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Abstract

The nature of unconventional superconductivity is intimately linked to the mi-
croscopic nature of the pairing interactions. In this work, motivated by cubic
heavy fermion compounds with embedded multipolar moments, we theoreti-
cally investigate superconducting instabilities instigated by multipolar Kondo
interactions. Employing multipolar fluctuations (mediated by RKKY interac-
tion) coupled to conduction electrons via two-channel Kondo and novel mul-
tipolar Kondo interactions, we uncover a variety of superconducting states
characterized by higher-angular momentum Cooper pairs, J = 0, 1, 2, 3. We
demonstrate that both odd and even parity pairing functions are possible,
regardless of the total angular momentum of the Cooper pairs, which can
be traced back to the atypical nature of the multipolar Kondo interaction
that intertwines conduction electron spin and orbital degrees of freedom. We
determine that different (point-group) irrep classified pairing functions may
coexist with each other, with some of them characterized by gapped and point
node structures in their corresponding quasiparticle spectra. This work lays
the foundation for discovery and classification of superconducting states in
rare-earth metallic compounds with multipolar local moments.
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1 Introduction

The instability of the Fermi liquid state to interactions is at the heart of a wealth of
emergent phenomena. Of particular interest is the superconducting transition, wherein
an attractive potential leads to the formation of bound electron pair states. The subse-
quent macroscopic condensation of these Cooper pairs and mass generation for the gauge
fields through the Anderson-Higgs mechanism, leads to the eponymous perfect conductiv-
ity and expulsion of magnetic fields. In BCS superconductivity, the pairing of opposite
spin electrons by phonon-mediated interactions leads to a superconducting ground state
characterized by an isotropic (in momentum space) pairing function and a gapped quasi-
particle excitation spectrum.

However, the discovery of superconductivity in a variety of strongly-correlated systems
– including cuprates [1], heavy fermions [2–15], transition metal oxides [16–23], organic [24–
26] and U-based ferromagnetic [27–30] superconductors – has challenged this conventional
wisdom. Appropriately named as unconventional superconductors, they have broadly been
characterized by anisotropic condensate wavefunctions, odd/even under spatial parity and
time-reversal, as well as possessing gapless (nodal) structures in the quasiparticle spectrum
[31, 32]. Understanding their microscopic origins led to decades of active research, which
has given rise to a number of proposed mechanisms that go beyond the phonon-mediated
description of conventional superconductors. For instance, magnetic/spin fluctuations
have been attributed to the origin of the odd-parity superconductivity in heavy fermion
UPt3 [33] and the d-wave superconductor UPd2Al3 [34–36], while orbital fluctuations
have been suggested as the cause in the iron-pnictides [37]. The evidently intimate link
between the nature of the superconducting state and the interaction that instigates its
formation leads one to question if novel superconducting instabilities may occur from
novel interactions.

The investigation of rare-earth metallic compounds provides an ideal avenue to explore
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this question. Through the combination of spin-orbit coupling and crystalline electric
fields, the localized rare-earth ions support anisotropic charge and magnetization densi-
ties, described by higher-rank multipolar moments [38–41]. As a consequence of their non-
trivial transformations under lattice symmetries, conduction electrons may interact with
them in atypical manners. For instance, in the single-impurity limit, so-called multipolar
Kondo interactions lead to the development of both multi-channel as well as exotic non-
Fermi liquid states, where both the conduction electron spin and orbital degrees of freedom
become intertwined under scattering events with the moment [42–45]. In the generalized
lattice setting, this Kondo effect competes with RKKY interactions between the moments
leading to a rich phase diagram of exotic phenomena including hidden multipolar-ordered
phases [46–50, 50–53], emergent non-Fermi liquids [54–56], and unconventional supercon-
ductivity [57–61] in the neighbourhood of a putative quantum critical point [62, 63]. In
ferro-quadrupolar PrTi2Al20, for example, thermodynamic and transport measurements
indicate the existence of a broad superconducting dome coexisting with ferro-quadrupolar
ordering under hydrostatic pressure [64]. Indeed, the Tc is enhanced near the critical point
suggesting that multipolar/orbital fluctuations of the local moments play a crucial role in
the pairing mechanism. Since the interactions between the moments and electrons may
themselves be unusual, this provides the tantalizing prospect of the development of exotic
unconventional superconducting behaviours.

In this work, motivated by superconducting behaviours in ferro-quadrupolar PrTi2Al20

[64], we investigate the superconducting instability instigated by multipolar Kondo in-
teractions. Employing a Ginzburg-Landau theory of ferro-multipolar ordering (medi-
ated by RKKY interaction), we consider Gaussian multipolar fluctuations in the high-
symmetry paramagnetic phase. These fluctuations (and the associated order parameters)
are symmetry-permitting and coupled to conduction electrons possessing spin (↑, ↓) and
orbital (` = 1) degrees of freedom. Due to the nature of the Kondo coupling, the elec-
trons’ decoupled spin and orbitals are interwoven to form effective j = 1

2 ,
3
2 conduction

electrons. The multipolar Kondo interaction used in this work was recently shown to
result in both two-channel and novel non-Fermi liquid behaviours in the single-impurity
limit; as such, we consider these two limiting Kondo interactions as the source of super-
conductivity. Integrating out the Gaussian multipolar fluctuations, and employing group
theoretical methods, we derive the superconducting interaction wherein the Cooper pair
channels are organized into the (Oh) cubic symmetry irreps, A1g, A2g, T1g, T2g, which
involve combinations of the total angular momentum of the Cooper pairs, J = 0, 1, 2, 3;
for brevity we drop the gerade subscript henceforth.

The pairing functions arising from the two-channel Kondo interaction, have even/odd
spatial parity that follows from their even/odd J . Intriguingly, from the novel Kondo
interaction, both even/odd parity channels are possible regardless of the Cooper pair’s total
angular momentum. This is a marked difference from conventional BCS and highlights the
exotic nature introduced from the novel Kondo interaction. Using mean-field theory, we
examine the corresponding quasiparticle spectra and discover either point nodes along the
various cubic axes [100], [110] and [111], or a fully gapped spectrum on the Fermi surface
(with a momentum space dependence acquired from the pairing potential) depending on
the superconducting irrep of interest. This work lays the foundation for the discovery of
unusual forms of superconductivity in multipolar based heavy fermion compounds.

The rest of the paper is organized as follows. In Sec. 2 we present a Ginzburg-Landau
theory of multipolar fluctuations based on the symmetry-constraining environment sur-
rounding the multipolar moments. In Sec. 3 we consider the multipolar Kondo coupling
of conduction electrons (of total angular momentum j = 1

2 ,
3
2) to ferro-multipolar order

parameters. The Gaussian multipolar fluctuations are then integrated out to obtain effec-
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tive electron-electron interactions that can instigate superconducting instabilities. Section
4 organizes the subsequent pairing Hamiltonian (composed of Cooper pair operators of
total angular momentum J ∈ [0, 3]) into the irreducible representations of the Oh point
group. In Sec. 5 we consider the variety of superconducting order parameters arising from
two-channel and novel multipolar Kondo interactions, and discuss the variety of different
pairing irreps. Section 6 details the properties of the non-trivial superconducting states
(including the nodal structure of the quasiparticle spectra) using a mean-field theory ap-
proach. Lastly, in Sec. 7 V we discuss the key findings from this study and provide
directions of future work.

2 Ginzburg-Landau theory of multipolar ordering

Localized multipolar moments arise from a combination of spin-orbit coupling and crys-
talline electric field (CEF) effects. As a representative example, we consider the family of
cubic multipolar compounds, Pr(Ti,V)2Al20, where the Pr ions reside on a two-sublattice
diamond lattice. Encircling each Pr ion is a cage of Al-atoms that subjects the 4f2

electrons to a local Td symmetry, which splits the J = 4 multiplet to yield a low-lying
non-Kramers doublet of ground states, |Γ1,2

3 〉. These states support solely higher-rank
multipolar moments, namely time-reversal even quadrupolar moments Ô20 = 1

2(3J2
z −J2),

Ô22 =
√

3
2 (J2

x − J2
y ), and a time-reversal odd octupolar moment T̂xyz =

√
15
6 JxJyJz [41].

The two-fold nature of the ground state permits a tidy representation of the multipolar
moments in terms of pseudospin-1/2 operators S = (Sx, Sy, Sz),

SxA,B ∼ Ô22, SyA,B ∼ Ô20, SzA,B ∼ T̂xyz. (1)

Due to the sublattice nature of the underlying diamond structure, the local moments are
also specified by their sublattice (A,B) location.

Conduction electron mediating RKKY-like interactions permit the development of
spontaneous ferro- and antiferro- multipolar orderings. In this work, we focus on the
possible development of ferro-like order of both quadrupolar and octupolar moments de-
scribed by the coarse-grained Landau order parameters [65],

φx,y,z(r) = 〈Sx,y,zA (r)〉+ 〈Sx,y,zB (r)〉. (2)

where r denotes the coarse-grained spatial coordinate. We note that in the subsequent
path-integral formulation, φx,y,z are bosonic field variables.

