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Abstract

Photonic materials are a rapidly growing platform for studying condensed mat-
ter physics with light, where the exquisite control capability is allowing us to
learn about the relation between microscopic dynamics and macroscopic prop-
erties. One of the most interesting aspects of condensed matter is the interplay
between interactions and the effect of an external magnetic field or rotation,
responsible for a plethora of rich phenomena—Hall physics and quantized vor-
tex arrays. At first sight, however, these effects for photons seem vetoed: they
do not interact with each other and they are immune to magnetic fields and
rotations. Yet in specially devised structures these effects can be engineered.
Here, we propose the use of a synthetic magnetic field induced by strain in
a honeycomb lattice of resonators to create a non-equilibrium Bose-Einstein
condensate of light-matter particles (polaritons) in a rotating state, without
the actual need for external rotation nor reciprocity-breaking elements. We
show that thanks to the competition between interactions, dissipation and a
suitably designed incoherent pump, the condensate spontaneously becomes
chiral by selecting a single Dirac valley of the honeycomb lattice, occupying
the lowest Landau level and forming a vortex array. Our results offer a new
platform where to study the exciting physics of arrays of quantized vortices
with light and pave the way to explore the transition from a vortex-dominated
phase to the photonic analogue of the fractional quantum Hall regime.
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1 Introduction

Many-body systems in the presence of synthetic magnetic fields offer the exciting opportu-
nity of finding new topological phases of matter with fractional excitations [1]—a holy-grail
of condensed-matter physics and the pillar of topological quantum computing [2,3]. Pho-
tonic systems seem to be an ideal platform for this purpose thanks to the exquisite capabili-
ties state preparation and detection as well as direct access to correlations [4–10]. However,
to achieve these exotic phases of light a challenging combination of strong interactions and
synthetic magnetic fields is required. So far, only partial results have been obtained. On
the one hand, strong effective photon-photon interactions are already routinely attained in
a variety of photonic platforms including superconducting quantum circuits for microwave
photons [11–13] or, in the optical regime, Rydberg polaritons [14], and are underway in
exciton-polaritons [15–18]. On the other hand, considerable effort has been devoted to
engineering synthetic magnetic fields for light by various approaches [9, 19]; for example,
by including magnetic materials in microwave- and telecom-frequency cavities [20–22], by
Floquet engineering [23] or by carefully designing non-trivial lattice geometries [24–27].
Yet, even though there has been one successful attempt in creating few-body photonic
Laughlin states [28], combining interactions with synthetic fields in a scalable platform for
many-photon states is still needed.

In this work we propose a method to stabilize a non-equilibrium Bose-Einstein con-
densate of polaritons into a rotating state generated by a synthetic magnetic field. We
make use of the recently developed platform of strained honeycomb lattices. Based on the
idea of a strained graphene layer [29,30], a lattice of photonic resonators can be carefully
designed to have a spatial gradient in its hopping strengths. The synthetic strain induces
a synthetic magnetic field which has opposite sign in each of the two Dirac valleys of the
honeycomb lattice, leading to the formation of Landau levels in the middle of the energy
spectrum [31,32] (see Fig.1). The first evidence of Landau level quantization in a strained
honeycomb lattice for photons was obtained in coupled dielectric optical waveguides [25],
and more recently, the photonic n = 0 Landau level wavefunction was directly imaged in a
lattice of macroscopic microwave resonators [26] and of coupled semiconductor micropillar
cavities [27].

We theoretically anticipate that, thanks to the competition between drive and decay,
a robust polariton condensate can be stabilized in the the n = 0 Landau level using an
incoherent pump which selects a single sublattice. The properties of the steady state are
determined by the interplay between interactions and the synthetic magnetic field. The
Dirac valley symmetry is spontaneously broken via the nonlinearity which comes from
polariton interactions and—in a smaller proportion—from the incoherent pump saturation.
In this way, just one of the two possible orientations of the synthetic field is selected, and
thus, the condensate forms a vortex lattice analogous to that observed in a rapidly rotating
ultracold gas [33–36] or a type-II superconductor in the presence of an external magnetic
field [37–39].

