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Abstract

The competition between short-range and cavity-mediated infinite-range inter-
actions in a cavity-boson system leads to the existence of a superfluid phase
and a Mott-insulator phase within the self-organized regime. We quantita-
tively compare the steady-state phase boundaries of this transition measured
in experiments and simulated using the Multiconfigurational Time-Dependent
Hartree Method for Indistinguishable Particles. To make the problem compu-
tationally viable, we represent the full system by the exact many-body wave
function of a two-dimensional four-well potential. We argue that the validity
of this representation comes from the nature of both the cavity-atomic system
and the Bose-Hubbard physics, and verify that it only induces small systematic
errors. The experimentally measured and theoretically predicted phase bound-
aries agree reasonably. We thus propose a new approach for the quantiative
numerical determination of the superfluid—Mott-insulator phase boundary.
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1 Introduction

During the past decade, experimental and theoretical progress using quantum gases to
realize models of solid state physics has made it possible to study many-body effects in
isolated and highly controllable scenarios . In particular, the interplay between light
and matter creates a unique platform for the exploration of a multitude of exotic behaviors
in quantum systems . Compared to traditional solid state systems, light-matter
systems provide an opportunity for more complex and flexible setup construction and fine-
tuning of system parameters. The achieved knowledge can then be applied to much more
complex and integrated systems as, for example, in solid state physics and material science.

One topic receiving enduring interest is the many-body effects in ultracold atomic
systems, particularly the coherence between particles in the superfluid phase and its loss in
the Mott-insulator phase of a lattice system. The transition between these two phases was
first realized by controlling an optical lattice potential in cold-atom systems in three [16]
and two dimensions , respectively. A similar transition can also be realized through
the coupling to an optical cavity as sketched in Fig. Driven by an external laser and
with cavity-mediated interactions, effectively two-dimensional Bose-Einstein condensates
(BECs) can self-organize into a superlattice [7]. As the drive increases, a transition between
a self-organized superfluid (SSF) phase and a self-organized Mott-insulator (SMI) phase
is observed experimentally [15,[19] and investigated theoretically [20-24]. This transition
stems from a combination of the short-range interaction due to s-wave scattering between
the atoms and the infinite-range interaction mediated by the cavity. The cavity-BEC
system can thus reproduce a quantum-optical version of the Bose-Hubbard model.

Hitherto, a direct quantitative comparison between experiment and theory on the SSF—
SMI transition has not been presented because of the enormous computational effort re-
quired, although it is crucial for future applications. For example, machine learning tech-
niques have recently been applied onto various physical systems [25-H29], including ultracold
atomic systems [30-32]. However, it requires a mass amount of data which is far from the
capability of experimental measurement. In contrary, quantitative numerical simulations
are suitable for this task due to its more precise tunability of system parameters and its
shorter time scale in data collection.
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Figure 1: Sketch of the experimental system. The atoms are first prepared as (a) a three-
dimensional BEC, and then cut into (b) two-dimensional slices by an external laser pump
along z direction. (c) Due to the pumping laser along y direction and the interplay with
the cavity, they finally self-organize into a checkerboard lattice with wavelength A, along
both x and y directions. The onset of the self-organization can be detected by leaking
photons. After the checkerboard superlattice is formed, the system can be mapped to a
Bose-Hubbard model with tunneling strenght ¢ and on-site interaction U.

In this work, we perform such a quantitative comparison, in particular of the phase di-
agram, by employing the Multiconfigurational Time-Dependent Hartree Method for Indis-
tinguishable Particles (MCTDH-X) [33H39]. This method captures the many-body effects
beyond the Gross-Pitaevskii mean-field limit, including but not limited to the coherence
between the atoms. In order to keep the computational complexity within a tractable
range, we construct a simplification scheme for the simulations by exploiting the nature of
the cavity-BEC system and the superfluid—Mott-insulator transition. This simplification
scheme nevertheless retains the many-body essence of the system to a satisfactory degree,
and quantitatively reproduces the phase boundary in agreement with the experiments in
a wide parameter range. The comparison is summarized in the phase diagram in Fig. [2

This work is organized as follows. In Sec. [2] we introduce the system as well as the
experimental setup, and we describe our experimental protocol for obtaining the experi-
mental phase diagram. In Sec. [3| we first briefly introduce MCTDH-X, and then propose
a simplification scheme, which is well adapted and specialized to the cavity-BEC system
and MCTDH-X. This simplification scheme essentially approximates the full system by
a two-dimensional four-well model. In Sec. [l we compare the experimental and simula-
tion results, and discuss the origin of the discrepancy between them. Finally, we draw
conclusions in Sec. Bl
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Figure 2: The steady-state phase diagram identifying the normal BEC phase (NP), the
self-organized superfluid phase (SSF) and the self-organized Mott-insulator phase (SMI).
It is plotted against effective cavity-pump detuning A.g and pump strength Ej, e =
vE, in units of the recoil energy FEy.., where v = 1.36 is a calibration factor between
the pump strength used in experiments and simulations. To determine the experimental
NP-SSF boundary (dark red crosses), we use the slow ramping protocol with ramping
time 7T, = 40 ms and measure the photon number leaking through one of the cavity
mirrors (background color). The boundary is then defined by a rapid increase in the
photon number. It is compared to the simulated NP-SSF boundary (black diamonds). To
determine the experimental SSF-SMI boundary (black circles), we use the fast ramping
protocol with 7. = 20 ms and measure the momentum space density. The boundary is
then defined by a rapid increase in the central peak width. It is compared to the simulated
SSF-SMI boundary (blue squares) which is obtained through our proposed simplification
scheme. The simplification scheme induces systematic errors in the predicted boundary of
roughly +0.5F.. The black and blue lines are guide to the eyes, and the gray dashed line
marks the detuning A.g used in Figs. |4 and