Constrained by the surrounding Td point group of each moment, time-reversal sym-
metry, and spatial inversion about bond-centre (detailed in Appendix A), we have the
following Euclidean time static Ginzburg-Landau action for the multipolar moments,

S0 =

∫
τ

∑
q

∑
µν

φµ(−q)Mµν(q)φν(q), (3)

where we employ the Fourier modes of the order parameters,
∫
τ =

∫ β
0 dτ ,Mxx(q) = (mQ+

a0q
2+a2q

2
ν),Myy(q) = (mQ+a0q

2−a2q
2
ν),Mzz(q) = (mO+a1q

2),Mxy(q) =Myx(q) =

(a2q
2
µ). We employ the cubic Eg normal modes q2

ν ≡ 1
2(2q2

z − q2
x − q2

y) and q2
µ ≡

√
3

2 (q2
x −

q2
y), phenomenological constants mQ,O represent the mass terms for the quadrupolar and

octupolar degrees of freedom, and a0,1,2 > 0 express the stiffness associated with spatial
fluctuations of the order parameters. We retain only the quadratic fluctuations of the
order parameters under an implicit Gaussian approximation that only weak fluctuations
are important for the superconducting instability in the approach from the paramagnetic
phase (mQ,O > 0).
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3 Electron-electron interactions from multipolar Kondo ef-
fects

The nature of the interaction between the multipolar moments and conduction electrons,
and the subsequent many-body ground state, is strongly dependent on the available con-
duction electron spin and orbitals [42–45]. As a representative example, we consider
conduction electrons, characterized by orbital px,y,z (l = 1) and spin−1/2 degrees of free-
dom, forming a Fermi surface well localized about the high-symmetry zone-centre of the
Brillouin zone [66,67]. The electrons are degenerate in both orbital and spin space, where
the orbital degeneracy in the p orbitals satisfies the cubic (Oh) symmetry of the high-
symmetry zone-centre and the spin degeneracy is guaranteed by time-reversal symmetry.
The free fermion action is given by,

Sc =

∫
τ

∑
k

ckµ

[
(∂τ + εk) δµν

]
ckν , (4)

where µ, ν run over the six flavours of fermions (Appendix B details the conduction basis

used) which have a degenerate dispersion εk = k2

2m − µF .
Though the isolated conduction electrons do not necessarily possess intrinsic spin-orbit

coupling, the interaction with multipolar Kondo moments necessitates the intertwining of
the orbital and spin degrees of freedom,

SK =

∫
τ

∑
k,q

[
ck+q,µ

[
Γxµνφx(q) + Γyµνφy(q) + Γzµνφz(q)

]
ck,ν + (q↔ −q)

]
, (5)

where we detail the form of the interaction vertices Γx,y,z in Appendix B; it suffices to state
here that the Kondo interaction vertices involve three coupling constants J1,2,3. The nat-
ural basis for the conduction electrons in Eq. 5 is in terms of the total angular momentum
j = `⊗ s = 1⊗ 1

2 = 1
2 ,

3
2 . In the single impurity limit, this multipolar Kondo interaction

permits the development of (i) a two-channel non-Fermi liquid behaviour (characterized
by J2 = 0), and (ii) a novel non-Fermi liquid behaviour (J1 = 0) at low temperatures [44].

The Gaussian nature of the multipolar order parameters permits them to be integrated
out (as described in Appendix C) of the path integral to yield an effective action,

Z =

∫
D[c, c;φ, φ]e−(S0+Sc+SK) =

∫
D[c, c]e−Sce−Seff . (6)

In order to study the superconducting instabilities instigated by Seff =
∫
τ Heff, we rewrite it

in terms of pairing channel terms by (i) normal ordering the interaction and (ii) projecting
the interactions to ensure Cooper pairs are formed from electrons of opposite momenta
(in the renormalization group sense, any other possible pairs yield irrelevant interaction
vertices [68]). The effective superconducting Hamiltonian is,

Heff =−
∑
k,k′

∑
αβγδ

(Vαβγδ)k−k′c
†
k,αc

†
−k,γc−k′,δck′,β, (7)

where the complete form of the interaction potential (Vαβγδ)k,k′ , involving bi-quadratic
products of the interaction vertices Γx,y,z and momentum dependent form factors, is pre-
sented in Appendix C. We note that the interaction potential is composed of rational
functions in momentum k,k′, which introduces a challenge when attempting to separate
it into a product of a function solely dependent on k and a function solely dependent

5



SciPost Physics Submission

on k′; this difficulty encourages us to retain this momentum dependence k,k′ in the in-
teraction/vertex function when numerically solving the gap equations. The abundance
of possible terms in Eq. 7 encourages a careful examination of two limiting cases of the
effective electron-electron interaction generated from (i) two-channel Kondo interaction,
and (ii) novel multipolar Kondo interaction, which we do so in the subsequent sections.

4 Higher-angular momentum Cooper Pairs

The nature of the effective interaction permits superconducting instabilities of electrons
belonging solely in the j = 1/2 sector, solely in the j = 3/2 sector, and a mixture of the
two j sectors. This leads to the development of Cooper pairs of total angular momentum
J ,

1

2
⊗ 1

2
→ 0⊕ 1 (8)

3

2
⊗ 3

2
→ 0⊕ 1⊕ 2⊕ 3 (9)

1

2
⊗ 3

2
→ 1⊕ 2 (10)

which follows from standard angular momentum addition. This higher-angular momentum
nature of the Cooper pair is unlike the standard singlet state of BCS theory. We note
that the conduction electrons created here possess only the total angular momentum (or
“effective spin”) j and no additional orbital angular momentum.

Formally, the angular momentum sector of a generic form of a Cooper pair creation
operator with momentum k can be decomposed into the total angular momentum states
[69],

c†k;j1
c†−k;j2

=
∑
J,M

〈j1,m1; j2,m2|j1, j2; J,M〉b†J,M ;k, (11)

where j1,2 and m1,2 are the effective spin and z-direction component of each electron
(m1,2 subscripts for the conduction electron operators are dropped for brevity), and

b†J,M ;k is a Cooper pair creation operator of total effective spin J and M component
along the z-direction at momentum ±k. 〈j1,m1; j2,m2|j1, j2; J, Jz〉 are the Clebsch-
Gordon (CG) coefficients, which takes into account the symmetric/anti-symmetric prop-
erty of effective spin exchange via the phase factor i.e. 〈j1,m1; j2,m2|j1, j2; J,M〉 =
(−1)J−j1−j2〈j2,m2; j1,m1|j2, j1; J,M〉.

Due to the electrons possessing both j and k quantum numbers, fermionic exchange
involves the composition of spin exchange (j1 ↔ j2) and spatial parity (k → −k). For
j1 = j2, the associated Cooper pair operator must be even (odd) under spatial parity if J is
even (odd) to satisfy Fermi-Dirac statistics; this can verily be identified from Eq. 11 using
the aforementioned CG phase factor and the anticommutation of fermionic operators. For
j1 6= j2, special care needs to be taken to establish the spatial parity nature of the pairing
operator, as one can define a Cooper pair creation operator in two ways: b†J,M,k (b̃†J,M,k)

with j = 3
2 (j = 1

2) fermion at k and j = 1
2 (j = 3

2) fermion in the −k in Eq. 11. These
Cooper pair operators are related to each other by the CG phase factor under exchange
of j1 and j2. In order to create a Cooper pair of definite parity, one should thus consider
linear combinations (±) of the Cooper pair operator in Eq. 11,

b†J,M ;k;± =
1√
2

(
b†J,M ;k ± b̃

†
J,M ;k

)
, (12)
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where due to satisfying Fermi-Dirac statistics, b̃†J,M ;−k = (−1)J+1b†J,M ;k. Thus, b†J,M ;k;+

(b†J,M ;k;−) is odd (even) under spatial parity for even J ; and b†J,M ;k;+ (b†J,M ;k;−) is even
(odd) under spatial parity for odd J .

The cubic nature of the interactions necessitates that the Cooper pair operators of
total angular momentum b†J,M ;k be organized into the irreducible representations of the
associated point-group Oh, rather than the good quantum number of spherical symmetry,
J [70–72]. The group theoretical decomposition of Cooper pair states are: for J = 0→ A1,

|A1〉 = |0, 0〉 (13)

for J = 1→ T1,

|T1(1)〉 =
1√
2

[
|1, 1〉 − |1,−1〉

]
(14)

|T1(2)〉 =
i√
2

[
|1, 1〉+ |1,−1〉

]
(15)

|T1(3)〉 = |1, 0〉 (16)

for J = 2→ E ⊕ T2,

|E(1)〉 =
1√
2

[
|2, 2〉+ |2,−2〉

]
(17)

|E(2)〉 = |2, 0〉 (18)

|T2(1)〉 =
i√
2

[
|2, 1〉+ |2,−1〉

]
(19)

|T2(2)〉 =
1√
2

[
|2, 1〉 − |2,−1〉

]
(20)

|T2(3)〉 =
i√
2

[
|2, 2〉 − |2,−2〉

]
(21)

and for J = 3→ A2 ⊕ T1 ⊕ T2,

|A2〉 =
i√
2

[
|3, 2〉 − |3,−2〉

]
(22)

|T1(1)〉 =

√
5

16

[
|3, 3〉 −

√
3

5
|3, 1〉+

√
3

5
|3,−1〉 − |3,−3〉

]
(23)

|T1(2)〉 = i

√
5

16

[
|3, 3〉+ i

√
3

5
|3, 1〉+

√
3

5
|3,−1〉+ |3,−3〉

]
(24)

|T1(3)〉 = |3, 0〉 (25)

|T2(1)〉 =

√
3

16

[
|3, 3〉+

√
5

3
|3, 1〉 −

√
5

3
|3,−1〉 − |3,−3〉

]
(26)

|T2(2)〉 = i

√
3

16

[
|3, 3〉 −

√
5

3
|3, 1〉 − i

√
5

3
|3,−1〉+ |3,−3〉

]
(27)

|T2(3)〉 =
1√
2

[
|3, 2〉+ |3,−2〉

]
(28)

where we use the notation of the irreps of Oh point group, and |J,M〉 is the total angular

momentum wavefunction of the Cooper pair operator b†J,M ;k. We stress that the irrep
decomposition is of the total angular momentum J , rather than the linear momentum, of
the Cooper pair. The above total angular momentum states are even (with the appropri-
ate gerade subscript) under the inversion element of Oh due to being composed of orbital
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Even Parity:


 ( 3
2 ⊗ 3

2 )

EJ=2(2)EJ=2(1)

AJ=01 TJ=22(i)

TJ=1,3+(i)TJ=32(i)

AJ=32 TJ=1,3−(i)

Odd Parity:


 ( 3
2 ⊗ 3

2 )

Figure 1: Superconducting order parameters arising from 3
2 ⊗

3
2 electrons, with i = 1, 2, 3

denoting the components of the three-dimensional irreps, from the two-channel Kondo
interaction. Coupled order parameters have an intersection between their depicted circles.
The Cooper pair operators associated with the order parameters are detailed in Appendix
E. The complete form of the pairing Hamiltonian is presented in Appendix F.

angular momentum l1 = l2 = 1 electrons i.e. picks up a phase of (−1)l1+l2 = 1 under the
inversion [73]. We contrast this with the spatial parity that flips the linear momentum k.
As mentioned previously, we have dropped the gerade subscript for brevity. The proce-
dure by which the group decomposition is performed is detailed in Appendix D, and the
composition of the Cooper pair in terms of individual fermionic bilinears is presented in
Appendix E. We note that the cubic irrep basis functions and the corresponding Cooper
pair operators are time-reversal invariant. This permits the subsequent superconducting
states to be characterized as time-reversal preserving (breaking) depending on if the su-
perconducting order parameters, ∆, are (not) equal to their complex conjugate, up to a
global phase [70], as is typical in studies of multicomponent superconductivity.

5 Superconducting instabilities from multipolar Kondo in-
teractions

The Cooper pairs, and the associated pairing functions, are associated with definite spatial
parity. In order to account for this, the interaction potential must similarly be decomposed
into even and odd under spatial parity components [74],

(V ±Γ )k−k′ =
1

2

[
(VΓ)k−k′ ± (VΓ)k+k′

]
, (29)

where the Γ indicates a particular irrep of interest of definite spatial parity, and the inter-
action potential is inversion-symmetric (VΓ)k−k′ = (VΓ)−k+k′ . From inspection, (V +

Γ )k−k′

and (V −Γ )k−k′ are respectively even and odd under spatial parity, and thus the interaction
Hamiltonian will project out terms of definite parity i.e. pairing operators even (odd)
under spatial parity only contain the associated V +

Γ (V −Γ ) portions of the interaction po-
tential.

5.1 Two-channel Kondo interaction derived pairing instabilities

The superconducting order parameters derived from the two-channel Kondo interaction
involve electrons solely belonging to the j = 3

2 sector. They can divided into two fam-
ilies: those involving even-J and odd-J total angular momentum, which correspond to

8
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Even Parity:


 ( 1
2 ⊗ 1

2 )∪( 3
2 ⊗ 3

2 )

TJ=11(i)

TJ=1,3−(i)TJ=1,3+(i)

TJ=32(i)

Odd Parity:


 ( 1
2 ⊗ 1

2 )∪( 3
2 ⊗ 3

2 )

AJ=01

EJ=2(2)EJ=2(1)

AJ=01

Figure 2: Superconducting order parameters arising from 3
2 ⊗

3
2 and 1

2 ⊗
1
2 electrons, with

i = 1, 2, 3 denoting the components of the three-dimensional irreps, from the novel fixed
point Kondo interaction. Coupled order parameters have an intersection between their
depicted circles. The Cooper pair operators associated with the order parameters are
detailed in Appendix E. The complete form of the pairing Hamiltonian is presented in
Appendix G.

even-(odd-)J pairing functions under spatial parity. Since the interaction potential is
functionally dependent on momentum space, this permits certain Cooper pairs of different
cubic irreps to scatter off each other. For the even-J sector, AJ=0

1 and ~T J=2
2 are decoupled

from the rest, while the two components of the two-dimensional ~EJ=2
2 irrep are numer-

ically found to be non-vanishing. For the odd-J sector, the variety of realized irreps is

more prominent as though the AJ=3
2 sector is decoupled from the rest, the ~T1

J=1
and

~T1
J=3

irreps form two linear combinations out of which one of the linear combination (for

each component of the three dimensional irrep T1) couples to a component of ~T2
J=3

. The
complete form of the Hamiltonian is presented in Appendix F. We present a schematic
depicting the decoupling for the even and odd-J channels, and subsequent variety of the
irreps in Fig. 1.

5.2 Novel Kondo interaction derived pairing instabilities

The superconducting order parameters derived from the novel Kondo interaction involve
electrons belonging to the j = 1

2 and j = 3
2 sectors. This offers a novel avenue of diversity

of superconductivity as Cooper pairs may be (i) formed from within each sector separately
and scatter off pairs in the other sector, and (ii) may be composed of one fermion from
j = 1

2 and the other from j = 3
2 sector. The classification of even/odd spatial parity

Cooper pairs for scenario (i) follows the previous approach, namely it is identified with
the even/odd J nature of the Cooper pair. As detailed in Sec. 4, the parity identification
for scenario (ii) is not as simple, and one has both even and odd parity pairings regardless
of the even/odd-ness of J . This is a clear distinction from the instabilities arising from
the two-channel Kondo interaction. We depict the variety of the various pairing channels
for scenario (i) and (ii) in Figs. 2 and 3, respectively. As seen in Fig. 2, though the
components of the Cooper pairs formed within the j = 3

2 sector are decoupled from each
other (for both even and odd J), the Cooper pair formed within with j = 1

2 sector provides
a common source to scatter the decoupled channels amongst themselves. For the scenario
(ii) in Fig. 3, even and odd J Cooper pairs are permitted to scatter off each other, since
even/odd J no longer corresponds to even/odd spatial parity pairing functions.
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Even Parity:


 ( 1
2 ⊗ 3

2 )
Odd Parity:


( 1
2 ⊗ 3

2 )

EJ=2
−(2)EJ=2

−(1) EJ=2
+(2)EJ=2

+(1)

TJ=1
1+(i)TJ=22−(i) TJ=1

1−(i)TJ=22+(i)

Figure 3: Superconducting order parameters arising from 1
2 ⊗

3
2 electrons, with i = 1, 2, 3

denoting the components of the three-dimensional irreps, from the novel fixed point Kondo
interaction. Coupled order parameters have an intersection between their depicted circles.
The Cooper pair operators associated with the order parameters are detailed in Appendix
E. The complete form of the pairing Hamiltonian is presented in Appendix G.

6 Properties of Superconducting States

The characterization of the superconducting channels in terms of even/odd parity cu-
bic irreps permits a BCS-mean field theory to be developed to study the properties of
the superconducting state. Employing a Hubbard–Stratonovich (HS) transformation (as
detailed in Appendix H) we obtain gap equations of the form,

∆pα =
∑
q

∑
γ

(Ωpq)αγ
∑

i=1,...,m

tanh(βEmq/2)

Emq

∂E2
iq

∂∆qγ

(30)

where Emq is the Bogoliubov quasiparticle dispersion of the mth quasiparticle, (Ωpq)αγ
is a collection of interaction potentials associated with a decoupled irrep (or collection of
irreps that is decoupled from the rest), and β = 1/T . In the case of a unique (m = 1)
quasiparticle dispersion, as is for the decoupled pairing channel in 3

2 ⊗
3
2 and the pairings

from case of (ii) of the novel interaction, there is an additional factor of the 2 on the right
hand side of Eq. 30.

For choice of parameters provided in Appendix H, we obtain non-trivial gap solutions
for particular irreps. Indeed, solving the coupled BCS gap equations (Eq. 30) yields
multiple non-vanishing order parameter solutions in some cases. We present a summary
table for the various non-vanishing order parameters in Table 1 and 2 for the two-channel
Kondo interaction and the novel multipolar Kondo interaction, respectively. As seen, for
the choice of parameters, not all order parameters are realized, and in some cases multiple
irrep solutions are found. In Appendix I, we present the k-space distribution of the realized
order parameters.

The nature of the superconducting state and the accompanying Bogoliubov quasiparti-
cle dispersion is intimately linked to the composition of the Cooper pairs from the fermionic
j sectors. For Cooper pairs formed from j = 3

2 or j = 1
2 sector, the realized even-parity

order parameters have gapped quasiparticle dispersion, though with a momentum space
dependence that follows from the momentum distribution of the interaction potential.
This property applies even in the case of multiple coexisting even-parity order parame-
ters. The odd-parity order parameters, on the other hand, acquire gapless nodes in the

10
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Spatial Parity ∆ Superconducting Properties

Even
AJ=0

1 G.D. Time-reversal invariant state.
EJ=2 G.D. Time-reversal invariant states.

Coexisting superconducting order parameters.

Odd

T J=3
2(1,2,3) , Gapless point nodes along body diagonals

T J=1,3

+(1,2,3) [111], [111], [111], [111] axes. Time-reversal broken states.

T J=1,3

−(1,2,3) Gapless point nodes

along cubic [100], [010], [001] axes. Time-reversal broken states.

Table 1: Non-vanishing superconducting states resulting from electron-electron interac-
tions induced by two-channel Kondo coupling. G.D. = Gapped dispersion with acquired
k dependence from pairing potential. The corresponding order parameters are provided
in Fig. 1.