Our proposal naturally applies to a variety of photonic platforms. For the sake of
concreteness, we will focus our discussion on the specific case of a honeycomb lattice
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Figure 1: Honeycomb lattice and single-particle spectrum. a, b Sketch of the
unstrained (left) and strained (right) honeycomb lattices. We use bearded terminations
in the x direction and armchair ones in the y direction. A generic strain is encoded in
the x-dependent hopping strength along the horizontal links t1(x) = t(1 + τx/3d) and is
graphically indicated as a gradient in the link’s length in b. Hopping along the other links
is constant t2,3 = t and τ is the strain magnitude. c The single-particle 1D energy bands
of the unstrained and strained lattices with periodic boundary conditions along y. The
color indicates the mean x-position of the eigenstates, 〈φ| x̂ |φ〉. Cyan corresponds to the
(L)eft edge of the lattice and magenta to the (R)ight. The Landau levels n = 0,±1 are
labeled in the spectrum of the strained lattice.

of semiconductor micropillar cavities for exciton-polaritons, as used in the recent experi-
ments [27,40–43] and theoretical works [31,44,45] to then comment what are the challenges
and advantages of other platforms in view of our proposal.

2 Results

2.1 Strained honeycomb lattice

The honeycomb lattice is made of two sublattices A and B. We model the kinetic energy
of polaritons using a tight-binding Hamiltonian with nearest-neighbor hopping between
the two sublattices,

H = −
∑
r,j

tj(r)â†(r−Rj)b̂(r) + h.c, (1)

where â and b̂ annihilate a polariton in the A and B sublattices, respectively, and h.c.
represents the Hermitian conjugate. The vector r = (x, y) indicates real-space coordinates
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and it labels all the positions of the B sites, while the vectors Rj , depicted in Fig. 1a,
connect different sites. The hopping energies tj(r) correspond to the links associated with
the vectors Rj . We consider a hopping gradient in the horizontal links along x, choosing
t1(x) = t(1 + τx/3d), where d is the lattice spacing, and t2 = t3 = t. The constant
τ ≥ 0 determines the degree of strain in the lattice and, for a given size of the lattice in
the x direction, it has a maximum value beyond which t1(x) undergoes a sign change for
negative positions x (this is a Lifshitz transition and we avoid it).

For momenta near the two nonequivalent Dirac points,

Kξ = (Kξ,x,Kξ,y) = ξ

(
2π

3d
,

2π

3
√

3d

)
, (2)

where ξ = ±1, the strain gives rise to a pseudomagnetic field eB = ξ2~τ/9d2ẑ (see
Appen. A or [31]), which has opposite orientation in each Dirac valley. The effect that
this has over the single-particle energy bands can be seen in Fig. 1c (note that, due
to the strain, the only good quantum number is ky). There are (tilted) Landau levels
labeled by n = ±1, ±2, . . . . To a very good approximation, their energies are given
by εn = sgn(n)t

√
τ |n|(1− ξqyd), where qy = ky − Kξ,y is the (small) momentum-space

distance measured from the Dirac point. For our purposes, the only important information
about their wavefunctions is that they equally occupy both sublattices, A and B, for any
non-zero n. On the other hand, the band of n = 0 Landau levels have zero dispersion
(ε0 = 0) and, most importantly, are completely localized in the B sublattice (it would be
in the A sublattice if τ was negative). Their wavefunctions read

φn=0,B(x, qy) ∝ eiKξ,xxe−(x+ξ`
2
Bqy)

2/2`2B , (3)

with qy = ky − Kξ,y, and φn=0,A = 0. This sublattice polarized wavefunctions can be
recognized (besides the x-dependent phase) as the lowest Landau level states in the Landau
gauge [46], given by a plane wave in the periodic y-direction and a Gaussian in x, with a
guiding center x0 = −`2Bqy determined by the qy wavevector and a width determined by
the magnetic length `B =

√
~/e|B| = 3d/

√
2τ . This band of lowest Landau level states

is the only family of bulk states in the system with sublattice polarization. We will take
advantage of this to induce polariton condensation into the n = 0 Landau level [47]: given
the full sublattice polarization of this state, we expect that the mode selection mechanism
based on spatial overlap with the pumped sublattice will largely exceed other mechanisms
that may be active in polariton systems, such as energy relaxation, the exciton-photon
fraction of modes, and the amount of localization of the wave function at the pillars.

To better simulate a real experimental implementation, in the following we always
consider large but finite lattices of Nx links along x and Ny unit cells along y. As a
reference, the diagram in Fig 1a shows a lattice with Nx = 5 and Ny = 4.

