand close to ±π and find

η′0 = ±π(1−m0/m) + ... . (5.5)

4In [10] it was assumed that the baryon current is H which reduces at Nf = 1 to H(Nf = 1) = − 1
8π2 dωdη

′.

This led to some confusion regarding the minimal charge and the validity of (4.14). Here we find that the

correct current is actually 2H − S, which solves the mentioned confusions.
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In the regime where (5.1) is valid, we see that as we increase m (but keeping m� Λ),

the vacua move from 0 towards ±π. There are two topologically distinct trajectories

that connect the two vacua. The first is the one that goes through η′ = 0 and the

second crosses the cusp at η′ = π. It was argued in [15] that the tension coming

from crossing the cusp is Tcusp ∼ NΛ3. Explicit classical computation shows that the

tension of the domain wall that goes through η′ = 0 is at most ∼ Nm
1
2 Λ

5
2 which is

smaller than Tcusp and therefore is energetically favorable. The theory on this domain

wall can be extracted explicitly from (5.1) and is trivial (i.e. contains only the center

of mass coordinate). Even though it is not the minimal tension configuration, the DW

that goes through the cusp can still be considered as a metastable DW. The theory

on it cannot be extracted from (5.1) due to the cusp. One of the things that can be

done is to remove the cusp by integrating back in the fields that generate it. The

cusp is a consequence of heavy fields that jump from one vacuum to the other. In the

effective theory that contains both η′ and the heavy fields, the cusp doesn’t appear in

the Lagrangian and the emergent theory on the η′ = π DW can be read off directly

from this effective theory. According to a conjecture made in [10], these fields are

the vector mesons. We will elaborate more about this conjecture and the motivation

behind it in section 6. For now, we will simply assume that this conjecture is correct.

In that case, the theory on the DW can be read off from the effective theory of ξR,L
and V . In this formalism, the relevant domain wall configuration is of the form

η′ = η′(z) , lim
z→−∞

η′(z) = 0 , lim
z→+∞

η′(z) = 2π . (5.6)

Plugging it into the Nf = 1 version of (2.11), we get on the domain wall (after throwing

a full derivative term)

LDW =
Nc3

4π
ωdω . (5.7)

in addition, there is a mass term for ω coming from (2.9). We see that by choosing c3 =

1, the theory on this domain wall is U(1)N Chern-Simons-Higgs theory. Surprisingly,

c3 = 1 is the value predicted by VD. The emergence of an U(1)N CS theory on the

η′ = π DW is also needed for the correct construction of the Nf = 1 baryon [11] as

explained in section 4.

This is valid in the m � Λ limit. We can also study the opposite limit Λ � m

which is approximately pure YM at θ = π. The domain wall in this case is [22]

U(1)N ' SU(N)−1 pure CS theory. An interesting question is how the two limits are

connected. In [15] it was suggested that the theory on the DW can be described for

every value of m as U(1)N CS theory coupled to one fundamental scalar. When the

mass of the scalar is very large and positive, we can integrate it out and the theory is

simply U(1)N as in pure YM. When the mass of the scalar is very large and negative we

are in the Higgs phase which is gapped at low energies. The authors of [15] identified

this Higgs phase as the theory on the trivial DW that goes through η′ = 0. We suggest

to slightly modify their proposal and identify the Higgs phase as the theory on the DW

that goes through the cusp (5.7). This modification means that the pure YM DW is
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continuously connected to the metastable DW at small mass which implies a first order

phase transition between the two domain walls. If this is correct, than there should be

a critical mass mc ∼ Λ in which the two tensions are equal. Except for the appearance

of a U(1)N CSH theory (5.7) on the DW when crossing the cusp, the existence of a

phase transition can be motivated as follows. First, we see that the tension difference

between the two domain walls decreases as the mass increases which makes the scenario

of phase transition plausible (see figure 1). When η′0 → ±π, the tension of the DW

that goes through the cusp is not expected to depend on m, unlike the one that goes

through η′ = 0. Therefore, when the mass is very large, the tension of the cusped DW

is expected to remain finite, while the tension of the η′ = 0 DW is expected to diverge.