Spatial Parity ∆ Superconducting Properties

Even
AJ=0

1;j=1/2, Coexisting superconducting order parameters.

AJ=0
1;j=3/2, G.D.

EJ=2
j=3/2 Time-reversal invariant states.

Odd

T J=1
1;j=1/2, Coexisting superconducting order

T J=1,3
+;j=3/2, parameters. Gapless point nodes

T J=1,3
−;j=3/2, along [110], [101], [011],

T J=3
2;j=3/2 [110], [101], [011] axes. Time-reversal broken states.

Even EJ=2
−; 1

2
⊗ 3

2

G.D. Time-reversal broken states.

Odd
T J=2

2+; 1
2
⊗ 3

2

Coexisting superconducting order

T J=1
1−; 1

2
⊗ 3

2

parameters. G.D. Time-reversal broken states.

Table 2: Non-vanishing superconducting states resulting from electron-electron interac-
tions induced by novel Kondo coupling. G.D. = Gapped dispersion with acquired k de-
pendence from pairing potential. The corresponding order parameters are provided in
Figs. 2, 3.

quasiparticle dispersion, in a manner that respects the underlying cubic symmetry. We
present a schematic of the realized gapless quasiparticle nodes for the order parameters in
Fig. 4. The distinction in the location of the gapless nodes provides a means to distinguish
the odd-parity order parameters. Indeed, the realized superconducting states arising from
electrons belonging to either j = 3

2 or j = 1
2 sector are time-reversal invariant (broken)

depending on if J is even (odd).
For Cooper pairs formed from the combined j = 1

2 ,
3
2 sectors, gapped quasiparticle

dispersions are realized for both even and odd parity order parameters. Unlike the order
parameters where Cooper pairs are formed in the j = 1

2 or j = 3
2 sectors independently,

odd-parity order parameters develop for even-J Cooper pairs. This is an important dis-
tinction of this model from standard BCS-like instabilities formed from j = 1

2 or from
j = 3

2 sectors. A further intriguing aspect from the combined model is that the odd and
even J Cooper pairs may coexist with each other. This is seen, for example, in the coexist-
ing gaps formed from T J=1

1−; 1
2
⊗ 3

2

and T J=2
2+; 1

2
⊗ 3

2

, where despite being odd under spatial parity,

the quasiparticle spectrum is gapped on the Fermi surface. We contrast this with the
nature of the gap functions obtained for odd-parity Cooper pairs, where distinct gapless
nodes are along the various depicted cubic directions in Fig. 4. Indeed, both the realized

11
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kx

ky

kz

(a)

kx

ky

kz

(b)

kx

ky

kz

(c)

Figure 4: Gapless nodes in the Bogoliubov quasiparticle dispersions for odd-parity order
parameters formed by fermions belonging to j = 1/2 or j = 3/2 sectors independently. The
point nodes are indicated by the blue dots, while the orange sphere is the itinerant electron
Fermi surface. The red-dashed lines are for ease of viewing the gapless point nodes along
the various cubic axes. (a): Gapless nodes for T J=1,3

+(1,2,3) , T
J=3
2 order parameters resulting

from two-channel Kondo interaction are located along body diagonal [111] directions. (b):
Gapless nodes for T J=1,3

−(1,2,3) order parameters resulting from two-channel Kondo interaction

are located along primary cubic êi axes. (c): Gapless nodes for T J=1,3
+;j=3/2, T J=1,3

−;j=3/2, T J=3
2;j=3/2

resulting from novel Kondo interaction are located along the [1 ± 10], [10 ± 1], [01 ± 1]
axes.

superconducting states break time-reversal regardless of the even-ness of J , as is seen for
both the EJ=2

−; 1
2
⊗ 3

2

states, as well as for T J=2
2+; 1

2
⊗ 3

2

, T J=1
1−; 1

2
⊗ 3

2

states. The origin of such un-

usual coexisting superconducting instabilities can be routed to the novel multipolar Kondo
coupling that permitted the mixing of multi-orbital conduction electrons.

7 Conclusion

In this work, we examined the nature of superconducting instabilities originating from
two-channel and novel multipolar Kondo interactions between multi-orbital conduction
electrons and localized non-Kramers moments. Due to the multipolar nature of the local-
ized moments, the spin and orbital of conduction electrons became intertwined, leading to
pairing instabilities between effective j = 1

2 ,
3
2 the conduction electrons. Using group theo-

retic symmetry analysis, we characterized the variety of higher-angular momentum Cooper
pairs according to the irreducible representations of the Oh point group. The Cooper pairs
arising from two-channel Kondo interactions are composed of electrons from the j = 1

2 ,
j = 3

2 sectors independently, and possess even and odd spatial parity gap functions that
follow from the even and odd-ness of their corresponding total angular momentum J .
Indeed, the odd-parity quasiparticles possess point-nodal structures along various cubic
directions in their dispersion. Intriguingly, Cooper pairs arising from the novel Kondo
interaction leads to coexisting even-J and odd-J instabilities, which have even and odd
spatial parity regardless of the even/odd-ness of the Cooper pair total angular momentum.

Our studies are broadly applicable to the rare-earth family of Pr(Ti,V)2Al20,
Pr(Ir,Rh)2Zn20, where multipolar moments are situated on diamond lattice sites with
well-localized Fermi surface formed by Al atoms. Indeed, our work may be employed as a
theoretical guide to classify the superconducting instabilities occurring in the paramagnetic
phase, which may be achieved via the application of hydrostatic pressure. Future directions
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of study would be to examine and classify the nature of the superconductivity coexisting
within a multipolar ordered phase. Due to the reduced symmetry of the ordered phase,
the above cubic irreps become reducible and it is natural to expect further variety of the
pairing functions. Such studies would be highly relevant to observed superconductivity
coexisting with quadrupolar ordered phase in PrTi2Al20 [64]. Indeed, microscopic details
of the conduction electrons (such as the conduction electron band structure and Fermi
surface in the paramagnetic phase) would be required to make direct connections with such
coexistence experiments [75]. Understanding the topological nature of the superconducting
states in both the paramagnetic and multipolar ordered phases may ultimately require such
microscopic information, and would be an important future study.
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A Symmetry transformations of multipolar moments

The phenomenological order parameters transform as their microscopic counterparts under
the generating elements of the Td point group (improper rotation S4z and a C3 rotation
along the [111] axis), namely [43,53]:

φx(r)
S4z−−→ −φx(R−1

S4z
r) (31)

φy(r)
S4z−−→ φy(R

−1
S4z

r) (32)

φz(r)
S4z−−→ −φz(R−1

S4z
r) (33)

φx(r)
C31−−→ −1

2
φx(R−1

C31
r) +

√
3

2
φy(R

−1
C31

r) (34)

φy(r)
C31−−→ −

√
3

2
φx(R−1

C31
r)− 1

2
φy(R

−1
C31

r) (35)

φz(r)
C31−−→ φz(R

−1
C31

r) (36)

The Fourier transform of these order parameters are given by,

φx,y,z(q) =
1

N

∑
r

e−iq·rφx,y,z(r). (37)

B Multipolar Kondo interaction

The single-impurity model studied in Ref. [44] can be extended to a generalized coarse-
grained lattice model where conduction band electrons uniformly couple to the ferro-
multipolar order parameters in a manner respecting the local Td symmetry of the moments,

HK = 2
∑
r

∑
d=x,y,z

c†rµΓdµνcrνφd(r), (38)

13
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where

Γx = J1(λ1 + λ27)− J2(λ4 − λ30),

Γy = J1(λ3 + λ29)− J2(λ6 − λ32), (39)

Γz = −J3(λ2 + λ28).

Here, J1, J2, J3 are the Kondo couplings to the multipolar moments, r denotes the coarse-
grained spatial coordinate, and λW are the SU(6) Gell-Mann generators W = {1, 2..., 35}
with normalization such that tr[λaλb] = 1

2δ
ab. In the single impurity limit, the IR fixed

points are described by (i) J1 = J3 6= 0; J2 = 0 (two-channel Kondo interaction fixed
point), and (ii) J2 = J3 6= 0; J3 = 0 (novel fixed point). In terms of the coefficients studied

in Ref. [44]: J1 ≡ − 1√
3
K1 + 2K2, J2 ≡

√
2
3K1 +

√
2K2, and J3 ≡

√
3K3. We note that the

factor of 2 in Eq. 38 is cancelled out by the factor of 1
2 introduced in Eq. 5 to include both

φx,y,z(q) and φx,y,z(−q) coupling to the fermionic bilinears. We note that the 1/2-factor
normalization of the SU(6) Gell-Mann generators is absorbed into the definition of J1,2,3

henceforth for simplicity. The conduction electron basis employed in Eq. 38 is,

~c>r =
(
cr; 3

2
,−3

2
cr; 3

2
, 1
2
cr; 1

2
, 1
2
cr; 3

2
, 3
2
cr; 3

2
,−1

2
cr; 1

2
,−1

2

)
, (40)

where the subscript r; j, jz for the fermionic operator indicates the coarse-grained spatial
coordinate, total-angular momentum j, and z-component projection of the total angular
momentum jz, respectively. The Fourier transform of the conduction electron fields is
given by,

crµ =
1√
N

∑
k

eik·rckµ. (41)

C Effective electron-electron interaction from multipolar Kondo
interaction

The total path integral (composed of conduction electron action, Kondo coupling, and
multipolar fluctiations) is given by,

Z =

∫
D[c, c]D[φ, φ]e−(Sc+S0+SK)