2.2 Incoherent pump, decay and interactions

To model the Bose-Einstein condensation into the n = 0 Landau level we have performed
numerical simulations of interacting polaritons with binary interactions of strength U in a
finite strained honeycomb lattice, under the action of an incoherent pump and polariton
losses (dominated by photon leakage out of the microcavities). The system is well described
by stochastic Gross-Pitaevskii equations [48] that read

i~∂tψA =Hop(ψA → ψB) + U |ψA|2−ψA

+
i~
2

(
PA

1 + |ψA|2−/ns
− γ
)
ψA + iWA,

(4)
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i~∂tψB =Hop(ψB → ψA) + U |ψB|2−ψB

+
i~
2

(
PB

1 + |ψB|2−/ns
− γ
)
ψB + iWB.

(5)

For simplicity, we have omitted the spatio-temporal dependence of the macroscopic wave-
function ψ = ψ(r, t), of the pump profile P = P (r), and of the zero-mean complex Gaus-

sian noise with
〈
WX(r′, t′)W ∗Y (r, t)

〉
= δXY δr′rδ(t − t′)(~2/2)(PX/(1 + |ψX |2−/ns) + γ),

where the average is over stochastic realizations. The Hop terms correspond to the hop-
ping between nearest neighbors and depend explicitly on the strain (see Appen. B for
the explicit expression). U is the polariton interaction strength, ns the saturation den-
sity, and γ the decay rate. Underlying these equations is the assumption that there is a
high-energy excitonic reservoir, excited by an external pump, which leads to the saturable
incoherent pump in Eqs. (4) and (5). These equations are obtained from a truncated
Wigner approximation and thus the Wigner commutator is subtracted from the intensity,
|ψ|2− = |ψ|2 − 1.

If the occupation of the excitonic reservoir is substantial, there is an additional polari-
ton energy blueshift—not included in Eqs. (4) and (5)—which is induced by the reservoir
formed in the pumped region. Since we will consider a modulated pump acting only on
some sites and not on all of them, this extra term could distort the single-particle energy
bands. We later discuss the possible complications that might arise as well as possible
workarounds.

The results that we are going to show in the following of the work refer to the long-time
limit of the system evolution. A study of the additional features that may occur during the
switch-on transient, such as Kibble-Zurek vortex nucleation phenomena [45], go beyond
the scope of this work.

2.3 Condensation into the n = 0 Landau level

In order to fully exploit the sublattice polarization of the n = 0 Landau level, we start
by considering a spatially modulated incoherent pump acting only on the B sublattice
(PA = 0). When the pump overcomes losses, PB & γ, polaritons condense in the n = 0
Landau level, since this is the only single-particle state with this sublattice polarization.
Depending on how many sites the incoherent pump covers, we find a BEC with zero, one,
or many vortices.

We first discuss the situation where the size of the pumped region is not too large
compared to the magnetic length `B. In Fig. 2a,b we show the stationary-state intensity,
phase, and spectral density for two Gaussian pumps with the same maximum intensity but
different widths, namely PB(r)/γ = 1.3e−r

2/2σ2
, with σ = 2`B, 5`B, respectively. In the

former case, the pump region is not wide enough to accommodate a vortex, while in the
latter, a clear anti-vortex (−2π phase circulation) can be seen in the center of the lattice.

In the plotted spectral densities
〈
|ψ(ω, ky)|2

〉
, one can see that the condensate occupies

a single Dirac valley predominantly. Which of the two valleys is chosen for condensation
is randomly chosen at each instance of the condensation process and depends on the
randomly chosen initial conditions and on the noise WA,B, if any. The vortex has its
origin in the single-particle Landau states, so (besides the energy blueshift seen in the
spectral density) interactions play no role on the vortex formation at these pumped-region
sizes. Indeed, the (normalized) stationary state analyzed in Fig. 2b has a remarkable
overlap of |

∑
r φ
∗(r) · ψB(r)/N| ≈ %68 (%99 intensity match) with the slightly spatially

shifted n = 0,m = −1 symmetric-gauge Landau state φ(x, y) ∝ (x− iy)e−(x
2+y2)/4`2B with
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a

b

Figure 2: BEC in the n = 0 Landau level. Intensity (left) and phase (middle) spatial

profiles, and spectral density
〈
|ψ(ω, ky)|2

〉
(right) for a Gaussian pump with maximum

1.3γ and width σ = 2`B in a and σ = 5`B in b. The interior of the magenta (dashed) circles
indicates the region where the pump is larger than the losses. In the phase profiles, only the
B sublattice is shown, and for clarity we have removed the phase-shift from to the Dirac
momentum by plotting the phase of 〈exp(−iKξ ·r)ψB(r)〉, where Kξ = ξ(2π/3d, 2π/3