2 Experimental setup and measurement protocol

2.1 Cavity-BEC system and superfluid—-Mott-insulator transition

The experimental system, as sketched in Fig. |1} consists of a laser-driven Bose-Einstein
condensate (BEC) of N3p = 55,000 Rubidium-87 (87Rb) atoms dispersively coupled to
a high-finesse optical cavity with strength €};,. The atoms are magnetically trapped in
a three-dimensional harmonic potential with trapping frequencies (wg,wy,w,) = 27 X
(25.2,202.2,215.6) Hz. In the absence of external drive, the ensemble forms a Thomas-
Fermi cloud with measured radii (rg,ry,7:) = (26.8,3.3,3.1) um [Fig. [[[a)]. The three-
dimensional atomic cloud is overlapped with the fundamental mode of the high-finesse
optical cavity oriented along the x direction. The cavity resonance frequency w,. and wave
vector k. correspond to a wavelength of A\, = 803 nm and a recoil energy of Eiec =
R2k2/2mpp, = h x 27 x 3.55 kHz. The cavity has a relatively low field decay rate of
Kk = 2w x 4.45 kHz, and operates in the sub-recoil regime . The atomic cloud is then
loaded into an external optical lattice oriented along the z direction, which is given by
Eexi(2) = E, cos?(2mz/\,) with wavelength A, = 803 nm and depth E, = 12.5 Ey.. The
strong external lattice suppresses tunneling along the z direction and renders the system
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into effective two-dimensional slices spanned on the z-y plane, as illustrated in Fig. (b)

After preparing and loading the BEC into Eeyt(z), the ensemble is transversely pumped
along the y direction by a laser with effective pump strength E, and frequency w, = 27, /c,
which forms an effective standing-wave optical lattice Ey(y) = E, cos®(2my/),). We work
in the dispersive regime w;, > w, using pump light at a wavelength of A\, = 803 nm. This
is far detuned from the relevant atomic transition of 8"Rb at A\, = 795 nm. We note that
the atoms and the cavity are both red-detuned from the pump light A, = w, —w, < 0,
A =we —wp <0.

Combining all the aforementioned components of the setup, we can write down the full
many-body Hamiltonian of the cavity-BEC system [7,41.42],

2
H = / drdydz¥1 ( 27}2 + Virap + Vopt) U+ g?’TD dzdydz¥TUTO¥  (1a)

Rb
m
‘/trap = 2Rb (Wa%-r? + w§y2 + wgzz) (1b)
Vopt = —Ep cos?(koy) — E, cos?(kez)

+hUs|a|? cos? (kex) + 1/ REp|Up|(a + o) cos(kex) cos(key). (1c)

Here, U= \il(:n, y, z) is the atomic annihilation operator, mgy, = 1.44 x 1072 kg is the mass
of the 8"Rb atoms, gsp is the atom-atom contact interaction strength, and Uy = Qf] /A, =
—27 x 0.36 Hz is the single-atom light shift. The cavity field, pumping laser, and external
lattice are near resonance Ao = A\, ~ A,. A summary of the experimental parameters is
given in Appendix [A]

The cavity field is treated as coherent light and represented by its expectation value «.
It follows the equations of motion [7}41}42]

E,
O = [i(Ac— N3pUpB) — klae — i p|hUO|N3Dc9 (2a)
0 = /dzdydzp(a:, Y, z) cos(kex) cos(key) (2b)
B = /dwdydzp(w, y, z) cos® (kex), (2¢)

where p(z,y,z) = (U1W)/Nap is the spatial density distribution. Under this treatment,
the cavity field effectively imposes a one-body potential upon the atoms, as evident in
the second line of Eq. . This treatment of the cavity field is legitimate as long as the
cavity fluctuations (§a®) = (a'a) — |{a)|? are small, which is indeed the case except near
the self-organization boundary [23}43-45], which will be introduced in detail below.

The atomic many-body wave function of the steady state of the cavity-BEC system
can be obtained by solving Eqgs. and self-consistently. At large pump strength,
the atoms reduce the potential energy by self-organizing into a checkerboard lattice with
lattice spacing A\, along the x and y directions as depicted in Fig. (c), and constructively
scatter photons from the pump into the cavity [7-9./42H44]. In a steady state, the dominant
part [cos(k.x) cos(kcy)| of the cavity-induced potential has an effective depth

