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Abstract

Entanglement renormalization is a unitary real-space renormalization scheme.
The corresponding quantum circuits or tensor networks are known as MERA,
and they are particularly well-suited to describing quantum systems at critical-
ity. In this work we show how to construct Gaussian bosonic quantum circuits
that implement entanglement renormalization for ground states of arbitrary
free bosonic chains. The construction is based on wavelet theory, and the dis-
persion relation of the Hamiltonian is translated into a filter design problem.
We give a general algorithm that approximately solves this design problem
and prove an approximation result that relates the properties of the filters to
the accuracy of the corresponding quantum circuits. Finally, we explain how
the continuum limit (a free bosonic quantum field) emerges naturally from the
wavelet construction.
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1 Introduction

An important task in the study of quantum many-body systems is finding useful parame-
terizations of physically relevant quantum states. One successful approach is to consider
so-called tensor network states, which are defined by contractions of local tensors according
to a network or graph structure. This gives a natural way to prescribe the entanglement
structure of the state, while retaining the ability to describe interesting states such as
low energy states of local Hamiltonians. See [1–4] for reviews of tensor network states.
Tensor networks are particularly useful to implement real-space renormalization methods
for strongly interacting quantum many-body systems. In one spatial dimension, prominent
examples are the density matrix renormalization group [5], with the associated tensor net-
work class of matrix product states (MPS) [6] and entanglement renormalization [7], with
the corresponding multiscale entanglement renormalization ansatz (MERA) states [7, 8].
Entanglement renormalization implements a real-space renormalization by a local unitary
transformation, decomposing a state into a product state and the renormalized state. By
applying many such layers one can build a highly entangled state from product states.
Scale-invariant MERA states are a good variational class for approximating ground states
of critical quantum chains and one can extract the conformal data of the continuum limit
conformal field theory of the system from the entanglement renormalization superopera-
tor [9]. If the entanglement renormalization unitaries are implemented by low-depth local
quantum circuits we will call this an entanglement renormalization circuit – see Fig. 1 for
an illustration. This class of states can be prepared efficiently on a quantum computer,
which makes them a promising ansatz class for variational optimization on a quantum
computer. This latter perspective was introduced in [10], where the corresponding class was
called DMERA. The contraction cost using known classical contraction algorithms of such
DMERA states increases exponentially with the depth of the quantum circuit, compared
to which the contraction of these states is exponentially faster on a quantum computer.
Another appealing property of entanglement renormalization circuits is that they are ro-
bust to small errors, which makes them interesting candidates for noisy intermediate-scale
quantum (NISQ) devices [10, 11]. Entanglement renormalization circuits are appealing
as their depth is logarithmic in the system size, and the circuit depth of a single layer
typically scales polylogarithmically in the desired error, and they apply to gapless systems.
See [12,13] for some other applications of tensor networks for quantum computing.

Unfortunately our analytic understanding of MERA in general and DMERA in particular
is still limited (as compared to for instance MPS). One direction in which progress to analytic
understanding has been made is in connection to wavelets. Wavelet transforms decompose
a signal as a linear combination of localized wave packets or ‘wavelets’ at different scales
(as compared to the Fourier transform, which uses plane waves). This can be implemented
iteratively: In each step the signal is decomposed into a high-frequency component (the
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Figure 1: The structure of an entanglement renormalization circuit. Each layer is a constant
depth quantum circuit that is supposed to implement a real-space renormalization. Every
layer takes as input the output of the previous layer and a product state, resulting in an
entangled quantum state at the bottom. Layers further up in the figure correspond to
structure at larger scales.

‘details’ of the signal) and a low-frequency component (the ‘large scale structure’ of the
signal). The wavelet transform then proceeds iteratively on the low-frequency component
of the signal. Wavelet theory has many and wide-ranging applications, from practical signal
processing applications such as image compression [14] to mathematical analysis [15]. The
procedure of the wavelet transform is very similar to real-space renormalization, and its
original development was partially motivated by applications in real-space renormalization.