√
3d),

with ξ = ±1. In b a clear anti-vortex (−2π circulation) is displayed. In the right column
we have superimposed the spectral density to the single-particle spectrum, shown in dim
white lines. The parameters are J/~γ = 10, ns = 103, U/~γ = 0.005, τ = 0.06, Nx = 51,
and Ny = 50. We have averaged over 100 stochastic realizations.

angular momentum m~ = −~ [46]. As usual, this symmetric-gauge Landau state can be
written as a linear combination of Landau-gauge Landau states of different ky’s.

On the contrary, interactions play instead a key role in the case of wider incoherent
pump profiles, where they make condensation in a single Dirac valley—as opposed to in
both valleys simultaneously—more likely. In standard BECs at thermal equilibrium, the
interaction energy is minimized by choosing among the single-particle ground states the
one which has the most homogenous density in real space. Here, a similar mechanism
hinders the condensate from occupying both valleys at the same time, which would en-
tail large density inhomogeneities due to destructive interference of states with opposite
angular momenta. This is important for forming a vortex array, as the two opposite pseu-
domagnetic fields at the two Dirac valleys compete and suppress vortices. In Fig. 3, we
show late-time snapshots of the real-space intensity profile for large rectangular and circu-
lar top-hat incoherent pumps (drawn on the images). In both cases, condensation occurs
in a single Dirac valley and several vortices form. Note that for such wide pump profiles,
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a

b

Figure 3: Vortex arrays for large lattices and wide top-hat pumps. Real-space
intensity for a rectangular (a) and circular (b) top-hat pump. These are late-time snap-
shots of mean-field trajectories (WA,B = 0). The vortex array rotates in the sense deter-
mined by the orientation of the chosen pseudomagnetic field. All B sites inside the ma-
genta dashed rectangle or circle are pumped with the same intensity. The parameters are
J/~γ = 10, ns = 103, PB/γ = 1.05, and Ny = 80 in both cases, and U/~γ = (4, 5)× 10−3,
τ = (0.045, 0.039), and Nx = (81, 101) in (a, b).

the condensate does not reach a stationary state but keeps evolving in time even at the
mean-field level (WA,B = 0). In all cases, the vortex lattice tends to rotate in the sense
determined by the sign of the pseudomagnetic field corresponding to the chosen Dirac
valley. For a non-circular pump profile, the shape of the vortex lattice and its motion are
no longer regular, but displays chaotic trajectories. If noise is added (WA,B 6= 0), in each
trajectory the vortices diffuse in a slightly different way. Thus, with time, the vortices will
be smeared out in the stochastic average. Nevertheless, this process is slow (∼ 100γ−1), so
vortex lattices should be observable in a single shot experiment where the intensity profile
is obtained as a time average of a single realization. Two videos showing the dynamics
corresponding to the the snapshots of Figs. 3a and b can be found in the supplementary
material video 1 and video 2.

If interactions are switched off (U = 0), the saturation nonlinearity in Eq. (5)—which
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a

b

Figure 4: Comparison of condensation with and without interactions. Steady-
state real-space intensity profile for U/~γ = 0.005 (a) and U = 0 (b). Condensation takes
place in one Dirac valley in a, while in both valleys in b. All B sites inside the magenta
dashed rectangle are pumped with the same intensity. The rest of the parameters are
J/~γ = 10, ns = 103, PB/γ = 1.05, τ = 0.06, Nx = 51, and Ny = 50. We have averaged
over 100 stochastic realizations.

plays a similar role to polariton-polariton interactions—is not always strong enough to
efficiently prevent condensation in both Dirac valleys. To illustrate this point, let us
compare the interacting and non-interacting cases in a moderate-sized lattice with a broad
rectangular top-hat pump. In Fig. 4a, for U 6= 0, three anti-vortices are found as the
polaritons have condensed in the positive-momentum Dirac valley. In Fig. 4b we show,
instead, the non-interacting U = 0 case where both Dirac valleys are occupied, such that
no vortices are formed. Instead, we obtain a spatially oscillating density pattern formed
from overlapping condensates at the two valleys. For large pump profiles, it is rare but not
impossible, even for sizable U , to end up in configurations of two almost spatially separated
condensates in different valleys with an overlapping boundary region. An example of such
situation is shown in Fig. 5, where there is a single anti-vortex in the bottom and three
vortices in the middle-top. However, unless U = 0 the condensates in the two valley are
spatially separated and their overlap is hardly as great as in Fig. 4(b).