=

∫
D[c, c]e−ScD[φ, φ]e−

∫
τ,q[

∑
µν φµ(−q)Mµνφν(q)+

∑
µ φµ(q)Γµ(q)+

∑
µ φµ(−q)Γµ(−q)] (42)

where

~Γ(q) ≡


∑

k;α,β ck+q,αΓxαβck,β∑
k;α,β ck+q,αΓyαβck,β∑
k;α,β ck+q,αΓzαβck,β

 (43)

and the measure is given by

D[φ, φ] =
∏

µ={x,y,z}

D[φµ, φµ]

14
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=
∏

µ={x,y,z}

(
lim
N→∞

N∏
l=1

dφµ,ldφµ,l

2πi

)

≡
∏

µ={x,y,z}

dφµdφµ

2πi
. (44)

Integrating out the bosonic field variable using the identity:∫ ∏
α

dbαdbα
2πi

e−(bαMαβbβ−jαbα−bαjα) =
ej·M

−1j

det[M ]
, (45)

we thus arrive at Z =
∫
D[c, c]e−Sce−Seff with the effective interaction

−Seff =

∫
τ,k,k′,q

(Vαβγδ)qc†k+q,αck,βc
†
k′−q,γck′,δ (46)

where the interaction vertex is,

(Vαβγδ)q =

[
f0(q)

(
ΓxαβΓxγδ + ΓyαβΓyγδ

)
+ f1(q)

(
ΓzαβΓzγδ

)
− f2ν(q)

(
ΓxαβΓxγδ − ΓyαβΓyγδ

)
− f2µ(q)

(
ΓxαβΓyγδ + ΓyαβΓxγδ

)]
, (47)

and the interaction potential terms are,

f0(q) ≡
(
a0q

2 +mQ
)

(a0q2 +mQ)2 − a2
2

(
q4
µ + q4

ν

) (48)

f1(q) ≡ 1

a1(q)2 +mO
(49)

f2µ(q) ≡
a2q

2
µ

(a0q2 +mQ)2 − a2
2

(
q4
µ + q4

ν

) (50)

f2ν(q) ≡ a2q
2
ν

(a0q2 +mQ)2 − a2
2

(
q4
µ + q4

ν

) . (51)

We note that once again, q2
ν ≡ 1

2(2q2
z − q2

x − q2
y) and q2

µ ≡
√

3
2 (q2

x − q2
y). This interaction is

prepared for investigating superconducting instabilities by (as described in the main text)

(i) normal ordering the interaction : c†k+q,αck,βc
†
k′−q,γck′,δ : = c†k+q,αc

†
k′−q,γck′,δck,β, and

(ii) projecting the Cooper pairs to being formed by opposite momentum electrons (in the
same spirit as BCS theory), k′ = −k. This leads to the effective interaction Hamiltonian
in Eq. 7.

D Symmetry decomposition of total angular momentum Cooper
pair states

The total angular momentum Cooper pair states can be elegantly decoupled into the irreps
of the point group Oh. The Oh point group contains 48 elements Oh = {Td, I×Td}, where I
is inversion, and the Td elements are, Td = {E,C+

31, C
−
31, C

+
32, C

−
32, C

+
33, C

−
33, C

+
34, C

−
34, C2x, C2y, C2z,

15
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S+
4x, S

+
4y, S

+
4z, S

−
4x, S

−
4y, S

−
4z,σda, σdb, σdc, σdd, σde, σdf} where we use the standard Schoenflies

notation to denote the symmetry elements.
The total angular momentum states can be used to construct basis functions for each

of the irreps using the projection operator,

P iα =
dα
g

∑
G

〈Γiα|G |Γiα〉
∗
G (52)

where i labels the basis function of the dα-dimensional irrep Γα (i.e. the basis function is
|Γiα〉). g = 48 is the order of the point group of interest, and α runs over the possible irreps
in Oh. In order to employ the projection operator, the matrix elements 〈Γiα|G |Γiα〉

∗
in Eq.

52 need to be extracted. Since the basis functions of the irreps in terms of cartesian basis
states is known (for example, for T2g, the basis functions are |ΓT2g〉 = {yz, xz, xy}), they
are employed (along with the cartesian representation of the elements of Oh) to compute
the aforementioned matrix element, and thus the projection operator.

E Cooper pair composition from j = 1
2 ,

3
2 sectors of conduc-

tion electrons

The Cooper pair operator associated with a particular irrep can be constructed from
different means depending on the angular momentum j associated with the individual
conduction electrons. We list the possibilities below, and use the notation of

∆†k

(
j1,mj1

∣∣∣∣j2,mj2

)
= c†j1,mj1 ;kc

†
j2,mj2 ;−k (53)

for brevity. We organize the Cooper pairs in terms of even or odd total angular momentum
J , as well as the conduction electrons sector from which they are constructed from.
Even J: 1

2 ⊗
1
2

(A†;J=0
1 )k =

1

2

[
∆†k

(
1

2
,
1

2

∣∣∣∣12 , −1

2

)
−∆†k

(
1

2
,
−1

2

∣∣∣∣12 , 1

2

)]
(54)

Odd J: 1
2 ⊗

1
2

(T †;J=1

1(1) )k =
1√
2

[
∆†k

(
1

2
,
1

2

∣∣∣∣12 , 1

2

)
−∆†k

(
1

2
,
−1

2

∣∣∣∣12 , −1

2

)]
(55)

(T †;J=1

1(2) )k =
i√
2

[
∆†k

(
1

2
,
1

2

∣∣∣∣12 , 1

2

)
+ ∆†k

(
1

2
,
−1

2

∣∣∣∣12 , −1

2

)]
(56)

(T †;J=1

1(3) )k =
1√
2

[
∆†k

(
1

2
,
1

2

∣∣∣∣12 , −1

2

)
+ ∆†k

(
1

2
,
−1

2

∣∣∣∣12 , 1

2

)]
(57)

Even J: 3
2 ⊗

3
2

(A†;J=0
1 )k =

1

2

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , −3

2

)
−∆†k

(
3

2
,
1

2

∣∣∣∣32 , −1

2

)

+ ∆†k

(
3

2
,
−1

2

∣∣∣∣32 , 1

2

)
−∆†k

(
3

2
,
−3

2

∣∣∣∣32 , 3

2

)]
(58)
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(E†;J=2
(1) )k =

1

2

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , 1

2

)
−∆†k

(
3

2
,
1

2

∣∣∣∣32 , 3

2

)

+ ∆†k

(
3

2
,
−1

2

∣∣∣∣32 , −3

2

)
−∆†k

(
3

2
,
−3

2

∣∣∣∣32 , −1

2

)]
(59)

(E†;J=2
(2) )k =

1

2

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , −3

2

)
+ ∆†k

(
3

2
,
1

2

∣∣∣∣32 , −1

2

)
−∆†k

(
3

2
,
−1

2

∣∣∣∣32 , 1

2

)
−∆†k

(
3

2
,
−3

2

∣∣∣∣32 , 3

2

)]
(60)

(T †;J=2

2(1) )k =
i

2

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , −1

2

)
−∆†k

(
3

2
,
−1

2

∣∣∣∣32 , 3

2

)

+ ∆†k

(
3

2
,
1

2

∣∣∣∣32 , −3

2

)
−∆†k

(
3

2
,
−3

2

∣∣∣∣32 , 1

2

)]
(61)

(T †;J=2

2(2) )k =
1

2

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , −1

2

)
−∆†k

(
3

2
,
−1

2

∣∣∣∣32 , 3

2

)

−∆†k

(
3

2
,
1

2

∣∣∣∣32 , −3

2

)
+ ∆†k

(
3

2
,
−3

2

∣∣∣∣32 , 1

2

)]
(62)

(T †;J=2

2(3) )k =
i

2

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , 1

2

)
−∆†k

(
3

2
,
1

2

∣∣∣∣32 , 3

2

)

−∆†k

(
3

2
,
−1

2

∣∣∣∣32 , −3

2

)
+ ∆†k

(
3

2
,
−3

2

∣∣∣∣32 , −1

2

)]
(63)

Odd J: 3
2 ⊗

3
2

(T †;J=1

1(1) )k =
1

2

√
3

5

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , −1

2

)
+ ∆†k

(
3

2
,
−1

2

∣∣∣∣32 , 3

2

)

−∆†k

(
3

2
,
1

2

∣∣∣∣32 , −3

2

)
−∆†k

(
3

2
,
−3

2

∣∣∣∣32 , 1

2

)]

− 1√
5

[
∆†k

(
3

2
,
1

2

∣∣∣∣32 , 1

2

)
−∆†k

(
3

2
,
−1

2

∣∣∣∣32 , −1

2

)]
(64)

(T †;J=1

1(2) )k =
i

2

√
3

5

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , −1

2

)
+ ∆†k

(
3

2
,
−1

2

∣∣∣∣32 , 3

2

)

+ ∆†k

(
3

2
,
1

2

∣∣∣∣32 , −3

2

)
+ ∆†k

(
3

2
,
−3

2

∣∣∣∣32 , 1

2

)]

− i√
5

[
∆†k

(
3

2
,
1

2

∣∣∣∣32 , 1

2

)
+ ∆†k

(
3

2
,
−1

2

∣∣∣∣32 , −1

2

)]
(65)

(T †;J=1

1(3) )k =
1

2
√

5

[
3∆†k

(
3

2
,
3

2

∣∣∣∣32 , −3

2

)
−∆†k

(
3

2
,
1

2

∣∣∣∣32 , −1

2

)
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−∆†k

(
3

2
,
−1

2

∣∣∣∣32 , 1

2

)
+ 3∆†k

(
3

2
,
−3

2

∣∣∣∣32 , 3

2

)]
(66)