5 _ |2EUoNsnf(Ac — NspUoB) )
cb (Ac— NspUpB? + k2 |

This self-organization transition can be mapped to the Hepp-Lieb normal-superradiant
phase transition of the Dicke model |46-49|, and is accompanied by the spontaneous break-
ing of the Zy symmetry, which is reflected by the sign of 6. A positive (negative) 6 corre-
sponds to an even (odd) lattice configuration.
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Deep in the self-organized phase, the atoms progressively localize on the checkerboard
lattice sites as the pump strength increases and the induced optical potential deepens.
Coherence between atoms at different lattice sites gradually decays, leading to a second
transition from the SSF phase to the SMI phase [1523,24]. During this transition, cavity
fluctuations are indeed minimal [23,43-45|, validating our mean-field treatment of the
cavity field. The SSF and SMI phases behave similar to the superfluid and Mott-insulator
phases, respectively, of the usual Bose-Hubbard model

Hpy = —t Z (b;rbj + b}bz-) + (2]2 bzbjbibi, (4)

(4,9) v

where b; is the annihilation operator for bosonic atoms at the i-th lattice site, ¢ is the tunnel-
ing strength, U is the on-site interaction, and (i, j) indicates the summation is over nearest
neighbors. In this model, a superfluid is characterized by a fluctuating particle number per
site and phase coherence of the whole ensemble due to large tunneling between different
lattice sites. On the contrary, in a Mott-insulator, phase coherence is lost, the particle
fluctuations vanish and the number of atoms per lattice site is fixed due to the suppressed
tunneling. The differences between the two phases lead to distinct behaviors in various
quantities, including the variance of on-site atom number Var = <(b;rbi)2> — <b;-rbi)2 [50,51]
and the momentum space density distribution [15-18}[2224,52H56]

pk) = (U1 () ¥ (k). (5)

Since the former quantity is hard to measure experimentally, we choose p(k) as our main
quantity of interest for defining the phase boundary. As the system enters the Mott-
insulator phase from the superfluid phase, a significant increase in the full width at half
maximum (FWHM) W of the central peak in the momentum space density distribution can
be observed [15-18}[23//24,52-54] accompanying the loss of phase coherence. The transition
between the two phases is thus smooth and has only weak criticality. For a d-dimensional
system, it is in the same universality class as a (d 4+ 1)-dimensional XY model [57].

In the cavity-BEC system, the total number of atoms enters the equation of motion
Eq. and effectively modifies the cavity detuning. Meanwhile, the number of atoms per
site, equivalent to the filling factor in the Bose-Hubbard model, is an important ingredient
in determining the SSF-SMI boundary [17,52,58-60]. Therefore, a quantitative comparison
between experiment and theory necessitates an estimate to the number of atoms in each
two-dimensional slice as well as at each lattice site near the center of the harmonic trap.
For simplicity, we assume a uniform distribution of the atoms in the central cuboid of the
three-dimensional harmonic trap, such that z/r;, y/r, and z/r, are all within the interval
[—1/2,1/2]. In this region, since the two-dimensional slices are A./2 apart from each other
along the z direction, there are 2r,/\, ~ 8 slices in total and each slice contains roughly
Nop = 6,900 atoms. Once the system enters the self-organized phase, the atoms in each
slice will further form a superlattice with two lattice sites per area of A\2. There are thus
2ryry /A2 = 275 lattice sites in the considered rectangle on each slice, and each of the
lattices contains v ~ 25 atoms.

2.2 Measurement protocol

The comparison between the experimental and simulated phase diagrams involves both
the NP-SSF and the SSF-SMI boundaries for the steady state. In experiments, we fix the
effective detunings

1
A = Ap — §N3DU0 (6)
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while ramping up the pump strength linearly from zero to Ej exp = 14.5E¢. within a time
T.. There is a trade-off when choosing an appropriate ramping time, and we choose two
different ramping times for the measurement of different observable to best approximate
the steady-state phase boundaries.

In the vicinity of the NP-SSF boundary, the photonic behavior is dominating in the
system due to significant cavity fluctuations. As the cavity decay rate is relatively small in
comparison to the effective detuning x < |Aeg|, the cavity field experiences a retardation
effect when crossing the steady-state NP-SSF boundary [9]. As a result, the dynamical NP—
SSF boundary depends on the ramping time, and converges to the steady-state boundary
with long T.. With a ramping time of 7T, = 40 ms, the hysteresis area is negligibly small
and the steady-state boundary can be well approximated [|9]. During the linear ramping of
the pump strength, we record along the way the intracavity photon number N}, leaking
through one of the cavity mirrors using a single photon counting module (SPCM). This
is plotted in logarithmic scale in Fig. We then subtract the dark count offset from
the measured signal and determine the phase boundary according to the threshold of the
measured photon number Ny, =~ 300. The measured NP-SSF boundary will later be
compared to the simulated one as a calibration.

