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Abstract

We investigate the dynamics brought on by an impulse perturbation in two

in�nite-range quantum Ising models coupled to each other and to a dissipative

bath. We show that, if dissipation is faster the higher the excitation energy,

the pulse perturbation cools down the low-energy sector of the system, at the

expense of the high-energy one, eventually stabilising a transient symmetry-

broken state at temperatures higher than the equilibrium critical one. Such

non-thermal quasi-steady state may survive for quite a long time after the

pulse, if the latter is properly tailored.
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1 Introduction

Shooting ultrashort laser pulses has emerged in the last decades as a new fast-driving tool
for phase transformations, with great potentials especially for strongly correlated mate-
rials [1�3, 3�9], whose phase diagrams include close-by insulating, conducting and even
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superconducting phases. Moreover, �ring a laser pulse at a strongly correlated material
not always boils down to a fast rise of the internal temperature, as one would reasonably
expect. For instance, it sometimes allows uncovering hidden states inaccessible at thermal
equilibrium [10, 11]. However, until now the most remarkable failure of the naïve corre-
spondence between light �ring and thermal heating is the evidence of superconducting-like
behaviour at nominal temperatures far higher than the critical one in the molecular conduc-
tors K3C60 and κ-(BEDT-TTF)2Cu[N(CN)2]Br irradiated by laser pulses [12�14]. Such
non-thermal state is transient, but may become rather long-lived by properly tailoring
the laser pulse [14]. Even though this phenomenon may have explanations that concern
material-speci�c mechanisms [12, 13], still it is legitimate to address the general question
whether a laser pulse could ever cool down a solid state material. Spontaneous anti-Stokes
emission of photons with higher energies than those absorbed from the incident light is a
known laser cooling mechanism for semiconductors [15�19]. However, the same mechanism
would not work in metals at low temperatures, e.g., in the above mentioned molecular con-
ductors, where most of the entropy is carried by the electrons, and not by the phonons as
in semiconductors.

In an attempt to explain the photoinduced superconductivity in K3C60 [12], a di�er-
ent laser cooling mechanism was proposed in Ref. [20], which is essentially based on the
existence of a high energy localised mode that, when the laser is on, is able to fast soak up
entropy from the thermal bath of low-energy particle-hole excitations, while, after the end
of the laser pulse, it release back that absorbed entropy very slowly. It follows that the pop-
ulation of particle-hole excitations gets reduced, as if its internal temperature were lower,
for a transient time after the pulse that is longer the smaller the non-radiative decay rate
of the high energy mode. This idea was later tested [21] with success in a fully-connected
toy model subject to a time dependent perturbation of �nite duration, mimicking a `laser
pulse'. This model is trivially solvable since in�nite connectivity implies that mean-�eld
theory is exact in the thermodynamic limit. However, this feature, though providing the
exact out-of-equilibrium dynamics, yet prevents full thermalisation, since it lacks internal
dissipation. Therefore, despite the model does realise the laser cooling mechanism pro-
posed in [20], one cannot exclude that dissipation could wash it out.

The aim of the present work is just to assess the role of dissipation in that same model.
Since we want to maintain its mean-�eld character, we still assume full connectivity. There-
fore dissipation cannot arise from the internal degrees of freedom, but it is simple included
in the dynamics via a Lindblad equation. When all system excitations dissipate equally
fast, we �nd just a quick relaxation to thermal equilibrium. On the contrary, if excitations
dissipate faster the higher the energy, which is the most common physical situation, we
do observe a transient regime where the low energy sector of the model e�ectively cools
down. Moreover, if we increase the `laser pulse' duration keeping constant the total energy
supplied to the system, following the experiment in [14], we also �nd the transient state to
last longer, not in disagreement with that experiment.