This makes it very plausible that a phase transition between the two DWs indeed

happens. Another argument comes from the relation between shifts of θ to shifts of η′

and the cusp at θ = π to the cusp at η′ = π. The pure YM DW exists on the cusp at

θ = π. We can also think of it as an interface interpolating from θ = π−ε on one side to

θ = π+ ε on the other side. In the ε→ 0 limit, this interface is exactly the θ = π DW.

Similarly, the two vacua of the η′ potential asymptote to η′ = ±π as the mass is taken

to be large. Even though we know what happens only in the two limits m � Λ, and

m � Λ, the most natural picture is that the pure YM DW is connected continuously

to the DW that goes through the cusp. The theory on this DW can be described as

a U(1)N CS theory that flows smoothly from the topological phase at m → ∞ to the

Higgs phase at m → 0. We will finish this section with a comment about different

types of phase transitions involved in this game. We discussed a 4d phase transition

between the two DWs. Another type of phase transition is a 3d phase transition that

happens on a specific DW. For example, the 3d U(1)N+ fundamental scalar theory has

a phase transition between the topological and the Higgs phases as one varies the mass

of the scalar. It is not clear if the 3d phase transition which is predicted to occur on

the cusped DW, happens when this DW is stable or only metastable. This is a hard

question about the m ∼ Λ regime of QCD and we leave it open for now.

5.2 The pionic Nf ≥ 2 domain wall

In this section we will study the Nf ≥ 2 pionic domain wall. The theory we study is

θ = π QCD with Nf ≥ 2 and equal small mass for all the quarks 0 < m � Λ. For

simplicity, we will also ignore η′ as it is not going to play any role in this domain wall.

As was shown in [15], this theory has two degenerate vacua related by time reversal

given by

U1 = 1 , U2 = e−2πi/Nf . (5.8)

We can impose the boundary conditions

lim
z→−∞

U = 1 , lim
z→∞

U = e−2πi/Nf . (5.9)
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Figure 1: The η′ potential at θ = π for small and large values of the masses. At small mass, it

is energetically favorable to avoid the cusp. As the mass increases, the tension difference between

the two domain walls decreases and we conjecture that above some critical mass m > mc ∼ Λ it is

favorable to cross the cusp. Therefore the cusped DW is connected continuously to the YM DW.

The minimal tension configuration satisfying the boundary conditions is of the form

UDW =

(
eiα

ei(1−Nf )α

)
, lim
z→−∞

α(z) = 0 , lim
z→+∞

α(z) = − 2π

Nf
, (5.10)

where the first entry in UDW represents an (Nf−1)×(Nf−1) block. This configuration

breaks SU(Nf )V → S[U(Nf − 1) × U(1)]. Therefore, the theory on the domain wall

contains a CPNf−1 =
SU(Nf )

S[U(Nf−1)×U(1)] sigma model. In addition, the sigma model

inherits a level N WZ term from the 4d WZ term. The authors of [15] identified

this theory with the low energy limit of U(1)N CS theory coupled to Nf fundamental

scalars in the Higgs phase. The sigma model is a result of the same symmetry breaking

pattern SU(Nf ) → S[U(Nf − 1) × U(1)], and the WZ term comes from the CS term

when integrating out the vector fields. There is a conjectured dual description to this

theory in terms of SU(N)Nf/2−1 CS coupled to Nf fundamental fermions [23]. These

theories

U(1)N +Nf φ ' SU(N)Nf/2−1 +Nf ψ (5.11)

in the large mass limit (positive for scalars, negative for the fermions in this convention)

become

U(1)N ' SU(N)−1 (5.12)

which is the θ = π domain wall theory in pure YM [22]. Therefore, they proposed

that (5.11) describes the theory on the domain wall for every value of the quarks mass.
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Using the HLS Lagrangian together with the hWZ action, we can find the DW theory

in a regime where the vector fields are treated as dynamical. As we will see, this results

in the CPNf−1 sigma model coupled to U(Nf − 1) massive vector fields. The emergent