Recently it has been observed [16–18] that any finite wavelet transform can be written
as a classical linear circuit whose fermionic second quantization gives rise to a free fermionic
(D)MERA. Moreover, the continuum limit can be precisely related to the corresponding
wavelet functions [19]. In [16] it was suggested that a similar result could also be true
for free bosonic systems. In order to formulate what this entails, we will work with
bosonic quantum circuits. This means that we have a set of bosonic modes, and a bosonic
quantum circuit will be a sequence of operations acting locally on these bosonic modes.
We restrict to the subclass of Gaussian or linear optics circuits, meaning that each local
operation is implemented by time evolution with a quadratic Hamiltonian. This is an
efficiently simulable subclass of all bosonic quantum circuits (upon adding non-Gaussian
bosonic quantum gates, however, bosonic quantum circuits are able of universal quantum
computation [20]). In contrast to more usual notions of quantum circuits and tensor
networks, the Hilbert spaces are infinite dimensional. In particular, the usual definition
of a tensor network with a finite bond dimension has no immediate analogue. However,
finite-depth quantum circuits such as entanglement renormalization circuits of the form of
Fig. 1 are still meaningful even in this infinite-dimensional bosonic setup. The notion of
Gaussian bosonic entanglement renormalization has been introduced and studied in [21],
in which an extensive explanation of the formalism can be found.

1.1 Main results

In this work we show that one can indeed construct a Gaussian bosonic entanglement
renormalization scheme for bosonic quadratic one-dimensional Hamiltonians, using the
second quantization of biorthogonal wavelet filters or perfect reconstruction filters. This
extends the wavelet-MERA correspondence substantially. The resulting entanglement
renormalization takes the form of a short-depth Gaussian bosonic circuit, providing evidence
for the relevance of entanglement renormalization circuits for preparing ground states
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of (near) critical quantum systems. Moreover we can relate, similar as in the fermionic
case [17], properties of the biorthogonal wavelet transform to the resulting MERA state,
and we prove a rigorous approximation theorem for the correlation functions of the MERA
state. Interestingly, our formalism is not restricted to the scale-invariant case, but can be
used to construct entanglement renormalization circuits for arbitrary translation invariant
quadratic bosonic Hamiltonians. Given such a Hamiltonian, we explain how a corresponding
(approximate) entanglement renormalization circuit can be found by solving a filter design
problem. We also give a general method for constructing such filters, similar to the
construction of the Daubechies wavelets. This is in contrast to the fermionic case, where
the only known constructions are for massless (critical) fermions [16, 17]. Finally, the
continuum limit of the discrete system is directly related to the biorthogonal scaling and
wavelet functions corresponding to the filters. For the free massless boson our construction
reproduces various scaling dimensions exactly. If the system is not scale-invariant, we
explain how one can still define versions of the wavelet and scaling functions which are not
scale-invariant.

A natural application of a quantum computer based on bosonic variables [20] is to
simulate bosonic quantum field theories [22], and wavelets are a very efficient choice of
basis to discretize a quantum field theory for this purpose [23]. We explain that for any free
1+1-dimensional bosonic field theory, one can use suitably chosen biorthogonal wavelets
to discretize the theory and use the corresponding wavelet decomposition to prepare its
(approximate) ground state using the bosonic Gaussian entanglement renormalization
circuit. The idea to use wavelets to discretize a field theory is quite natural, see for
instance [23–25] for some recent discussions of discretizing bosonic field theories using
wavelets. Our approach however fundamentally differs from these works in that we use
biorthogonal wavelets (as is natural in the bosonic setting), which moreover are specifically
designed to target the Hamiltonian of the field theory (rather than using off-the-shelf
wavelets such as the Daubechies wavelets). We hope that our investigations can provide a
potential starting point for the efficient simulation of interacting quantum field theories on
quantum computers.

1.2 Organization of the paper

In Section 2 we give a brief review of biorthogonal filters and wavelet theory. In Section 3
we briefly review the formalism of quadratic bosonic Hamiltonians and Gaussian unitaries.
We then explain the relation between entanglement renormalization and biorthogonal
wavelet filters. In particular, in Section 3.1 we derive a relation the filters have to satisfy
to disentangle the ground state of a given Hamiltonian. In Section 4 we explain how
this gives rise to a circuit, and we state Section 4 which proves bounds on the accuracy
of the approximation. Finally, in Section 5 we introduce continuous wavelet functions,
and show that this gives a natural interpretation of entanglement renormalization in the
corresponding quantum field theory. In the appendices we provide a review of the fermionic
MERA/wavelet correspondence in Appendix A, an algorithm for constructing appropriate
biorthogonal filters in Appendix B, an explanation of how to construct Gaussian circuits
from filters in Appendix C and a precise statement and proof of Section 4 in Appendix D.