The paper is organized as follows. In Section 2 we introduce the quantum Ising model
we shall investigate, an e�ective two-spin spin boson model [22] and its behavior in absence
of dissipation. In Section 3 we brie�y discuss the Lindblad master equation to describe
the relaxation dynamic and the physical results obtained for di�erent bath model. Finally,
Sec. 4 is devoted to concluding remarks.
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2 The model Hamiltonian

We consider the Hamiltonian of two coupled fully-connected quantum Ising models

Ĥ =
2∑

n=1

Ĥn − λ
N∑
j=1

σx1,j σ
x
2,j , (1)

where

Ĥn = − J

2N

N∑
i,j=1

σxn,i σ
x
n,j − hn

N∑
i=1

σzn,i , (2)

and σαn,i, α = x, y, z, are Pauli matrices on site i = 1, . . . , N of the submodel n = 1, 2. All
parameters, J , h1, h2 and λ are assumed positive. Hereafter we take J = 1 as energy unit.
Because of full connectivity, and for any i 6= j,〈

σαn,i σ
β
m,j

〉
−
〈
σαn,i

〉 〈
σβn,j

〉
∝ 1

N
, (3)

which actually implies that the mean-�eld approximation becomes exact in the thermody-
namic limit N →∞, or, equivalently, that the full density matrix ρ̂ factorises in that limit
into the product of single-site density matrices:

ρ̂ −−−−−→
N→∞

N∏
i=1

ρ̂i , (4)

where ρ̂i are positive de�nite 4 × 4 matrices with unit trace. The property (4) allows
exactly solving with relative ease the model Hamiltonian (1).

2.1 Equilibrium phase diagram

At equilibrium, one can exploit the variational principle for the free energy at temperature
T ,

F (T ) = min
ρ̂

[
Tr
(
ρ̂ Ĥ

)
+ T Tr

(
ρ̂ ln ρ̂

)]
, (5)

to �nd, through Eq. (4), the single-site density matrices ρ̂i(T ) that minimise the r.h.s. of
Eq. (5), and which actually solve the self-consistency set of equations

ρ̂i(T ) =
e−βĤi(T )

Tr
(
e−βĤi(T )

) ,

Ĥi(T ) = −
2∑

n=1

[
Jn,i(T )σxn,i + hn σ

z
n,i

]
− λσx1,i σx2,i

≡
2∑

n=1

Ĥn,i − λσx1,i σx2,i ,

(6)

where

Jn,i(T ) = lim
N→∞

1

N

N∑
j=1

Tr
(
ρ̂j(T )σxn,j

)
≡ Jn(T ) . (7)

Since Jn,i(T ) = Jn(T ) is the same for all sites, so ρ̂i(T ) and Ĥi(T ) in (6) are. Therefore,
we can also write

Jn,i(T ) = Tr
(
ρ̂i(T )σxn,i

)
≡ mx,n(T ) , ∀ i , (8)
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Figure 1: Phase diagram of the fully connected quantum Ising model (2) as a function
of the transverse �eld h. In the blue coloured region, below the critical temperature, the
system is in the ordered phase with spontaneously broken Z2 symmetry.

which, together with Eq. (6), give an equivalent representation of the self-consistency
equations.
At λ = 0 in Eq. (1), each Ising model (2) has the phase diagram shown in Fig. 1. For
hn ≤ 1 and temperature

T ≤ Tc
(
hn
)

=
2hn

ln
1 + hn
1− hn

,
(9)

the expectation value mx,n(T ) of σxn,i, see Eq. (8), is �nite, thus the model n is in an
ordered phase that spontaneously breaks the Z2 symmetry σxn,i → −σxn,i, ∀ i. Above
Tc
(
hn
)
or if hn > 1, the Z2 symmetry is restored, and the order parameter mx,n(T )

vanishes identically. The mean-�eld Hamiltonian Ĥn,i of each subsystem n = 1, 2, see
Eq. (6), has two eigenstates separated by an energy

En(T ) = 2
√
mx,n(T )2 + h2n , (10)

which corresponds to a dispersionless optical excitation branch of the Hamiltonian Ĥn in
Eq. (2). For hn ≤ 1, En(0) = 2 at T = 0, and diminishes with T until, at T = Tc

(
hn
)
and

above, En(T ) = 2hn.