U(Nf − 1) CS term on the DW contributes to the WZ term of the sigma model, in

contradiction to the proposal of [15]. Their conjecture was based on the assumption

that the CPNf−1 at small mass is connected continuously to the pure YM DW at

m → ∞, and therefore the DW theory should be described by a 3d DW theory with

the two phases on the edges of its parameter space. As in 5.1, we will argue that there

is a first order phase transition between topologically distinct DWs, and that the YM

DW is not connected continuously to the CPNf−1 DW but to some metastable DW at

small mass. We will start from analyzing the kinetic terms of the HLS Lagrangian

L2 =
F 2
π

4
tr(∂U∂U †)− aF 2

π

4
tr(∂ξRξ

†
R + ∂ξLξ

†
L − 2iV )2 . (5.13)

A general expansion around (5.10) that doesn’t change the boundary conditions can

be written as

U = gUDW g
† , g ∈ SU(Nf ) . (5.14)

At low energies we can expand

g = 1 + i

(
0 σ

σ† 0

)
− 1

2

(
σσ† 0

0 σ†σ

)
+O(σ3) , (5.15)

where σ(xµ 6= z) is an Nf − 1 dimensional vector parametrizing the coordinates on the

CPNf−1 manifold around (5.10). The first kinetic term on the DW becomes

F 2
π

4

∫
dztr(∂U∂U †) = 2F 2

π

∫
dzsin2(Nfα/2)∂σ†∂σ +O(σ4) . (5.16)

To study the second kinetic term, we first need to find a good expansion for ξR,L
and V . Demanding that U = ξ†LξR we can write in general

ξR = hξDW g
† , ξL = hξ†DW g

† , ξDW = U
1
2
DW . (5.17)

This implies

∂µξRξ
†
R + ∂µξLξ

†
L = h[ξDW∂g

†gξ†DW + ξ†DW∂g
†gξDW − 2∂h†h]h†

= h

[
−2icos(Nfα/2)

(
0 ∂σ

∂σ† 0

)
− 2∂h†h

]
h† +O(σ2) .

(5.18)

A convenient choice for h is the gauge in which the linear term O(σ) in (5.18) vanishes.

This is achieved by choosing

h = 1 + icos(Nfα/2)

(
0 σ

σ† 0

)
− 1

2
cos2(Nfα/2)

(
σσ†

σ†σ

)
+ ...

⇒ ∂h†h = −icos(Nfα/2)

(
0 ∂σ

∂σ† 0

)
+

1

2
cos2(Nfα/2)

(
∂σσ† − σ∂σ†

∂σ†σ − σ†∂σ

)
.

(5.19)
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With this choice, we get

h†(∂µξRξ
†
R + ∂µξLξ

†
L)h = sin2(Nfα/2)

(
∂σσ† − σ∂σ†

∂σ†σ − σ†∂σ

)
+O(σ3) .

(5.20)

In addition, we take the ansatz V = f(z)

(
va vb
v†b vc

)
, where limz→±∞ f(z) = 0 and

va,b,c are independent of z. f(z) can in principle be found by solving some differential

equations. However, the exact form of f(z) will not be important for us since after

integrating over z, the effect of changing f(z) will just result in a different numerical

factor that can be swallowed into the 3d gauge coupling on the DW. Therefore, we

allow ourselves to take for simplicity f(z) = sin2(Nfα/2) which gives the nicest form

for the Lagrangian even though it is not correct. With this ansatz we get

tr(∂ξRξ
†
R + ∂ξLξ

†
L − 2iV )2 = sin4(Nfα/2)tr

(
∂σσ† − σ∂σ† − 2iva −2ivb

−2iv†b ∂σ†σ − σ†∂σ − 2ivc

)2

= −8sin4(Nfα/2)v†bvb + sin4(Nfα/2)[(∂σσ† − σ∂σ† − 2iva)
2 + (∂σ†σ − σ†∂σ − 2ivc)

2] .