2 Perfect reconstruction and biorthogonal filters

Perfect reconstruction filters, or biorthogonal wavelet filters, are filters that decompose
a signal into a high-frequency part and a low frequency part. This is reminiscent of the
disentangling procedure of entanglement renormalization, and in this work we explain the
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Figure 2: Iterating the wavelet decomposition Wg resolves a signal into scales. Illustration
for the Haar wavelet filters [19].

precise connection. We first give a brief account of the theory of biorthogonal wavelet filters,
see [14] for an introduction. We consider a pair of real-valued sequences gs, hs ∈ `2(Z),
called scaling or low-pass filters. Often they will be finite impulse response (FIR) filters,
meaning that they have finite support. We demand that these filters satisfy the perfect
reconstruction condition on their Fourier transforms

gs(k)hs(k) + gs(k + π)hs(k + π) = 2 (1)

and define corresponding wavelet or high-pass filters by

gw(k) = e−ikhs(k + π) and hw(k) = e−ikgs(k + π). (2)

These filters can be used to separate a signal {f [n]}n∈Z into a low-frequency and a
high frequency component, and conversely to reconstruct the original signal from these
components. For this, we let

f low[n] =
∑
l

gs[l]f [2n+ l],

fhigh[n] =
∑
l

gw[l]f [2n+ l],

and we define

Wgf = f low ⊕ fhigh.

We similarly define Wh using the filters hs and hw in place of gs and gw, respectively.
By applying Wg again to f low, the original signal is recursively resolved into scales, see
Fig. 2. It follows from Eq. (1) that f can be reconstructed from its decomposition Wgf by
applying the transposed operation WT

h , so W−1g = WT
h and

f [n] =
∑
l

hs[n− 2l]f low[l] + hw[n− 2l]fhigh[l].

The roles of g and h can be exchanged in this procedure.
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3 Entanglement renormalization and filter design

We will consider translation invariant chains of harmonic oscillators (qn, pn), with a
Hamiltonian of the form

H =
1

2

(∑
n∈Z

p2n +
∑
n,m∈Z

qnVn−mqm
)
, (3)

where Vnm = Vn−m defines a positive definite symmetric matrix. The ground state of such a
quadratic Hamiltonian is a Gaussian state, determined by the dispersion relation ω(k) of the
Hamiltonian. We study Gaussian circuits that map an unentangled state to the entangled
ground state of a translation invariant Hamiltonian (or conversely, disentangle the ground
state to an unentangled state). We consider Gaussian maps defined by q̃n =

∑
mAnmqm,

p̃n =
∑

mBnmpm. This preserves the canonical commutation relations if and only if
the matrices A and B are such that B = (AT)−1. By a Gaussian circuit we will hence
understand a sequence of Gaussian maps, each of which maps modes (qn, pn) to a linear
combination of itself and its direct neighbours. For details about quadratic bosonic
Hamiltonians and Gaussian states see, for instance, [20,26–28]. In Fourier space one simply
maps a product state to the state with dispersion relation ω(k) by appropriately ‘squeezing’
each Fourier mode. However, this is a very non-local operation, whereas we are interested
in a procedure that is local in real space. For more discussion of this point and variational
algorithms to find Gaussian entanglement renormalization maps, see [21].

Since W−1g = WT
h the map W = Wg ⊕Wh defines a Gaussian map for any pair of

biorthogonal wavelet filters (g, h). This has the structure of a layer of entanglement
renormalization, filtering out the high frequency modes. However, we need to choose the
filters g and h such that W actually disentangles the state, and the wavelet output is
unentangled. If we normalize the dispersion relation such that ω(π) = 1, then the condition
for the wavelet output to be disentangled is that the Fourier transforms of the filters satisfy

gw(k) = ω(k)hw(k). (4)

Intuitively, what happens is that W separates the bosonic modes in high frequency and
low frequency modes, and Eq. (4) makes sure that the high frequency modes are not
entangled to the low frequency modes in the ground state. We derive this condition below
in Section 3.1. The scaling (low frequency) modes are again mapped to a Gaussian state,
possibly with a different dispersion relation. We can now recursively apply the same
construction to the scaling output, as in Fig. 1, now with the renormalized dispersion
relation, given by

ω(k) 7→ ω
(
k
2

)
ω
(
k
2 + π

)
, (5)

precomposed with a ‘squeezing’ normalization layer to ensure the normalization ω(π) = 1
before we apply the wavelet decomposition. We will later see this procedure can be
decomposed as a circuit, see Fig. 3.