On the other hand, deep inside the self-organized phase, the cavity fluctuations vanish
and atomic behavior becomes dominant. In this region, atom loss becomes a key factor. A
decrease in the atom number effectively increases |Aqg| when both A, and Uy are negative
[cf. Eq. @], and it generally indicates that a higher pump strength £, is required to achieve
the same lattice depth [cf. Eq. (B)]. Therefore, all phase boundaries are shifted towards
higher pump strength when atom loss occurs. Since a longer ramping time implies a larger
atom loss and hence a larger shift in the boundary, a fast ramp with 7. = 20 ms is thus
preferred for the measurement of the steady-state SSF-SMI boundary. This boundary
is extracted from the momentum space density distribution p(k) [15,|16}|18}21,123]. To
measure the momentum distribution we repeat the experiment several times where we
stop at a certain pump strength for ballistic expansion of the sample. After switching
off all the trapping potentials and a 25 ms long time of flight, we detect the momentum
distribution using single-shot absorption images. Thereafter, we can extract the width of
the central peak from the distribution, and mark the SSF-SMI boundary at the pump
strength where the width starts to increase. The measured SSF-SMI boundary is marked
as the black line with circles in the phase diagram Fig. 2] We note that with the fast
ramping protocol T, = 20 ms, the measured dynamical NP-SSF is indeed significantly
shifted towards larger pump strengths when compared to the slow ramping protocol (see
Appendix .

Caution needs to be taken when analyzing the experimental measurements. The exper-
imentally calibrated pump strength FE, ¢y, is different from the pump strength E, entering
the Hamiltonian. In experiments, the pump laser is not strictly monochromatic. On the
one hand, the pump strength is calibrated by measuring the energy difference between the
first and the third Bloch band at zero quasi-momentum. This is done by an active modu-
lation of the lattice depth and measuring the resonance frequency for parametric heating
of the BEC [61}/62]. Such measurement considers effects from electromagnetic waves of all
frequencies. On the other hand, only the component with frequency w,, can scatter into
the cavity and contribute to the effective cavity-induced potential of the atoms and thus
the self-organization. As a result, the effective pump strength F), entering Egs. and
is different from the experimental one F), ¢y, obtained directly through calibration in
experiments. These two pump strengths are related through a calibration factor

Y= Epexp/Ep > 1 (7)

which is not measurable through experiments without applying significant hardware changes
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to the system. To determine the factor «, we need to compare the experimental and sim-
ulated phase diagrams, and require that they coincide with each other. This comparison
will be performed in Sec. after obtaining the simulated NP-SSF boundary.

3 Simulation Methodology

3.1 Numerical method

We use the approach Multiconfigurational Time-Dependent Hartree Method for Indistin-
guishable Particles (MCTDH-X) to simulate the steady state of the system and extract the
observables of interest [3339], like the momentum space density distribution and the cavity
field expectation value. MCTDH-X is able to solve problems beyond the Gross-Pitaevskii
mean-field limit, and capture the correlations between atoms as well as quantum fluctua-
tions in the many-body states. The method relies on a variational ansatz for the many-
body state, which is a symmetrized product of multiple optimized functions, or orbitals.
The number of orbitals M controls the simulation accuracy. Ideally, the exact solution
of the numerical problem is found when an infinite number of orbitals is used [35}36,63].
MCTDH-X has been successfully applied for investigating the static and dynamic behav-
iors of Bose-Hubbard systems [22}23,|64,/65]. A more detailed description of the method
can be found in Appendix [C]

The number of orbitals used in a simulation depends on the nature of the quantum
state of interest. For example, the formation of the cavity-induced potential and thereby
the self-organization of the atoms can well be observed in the mean-field limit with M =1
orbital [23,34,/66]. In contrast, to correctly describe a Mott-insulator state, the number
of orbitals should be at least as large as the number of lattice sites [22}[23,39,63,/67].
Since the required computational resources scale as (N _AA/;[H) [35], given the currently
available processors, it is computationally unfeasible to simulate with MCTDH-X the full
experimental cavity-BEC system, which consists of 55,000 atoms and thousands of lattice
sites in three dimensions. Therefore, we need to simplify the problem and reduce the
number of orbitals and particles needed for the numerical model. We will now elaborate
on the methodology for choosing this simplification.

3.2 Reduction of system dimensionality and rescaling of the contact
interaction strength

The computational complexity can be significantly reduced by lowering the system dimen-
sionality. We argue that the system can be well represented by a two-dimensional model,
and determine the effective atom-atom interaction strength in this model.

In experiments, the system is divided into two-dimensional slices by the deep external
optical lattice. The hopping between two slices is vanishingly small, and thus the slices are
independent from each other on the atomic level [cf. Eq. (I)]. On the other hand, atoms
from all slices collectively contribute to the cavity field, and therefore they are strongly
coupled to each other through the cavity [cf. Eq. ] In order to represent the full system
by one two-dimensional slice, we propose to decouple the slices by simulating Egs. and
with Nop atoms at z = 0, and using the scaling of parameters [42]

- N. | N
UOHUO:UOT;?’ o — NizD (8)

Under this scaling, the equations of motion for the cavity field [Eq. (2)] as well as the
cavity-induced potential Vopy [Eqg. (1)] remain invariant for a fixed atomic density profile.
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We thus expect that the atomic many-body wave function of the two-dimensional system
obtained from Eq. approximately reproduces the wave function of the original system
at z =0,

[Wop(z,9)) = |¥sp (2, y,2 = 0)). (9)

This approach requires a knowledge of the effective contact interaction in the two-
dimensional slice. This parameter is crucial to the formation of Mott insulation. The
strength gop is estimated according to the harmonic trapping frequencies and the corre-
sponding Thomas-Fermi radii |68],

TMRb 7"30.)336

Nopgop = (10)