Throughout this work we assume

λ� h1 < 1� h2 , (11)

and, speci�cally,
λ = 10−2, h1 = 0.5, h2 = 10. (12)

In this case, for T ≤ Tc ' Tc
(
h1
)
, model 1 acquires a �nite order parameter mx,1(T ),

which, in turn, drives a �nite

mx,2(T ) ' λ

h2
mx,1(T )� mx,1(T ) . (13)

It follows that the Hamiltonian (1) has, at leading order in λ, two dispersionless excitation
branches with energies

E1(T ) ' 2
√
mx,1(T )2 + h21 ,

E2(T ) ' 2h2 � ∆E1(T ) .
(14)
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In other words, we can write

Ĥ '
N∑
i=1

2∑
n=1

En(T ) b†n,i bn,i , (15)

with bn,i hard core bosons. The local Hilbert space at site i thus comprises four eigenstates

|k; i〉 ≡
(
b†1,i
)n1(k) (b†2,i)n2(k) |0〉 , k = 0, . . . , 3 , (16)

with energy
E(k) = n1(k)E1(T ) + n2(k)E2(T ) , (17)

where n2(k) = bk/2c is the integer part of k/2, and n1(k) = k − 2n2(k). The states |0; i〉
and | 1; i〉 de�ne a low energy subspace well separated from the high energy one, which
includes states | 2; i〉 and | 3; i〉. It follows that there exists a wide temperature interval,
Tc . T � E2(T ) = 2h2, where the low energy sector is entropy rich, contrary to the high
energy one, which practically bears no entropy.

2.2 Cooling strategy

Based on the last observation, Ref. [21] devised a strategy to exploit the high energy sector
as an entropy sink able to cool down the low energy one, which we brie�y sketch in this
section.
We assume that the system is prepared in the equilibrium state corresponding to a tem-
perature Tc . T � 2h2. Its initial density matrix ρ̂(0) is therefore de�ned through Eq. (4),
with ρ̂i the solution of the self consistency equations (6) and (8). At t = 0 the following
perturbation is turned on

V̂ (t) = −E(t) cosωt
N∑
i=1

σx1,i σ
x
2,i , (18)

which mimics a laser pulse, whose envelope we hereafter parametrise as

E (t) =

(
t

τ

)2

exp

[
1− 1

E0

(
t

τ

)2
]
, (19)

thus corresponding to a pulse of duration τ and peak amplitude E0 achieved for tmax =
τ
√
E0. We further assume the 'laser' frequency ω = E2(T ) − E1(T ), see Eq. (14), in

resonance with the excitation process b†2,i b1,i =|2; i〉〈1; i |, and the hermitean conjugate de-
excitation one. The rationale behind this choice is the following. If pk(T ) = 〈 |k; i〉〈k; i | 〉
is the initial occupation probability, i.e. the equilibrium one at temperature T , of the
state | k; i〉, then, for Tc . T � 2h2, the high-energy sector starts almost unoccupied,
p2(T ) ' p3(T ) ' 0, while

1 ≥ p1(T )

p0(T )
=

1− tanhβ h1
1 + tanhβ h1

&
p1(Tc)

p0(Tc)
= h1 . (20)

The e�ect of the 'laser pulse' (18) is primarily to increase the formerly negligible p2 by
reducing p1, eventually making the ratio p1/p0 drop beneath the threshold value h1, below
which Z2 symmetry breaking, which is mostly a matter of the lower energy sector, spon-
taneously sets in. In other words, the system starts in the disordered phase above Tc and,
after the 'laser pulse', it may end up into the ordered one, as if it were cooler than it was
initially. In reality, the energy lost by the low-energy sector plus that soaked up from the
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Figure 2: Time evolution of the order parameter of the low-energy sector (blue curve).
The red curve corresponds to the envelope E(t) of the perturbation, see Eq. (19), with
E0 = 0.20 and τ = 250.

'laser pulse' is being temporarily stored in the high-energy sector, from which it later �ows
back and heats up the whole system, though gradually since λ is tiny. Therefore, the low
energy sector is transiently deprived of entropy by the 'laser pulse', for a time longer the
small λ is.