(5.21)

We see that vb and tr(V ) = tr(va) + vc decouple so we can simply ignore them and set

them to zero. A simpler ansatz can then be used V = sin2(Nfα/2)

(
v

−tr(v)

)
with

v ∈ u(Nf − 1). The entire kinetic term (5.13) on the DW is

2F 2
π

∫
dz
[
sin2(Nfα/2)∂σ†∂σ +

a

2
sin4(Nfα/2)[tr(v2) + tr(v)2 + itr((v + tr(v))(∂σσ† − σ∂σ†))]

]
+ ... .

(5.22)

The ... contain higher order terms. The novel part is the interactions between σ and

the U(Nf − 1) vector fields so we included them even though they are of order O(σ4)

which we threw.

Now we are ready to deal with the WZ term (2.1)+(2.11). The details of the

computation appear in appendix A and result in the emergent action on the DW,

9N(c1 − c2) + 3Nc3 − 8N

32π
σ†dσdσ†dσ +

3iN [2(1− 2Nf )(c1 − c2)− c3]

64πNf
dσ†dσtr(v)

−
3iN [2(1 +Nf )(c1 − c2) + (Nf − 1)c3]

64πNf
dσ†vdσ − 3Nc3

64πNf
[tr(vdv) + (1−Nf )tr(v)tr(dv)] .

(5.23)

For the specific choice of c1 − c2 = c3 = 1 we get

N

8π
σ†dσdσ†dσ +

3iN(1− 4Nf )

64πNf
dσ†dσtr(v)−

3iN(1 + 3Nf )

64πNf
dσ†vdσ

− 3N

64πNf
[tr(vdv) + (1−Nf )tr(v)tr(dv)] +O(σ6) .

(5.24)
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One can check that if we integrate out the vector fields by plugging v = −idσσ† + ...

we get the required level N WZ term,

−N
4π
σ†dσdσ†dσ + ... . (5.25)

We can ask about the interpretation of this result. The full DW theory, whatever it

is, should be consistent with the above 3d Lagrangian. This excludes for example the

conjecture of [15] because it doesn’t contain any U(Nf − 1) vector fields. According to

their conjecture, the level N WZ term on the DW comes from integrating out a Higgsed

U(1)N vector field, which is not what we get here. As in the previous section, also here

their conjecture relied on the assumption that there is no phase transition between

the DWs. However, all the arguments given in 5.1 in favour of a phase transition

apply also here. If this is indeed the case and such a phase transition happens, we

don’t expect to find a 3d theory that connects the m � Λ and m � Λ DWs. In any

case, we can still ask what the 3d theory in the m � Λ is. A natural guess can be

U(Nf−1) gauge theory coupled to Nf fundamental scalars. Assuming that in the deep

Higgs phase the vacuum falls into the maximally flavor-color locking phase [24], the

low energy theory has an expansion as CPNf−1 sigma model interacting with massive

U(Nf − 1) vector fields which is very similar to what we obtained. However there

are several problems with this identification. The first is that the separation between

tr(v) and v in our expansion is different than what expected from the above proposal.

This problem is already at the level of the kinetic term and doesn’t depend on the

details of the topological term. The second problem is that it looks like the induced

CS term has a fractional level, and all the other terms in (5.24) don’t seem to come

from any reasonable (and not irrelevant) term in the uv. This is a problem with the

identification of this phase as the Higgs phase of the U(Nf−1) gauge theory mentioned

above. However, there is no problem with gauge invariance. The reason is that the

full action (5.24) is gauge invariant even though each term independently (such as the

CS term) is not. This is guaranteed since (5.24) was derived from the gauge invariant

hWZ action and can be checked explicitly. Can we find another candidate for the DW

theory? Actually, there is no good reason why a description in terms of some 3d uv

complete theory should even exist. The 4d parent theory by itself is not described as

a uv complete theory but as a non-linear sigma model, so it is possible and likely that

the DW theory is also described in this way.