4 Wy ’
which yields gop ~ 0.34A2/mgy, for Nop = 6,900, as explained in detail in Appendix @

With the effective single slice, we can simulate the physics of the realistic experimental
system using MCTDH-X at different pump lattice depths E), and effective detunings A.g
in simulations, and as the first observable we choose the cavity field strength. The forma-
tion of the density wave and the accompanying macroscopic activation of the cavity field
can already be captured with sufficient precision by using M = 1 orbital in the mean-field
limit. We therefore use the notation anp(Ep, Aeg) for the simulated cavity field strength.
The simulated ayr can be used to determine the NP-SSF boundary, which is drawn where
loarr|? ~ 0.1. Although this choice of threshold is different from the experimental one, it
should not induce substantial difference due to the rapid increase of photon number across
the boundary. Both criteria are chosen based on the analytically expected boundary and
the respective limitations in experiments and simulations. With the simulation results, the
calibration factor v [cf. Eq. ] for the experimental pump strength can now be calculated
to be v = 1.36. This is determined by requiring that the measured NP-SSF boundary
and the simulated one, which are fitted as Aeg /27 = (—8.536 £ exp/ Erec + 6.305) kHz and
Aegr/2m = (—11.616E},/ Erec + 5.834) kHz respectively, have the same slope as functions
of pump strengths. The experimental and simulated NP-SSF boundaries indeed collapse
upon each other when this calibration factor is taken into account (cf. Fig. [2). We em-
phasize that once the effective contact interaction strength gop and the calibration factor
~ are determined, there is no more free parameter in the simulation when compared to the
experimental system.

3.3 Four-well model

We now proceed to simulate the SSF-SMI transition. A proper description of this transition
requires at least one orbital for each lattice site. Given the large number of atoms and lattice
sites, it is impractical to simulate the quantum state of the full two-dimensional system,
and thus further simplification of the model is needed. Since the SSF-SMI transition
is mainly driven by the competition between on-site interaction and hopping between
nearest-neighboring sites, the loss of superfluidity of the whole system should already
be quantitatively captured by a local representation. A minimal choice for such a local
representation is a unit cell consisting of four lattice sites in the center of the harmonic
trap, which is shown in Fig. [3|(b).
This four-well potential can be described by the Hamiltonian

2
Hiwell = / drdy ¥ (p + wwen) U+ 22 [ dpdy U tang, (11)
QmRb 2
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Figure 3: A comparison between (a) the cavity-induced lattice potential Vopi(z = 0)
[Eq. (I))] and (b) the four-well potential Viwen [Eq. (12)]. Each of the four wells faithfully
reproduces the lattice sites of the lattice.

where a tight non-harmonic confining potential is applied on top of the optical lattice
‘/4well = ‘N/opt + ‘/conf- (12&)

The ideal confining potential should be relatively flat in the center of the system z? + 3% <
A2, but form a rapidly increasing wall surrounding the four wells at 22 + 32 > A\2. This
can be achieved by using an algebraic function of x? 4 »? with high power. For example,
the following confining potential is chosen for our simulation:

Vconf(wv y) = 13Erec(x2 + y2)4//\§‘ (12b)

We note that this is not the unique choice for the confining potential, and simulated SSF—
SMI boundary should not be sensitive to the choice (see Appendix [El).

However, a straightforward implementation of the tight confining potential can easily
distort the underlying optical lattice, because the equations of motion [Egs. , ] are
solved self-consistently and the solution can be very sensitive to slight changes of param-
eters, especially near the self-organization boundary. We thus make use of the previously
simulated expectation value of the cavity field anmp(Ep, Aegr) to determine the depths of
the cavity-induced potential, i.e., Up|anr|? and 2/RE,UgRe(anr), which is equivalent to
using

Vopt(l'ay) = V;)pt(xay> z2=0,a= aMF,odd)' (12C)

The Zy symmetry of the cavity-BEC system corresponds to two energetically degenerate
states, which are distinguishable by a 7 phase shift of the intracavity field onr even =
—QMF,odd.- Here we explicitly choose the one corresponding to the odd configuration,
whose lattice sites are located at desired positions (0,+£A./2) and (+\./2,0). The four-
well potential is compared to the original lattice in Fig. [3] Indeed, the shape of each of
the four wells precisely recreates the shape of the each lattice site of the original optical
lattice.

With four sites in total and each containing v ~ 25 atoms, we perform the simulations
with N = 100 atoms and M = 4 orbitals subject to one-body potential Vjywen and contact
interaction with strength gop = 0.34h%/mgy,. In terms of the quantities related to the
SSF-SMI transition, for example the momentum space density distribution and the one-
body correlation function between neighboring sites, the four-well model Eq. should
produce the same result as the full three-dimensional experimental setup from Eqgs. and
. A summary of the simulation approaches and parameters is given in Appendix

MCTDH-X generates a numerically highly accurate many-body wave function for the
four-well system. The representation of the full effective optical lattice by our four-well

10
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model is a crucial non-trivial simplfication; the validity of this simplification is based on
the nature of the SSF-SMI phase transition and the geometry of the system. The finite
size effect of this minimal representation for the full lattice system provides the main
source of systematic errors in the simplification scheme. More specifically, the transition
point of a Bose-Hubbard model is subject to finite size effect, and is increased by tens of
percents in terms of the ratio t/U compared to the thermodynamic limit [50,51]. However,
in a cavity-BEC system, the ratio ¢/U decreases exponentially as the pump strength E,
increases [23|. As a result, the shift of the SSF-SMI boundary due to finite size effect in
terms of E, is negligible. As a confirmation, we compare the phase boundary obtained
for different numbers of lattice sites in Appendix [E] The simulated boundaries show a

systematic variance of roughly 0.5F;¢., and the result has indeed already converged with
the four-well model.