The fact that the two opposite pseudomagnetic fields can suppress the formation of
vortices posses the question of how many vortices are typically found in a given realization
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Figure 5: Spatially-separated condensates in different Dirac valleys. Late-time
snapshot of the real-space intensity in a mean-field trajectory (WA,B = 0). There is one
anti-vortex in the bottom, three vortices in the middle-top, and an interference pattern
in between. All B sites inside the magenta dashed rectangle are pumped with the same
intensity. Same parameters as in Fig. 4a but with Ny = 80.
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Figure 6: Boxplot for the vortex-number statistics of 100 mean-field (zero noise
WA,B = 0) realizations of different random initial conditions ψ(xi, yj , t = 0), for Ny =
30, 40, . . . , 80, with (right) and without (left) interactions. For each data set, the lower
bar is at the lowest datum above Q1 − 1.5(Q3 − Q1), and the upper bar at the highest
datum below Q3 + 1.5(Q3 −Q1), where Q1 and Q3 are the first and third quartiles. The
median is shown with the orange line, the box encloses data between Q1 and Q3, and
the outliers are indicated by circles. We considered a top-hat pump over all B-sites but
the outermost (as in in Fig. 4). The parameters are J/~γ = 10, PB/γ = 1.1, τ = 0.06,
Nx = 51, and U/~γ = 0.005 in the case finite interactions.
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of the condensation process. If we had a real magnetic field and the system was at
thermal equilibrium, the number of vortices would be determined by the ratio between
the total magnetic flux piercing the system and the magnetic-flux quantum, so would thus
be proportional to the system size. In our case, the number of vortices found fluctuates
from one realization to another. We statistically analyze 100 realizations of the mean-field
dynamics with different random initial conditions to look at how the number of vortices
depend upon the number of unit cells Ny in the y-direction. We consider a top-hat pump
over all B-sites but the outermost (as in in Fig. 4). In Fig. 6 we show the statistics of the
total number of vortices (and/or anti-vortices, irrespective of the topological charge) for
different values of Ny. We compare the interacting and non-interacting cases. We can see
that for U = 0 the number of vortices grows much slower as Ny is increased than for the
finite U case. As we have discussed earlier, this is because interactions favor the selection
of a single Dirac valley for condensation—or, in other words, one of the two orientations
of the pseudomagnetic field—and thus there is no competition for vortex formation.

2.4 Robustness to disorder and the effect of reservoir-induced blueshift

In order to verify the actual feasibility of our proposal, we have checked that the BEC
in the n = 0 Landau level is robust against those complications that are most likely to
occur in concrete experiments. First of all, we have verified that our predictions remain
valid if some sizable fraction of the incoherent pump sneaks into the A sublattice, which
is the one not occupied by the n = 0 states. It is possible—for any lattice size—to have
PA ∼ 0.5PB without any qualitative change. The maximum amount of pump in the A
sublattice that the vortex configuration can tolerate depends on the system size as well
as the pump intensity. For instance, for small lattices (e.g., Nx = 11, Ny = 20), both
sublattices can be pumped with almost the same intensity near the BEC threshold. In
general, it is convenient to avoid pumping the left-hand edge of the lattice where the
propagating edge states (associated to the n = 0 Landau level) are found. If that region is
strongly pumped, it can lead to chaotic behavior where many energy bands are occupied.

As previously pointed out, if the excitonic reservoir is substantially populated it leads
to an on-site energy renormalization (blueshift) for the polaritons in the micropillars. Since
we pump only the B sublattice, the blueshift would affect just the pumped micropillars and
would distort the Landau energy levels. Moreover, using a small Gaussian pump spot can
lead to localization into the highest energy bands [49], with the energy blueshift playing a
similar role to on-site energy disorder. We have checked that the vortex configuration is
robust to the reservoir-induced blueshift as well as to on-site energy disorder, as long as
they are smaller than ~γ.