While we motivated the procedure from the perspective of disentangling a given
entangled state, the resulting circuit can also be used in the opposite direction, to prepare
the ground state by applying the circuit to a product state, thus realizing the state as a
bosonic MERA state. A paradigmatic example is the harmonic chain,

H =
1

2

(∑
n∈Z

p2n +m2q2n +
1

4
(qn − qn+1)

2
)
, (6)

which has dispersion relation ω(k) =
√
m2 + sin2

(
k
2

)
. In particular, the massless harmonic

chain is gapless and has dispersion relation ω(k) = |sin(k2 )|. For the latter, Eq. (5) amounts
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to ω(k) 7→ |sin(k4 ) cos(k4 )| = 1
2 sin(k2 ), so the dispersion relation is invariant under the

renormalization step if we include the subsequent normalization. Hence the state on the
scaling output of the entanglement renormalization will be the same after any number of
layers. This implies that we can keep iterating the same entanglement renormalization
layer with identical filters at each layer, giving a scale-invariant bosonic entanglement
renormalization procedure for the massless harmonic chain.

In the massive case, the mass renormalizes as

m 7→ 2
√
m2 +m4. (7)

This is a relevant perturbation to the massless chain [21], and with increasing number of
layers the dispersion relation becomes flat; correspondingly we can let the filters at the
deeper layers approach orthogonal wavelet filters.

3.1 Derivation of filter condition

We will now derive Eq. (4). The ground state of the Hamiltonian in Eq. (3) is completely
determined by its covariance matrix γ = γq ⊕ γp, whose Fourier transform is given by

γq(k) =
1

2ω(k)

γp(k) =
ω(k)

2
.

(8)

The covariance matrix of an unentangled (uncorrelated) product state is 1
21. Recall that

any symplectic linear map S on the set of modes (qn, pn) defines a unitary map which maps

Gaussian states to Gaussian states. Under a map of the form A⊕
(
AT
)−1

the covariance
matrix transforms as

γq 7→ AγqAT

γp 7→
(
AT
)−1

γpA−1.

We first normalize such that ω(π) = 1, which can be implemented by the symplectic
(squeezing) map (

√
ω(π)1)⊕ (1/

√
ω(π)1). Suppose we have filters (g, h) satisfying Eq. (4),

then W = Wg ⊕ Wh disentangles the ground state. To see that this is indeed true,
we compute the result of applying the wavelet decomposition map to the ground state
covariance matrix γ = γq ⊕ γp given in terms of the dispersion relation by Eq. (8). For
this, we remark that from gw(k) = ω(k)hw(k) it follows that hs(k) = ω(k + π)gs(k). Then,

ω(k)hw(k)fhigh(2k) = gw(k)fhigh(2k),

ω(k)hs(k)f low(2k) = gs(k)ω(1)(2k)f low(2k),

where ω(1) is the renormalized dispersion relation on the scaling output defined in Eq. (5)
in the main text. This shows that ω(k)WT

h = WT
g (ω(1) ⊕ 1) and hence

Whγ
pWT

h = WhW
T
g (γp,(1) ⊕ 1

2
1) = γp,(1) ⊕ 1

2
1

γp,(1)(k) =
1

2
ω(1)(k).

Similarly, it holds that

Wgγ
qWT

g = γq,(1) ⊕ 1

2
1

γq,(1)(k) =
1

2ω(1)(k)
.

7
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We thus see that W has unentangled the high-frequency modes to a product state, and
the low frequency modes are renormalized to have a new dispersion relation ω(1) given by
Eq. (5).