(A†;J=3
2 )k =

i

2

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , 1

2

)
+ ∆†k

(
3

2
,
1

2

∣∣∣∣32 , 3

2

)

−∆†k

(
3

2
,
−1

2

∣∣∣∣32 , −3

2

)
−∆†k

(
3

2
,
−3

2

∣∣∣∣32 , −1

2

)]
(67)

(T †;J=3

1(1) )k =

√
5

4

(
∆†k

(
3

2
,
3

2

∣∣∣∣32 , 3

2

)
−∆†k

(
3

2
,
−3

2

∣∣∣∣32 , −3

2

))
− 3

4
√

5

(
∆†k

(
3

2
,
1

2

∣∣∣∣32 , 1

2

)
−∆†k

(
3

2
,
−1

2

∣∣∣∣32 , −1

2

)]

− 1

4

√
3

5

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , −1

2

)
+ ∆†k

(
3

2
,
−1

2

∣∣∣∣32 , 3

2

)

−∆†k

(
3

2
,
1

2

∣∣∣∣32 , −3

2

)
−∆†k

(
3

2
,
−3

2

∣∣∣∣32 , 1

2

)]
(68)

(T †;J=3

1(2) )k = i

√
5

4

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , 3

2

)
+ ∆†k

(
3

2
,
−3

2

∣∣∣∣32 , −3

2

))
+

3

4
√

5

(
∆†k

(
3

2
,
1

2

∣∣∣∣32 , 1

2

)
+ ∆†k

(
3

2
,
−1

2

∣∣∣∣32 , −1

2

)]

+ i
1

4

√
3

5

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , −1

2

)
+ ∆†k

(
3

2
,
−1

2

∣∣∣∣32 , 3

2

)

+ ∆†k

(
3

2
,
1

2

∣∣∣∣32 , −3

2

)
+ ∆†k

(
3

2
,
−3

2

∣∣∣∣32 , 1

2

)]
(69)

(T †;J=3

1(3) )k =
1

2
√

5

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , −3

2

)
+ 3∆†k

(
3

2
,
1

2

∣∣∣∣32 , −1

2

)

+ 3∆†k

(
3

2
,
−1

2

∣∣∣∣32 , 1

2

)
+ ∆†k

(
3

2
,
−3

2

∣∣∣∣32 , 3

2

)]
(70)

(T †;J=3

2(1) )k =

√
3

4

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , 3

2

)
+ ∆†k

(
3

2
,
1

2

∣∣∣∣32 , 1

2

)

−∆†k

(
3

2
,
−1

2

∣∣∣∣32 , −1

2

)
−∆†k

(
3

2
,
−3

2

∣∣∣∣32 , −3

2

)]

+
1

4

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , −1

2

)
+ ∆†k

(
3

2
,
−1

2

∣∣∣∣32 , 3

2

)

−∆†k

(
3

2
,
1

2

∣∣∣∣32 , −3

2

)
−∆†k

(
3

2
,
−3

2

∣∣∣∣32 , 1

2

)]
(71)
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(T †;J=3

2(2) )k = i

√
3

4

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , 3

2

)
−∆†k

(
3

2
,
1

2

∣∣∣∣32 , 1

2

)

−∆†k

(
3

2
,
−1

2

∣∣∣∣32 , −1

2

)
+ ∆†k

(
3

2
,
−3

2

∣∣∣∣32 , −3

2

)]

− i1
4

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , −1

2

)
+ ∆†k

(
3

2
,
−1

2

∣∣∣∣32 , 3

2

)

+ ∆†k

(
3

2
,
1

2

∣∣∣∣32 , −3

2

)
+ ∆†k

(
3

2
,
−3

2

∣∣∣∣32 , 1

2

)]
(72)

(T †;J=3

2(3) )k =

√
3

4

[
∆†k

(
3

2
,
3

2

∣∣∣∣32 , 1

2

)
+ ∆†k

(
3

2
,
1

2

∣∣∣∣32 , 3

2

)

−∆†k

(
3

2
,
−1

2

∣∣∣∣32 , −3

2

)
−∆†k

(
3

2
,
−3

2

∣∣∣∣32 , −1

2

)]
(73)

For Cooper pairs created from the mixed sector of j = 1/2 and j = 3/2 the ordering of the
fermionic operators are important. We use the M̃ notation to indicate operators where
the order of the operators is interchanged. Even J: 3

2 ⊗
1
2 ; [1

2 ⊗
3
2 ]

(E†;J=2
(1) )k =

i√
2

[
∆†k

(
3

2
,
3

2

∣∣∣∣12 , 1

2

)
+ ∆†k

(
3

2
,
−3

2

∣∣∣∣12 , −1

2

)]
(74)

(E†;J=2
(2) )k =

i√
2

[
∆†k

(
3

2
,
1

2

∣∣∣∣12 , −1

2

)
+ ∆†k

(
3

2
,
−1

2

∣∣∣∣12 , 1

2

)]
(75)

(Ẽ†;J=2
(1) )k =

i√
2

[
∆†k

(
1

2
,
1

2

∣∣∣∣32 , 3

2

)
+ ∆†k

(
1

2
,
−1

2

∣∣∣∣32 , −3

2

)]
(76)

(Ẽ†;J=2
(2) )k =

i√
2

[
∆†k

(
1

2
,
−1

2

∣∣∣∣32 , 1

2

)
+ ∆†k

(
1

2
,
1

2

∣∣∣∣32 , −1

2

)]
(77)

(T †;J=2

2(1) )k =
1

2
√

2

[
∆†k

(
3

2
,
3

2

∣∣∣∣12 , −1

2

)
+ ∆†k

(
3

2
,
−3

2

∣∣∣∣12 , 1

2

)

+
√

3

(
∆†k

(
3

2
,
1

2

∣∣∣∣12 , 1

2

)
+ ∆†k

(
3

2
,
−1

2

∣∣∣∣12 , −1

2

))]
(78)

(T †;J=2

2(2) )k =
i

2
√

2

[
∆†k

(
3

2
,
3

2

∣∣∣∣12 , −1

2

)
−∆†k

(
3

2
,
−3

2

∣∣∣∣12 , 1

2

)

+
√

3

(
∆†k

(
3

2
,
1

2

∣∣∣∣12 , 1

2

)
−∆†k

(
3

2
,
−1

2

∣∣∣∣12 , −1

2

))]
(79)

(T †;J=2

2(3) )k =
1√
2

[
∆†k

(
3

2
,
3

2

∣∣∣∣12 , 1

2

)
−∆†k

(
3

2
,
−3

2

∣∣∣∣12 , −1

2

)]
(80)

(T̃ †;J=2

2(1) )k =
1

2
√

2

[
∆†k

(
1

2
,
−1

2

∣∣∣∣32 , 3

2

)
+ ∆†k

(
1

2
,
1

2

∣∣∣∣32 , −3

2

)

+
√

3

(
∆†k

(
1

2
,
1

2

∣∣∣∣32 , 1

2

)
+ ∆†k

(
1

2
,
−1

2

∣∣∣∣32 , −1

2

))]
(81)
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(T̃ †;J=2

2(2) )k =
i

2
√

2

[
∆†k

(
1

2
,
−1

2

∣∣∣∣32 , 3

2

)
−∆†k

(
1

2
,
1

2

∣∣∣∣32 , −3

2

)

+
√

3

(
∆†k

(
1

2
,
1

2

∣∣∣∣32 , 1

2

)
−∆†k

(
1

2
,
−1

2

∣∣∣∣32 , −1

2

))]
(82)

(T̃ †;J=2

2(3) )k =
1√
2

[
∆†k

(
1

2
,
1

2

∣∣∣∣32 , 3

2

)
−∆†k

(
1

2
,
−1

2

∣∣∣∣32 , −3

2

)]
(83)

Odd J: 3
2 ⊗

1
2 ; [1

2 ⊗
3
2 ]

(T †;J=1

1(1) )k =
i

2
√

2

[
−∆†k

(
3

2
,
1

2

∣∣∣∣12 , 1

2

)
−∆†k

(
3

2
,
−1

2

∣∣∣∣12 , −1

2

)

+
√

3

(
∆†k

(
3

2
,
3

2

∣∣∣∣12 , −1

2

)
+ ∆†k

(
3

2
,
−3

2

∣∣∣∣12 , 1

2

))]
(84)

(T †;J=1

1(2) )k =
1

2
√

2

[
−∆†k

(
3

2
,
1

2

∣∣∣∣12 , 1

2

)
+ ∆†k

(
3

2
,
−1

2

∣∣∣∣12 , −1

2

)

+
√

3

(
∆†k

(
3

2
,
3

2

∣∣∣∣12 , −1

2

)
−∆†k

(
3

2
,
−3

2

∣∣∣∣12 , 1

2

))]
(85)

(T †;J=1

1(3) )k =
i√
2

[
∆†k

(
3

2
,
1

2

∣∣∣∣12 , −1

2

)
−∆†k

(
3

2
,
−1

2

∣∣∣∣12 , 1

2

)]
(86)

(T̃ †;J=1

1(1) )k =
i

2
√

2

[
∆†k

(
1

2
,
1

2

∣∣∣∣32 , 1

2

)
+ ∆†k

(
1

2
,
−1

2

∣∣∣∣32 , −1

2

)

−
√

3

(
∆†k

(
1

2
,
−1

2

∣∣∣∣32 , 3

2

)
+ ∆†k

(
1

2
,
1

2

∣∣∣∣32 , −3

2

))]
(87)

(T̃ †;J=1

1(2) )k =
1

2
√

2

[
∆†k

(
1

2
,
1

2

∣∣∣∣32 , 1

2

)
−∆†k

(
1

2
,
−1

2

∣∣∣∣32 , −1

2

)

−
√

3

(
∆†k

(
1

2
,
−1

2

∣∣∣∣32 , 3

2

)
−∆†k

(
1

2
,
1

2

∣∣∣∣32 , −3

2

))]
(88)

(T̃ †;J=1

1(3) )k =
i√
2

[
−∆†k

(
1

2
,
−1

2

∣∣∣∣32 , 1

2

)
+ ∆†k

(
1

2
,
1

2

∣∣∣∣32 , −1

2

)]
(89)

F Two-channel Kondo interaction derived pairing interac-
tions

The pairing interactions generated from the two-channel Kondo interaction can be clas-
sified into even and odd spatial parity, which follows from the even and odd J angular
momentum, in Eqs. 91 and 92, respectively,

H2CK
eff =

[
H2CK

even +H2CK
odd

]
. (90)
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For brevity, we drop the superscript indicating the total angular momentum; Fig. 1
indicates the total angular momentum of the Cooper pair.