In order to remove this possibly stringent constraint on the reservoir-induced blueshift,
one can work in the weak light-matter coupling regime where the blueshift should be
saturated and then it does not matter that some micropillars are pumped and others are
not. In this case, the polariton would be predominantly photonic and the interactions
very weak (U ∼ 0), but vortices and vortex arrays can still form, just less efficiently as
shown in Fig. 6. A different workaround for the energy blueshift is to tailor the polariton
losses such that the loss in A sublattice is larger than that of the B sublattice. We have
checked that when the decay rate is %15 larger in the A sublattice, one can uniformly
pump (slightly above BEC threshold) all the sites in the system and the n = 0 Landau
level is still selected for condensation. In semiconductor micropillar cavities this could be
achieved by modifying the Bragg mirrors of the A-sublattice’s micropillars to increase their
radiative decay. Note however that all complications arising from the excitonic reservoir
are exclusive to exciton-polaritons and should not arise in alternative platforms that we
suggest in the following section.
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3 Discussion

In addition to suggesting a new experimental platform where to study the many-body
physics of vortex lattices in a novel non-equilibrium context, our work raises a number
of further conceptual questions. The randomness in the Dirac valley selection poses the
intriguing question whether it could be possible to bias the selection towards one valley to
systematically form vortices or anti-vortices. One possibility would be to have a biasing
coherent pump on one Dirac valley, which is slowly switched off in time in such a way that
the condensate remains in the biased valley. This is a standard procedure in the study
of symmetry-breaking phase transitions. Another exciting option to explore is to deform
the lattice in a way that a single Dirac valley is dynamically favored and time-reversal
symmetry gets effectively broken without the need for reciprocity-breaking elements, but
with the help of the nonlinear mechanisms involved in condensation, as recently studied
in simpler geometries [50].

In this work we focus on polariton micropillar lattices, but there are other promising
potential platforms where to observe the predicted spontaneous formation of vortex arrays,
including the evanescently-coupled optical waveguides of the experiments in refs. [23, 25]
and circuit QED lattices [10, 11, 13, 51]. In the coupled optical waveguides experiments,
the interplay of optical nonlinearities with topology has recently attracted a great atten-
tion [52, 53] and different losses for the two strained-honeycomb’s sublattices have been
used in ref. [54] to mimic the effect of an incoherent pump and study a non-Hermitian
PT -symmetry-breaking phase transition. Regarding the circuit QED platform, a main
challenge would be the disorder of the hopping strength and the resonator energy, but
there is great flexibility in lattice design [51] and the platform offers the possibility of
having stronger interactions [11,13] than those achievable in exciton-polaritons.

When applied to strongly-interacting photonic lattices (U > ~γ), our findings pave
the way to studying the transition from the vortex-dominated BEC regime to the strong-
correlations regime of the fractional quantum Hall physics. That transition has been first
anticipated for ultracold atoms in a rotating trap, but so far its observation has remained
experimentally challenging [35, 36]. It is in fact experimentally very hard to achieve high
angular velocities and low atomic densities such that a fractional occupation of the lowest
Landau level is achieved. While active work is being devoted to reach strong interactions
for exciton-polaritons in semiconductors [15–18], first reports of experimental studies of
the interplay of strong synthetic magnetic fields and strong interactions in photonic sys-
tems have recently started appearing in the literature using Rydberg polaritons in atomic
media [28] or circuit-QED devices [55] giving concrete hopes for the success of this very
ambitious scientific adventure.

Data and Code Availability

All the numerical data and codes used in this article are available upon reasonable request
to the first author.
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A Analytical derivation of Landau levels

The analytical derivation of the Landau energies and states in a strained honeycomb
lattice is well understood in the context of graphene [29, 30]. Here we reproduce the
results from [31,32], which deal with a synthetic strain, as in our work.

The Landau level states and energies can be obtained by writing the single-particle
bulk Hamiltonian in momentum space, H(k) = h(k) · σ, where σ = (σx, σy) are Pauli
matrices and h(k) = (Re h(k),−Im h(k)), with h(k) = −

∑
j tj exp(ik ·Rj). Due to the

strain and so the lack of translational symmetry, we must consider a finite lattice along
x and thus kx is no longer a good quantum number. Moreover, h(k) depends explicitly
on x via t1(x). Yet, to a very good approximation, the bulk Hamiltonian describes well
the bulk physics [27, 31, 32]. This is because, as will be clear in the following, there is
a wide range of parameters where orbits are well localized in the bulk in a region where
the hopping t1 does not change significantly. Having stated the necessary precautions,
we proceed by expanding h(k) for small momenta q near one of the two opposite Dirac
points, k = Kξ + q, where ξ = ±1 and K+ = (2π3d ,

2π
3
√
3d

) = −K−, yielding

h(Kξ + q) ≈ vxD~qx − iv
y
Dξ(~qy + eAy) (6)

to first order in x and q, where vD = (3dt/2~)eξi2π/3 is a Dirac velocity and eAy =
2~τξx/9d2 is the synthetic vector field, giving rise to the two opposite magnetic fields
eB = ∇× eA = ξ2~τ/9d2ẑ.