The full entanglement renormalization circuit consists of repeated applications of such
layers. To introduce some notation, we let ω(l) be the dispersion relation after l layers
of renormalization, recursively defined by (cf. Eq. (5), note that we first normalize the
dispersion relation by a factor ω(l)(π))

ω(l+1)(k) =
ω(l)(k2 )

ω(l)(π)

ω(l)(k2 + π)

ω(l)(π)
. (9)

The normalization by ω(l)(π) could also be absorbed in the filters, but we would like the
filters to be such that g(0) = h(0) =

√
2, as is standard in the signal processing literature

and convenient for the analysis. Then at the l-th layer we need filters g(l), h(l) satisfying

g
(l)
w (k) = ω(l)(k)

ω(l)(π)
h
(l)
w (k) (cf. Eq. (4)), and we let

Rg(l) = Wg(l)

√
ω(l)(π),

Rh(l) = Wh(l)
1√

ω(l)(π)
.

(10)

Finally, we define the L-layer renormalization map as R(L) = R
(L)
g ⊕R(L)

h , where R
(L)
a =

(Ra(L−1) ⊕ 1⊕(L−1)) ◦ . . . ◦ (Ra(1) ⊕ 1) ◦Ra(0) for a = g, h. Then, R(L) maps the state with
dispersion relation ω to a product state with covariance matrix 1

21 on the L high frequency

levels, and a state with dispersion relation ω(L) on the remaining low frequency level.

4 Entanglement renormalization circuits

If g and h are FIR filters of size 2M , we show in Appendix C that W gives rise to a
Gaussian circuit of depth M that maps the low-frequency modes to the odd sublattice and
the high-frequency modes to the even sublattice as shown in Fig. 3. This is exactly the
structure of an entanglement renormalization circuit. The converse to this construction is
also true: any Gaussian entanglement renormalization circuit as described above arises in
this way.

When using a finite depth circuit, we may not be able to satisfy the relation in Eq. (4)
exactly if ω(k) is not a ratio of trigonometric polynomials. In particular, this is the case for
the harmonic chain. In this case we can still hope to approximate the dispersion relation,
and correspondingly prepare a state that is close the true ground state. This raises two
interesting questions. Firstly, the existence of filters that approximately satisfy Eq. (4) is
not clear. In Appendix B we describe an explicit procedure for constructing such filters.
Secondly, one can wonder whether a good approximation of the dispersion relation at the
level of a single layer will indeed give rise to a good approximation of the ground state.
Fortunately, the structure of entanglement renormalization is remarkably robust to small
errors [10, 29], and in [17] a robustness result for wavelet based fermionic entanglement
renormalization was proven. The bosonic setting is somewhat different, as the Hilbert
spaces are infinite dimensional. We will now discuss that when the family of filters has a
well-defined ‘continuum limit’, we can nevertheless prove a rigorous approximation theorem.

We would like to bound the approximation error when using L layers of entanglement
renormalization. Suppose we are given a family of filter pairs (g(l), h(l)) for l = 1, . . . ,L,
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a1

a2

a3

Figure 3: Decomposition of a single layer of the entanglement renormalization map R(1) as
a circuit. The wavelet transform W = Wg ⊕Wh is decomposed as a circuit with two-local

gates ai, and follows the bottom layer which squeezes by ω(π)
1
2 ⊕ ω(π)−

1
2 to normalize the

dispersion relation. This figure can be interpreted both as a linear circuit implementing a
symplectic transformation, and as its second quantization, which is a bosonic Gaussian
circuit.

where the l-th pair represents the l-th layer such that

∣∣g(l)w (k)− ω(l)(k)

ω(l)(π)
h(l)w (k)

∣∣ ≤ ε ∀l = 1, . . . ,L, (11)

so they approximately reproduce the dispersion relation at each layer (up to normalization).
Moreover, we need these families of filters to give rise to a ‘stable’ wavelet decomposition,
in the sense that many iterations of the decomposition maps yield a uniformly bounded
map. This is a standard assumption in wavelet theory. If we are only interested in an
approximation, and the theory flows to either a critical theory or a trivial theory we only
need a small number of ‘transition layers’ and can pick fixed filters (g(l), h(l)) = (g, h) for
large l. In Appendix D, we prove a general approximation theorem in this setting, which
applies to an arbitrary quadratic Hamiltonian. We measure the error in the two-point
functions 〈pipj〉 and 〈qiqj〉 (or covariance matrix). In the particular case of the harmonic
chain in Eq. (6), our result specializes as follows.

Theorem (Informal). For the harmonic chain with mass m, the approximation error using
the MERA state resulting from L layers of entanglement renormalization is bounded by

|〈pipj〉 − 〈pipj〉MERA| ≤
(
O(2−

L
2 ) +O(ε log 1

ε )
)√

m2 + 1,

|〈qiqj〉 − 〈qiqj〉MERA| ≤
(
O(2−

L
2 ) +O(ε log 1

ε )
) 1

m
.