H2CK
even = −

∑
k,k′

[
− f1J

2
3 + 2J2

1f0

]
k,k′

A†1kA1k′

−
∑
k,k′

[
f1J

2
3 − 2J2

1f2ν

]
k,k′

E†(1)kE(1)k′ −
∑
k,k′

[
f1J

2
3 + 2J2

1f2ν

]
k,k′

E†(2)kE(2)k′

+
∑
k,k′

[
2J2

1f2µ

]
k,k′

(
E†(1)kE(2)k′ + h.c.

)
+
∑
k,k′

[
f1J

2
3 + 2J2

1f0

]
k,k′

~T †2k · ~T2k′ (91)

H2CK
odd =−

∑
k,k′

[
− f1J

2
3 − 2J2

1f0

]
k,k′

A†2kA2k′ −
∑
k,k′

[
− f1J

2
3 + 2f0J

2
1

]
k,k′

~T †−k · ~T−k′ (92)

−
∑
k,k′

[
f1J

2
3 + J2

1f2ν −
√

3J2
1f2µ

]
k,k′

T †
2(1)k

T2(1)k′

−
∑
k,k′

[
f1J

2
3 − J2

1f2ν +
√

3J2
1f2µ

]
k,k′

T †
+(1)k

T+(1)k′

+
∑
k,k′

[
−
√

3J2
1f2ν − J2

1f2µ

]
k,k′

(
T †

2(1)k
T+(1)k′ + h.c.

)
−
∑
k,k′

[
f1J

2
3 + J2

1f2ν +
√

3J2
1f2µ

]
k,k′

T †
2(2)k

T2(2)k′

−
∑
k,k′

[
f1J

2
3 − J2

1f2ν −
√

3J2
1f2µ

]
k,k′

T †
+(2)k

T+(2)k′

+
∑
k,k′

[√
3J2

1f2ν − J2
1f2µ

]
k,k′

(
T †

2(2)k
T+(2)k′ + h.c.

)
−
∑
k,k′

[
f1J

2
3 − 2J2

1f2ν

]
k,k′

T †
2(3)k

T2(3)k′ −
∑
k,k′

[
f1J

2
3 + 2J2

1f2ν

]
k,k′

T †
+(3)k

T+(3)k′

+
∑
k,k′

[
− 2J2

1f2µ

]
k,k′

(
T †

2(3)k
T+(3)k′ + T †

+(3)k
T2(3)k′

)
(93)

where the linear combination of the T1 irreps are defined by

T †
+(1,3) =

1√
5

(
− 2T †;J=1

1(1,3) + T †;J=3

1(1,3)

)
(94)

T †−(1,3) =
1√
5

(
− T †;J=1

1(1,3) − 2T †;J=3

1(1,3)

)
(95)

T †
+(2) =

1√
5

(
− 2T †;J=1

1(2) − T †;J=3

1(2)

)
(96)

T †−(2) =
1√
5

(
T †;J=1

1(2) − 2T †;J=3

1(2)

)
(97)

G Novel Kondo interaction derived pairing interactions

The pairing interactions arising from the novel Kondo interaction can be classified into two
types of models: (i) Cooper pairs formed separately within j = 1/2 and j = 3/2 scatter
off each other, and (ii) Cooper pairs formed with one fermion from j = 1/2 and the other
from j = 3/ sector. We present the Hamiltonians for each of the families of models below.
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G.1 Cooper pairs formed separately within j = 1/2 and j = 3/2 sectors

The pairing interaction can be decomposed into even and odd parity sectors (which follows
from the even and odd J total angular momentum),

H
novel (i)
eff =

[
Hnovel (i)

even +H
novel (i)
odd

]
(98)

where

Hnovel (i)
even =−

∑
k,k′

[√
2f0J

2
2

]
k,k′

(
A†

1;j= 3
2

;k
A1;j= 1

2
;k′ + h.c.

)

+
∑
k,k′

[√
2f2νJ

2
2

]
k,k′

(
A†

1;j= 1
2

;k
EJ=2

2;k′ + h.c.

)

+
∑
k,k′

[√
2f2µJ

2
2

]
k,k′

(
A†

1;j= 1
2

;k
EJ=2

1;k′ + h.c.

)

−
∑
k,k′

[
f1J

2
3

]
k,k′

(
−A†

1;j= 3
2

;k
A1;j= 3

2
;k′ +

~E†;J=2
k · ~EJ=2

k′

)
(99)

As seen in the above interaction, the A1 irrep arising from the pair formed by j = 1/2
sector of conduction electrons has a non-vanishing matrix element with the Cooper pairs
formed from the j = 3/2 sector; we give the operators the corresponding j sector subscript
label. We once again drop the total angular momentum superscript for brevity.

The odd parity pairing interactions are,

H
novel (i)
odd =−

∑
k,k′

[√
2f0J

2
2

]
k,k′

(
T †

1(1);j=1/2;k
T−(1);j=3/2;k′ + h.c.

)
(100)

−
∑
k,k′

[ 1√
2
f2νJ

2
2 −

√
3

2
f2µJ

2
2

]
k,k′

(
T †

1(1);j=1/2;k
T+(1);j=3/2;k′ + h.c.

)
−
∑
k,k′

[√3

2
f2νJ

2
2 +

1√
2
f2µJ

2
2

]
k,k′

(
T †

1(1);j=1/2;k
T2(1);j=3/2;k′ + h.c.

)
+
∑
k,k′

[
f1J

2
3

]
k,k′

(
T †−(1);j=3/2;k

T †−(1);j=3/2;k′
− T †

+(1);j=3/2;k
T †

+(1);j=3/2;k′

− T †
2(1);j=3/2;k

T †
2(1);j=3/2;k′

)
−
∑
k,k′

[
−
√

2f0J
2
2

]
k,k′

(
T †

1(2);j=1/2;k
T−(2);j=3/2;k′ + h.c.

)
−
∑
k,k′

[ 1√
2
f2νJ

2
2 +

√
3

2
f2µJ

2
2

]
k,k′

(
T †

1(2);j=1/2;k
T+(2);j=3/2;k′ + h.c.

)
−
∑
k,k′

[
−
√

3

2
f2νJ

2
2 +

1√
2
f2µJ

2
2

]
k,k′

(
T †

1(2);j=1/2;k
T2(2);j=3/2;k′ + h.c.

)
+
∑
k,k′

[
f1J

2
3

]
k,k′

(
T †−(2);j=3/2;k

T †−(2);j=3/2;k′
− T †

+(2);j=3/2;k
T †

+(2);j=3/2;k′

− T †
2(2);j=3/2;k

T †
2(2);j=3/2;k′

)
−
∑
k,k′

[√
2f0J

2
2

]
k,k′

(
T †

1(3);j=1/2;k
T−(3);j=3/2;k′ + h.c.

)
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−
∑
k,k′

[
−
√

2f2νJ
2
2

]
k,k′

(
T †

1(3);j=1/2;k
T+(3);j=3/2;k′ + h.c.

)
−
∑
k,k′

[√
2f2µJ

2
2

]
k,k′

(
T †

1(3);j=1/2;k
T2(3);j=3/2;k′ + h.c.

)
+
∑
k,k′

[
f1J

2
3

]
k,k′

(
T †−(3);j=3/2;k

T †−(3);j=3/2;k′
− T †

+(3);j=3/2;k
T †

+(3);j=3/2;k′

− T †
2(3);j=3/2;k

T †
2(3);j=3/2;k′

)
The T1 irrep arising from the j = 1/2 sector has a non-vanishing matrix element with the
Cooper pairs formed from the j = 3/2 sector; we once again present the operators with
the corresponding j sector subscript label.

G.2 Cooper pairs formed from j = 1/2 and j = 3/2 sectors

The interaction arising from this case needs to be treated more carefully as the order in
which the fermionic creation operators are written to form a given Cooper pair provides an
additional complexity: for example, for the J = 2 pair, we can have E†1k and Ẽ†1k presented
in Appendix E. To ensure the pairing function is odd under fermion-exchange and spatial
inversion/parity, we need to consider symmetric and antisymmetric combinations of these
pairing operators: one will yield an even under parity combination, while the other will
yield and odd under parity combination:

~E†±k =
1√
2

(
~E†k ±

~̃E†k

)
(101)

~T †1±k =
1√
2

(
~̃T †1k ± ~T †1k

)
(102)

~T †2±k =
1√
2

(
~̃T †2k ± ~T †2k

)
(103)

We thus organize the interaction Hamiltonians into even and odd under spatial parity
Cooper pairs.