This scenario, put forth in Ref. [21], can be readily shown to occur in the model
Hamiltonian (1) in presence of the perturbation (18). Indeed, since the full time-dependent
Hamiltonian Ĥ(t) = Ĥ + V̂ (t) does not spoil Eq. (3), the time-dependent density matrix
ρ̂(t) can be still written as in Eq. (4) with ρ̂i → ρ̂i(t), where the latter evolves according
to the �rst order non-linear di�erential equation,

∂ρ̂i(t)

∂t
= −i

[
Ĥi(t) , ρ̂i(t)

]
, (21)

where, similarly to Eqs. (6) and (8),

Ĥi(t) = −
2∑

n=1

[
Jn,i(t)σ

x
n,i + hn σ

z
n,i

]
−
(
λ+ E(t) cosωt

)
σx1,i σ

x
2,i ,

(22)

and the non-linearity arises because

Jn,i(t) = Tr
(
ρ̂i(t)σ

x
n,i

)
, (23)

is function of ρ̂i(t). Eq. (21) must be solved with initial condition ρ̂i(t = 0) = ρ̂i(T ),
which, being actually the same for all sites i, implies that also ρ̂i(t > 0) is site-independent.
Therefore one just needs to solve (21) for a single-site.
In Fig. 2 we show the time evolution of the low-energy sector order parameter mx,1(t)
starting from the disordered equilibrium phase at T = 1.5Tc, and using, besides the
Hamiltonian parameters in Eq. (12), a 'laser pulse' of duration τ = 250 and amplitude
E0 = 0.20, see Eq. (19). We note that initially mx,1 = 0, since the system is disordered.
However, after the 'laser pulse' the low energy sector ends up trapped into one of the two
Z2-equivalent symmetry variant phases, in the �gure that with mx,1 negative.
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3 Dissipative dynamics

We already mentioned that the integrability of the Hamiltonian (1) has as counterpart the
lack of any internal dissipation, as evident by the undamped oscillations in Fig. 2. This
evidently raises doubts about the general validity of the results in the previous section.
We could add internal dissipation giving up the possibility of exactly solving the model,
e.g., by de�ning it on a lattice, and making the exchange J in Eq. (1) decaying with the
lattice distance between two spins [23]. However, even in such case the model would remain
simply a toy one, unable to describe any real solid-state material. For this reason, we prefer
to maintain full connectivity, and introduce local dissipation via the Lindblad formalism.
Similarly, we do not pretend to derive the Lindblad equations from any Hamiltonian of the
system plus a bath, upon integrating out the latter. Instead, we here consider the most
general Lindblad equation compatible with the mean-�eld character of the Hamiltonian
(1), and able to drive the system towards thermal equilibrium; speci�cally, compare with
Eq. (21),

∂ρ̂i(t)

∂t
= −i

[
Ĥi(t) , ρ̂i(t)

]
+
∑
n<m

[
γn←m(t)

(
2 L̂n←m(t) ρ̂i(t) L̂n→m(t)−

{
L̂n→m(t) L̂n←m(t) , ρ̂i(t)

})

+ γn→m(t)

(
2 L̂n→m(t) ρ̂i(t) L̂n←m(t)−

{
L̂n←m(t) L̂n→m(t) , ρ̂i(t)

})]
,

(24)
where Ĥi(t) is still de�ned through Eqs. (22) and (23), while the Lindblad downward jump
operators are

L̂n←m(t) ≡|n; i, t〉 〈m; i, t | , n < m , (25)

where |n; i, t〉, n = 0, . . . , 3, is the instantaneous eigenstate of Ĥi(t) with eigenvalue En(t),
such that E0(t) ≤ E1(t) ≤ E2(t) ≤ E3(t). Assuming n < m, we distinguish between

Figure 3: Downward jump operators, Ln←m =| n〉〈m | with n < m, which, together
with their hermitean conjugates, L†n←m ≡ Ln→m, the upward jump operators, de�ne the
dissipative Lindblad dynamics. We distinguish high energy jump operators, in red, from
low-energy ones, in blue. The former have coupling strength γ⇓high, while the latter γ