In the massless case, the latter bound is replaced by

|〈qiqj〉 − 〈qiqj〉MERA| ≤
(
O(2−

L
2 ) +O(ε log 1

ε

))√
|i− j|.

Notice that in the massless case, there is an IR divergence, and 〈qiqj〉 is only defined
up to a constant factor. The intuition behind the proof is that the contribution of the L-th

layer to the correlation function is bounded by O(2−
L
2 ), so we need O(log 1

δ ) layers to get
within error δ (even with perfect filters), while each layer contributes a factor of ε to the
error in the filter relation. Balancing these two contributions yields the desired bound.
In Fig. 4 we illustrate the approximation result by numerically computing correlation
functions of the massless harmonic chain.

If we denote by M the circuit depth of a single layer, then we find numerically that ε is
exponentially small as a function of M , whereas the other wavelet-dependent parameters

9
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we have suppressed above only grow polynomially. Hence, the total required depth of a
single layer of entanglement renormalization for a desired error is polylogarithmic in 1

ε .
This shows that our entanglement renormalization circuits prepare the ground state very
efficiently: a circuit of depth O(polylog(1δ )) achieves an accuracy δ on the correlation
functions.
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p n
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q n

K = 2, L = 2
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Figure 4: Approximation of covariance matrices γp and γ̃q for the massless harmonic chain
by the MERA. We used the filter construction described in Appendix B with L = 10 layers
of renormalization.

5 The continuum limit

The discrete wavelet transform has a natural continuum limit, in terms of continuous
scaling and wavelet functions. This gives a way to interpret the continuous limit of the
entanglement renormalization maps. It turns out the scaling functions are a natural UV
cut-off that is compatible with the entanglement renormalization circuits, and in the critical
case we find that we can reproduce certain conformal data exactly from a single layer of
renormalization. We consider the free boson, described by bosonic fields φ(x), π(x) and
Hamiltonian

H =
1

2

∫
dxπ(x)2 +m2φ(x)2 +

(
∂φ(x)

)2
.

We are particularly interested in the massless case, which gives rise to a conformal field
theory.

5.1 Scaling and wavelet functions

The continuum limit of the discrete biorthogonal wavelet transform is determined by the
scaling functions. Given biorthogonal wavelet filters g, h the associated scaling functions
are defined in Fourier space for a = g, h by

φ̂a(k) =

∞∏
n=1

as(2
−nk)√
2

(12)
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and the associated wavelet functions by

ψ̂a(k) =
1√
2
aw

(k
2

)
φ̂a
(k

2

)
. (13)

Both have compact support if the filters are finite, an example is shown in Fig. 5. Moreover,
we can define rescaled and shifted versions

ψal,n(x) = 2−
l
2ψa(2−lx− n),

φal,n(x) = 2−
l
2φa(2−lx− n).

It then follows that the sets {ψgl,n}l,n∈Z and {ψhl,n}l,n∈Z form a dual basis, in the sense that

〈ψgl,n, ψ
h
l′,n′〉 =

∫
dxψgl,n(x)ψhl′,n′(x) = δl,l′δn,n′ .

Moreover,

〈φgl,n, φ
h
l,n′〉 =

∫
dxφgl,n(x)φhl,n′(x) = δn,n′ .

If the filters are finite and the scaling functions are square-integrable functions (which
is closely related to the discrete wavelet decomposition being sufficiently stable) the sets
{ψgl,n}l,n∈Z and {ψhl,n}l,n∈Z form a Riesz basis of L2(R) [30]. This means that we can write

any function f ∈ L2(R) as

f =
∑
l,n

〈ψgl,n, f〉ψ
h
l,n =

∑
l,n

〈ψhl,n, f〉ψ
g
l,n.

By construction of the scaling and wavelet functions, these are such that if

f =
∑
n

s[n]φg0,n

then we can rewrite

f =

L−1∑
l=0

∑
n

w[l, n]ψgl,n +
∑
n

s̃[n]φgL,n (14)

where we find the coefficients w[l, n] and s̃[n] precisely by applying the discrete wavelet
transformation Wh to the signal s. Moreover, if we let

fhl =
∑
n

〈φgl,n, f〉φ
h
l,n (15)

fgl =
∑
n

〈φhl,n, f〉φ
g
l,n (16)

then fhl and fgl converge in norm to f as l goes to minus infinity. See [14] for an introduction
to scaling and wavelet functions and their properties.