4 Results
State 1 State 2 State 3 State 4 State 5 State 6
Ep,exp=VEp =0.29Erec  Ep exp =VEp=7.54Erec  Ep exp =VEp =8.70Erec  Ep,exp = VEp = 9.86Erec  Ep,exp = VEp = 10.44Erec  Ep exp = YEp = 12.18E ec
1S 7 e
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X ]
g
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.
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£o ® ®
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g
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Position X/A¢ Position X/A¢ Position X/A¢ Position X/A¢ Position X/A¢ Position X/A¢

Figure 4: (a-f) Experimentally measured and (g-1) simulated momentum space density
distributions p(ks, ky), and (m-r) simulated real space density distributions p(z,y) of six
different parameter sets. The chosen states range from normal BEC state to SSF states
to SMI states. They are simulated or measured at A.g = —27 x 30 kHz and different

pump strengths E,. These pump strengths correspond respectively to the points 1 to 6 as
indicated in Fig. [5|(b).

The momentum space density distribution (k) measured from experiments and calcu-
lated from simulations can be used to extract the SSF—SMI phase boundary. The obtained
phase diagram of the cavity-BEC system against pump strength F, and effective detun-
ing Aeg is shown in Fig. It serves as a map to identify the three different phases of
matter, NP, SSF, and SMI, which are realized in both experiments and simulations. To
illustrate the system behavior in the three different phases, we choose a series of states
at Aeg = —27 x 30 kHz, and show their simulated and experimentally measured density
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Figure 5: Cavity field magnitude |a|?, intracavity photon number Npp, and the relative
width of the central Bragg peak W as a function of pump strength E, o, = 7E, at fixed
detuning Aeg = —27 x 30 kHz. The relative width of the central Bragg peak for the BEC is
set to be W = 1. As the pump strength increases, the system transitions through all three
phases, i.e., NP, SSF, and SMI. Panel (a) shows simulation results for |a|? (blue squares)
and W (red circles) of the steady states. Panel (b) shows experimental measurement of
Ny, for the T, = 40 ms ramping protocol (blue squares), as well as Ny, (blue crosses) and
W (red circles) for the T, = 20 ms ramping protocol. We note that a background radiation
of Npi ~ 2.7 x 10* is recorded as soon as the laser pump is switched on. The numbers
indicate the representative points whose simulated and measured density distributions are
shown in Fig. [4

distributions in Fig. [ The numbering (1 to 6) of the quantum states in Fig. [4] refers to
the different pump strengths indicated in Fig. (b)

As a BEC in the normal phase, the atomic density distribution form a Thomas-Fermi
cloud in the real space |Fig. (m)] and correspondingly a single blob in the momentum space
[Fig. [(a,g)]. This can be observed both in experiments and simulations. The momentum
space distribution has an elliptical shape in experiments but a circular shape in simulation.
This is because the harmonic trap is anisotropic in the experimental setup w, # w,, while
the confining potential in simulations [Eq. ] is isotropic in the x and y directions.

In both experiments and simulations, the momentum space density distribution p(k)
in the SSF and SMI phases is completely different. It provides a way to track the phase
boundary. A typical SSF state is represented by “State 2”, whose measured and simulated
momentum space densities are shown in Figs. [f{b) and [#(h), respectively. In the SSF
phase, the central Bragg peak at (px,py) = (0,0) is high and narrow and the satellite
peaks are clearly visible. The four Bragg peaks at (px,py) = (+hk., £hk.) are the next
dominant peaks and they indicate a strong coherence between atoms in the immediately
neighboring sites of the checkerboard lattice, which are (£A./2,£\./2) apart from each
other. On top of these strong peaks, small peaks are seen at (py,py) = (0,£2k;) and
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barely visible at (py,py) = (£2k¢, 0), which correspond to the optical pump lattice and the
intracavity lattice, respectively. In contrast, “State 6” is a good representative of the SMI
phase, whose measured and simulated momentum space densities are shown in Figs. (f)
and (1), respectively. In the SMI phase, the central peak becomes broad and low, and
the satellite peaks become diffuse. They indicate the strong localization of the atoms in
the individual lattice sites and the lack of coherence between the atoms |15H18}22-24} 52
56). For comparison, the corresponding simulated real space density distributions p(x)
for the chosen states are also shown in Fig. [f{m-r). These images are not available from
our experimental setup because the resolution of the absorption imaging system in the
experiment is not good enough to resolve the individual lattice sites. The localization and
loss of coherence of the atoms accompanying the increasing pump strength does not trigger
qualitative change in the real space density distribution.