To find the spectrum of H(Kξ + q), we promote h in Eq. (6) to an operator such that
it becomes proportional to the annihilation operator of a displaced harmonic oscillator,

ĥ ≈ ~t
√
τ ĉ = vD~q̂x − i

vD
`2B

(x̂+ ξ`2Bqy), (7)

where qy is the conserved y-momentum, `B = 3d/
√

2τ is the magnetic length, and [ĉ, ĉ†] =
1. This suggests the eigenvectors of H(Kξ+q) should be vectors of two components related
to the solutions of a displaced harmonic oscillator, where the displacement is proportional
to qy, just as Landau-level states in the Landau gauge [46]. This is indeed the case. The

eigenvalue problem H(Kξ + q)~φ = ε~φ is

~t
√
τ

(
0 ĉ
ĉ† 0

)(
φA
φB

)
= ε

(
φA
φB

)
, (8)

and its solution consists of the εn=0 = 0 energy and its associated eigenstate in Eq. (3),
as well as higher and lower Landau energy levels labeled by n = ±1, ±2, . . . , with energy
εn = sgn(n)t

√
τ |n| and eigenstates(

φn,A(x, qy)
φn,B(x, qy)

)
∝ eiKξ,xx

(
±φ|n|−1(x, qy)
φ|n|(x, qy)

)
, (9)

where φn(x, qy) = e−(x+ξ`
2
Bqy)

2/2`2BHn(x + `2Bqy) is the n-th Landau level state in the
Landau gauge, with Hn(x) the n-th Hermite polynomial. We finally note that to account

12
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for the tilt in the |n| ≥ 1 levels (see Fig. 1b), one can expand the function h to next order
(in q and x), finding εn = sgn(n)t

√
τ |n|(1− ξqyd).

We can now see a posteriori that our approximation is good as a long as the hopping
t1(x) does not change significantly in a distance `B—the width of the Landau level states.
The variation is giving by [t1(x+ `B)− t1(x)]/t =

√
τ/2.

B Numerical simulations

The symbolic hopping (Hop) terms in Eqs. (4) and (5) read

i~∂tψA(r−R1) =− t[ψB(r−R1 + R2)+

ψB(r−R1 + R3)]

− t1(x)ψB(r) + . . .

i~∂tψB(r) =− t[ψA(r−R3) + ψA(r−R2)]

− t1(x)ψA(r−R1) + . . . ,

(10)

where the ellipsis refer to all other terms present in Eqs. (4) and (5). The vector r labels
all the discrete positions of B sites.

We carry out the numerical analysis by solving the stochastic Gross-Pitaevskii equa-
tions using the open-source package XMDS2 [56]. For the results shown in Figs. 2 and 4,
we first run a single mean-field trajectory (WA,B = 0) until a stationary state is reached,
typically for a time between 103 and 5× 103 in units of the inverse decay rate γ−1. Only
then, we turn on the Gaussian noise and follow up 100 stochastic trajectories for a time
120γ−1. The time Fourier transform in the spectral densities is obtained from the final
∆t = 100γ−1 time lapse.
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L. Le Gratiet, A. Harouri, J. Bloch and A. Amo, Type-iii and tilted Dirac cones
emerging from flat bands in photonic orbital graphene, Phys. Rev. X 9, 031010 (2019),
doi:10.1103/PhysRevX.9.031010.

[42] C. Whittaker, T. Dowling, A. Nalitov, A. Yulin, B. Royall, E. Clarke, M. Skolnick,
I. Shelykh and D. Krizhanovskii, Optical analogue of Dresselhaus spin–orbit interac-
tion in photonic graphene, Nat. Photon. (2020), doi:10.1038/s41566-020-00729-z.

[43] P. St-Jean, A. Dauphin, P. Massignan, B. Real, O. Jamadi, M. Milicevic, A. Lemâıtre,
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