5.2 Entanglement renormalization for the massless boson

We now suppose that the biorthogonal wavelet filters g, h are related by the dispersion
relation of the massless harmonic chain that was discussed in Section 3, that is,

gw(k) =

∣∣∣∣sin(k2)
∣∣∣∣hw(k). (17)

11
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We claim that, in this case, the scaling functions defined in Eq. (12) are related as

φ̂g(k) =
|k|

2|sin(k2 )|
φ̂h(k). (18)

To verify this claim, we note that as a consequence of Eq. (17) and the relation in Eq. (2)
we have hs(k) = |cos(k2 )|gs(k). Next, from Eq. (12) it follows that φ̂h(k) = γ(k)φ̂g(k),
where

γ(k) =
∞∏
n=1

|cos(2−n−1k)|.

This expression implies that γ(k) has to satisfy γ(k) = |cos(k4 )|γ(k2 ), and we can easily

verify that γ(k) =
2|sin( k

2
)|

|k| , which has the right normalization γ(0) = 1. This proves

Eq. (18), which in turn, using Eqs. (13) and (17), also implies that

ψ̂g(k) =
1√
2
gw

(k
2

)
φ̂g
(k

2

)
=

1√
2

∣∣∣∣sin(k4)
∣∣∣∣hw(k2) |k|

4|sin(k4 )|
φ̂h
(k

2

)
=
|k|
4
ψ̂h(k). (19)

Equation (19) shows that wavelet functions are related precisely by the linear dispersion
relation of the massless free boson.

We consider correlation functions of smeared fields φ(f) =
∫

dx f(x)φ(x), π(f) =∫
dx f(x)π(x). First we consider the case where we have smeared fields φ(f) with f of

the form f =
∑

n s[n]φgl,n and π(f̃) with f̃ of the form f̃ =
∑

n s̃[n]φhl,n, then because
the wavelet functions are precisely related by the correct dispersion relation, in order to
compute correlation functions, it suffices to express the functions f and f̃ in the wavelet
bases {ψhl′,n′} and {ψgl′,n′}. To see this it suffices to look at two-point functions, and

suppose that we want to compute 〈π1(f1)π(f2)〉, where fi =
∑

n si[n]φhl,n. Then, if we

rewrite fi =
∑

l,nwi[l, n]ψhl,n and we denote by H the operator which is such that it acts

as multiplication with 1
4 |k| in the Fourier domain, so Hψh = ψg and hence 2lHψhl,n = ψgl,n,

then ∑
l,n

2−lw1[l, n]w2[l, n] = 〈
∑
l,n

w1[l, n]ψhl,n,
∑
l′,n′

2−l
′
w2[l

′, n′]ψgl′,n′〉

= 〈
∑
l,n

w1[l, n]ψhl,n,
∑
l′,n′

w2[l
′, n′]Hψhl′,n′〉

= 〈f1, Hf2〉

which is indeed the correct correlation function. A similar computation holds for correlation
functions involving the field φ. However, by Eq. (14) the wi[l, n] are computed from si[n]
precisely by applying the discrete wavelet transform, and the factor of 2−l derives from
our normalization of the dispersion relation (the ‘squeezing layer’ in Fig. 3). In other
words, the correlation functions will be given precisely by applying the entanglement
renormalization circuit to the operators

∑
n s[n]qn and

∑
n s̃[n]pn. For general functions f ,

we may approximate them with scaling functions as in Eq. (15) and thus map

φ(f) 7→
∑
n

〈φhl,n, f〉qn,

π(f) 7→
∑
n

〈φgl,n, f〉pn.
(20)

12
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(the inner product here is again the L2(R) inner product). The scale l corresponds to
a choice of UV cut-off. If l is sufficiently small, then by Eq. (15) on can then compute
correlation functions using the (discrete) entanglement renormalization circuit to good
approximation. This approach is completely analogous to the fermionic construction
described in detail in [19]. It yields a natural way to interpret the continuous limit of
bosonic entanglement renormalization as quantum field theory.