For different pump strengths at the fixed detuning A.g = —27 x 30 kHz, we summa-
rize the simulated cavity field magnitude |a|?, the measured intracavity photon number
Nph, as well as the simulated and measured relative widths W of the central Bragg peak in
Fig.[f] As further discussed in Appendix[B} Npy clearly manifests the retardation effect for
the NP-SSF transition for the faster ramping protocol. Meanwhile, the NP-SSF bound-
ary measured from the slower protocol is close to the simulated steady-state boundary.
There is roughly an order of magnitude difference between the experimentally measured
N |Fig. (b)] and the simulated |a|? [Fig. (a)], which is consistent with the scaling
presented in Eq. . On the other hand, the relative width W is almost insensitive to the
self-organization, but increases drastically as soon as Mott insulation kicks in. The rela-
tive width has seemingly a larger increase in experiments when compared to simulations.
We attribute this to the initial BEC cloud that has different shapes in experiments and
simulations due to the different confining potentials.

The boundary between the SSF and SMI phases is defined by the onset of the broad-
ening of the central Bragg peak in the momentum distribution. This criterion is used both
in simulation and experiment. More specifically, for the experimental data, we fit a line,
shown as the red solid line in Fig. [5b), using the first five data points after W starts to
increase. The crossing with the initial width, i.e., the horizontal red dashed line, marks
the SSF to SMI phase boundary. The obtained experimental and simulated SSF-SMI
boundaries are shown in Fig. [2| as black and blue lines, respectively. The two boundaries
agree well with each other at large negative detunings |Acg| > 27 x 30 kHz, but deviate
at small detunings. This discrepancy is mainly due to the dynamical retardation effects
as discussed in Sec. 2.2] and Appendix [B] whose simulation requires a prohibitatively large
amount of computational resources. Nevertheless, our results show that the experimental
and simulation results are generally in good agreement.

5 Conclusions and Discussion

We have used MCTDH-X to quantitatively determine the SSF-SMI boundary of a recoil
resolved cavity-BEC system. This is the first time that MCTDH-X simulation results are
directly compared quantitatively to experimental results for a cavity-BEC system, and the
comparison is non-trivial due to limitation in computational resources. In contrast to the
significant dynamical effects at play and a relatively large size of superlattice, our two-
dimensional simulations are limited to steady states and a small number of superlattice
sites. These computational difficulties can be judiciously circumvented by choosing differ-
ent ramping rates for the measurement of different quantities on the experimental side, as
well as simplifying the full lattice to a minimal four-well representation in the simulation.
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The systematic errors of our proposed approach mainly stem from the small size of the
lattice system used in simulations, and are small when expressed in terms of the pump rate.
We have thereby established MCTDH-X a feasible numerical method for the quantitative
calculation of the superfluid-Mott-insulator boundary in an ultracold atomic system which
forms a superlattice with a large number of atoms per site.

It is also worthwhile to perform a comparison between our approach and other exist-
ing approaches for the purpose of determining the SSF—SMI boundary. The alternative
approaches are usually based on the mapping to the Bose-Hubbard model. Given the effec-
tive optical lattice potential, the Wannier functions can be estimated by different numerical
methods, many of which are available for quantum optical systems [69-72]. The Wannier
functions then allow the extraction of the Bose-Hubbard parameters ¢t and U [cf. Eq. ],
which can be further used to determine the superfluid—-Mott-insulator boundary. The last
step can be performed by utilizing an empirical formula [58]. This approach no longer
suffers from the finite size effect in comparison to our proposed simplification scheme.
Nevertheless, when calculating the Wannier functions, single-particle wave functions are
usually considered, and a broadening of Wannier function due to on-site interaction is
generally not taken into account [73},74]. This could result in an underestimation in the
Bose-Hubbard ratio ¢t /U, and give rise to a different kind of systematic errors in comparison
to our proposed MCTDH-X scheme.
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A Summary of methods and parameters

The methods and parameters used in the experiments and simulations are summarized in

Table [

B Experimental phase diagram with fast ramping protocol

For a complementary comparison between the slow and fast ramping protocols in experi-
ments, we show in Fig. [6] the phase diagram for the fast ramping protocol with 7, = 20 ms.
Compared to the steady-state phase diagram shown in Fig. [2| of the main text, the dynam-
ical NP-SSF boundary for the fast protocol is indeed apparently shifted to higher pump
strength due to retardation effect during the self-organization process. Importantly, at
small detunings Ae.g = —12.5 kHz and —17.5 kHz, the onset of the self-organization in
experiments takes place later than the loss of superfluidity predicted by the simulations.
As discussed in the main text, this accounts for the discrepancy between the simulated
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Table 1: Summary of the experimental and computational methods and parameters. Here

ap is the Bohr radius.
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Effective detuning A.g/27 (kHz)

Pump strength E, o, = YE, (Frec)

Figure 6: Experimental phase diagram for the fast ramping protocol with ramping time
T, = 20 ms. The photon number is shown as color scale in the background, and the NP—
SSF boundary is shown as dark red crosses. The SSF-SMI boundary is shown as black
circles. For comparison, the simulated SSF-SMI boundaries is shown by the blue squares.
The experimental and simulation data for the SSF-SMI boundary are also used for the
steady-state phase diagram in Fig. [2] of the main text.