6 The cusp potential and a gluons-mesons du-

ality

In this section we will also take the large N limit in which the matrices U, ξR,L and the

vector fields V are U(Nf ) valued. When N → ∞, U(1)A becomes a good symmetry

of the theory. As a result, η′, which we define as eiη
′ ≡ det U , becomes a massless NG
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boson associated with the breaking of U(1)A. The potential for the η′ is suppressed in

the large N limit. The leading part in its potential takes the form, [20, 21]

Vη′ =
1

2
F 2
πM

2
η′ min
k∈Z

(η′ − 2πk)2 + ... , (6.1)

where F 2
π ∼ N, M2

η′ ∼
1
N .5 The potential is locally quadratic but has a cusp whenever

η′ = π mod 2π. The cusp represents a phase transition between two branches. As one

crosses the cusp, some heavy fields jump from one vacuum to another. This behavior

has several important consequences:

1. It is possible to eliminate the cusp by “integrating in” the heavy fields that

generated it. In other words, in the effective theory that contains both η′ and

those heavy fields, the potential for η′ doesn’t appear explicitly in the Lagrangian.

2. Any emergent CS theory that might appear on η′ = π wall (see section 5) or disc

(see section 4) comes from those heavy fields.

3. Combining the two, we can conclude that it should be possible to extract the CS

theory directly from the effective theory of both η′ and the heavy fields.

The conventional picture for the formation of the cusp potential was described in [20]

(see also [25]). We will start by reviewing it and show that it indeed satisfies the above

properties. Consider the gluonic topological density

q =
1

8π2
tr G ∧G , (6.2)

where G is the field strength for the gluons. We can write an effective action for q

and η′. The coupling between η′ and q is fixed from the U(1)A axial anomaly, which

implies6

η′ → η′ + α ⇒ L → L+ αq . (6.3)

This is satisfied by writing

Lqη′ = − i
2
qtr(log(U)− log(U †)) = η′q . (6.4)

We can also add some general function of q, but in the large N limit, higher order

terms are suppressed and only the quadratic term q2 survives. The two terms together

give the effective theory for q,

Lq =
1

2F 2
πM

2
η′
q2 + η′q . (6.5)

5This is 1
N suppressed with respect to the kinetic term 1

2F
2
π (∂η′)2.

6Notice a sign difference from [20]. There are several conventions for how U is defined in terms of its

transformation law under the global symmetries. (6.3) is consistent with the convention in which the WZ

term is defined with a minus sign as in (2.1).
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At this point we can integrate q out. Locally, we can use the equation of motion,

q = F 2
πM

2
η′η
′ and get

Lq → −
F 2
πM

2
η′

2
η′2 . (6.6)

Globally, we must also impose the 2π periodicity of η′ by taking into account the

quantization of the instanton number
∫
q ∈ Z. Demanding this we get (6.1).

Except for generating the cusp, (6.4) is also responsible for CS terms on η′ = π

walls. This can be seen by writing it as

1

8π2
η′G ∧G = − 1

2π
dη′ ∧ 1

4π

(
AdA− 2i

3
A3

)
+ d(...) , (6.7)

where we see that 1
2πdη

′ is coupled to an SU(N)−1 CS term with gluons as the vector

fields.

It is interesting to compare the coupling (6.7) to the way η′ couples to the vector

mesons via the hWZ action. While the η′ doesn’t enter into the regular WZ term (2.1),

it does appear explicitly in the hWZ term (2.12). Lets start from the case of Nf = 1.