⇓
low.

downward jump operators, L̂n←m(t), see Fig. 3, which correspond to de-excitations from
a state to a lower energy one, and the reverse upward ones, L̂†n←m(t) ≡ Ln→m(t). De-
tailed balance, which ensures that the Boltzmann distribution is the stationary solution of
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Eq. (24), implies that

γn→m(t) = e−β
(
Em(t)−En(t)

)
γn←m(t) , (26)

where, since n < m, then Em(t) − En(t) > 0, and therefore γn→m(t) < γn←m(t). It
follows that the Lindblad dynamics can be parametrised only through the six coupling
strengths of the downward jump operators, γn←m(t) with n < m. In order to simplify the
analysis, we assume that γn←m(t) = γ⇓high for all the high-energy de-excitation processes

(n,m) = (0, 2), (0, 3), (1, 2), (1, 3), red arrows in Fig. 3, distinct from γn←m(t) = γ⇓low for
the low-energy ones (n,m) = (0, 1), (2, 3), blue arrows in Fig. 3.
Since we expect that high-energy excitations dissipate faster than low-energy ones, we
assume

γ⇓high

γ⇓low
= r ≥ 1 . (27)

Moreover, being the Lindblad equation (24) valid when the coupling to the dissipative bath
is weak, we further take γ⇓high = 0.05 small, so that all other coupling strengths, γ⇓low and
the upward ones, see Eq. (26), are even smaller.

3.1 Time evolution upon changing bath and pulse parameters

Figure 4: Time evolution of the order parameter mx,1, compare with Fig. 2, for r in
Eq. (27) sets to r = 1 (blue curve), r = 5 (orange curve), r = 10 (green curve), r = 20
(red curve), r = 40 (blue curve), r = 80 (brown curve), r = 160 (light-blue curve), r = 320
(yellow curve) and, �nally, r = 640 (purple curve). The pulse parameters are E0 = 0.2
and τ = 1000, see Eq. (19).

In Fig. 4 we show the results of the numerical integration of Eq. (24) at temperature
T = 1.5Tc, and for increasing r, see Eq. (27), from r = 1, blue line, to r = 640, purple line.
The laser pulse parameters, see Eq. (19), are E0 = 0.2 and τ = 1000. We note that when
low-energy excitations dissipate as fast as high-energy ones, blue line at r = 1, the system
quickly relax to thermal equilibrium, mx,1 = 0, without showing any transient cooling.
The latter appears only upon increasing r, and lasts longer the larger r is.
To quantify how long the system remains trapped into a non-thermal symmetry-broken
state, we de�ne a 'critical time' tc,m as the interval between the peak of the pulse, i.e.,
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tmax = τ
√
E0, and the the time at which the magnetisation reaches its thermal value

mx,1 = 0. Fig. 5 shows tc,m as a function of r, at �xed E0 = 0.14 but di�erent pulse

Figure 5: Critical time tc,m for E0 = 0.14 and: τ = 250 (blue circles), τ = 500 (orange
squares), τ = 650 (green diamonds), τ = 800 (red up triangles), τ = 1000 (purple down
triangles).

Figure 6: Critical time tc,m as a function of τ , for r = 320 and E0 = 0.14.

durations τ . We note that the critical time increases with r, as already highlighted in
Fig. 4, but it is not monotonous with τ . This may look counterintuitive, since one expects
that a longer laser pulse at �xed E0 transfers more energy from subsystem 1 to subsys-
tem 2. However, under the e�ect of the pulse perturbation, the energy of subsystem 1
exhibits an oscillatory behaviour during its early time evolution. It follows that, if the
perturbation lasts a time too short for dissipation to fully set in, its �nal e�ect critically
depends whether, at the pulse end, the energy has reached a maximum or a minimum of
its evolution. On the contrary, if the pulse duration is longer than the typical timescale of
dissipation, such memory e�ect is lost. To stress this behaviour, in Fig. 6 we plot tc,m as
a function of τ at �xed E0 = 0.14 and r = 320. We observe that for τ < 500 the critical
time is not monotonous, while it becomes so only for larger τ , where it grows linearly with
the pulse duration.
To complete our analysis of the `critical time' dependence upon the bath and pulse pa-