C Multiconfigurational time-dependent Hartree method

The Multiconfigurational Time-Dependent Hartree Method for Indistinguishable Parti-
cles ,, is implemented in the MCTDH-X software [37], and can accurately
simulate cavity-BEC systems. We consider a general Hamiltonian containing a one-body
potential V' (x) and a two-body interaction W (x,x’):

H = / dx¥t(x { V(x)} U(x) + % / dx Ut (x) 0T (x )W (x, x) ¥ (x)P(x), (13)
With the MCTDH-X approach, the many-body wave function follows the ansatz

M ot g
— zn:Cn(t) 11 [%] vac), (14)

k=1

where N is the number of atoms, M is the number of single-particle wave functions (or-
bitals) and n = (n1,ng, ..., nys) gives the number of atoms in each orbital, i.e. 22/121 ny =
N. The time-dependent operator b;r~C creates one atom in the i-th orbital ;(z)

[ it sty (15)

The time-evolution of the coefficients Cy(t) and the orbitals ¢;(x; t) are obtained using the
time-dependent variational principle |76] .

D Calculation of the effective two-dimensional atomic con-
tact interaction strength

The atomic contact interaction strength in the two-dimensional system is calculated based
on the Thomas-Fermi approximation. By assuming a strong interaction and comparatively
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vanishing kinetic energy, the Gross-Pitaevskii equation for the Thomas-Fermi cloud can be
written as

EO(b(xv y) = ‘/trap(xa y)(b(l', y) + Ng?D‘¢(xa y)‘2¢($, y)? (16)

where ¢(z,y) is the single-particle wave function, Fy is the energy of the system to be
determined, IV is the atom number, Viap = %(w%xz + wgyz) is the harmonic trap, gop is
the effective two-dimensional interaction strength which we want to calculate. The atomic
density profile p(z,y) = |¢(z, y)|? thus follows:

m 2 2

and vanishes at p(ry,0) = p(0,ry) = 0, with the Thomas-Fermi radii

2EoN gap
m

Wely = WyTy = To. (18)

The normalization of the density distribution requires [, dzdyp(z,y) = 1 where the
integration region Q = {x,y|p(z,y) > 0} = {z,y|lwir? + w§y2 < 73} is an ellipse. This
solves the system energy:

MUz Wy
Ey=,———=. 19
o=y (19)
Combining the equations above, the two-dimensional interaction strength is
4,3 4,3
mr mr,w
Ngop = “nlafe - TR W5y, (20)

4wy _Tww

E Effects induced by the confining potential and the size of
the reduced lattice

In Sec. [3:3] we have argued that, for the purpose of determining the SSF-SMI boundary in
terms of F,, it is enough to use the unit cell with four sites to represent the full lattice. This
is because size effect only slightly affects the transition point in terms of the Bose-Hubbard
parameter ratio ¢t/U, which in turn has an exponential dependence on the pump strength
E,. Furthermore, we have argued that the simulated boundary is almost insensitive to
the confining potential V.o,r, which we use to impose the boundary condition for the small
lattice cell. In this Appendix we confirm these arguments by performing simulations with
a different number of lattice sites and different confining potentials, and the results are
summarized in Fig. [

We reproduce the simulations in Sec. [3.3] with confining potentials different from the
one presented in Eq. . The confining potentials we use for Fig. [7| share the form

Vconf(xa y) = Elconf(x2 + y2)8/)‘<1:6' (21)

For a fixed effective detuning Aeg = —27 x 30 kHz and varying pump strength E,, we
use different confining potential strengths Egon¢ on top of the optical lattice Vopi(z,y),
and choose the configuration parity of the lattice according to our need. The following
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Figure 7: (a-d) Exemplary real-space density distributions of (a) the four-well system
described by Eq. in Sec. (b) an alternative realization of the four-well system,
(c) a five-well system, and (d) a nine-well system. (e) The width W of the central peak in
the momentum space as a function of the pump strength E, in these four systems.

combinations of confining potential strengths and lattice configuration parities are chosen:

Econf,4we11(ii) = 20Frec, odd lattice (22&)
Econf,5we11 = 10FE;ec, even lattice (22b)
Econf,9well = 0.01 Erec, even lattice. (22(;)

These combinations respectively produce an alternative realization of the four-well system,
a five-well system, and a nine-well system. Their exemplary real-space density distributions
are shown in Fig. [7|(a-d).

In order to make the computational effort feasible and the simulation results compa-
rable, we impose a filling factor of v = 1 for all the four cases. As a result, the number
of atoms N and the number of orbitals M are both equal to the number of wells in the
simulations. We summarize the width W of the central peak in the momentum space for
different confining potentials in Fig. [7|(e).

In the SSF phase, the width W is sensitive to the confining potential, and similar effects
has been seen in Fig. [f]in the main text. This sensitivity contributes to a slight variance in
the predicted SSF-SMI boundary for different confining potentials. Nevertheless, in all the
four scenarios that we investigate in this Appendix, the SSF-SMI boundary is predicted to
take place at roughly the same pump strength, with a variance of roughly 0.5FE} ... We can
thus confirm that, for the determination of the SSF-SMI boundary in terms of the pump
strength, a small system with four lattice sites is enough and the sensitivity on the form
of the confining potential is small. We note that now the SSF-SMI transition takes place
at a smaller pump strength than the results in Fig. (a) because of the low filling factor.
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