In that case, only L3 in (2.11) survives and we get (ignoring a total derivative term)

LhWZ = −Nc3

8π2
η′dωdω =

1

2π
dη′ ∧ c3N

4π
ωdω . (6.8)

Here, 1
2πdη

′ is coupled to a U(1)c3N CS term with ω as the vector field. For c3 = 1,

the two CS theories are dual to each other,7

SU(N)−1 ' U(1)N . (6.9)

As we already mentioned, c3 = 1 is exactly the choice implied by VD and the

required value for the consistent construction of Nf = 1 baryons. So far we discussed

only the parameters c3,4. This is because L1 = L2 = 0 for Nf = 1 QCD. While we

don’t have any good theoretical argument that can restrict the values of c1,2 we want

to make the following observation.

For Nf ≥ 2 and general {ci}, η′ interacts with vector mesons and pions in quite a

complicated way,

Lη′ =
Nc1

32π2Nf
dη′[LR2 +RL2 − 2iV (RL+ LR)− 4iV (R2 + L2)− 6V 2(R+ L) + 4iV 3]

+
Nc2

16π2Nf
dη′[L2R+R2L− 3V 2(R+ L)− iV (R2 + L2)− 2iV (RL+ LR) + 2iV 3]

+
iNc3

16π2Nf
dη′[V (R2 + L2)− 2iV dV − iV 2(R+ L)− 2V 3] .

(6.10)

7To be more precise, the theory on the mesonic side is U(1)N CSH theory. Similarly, the theory on the

gluonic side is SU(N)−1 strongly interacting with fermions in some way. So the duality is really some version

of SU(N)−1 + fermions ' U(1)N + scalars.
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However, given c3 = 1, there is a unique choice c2 = − c3
3 , c1 = 2c3

3 that results in the

nice axion-like coupling,8

Lη′ = − N

8π2Nf
η′F 2 =

1

2πNf
dη′ ∧ N

4π

(
V dV − 2i

3
V 3

)
. (6.11)

Again, this choice of parameters is consistent with VD. Unfortunately, we couldn’t find

a good theoretical argument that can explain this coincidence. We leave the discussion

about Nf ≥ 2 as an open curiosity.

7 Summary of ci conditions and finite N

In this work, we showed how the three concepts- vector dominance, baryon symmetry,

Chern-Simons theory- are related and originate from the same hidden Wess-Zumino

action. The relation holds in the large N limit where the action can be written as single

trace in flavor space over U(Nf ) valued matrices. As was shown, the most general hWZ

action coupled to external U(1) vector-like gauge field contains 4 free real parameters,

ci , i = 1, ..., 4. The first theoretical constraints are based on Nf = 1 physics. By

requiring that the Nf = 1 baryon will have charge 1 under the baryon charge, we

found c3 + c4 = 2. By requiring that the theory on the η′ = π DW at Nf = 1 will

contain a U(1)N CS term (which is also a crucial ingredient in the construction of the

Nf = 1 baryon), we found c3 = 1. These two demands are equivalent to the vanishing

of the two vertices AAΠ and AVΠ. Finally, by requiring that when adding more flavors,

the coupling of dη′ to the vector mesons will still have the structure of a CS term (or

equivalently, the coupling of η′ to the vector mesons will have the form of an axion

coupling), we found c1 = 2c3
3 , c2 = − c3

3 , which is consistent with the vanishing of the

vertex VΠΠΠ. These theoretical demands fix completely the hWZ action and imply

VD. This relation gives a theoretical explanation of the phenomenological principle of

VD. The conditions on c1,2 are less motivated than the ones on c3,4. In any case, even

if one throws them away, most of the results of this paper are not affected.