rameters, in Fig. 7 we plot tc,m as function of E0, at �xed r = 640 and for three di�erent
values of τ . In conclusion, when the pulse duration is long enough to make dissipation
active well before the pulse end, the time tc,m during which the system is trapped into a
non-thermal symmetry broken state increases monotonously with r, τ and E0.
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Figure 7: Critical time tc,m as a function of E0, for r = 640 and: τ = 750 (blue curve),
τ = 1000 (orange curve), τ = 1200 (green curve).

3.2 Time evolution at constant pulse `�uence'

Until now, we have compared results obtained for perturbations having the same amplitude
E0 or the same duration τ . In what follows, we study the system response upon increasing
the laser pulse duration τ while properly reducing its peak amplitude so as to maintain
constant the total supplied energy, de�ned as [24]

F =

∫ ∞
0
|E (t)|2 dt, (28)

which can be regarded as the pulse '�uence'. In Figs. 8 and 9 we show the time evolution
of the order parameter, mx,1, for increasing τ at constant F = 15.53, thus decreasing E0

correspondingly.

Figure 8: Time evolution of the order parameter, mx,1, at r = 640 and di�erent values of
τ and E0 such that F in Eq. (28) is kept constant at the value 15.53. In particular, we use
τ = 5000 and E0 = 0.105 (blue curve), τ = 1000 and E0 = 0.2 (orange curve), τ = 250
and E0 = 0.35 (green curve). The curves have been shifted so that t = 0 corresponds to
the peak amplitude of the pulses, shown in the lower part of the plot.

We observe that, while for short times mx,1 peaks more in presence of a spiked pulse
rather than a longer but �atter one, for long times the latter is much more e�cient to make
a �nitemx,1 survive longer. Fig. 10 shows that the critical time, tc,m, indeed grows substan-
tially with τ at �xed F . Essentially, for large τ , the transient non-thermal symmetry-broken
phase becomes a quasi-steady state kept alive by the dissipative bath.

10
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Figure 9: Same as in Fig.8 without the time shift, and for τ = 250 (blue curve), τ = 500
(orange curve), τ = 750 (green curve), τ = 1000 (red curve), τ = 1250 (purple curve),
τ = 1500 (brown curve), τ = 5000 (light blue curve).

Figure 10: Critical time tc,m as a function of τ . The amplitude E0(τ) is chosen so as to
maintain constant the '�uence' in Eq. (28).

4 Conclusions

In this paper we have investigated the transient cooling mechanism brought on by a pulse
perturbation in the two coupled in�nite-range quantum Ising models of Ref. [21], but now
in presence of dissipation. We have shown that the cooling of the low-energy degrees of
freedom at the expense of the high-energy ones, observed in absence of dissipation, is not
spoiled in its presence, especially when excitations dissipate faster the higher their energy.
On the contrary, dissipation enhances the cooling e�ect of the perturbation, stabilising a
non-thermal quasi-steady state that lasts for long after the pulse end. Speci�cally, we have
found that increasing the pulse duration keeping the '�uence', F of Eq. (28), constant,
makes such quasi-steady state survive longer and longer, not in disagreement with recent
experiments in K3C60 [14].
Such dissipative cooling e�ect resembles much the nuclear Overhauser e�ect [25�27], which
has been also realised by optical pumping [28], and, to some extent, laser cooling in op-
tomechanical systems, where mechanical oscillators can be cooled by coupling them to a
microwave cavity [29�31]. However, in our case the role of entropy source and sink are
played by the low- and high-energy internal degree of freedom of the system, without the
need of an optical or microwave cavity. As a consequence, in our model the transient cool-
ing does not su�er from the stringent limitations given, e.g., by the microwave cavity decay
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rate, which strongly a�ect optomechanical cooling, and make challenging its experimental
realisation [32].
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