H
novel (ii)
eff = Hnovel (ii)

even +H
novel (ii)
odd , (104)

where

Hnovel (ii)
even =−

∑
k,k′

[
f2νβ

2 − f0β
2
]
k,k′

E†
+(1)k

E+(1)k′ −
∑
k,k′

[
− f2νβ

2 − f0β
2
]
k,k′

E†
+(2)k

E+(2)k′

+
∑
k,k′

[
− f2µβ

2
]
k,k′

(
E†

+(1)k
E+(2)k′ + h.c.

)
+
∑
k,k′

[
f2µβ

2
]
k,k′

(
E†−(1)k

E−(2)k′ + h.c.
)

−
∑
k,k′

[
− f2νβ

2 + f0β
2
]
k,k′

E†−(1)k
E−(1)k′ −

∑
k,k′

[
f2νβ

2 + f0β
2
]
k,k′

E†−(2)k
E−(2)k′

(105)

H
novel (ii)
odd =−

∑
k,k′

[
f0β

2 +
1

2
f2νβ

2 −
√

3

2
f2µβ

2
]
k,k′

T †
2+(1)k

T2+(1)k′

−
∑
k,k′

[
f0β

2 − 1

2
f2νβ

2 +

√
3

2
f2µβ

2
]
k,k′

T †
1−(1)k

T1−(1)k′
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+
∑
k,k′

[
−
√

3

2
f2νβ

2 − 1

2
f2µβ

2
]
k,k′

(
−iT †

2+(1)k
T1−(1)k′ + h.c.

)
−
∑
k,k′

[
f0β

2 +
1

2
f2νβ

2 +

√
3

2
f2µβ

2
]
k,k′

T †
2+(2)k

T2+(2)k′

−
∑
k,k′

[
f0β

2 − 1

2
f2νβ

2 −
√

3

2
f2µβ

2
]
k,k′

T †
1−(2)k

T1−(2)k′

+
∑
k,k′

[
−
√

3

2
f2νβ

2 +
1

2
f2µβ

2
]
k,k′

(
iT †

2+(2)k
T1−(2)k′ + h.c.

)
−
∑
k,k′

[
f0β

2 − f2νβ
2
]
k,k′

T †
2+(3)k

T2+(3)k′ −
∑
k,k′

[
f0β

2 + f2νβ
2
]
k,k′

T †
1−(3)k

T1−(3)k′

+
∑
k,k′

[
f2µβ

2
]
k,k′

(
−iT †

2+(3)k
T1−(3)k′ + h.c.

)
(106)

−
{

(T2+, T1−)↔ (T2−, T1+)
}
,

where once can notice that the E+ decouples from the E−, and the T2± couples to the
same component of T1∓.

H BCS Mean field Theory Gap equation

The BCS gap equation can be elegantly derived by the Hubbard–Stratonovich (HS) trans-
formation. We present a sketch of the derivation below, focussing on the aspects that
require special attention.

We consider the form of a typical collection of interaction terms,

Sint = −
∫ β

0
dτ
∑
k,k′

∑
αβ

Xkα(Ωkk′)αβXk′α (107)

where A†, B† are generic Cooper pair operators made up of conduction creation operator
bilinears, α, β runs over the internal structure of the interaction potential (Ωkk′)αβ; as

a simple example, for the pairing instability arising in the 3
2 ⊗

3
2 sector’s ~EJ=2 Cooper

pairs, (Ωkk′)αβ is a 2× 2 matrix in the internal structure, where each entry is a matrix in
momentum space.

We now introduce the auxillary field ~zk into the partition function with its correspond-
ing free action, ∫ β

0
dτ
∑
k,k′

∑
αβ

zkα(V g
kk′

)αβzk′α (108)

where we use the generalized (Moore-Penrose) pseudoinverse. The pseudoinverse is typi-
cally introduced when solving a system of linear equations

A~x = ~b. (109)

When A is singular matrix, the unique inverse cannot be employed, thus necessitating the
introduction of the pseudoinverse which provides the solution to Eq. 109,

~x∗ = Ag~b+ (I−AgA)~ω, (110)
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where Ag is the pseudoinverse matrix, and ~ω is an arbitrary vector. Importantly, the
pseudoinverse matrix satisfies the identity AAgA = A, and provided that a solution exists
for Eq. 109, then

AAg~b = ~b, (111)

where we emphasize for the pseudoinverse matrix, AgA 6= I in general.
Returning back to the path integral, we perform the shift of the auxillary field,

zkα = ∆kα +
∑
p;γ

(Vkp)αγXpγ (112)

zkα = ∆k;α +
∑
p,γ

Xpγ(Vpk)γα, (113)

where we now introduce the superconducting HS field ∆kα. To make progress, the HS
field is taken to satisfy the criterion,∑

kk′

∑
αβ

(Vpk)γα(V g
kk′

)αβ∆k′β = ∆pγ (114)

For an invertible interaction, Eq. 114 reduces to a trivially true statement, but for a non-
invertible matrix this equality is rationalized as the application of Eq. 111 with the identi-
fication of ~b as the static HS field satisfying the linear equation

∑
k′
∑

β(Vkk′)αβ〈Xk′β〉 =
∆kα. We thus we arrive at the effective interaction,

Heff =
∑
k,k′

∑
α,β

∆kα(V g
kk′

)αβ∆k′β +
∑
k;α

(
∆kαXkα +Xkα∆kα

)
(115)

with the accompanying path integral,

Z =

∫
D[∆,∆]D[c, c]e−

∫ β
0 dτ(

∑
k
~ck(∂τ+εk)~ck+Heff) (116)

where we reinserted the free fermion action, where εk = k2

2m − µF .
To make progress, the fermions are re-written in a Nambu basis depending on the

nature of the interactions in Eq. 115. For the Cooper pairs arising in the 3
2 ⊗

3
2 sector,

the Nambu basis is,

~ψ†
k; 3

2
⊗ 3

2

=



c†3
2
, 2
2

;k

c†3
2
, 1
2

;k

c†3
2
,−1

2
;k

c†3
2
,−3

2
;k

c 3
2
, 2
2

;−k
c 3

2
, 1
2

;−k
c 3

2
,−1

2
;−k

c 3
2
,−3

2
;−k


(117)
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and for models that involve both j = 3
2 and j = 1

2 fermions the basis is expanded to be

~ψ†
k; 1

2
⊗ 3

2

=



c†3
2
, 2
2

;k

c†3
2
, 1
2

;k

c†3
2
,−1

2
;k

c†3
2
,−3

2
;k

c†1
2
, 1
2

;k

c†1
2
,−1

2
;k

c 3
2
, 2
2

;−k
c 3

2
, 1
2

;−k
c 3

2
,−1

2
;−k

c 3
2
,−3

2
;−k

c 1
2
, 1
2

;−k
c 1

2
,−1

2
;−k



. (118)

In terms of the Nambu basis, the HS transformed path integral is bilinear and as such we
can simply integrate out the fermionic fields. The subsequent fermionic determinant is of
the form Πi=1,...,m(ω2

n+E2
ik)2, where ωn is the fermionic Matsubara frequency, m runs over

the possible quasiparticle energies. In the cases we consider in this work, m = 1, 2, 3 are
the only possibilities; for m = 1, the determinant is (ω2

n + E2
1k)4. Finally, approximating

the path integral via the standard saddle-point approximation, leads to the mean-field free
energy,

FMFT =− T lnZBCS

=− 2T
∑
k,ωn

∑
i=1...m

ln(ω2
n + E2

ik) + βT
∑
k,k′

∑
α,β

∆kα(Ωg
kk′

)αβ∆k′β (119)

where β = 1/T in the second term comes from integrating a static term over τ ∈
[0, β]. Extremizing the mean-field free energy with respect to ∆qγ and multiplying by∑

q

∑
γ(Ωpq)αγ leads to Eq. 30 in the main text. As mentioned above, for the case of a

single quasiparticle energy (m = 1) the right hand side of Eq. 30 has an additional factor
of 2.

In solving the mean-field equations, we employ the following choices for the phenomeno-
logical constants: m = 0.2, µF = 1.0, a0 = 2.5, a1 = 0.67, a2 = 1.67,mQ = 4.0,mO = 20.8.
The values of phenomenological Landau values were chosen so as to connect with the
experimental setting. In particular, the quadrupolar mass term (mQ ∼ (T − TQ)) was
taken to be smaller than the octupolar mass (mO ∼ (T − TO)) to reflect the fact that
the proposed octupolar ordering temperature TO is lower than the quadrupolar ordering
temperature TQ [65]; here T is the temperature, which is taken to be above TQ,O in the
paramagnetic phase. The choices of the other phenomenological values a0,1,2 > 0 were
chosen to ensure that the multipolar action is non-singular, thus permitting the Gaus-
sian fluctuations to be integrated out. For the multipolar Kondo interactions, we choose
uniformly α, β, γ = 10, where in the two-channel (novel) interaction β = 0 (α = 0).

I Momentum space distribution of superconducting states

We present in Fig. 5, 6, 7, 8, 9 the momentum space distribution of the realized supercon-
ducting states induced by the two-channel and novel Kondo interactions. For the cases
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Figure 5: Momentum space distribution of the superconducting states arising from the
two-channel Kondo interaction presented in Table 1 and Fig. 1.

where there exist multiple degenerate solutions, we present the distribution of one solution
for clarity.
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