At finite N , one can add multi-trace operators that distinguish between the SU(Nf )

and the U(1) parts and break the triple relation. This type of terms can be used to

explain possible violations of VD in the real world. The term that should remain as it

is also at finite N , is

− N

8π2
dη′ωdω . (7.1)

This can provide a non-trivial check of our conjecture by measuring the coefficient of

this term in real world QCD.9 Another type of corrections comes when interpreting

the ”h” in hWZ as standing for ”homogeneous”. This means that we assumed that the

coefficients ci don’t depend on the so-called dilaton field, which is roughly speaking

8This is after throwing away some total derivative terms.
9Notice that our definitions for η′ and ω as the U(1) ∈ U(Nf ) fields differ from their definitions in real

world QCD, where η′ is the U(Nf = 3) singlet and ω is the U(Nf = 2) singlet.
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the radius of the target space [26–28]. Corrections to the hWZ action that depend

on the dilaton may serve as another source for discrepancies between the measured

hWZ action at low energies to the predicted hWZ action at higher energies [14]. In

particular for the Nf = 1 baryons close to the singular ring, these type of corrections

might be quite important. We ignore these corrections completely in this work and

leave it as an open problem.
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A Some computations

In this appendix, we will compute the emergent action on the Nf ≥ 2 pionic DW

described in section 5.2 coming from the hWZ action. We will write explicitly the

results up to order O(σ4) where V ∼ O(σ2). We will start from the regular WZ term

(2.1). This computation also appeared in [30]. We consider the DW configuration

U = gUDW g
† , (A.1)

as in (5.14) and expand

g = 1 + i

(
0 σ

σ† 0

)
− 1

2

(
σσ† 0

0 σ†σ

)
+ ... . (A.2)

The action becomes

iN

48π2

∫
B5
∂zUU

†(dUU †)4 =
NfN

3π2

∫
B5
∂zαsin

4(Nfα/2)dσ†dσdσ†dσ +O(σ6) , (A.3)

where d now is the derivative in the directions transverse to z, and we used

∂zUU
† = i∂zαgTg

† , T =

(
1

1−Nf

)
, dUU † = i

(
(1− eiNfα)dσ

(1− e−iNfα)dσ†

)
+ ....

(A.4)

The z integration can be evaluated using∫ ∞
−∞

dz∂zαsin
4(Nfα/2) =

∫ −2π/Nf

0
dαsin4(Nfα/2) = − 3π

4Nf
. (A.5)
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The emergent 3d term is then

−N
4π
σ†dσdσ†dσ +O(σ6) , (A.6)

which is indeed a level N WZ term. Now we will perform the computation for the

hWZ action (2.11). Vz appears explicitly in (2.11) and we need find its value on the

DW. The bulk kinetic term in the z direction is proportional to (at leading order)

tr(Rz + Lz − 2iVz)
2 = tr

(
−iNf∂zαsin(Nfα/2)

(
σ

σ†

)
− 2iVz

)2

. (A.7)

Vz is a scalar on the DW and for simplicity we can plug in

Vz = −
Nf

2
∂zαsin(Nfα/2)

(
σ

σ†

)
, (A.8)

which is correct at low energies. Using the expansions of R,L, V on the DW as written

in section 5.2, we can write at leading order

RD = I0 + I1 , LD = −I0 + I1 , (A.9)

with

I0,z =
i

2
∂zαT , I1,z = 0 , I0,⊥ = sin(Nfα/2)

(
dσ

−dσ†

)
,

I1,⊥ = sin2(Nfα/2)

(
dσσ† − iv

−σ†dσ + itr(v)

)
.

(A.10)

It is straight forward to check that I4
0 = 0 , I1I

3
0 ∼ (σ4) and all the other combinations

are of higher order. Therefore, it is enough to keep the I1I
3
0 terms from L1,2, which are

Nc1

16π2
L1 =

iNc1

4π2
I1I

3
0 +O(σ6) ,

Nc2

16π2
L2 = − iNc2

4π2
I1I

3
0 +O(σ6) . (A.11)

After performing the integration over z as in (A.5), we get on the DW,

3N(c1 − c2)

32πNf
[3Nfσ

†dσdσ†dσ + (1− 2Nf )idσ†dσtr(v)− i(1 +Nf )dσ†vdσ] . (A.12)

Finally,

L3 = F (I0I1 − I1I0) = −d⊥Vz(I0,⊥I1,⊥ − I1,⊥I0,⊥) + d⊥V⊥(I0,zI1,⊥ + I1,⊥I0,z) + ... ,

(A.13)

where we neglected the V 2(I0I1 − I1I0), ∂zV⊥(I0,⊥I1,⊥ − I1,⊥I0,⊥) terms which are

subleading in σ and used I1,z = 0 as before. Explicit computation gives on the DW

− 3Nc3

64πNf
[itr(v)dσ†dσ + i(Nf − 1)dσ†vdσ − 2Nfσ

†dσdσ†dσ + tr(vdv) + (1−Nf )tr(v)tr(dv)] +O(σ6) .

(A.14)
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A consistency check is that the entire contribution from the hWZ action vanishes when

taking v = −idσσ†. All together we get

9N(c1 − c2) + 3Nc3 − 8N

32π
σ†dσdσ†dσ +

3iN [2(1− 2Nf )(c1 − c2)− c3]

64πNf
dσ†dσtr(v)

−
3iN [2(1 +Nf )(c1 − c2) + (Nf − 1)c3]

64πNf
dσ†vdσ − 3Nc3

64πNf
[tr(vdv) + (1−Nf )tr(v)tr(dv)] .

(A.15)

For the specific choice of c1 − c2 = c3 = 1 we get

N

8π
σ†dσdσ†dσ +

3iN(1− 4Nf )

64πNf
dσ†dσtr(v)−

3iN(1 + 3Nf )

64πNf
dσ†vdσ

− 3N

64πNf
[tr(vdv) + (1−Nf )tr(v)tr(dv)] .

(A.16)

Notice that at least at leading order, the theory on the DW depends only on the

combination c1 − c2 and not on each one of them separately. This means that the

result is not affected by relaxing the demand c1 = 2
3 , c2 = −1

3 .

B Comparison with ”vector mesons on the wall”

In this appendix we comment about the proposal made in [29] and the apparent dis-

agreement with our paper. The authors of [29] describe the Nf = 1 baryon as a finite

η = π pancake with a U(1)N CS theory living on it. The charge of the baryon is given

by the winding of the CS vector field along the boundary of the pancake. This construc-

tion is very similar to the construction of [10, 11] and to the one described in this work.

The main difference is that we identified this CS field with the ω vector meson, while in

[29], the CS field was an emergent U(1)N vector field bounded to the η′ = π DW. This

field is denoted by c. However, we want to argue that even though the two proposals

sound very different, there is no clear contradiction between the two. For this, we want

to make the following observations. The baryon current in our setup was derived ex-

plicitly from the Lagrangian (see section 4). The result B(Nf=1) = − 1
4π2dωdη

′ supports

the identification of ω with the vector field whose winding measures the baryon charge

of the pancake. In addition, we show that the hWZ action gives rise to a U(1)N CS

term on the pancake with ω as the CS field. These two results rely on a certain value of

the hWZ action parameters. In [29], the hWZ action is written with exactly the same

parameters. See equations (90-91) of [29]. This automatically implies that they get

from the hWZ action the same baryon current and the same CS term for ω on the DW.

However, it is claimed in [29] that an extra contribution for the baryon current comes

the pancake itself which cancels the contribution from the hWZ action. See equation

(81). Instead, the baryon charge is measured by the winding of the emergent CS field

c. However, the proposed effective theory on the pancake is written in equation (76)

(or equation (88) for Nf = 1). It contains CS terms both for c and ω, and a boundary
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term. The boundary conditions implied by this action fix c+ ω = 0 on the boundary.

This means that (up to a sign), the winding of c equals the winding of ω. Therefore,

any configuration that carries some baryon charge when computed using the current

of [29], will carry the same baryon charge when computed using the current proposed

here. To summarize, we conclude that actually there is no clear physical disagreement

between the two papers.
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