As an application, we can consider the entanglement renormalization superoperator Φ,
which coarse-grains operators by conjugating with a single layer of the renormalization
circuit. For critical lattice models, Φ has been proposed to approximately encode the
conformal data of the continuum limit of the theory [9]. For instance, for a primary field
in the conformal field theory with scaling dimension λ, there should be a local operator O
such that Φ(O) ≈ 2−λO. We will now verify that the entanglement renormalization
superoperator reproduces exactly the scaling dimensions of the φ and π fields in the
massless case, as well as the scaling dimension of a number of descendants (equal to the
number of vanishing moments of the wavelet filters), similar as for the fermionic wavelet
MERA [16, 19]. This is seen by considering the operators Oφ(x) =

∑
n φ

h(x− n)qn and
Oπ(x) =

∑
n φ

g(x− n)pn for any x ∈ R, which are the discretizations of the operators φ(x)
and π(x). It can be easily seen that the entanglement renormalization superoperator maps
these operators

Oφ(x) 7→
∑
n,l

√
2hs[l]φ

h(x− 2n− l)qn

=
∑
n

φh
(x

2
− n

)
qn = Oφ

(x
2

)
where we use that for the scaling function Eq. (12) it holds that [14]

1√
2
φh(

x

2
) =

∑
n

hs[n]φh(x− n). (21)

Similarly one finds Oπ(x) 7→ 1
2Oπ(x2 ). This corresponds, as expected, to scaling dimensions

0 and 1. If the scaling function is differentiable, we see that by differentiating Eq. (21) we
get that 1

2
√
2
∂xφ

h(x2 ) =
∑

n hs[n]∂xφ
h(x− n), which leads similarly to a descendent field

Oφ(1) =
∑
∂xφ

h(x− n)qn with the right scaling dimension. It turns out that if φh has K

vanishing moments (or equivalently, a factor (1 + eik)K in the scaling filter hs [14]), then
there exists a vector φh,l[n] with l = 1, . . . ,K and n taking integer values on the support
of the wavelet such that

1

2l
√

2
φh,l[m] =

∑
n

hs[n]φh,l[2m− n]

even if φh is not l time differentiable (note that φh,l is only defined at integer values), see
Theorem 7.1 in [31], and similarly for φg,l. This shows that computing the eigenvalues of the
entanglement renormalization superoperator Φ will yield the eigenvalues of K descendants
of the φ and π fields. At this point we observe that a wavelet filter leading to K vanishing
moments must have support at least 2K, so one needs (as expected) a larger circuit depth
to capture more descendent scaling dimensions. For example, in our explicit constructions
in Appendix B the filter size is 2K+4L where L controls the accuracy of the approximation
of the dispersion relation.

5.3 The massive bosonic field

The free massive boson with mass m can be approached similarly. In that case, we
suppose we have two families of filters g(l) and h(l), now with l ∈ Z and such that

13
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√
(m(l))2 + 1 g

(l)
w (k) =

√
(m(l))2 + sin2(k2 )h

(l)
w (k) where m(0) = m and m(l) is the mass

after l layers of renormalization, as defined by Eq. (7). If these filters are chosen in a way
that they converge to a fixed orthonormal filter as l goes to infinity, and to a fixed pair
of biorthogonal filters as in the massless case for l to −∞, it makes sense to define a new
type of scaling and wavelet functions which are different at each level l as a generalization
of of the scaling and wavelet functions:

φ̂al (k) =
∞∏
j=1

a(l+j)(2−jk)√
2

ψ̂al (k) =
1√
2
a(l+1)

(k
2

)
φ̂al+1

(k
2

) (22)

for a = g, h as a generalization of of the scaling and wavelet functions defined in Eq. (12)

and Eq. (13). Again, the wavelet functions ψal,n(x) = 2−
l
2ψl(2

−lx− n) for a = g, h form a
dual basis (provided they exist). The behaviour for l → ±∞ is consistent with the fact
that the mass term is a relevant perturbation of the conformal field theory and the theory
flows from a critical massless boson to a trivial theory. As before, we can now discretize
the theory using the scaling functions at some given scale and use the discrete circuit to
compute correlation functions.

5.4 Other perspectives

The idea that wavelet theory should be a natural tool to discretize a field theory in order
to perform renormalization has a long history [32]. As mentioned in the introduction, our
approach differs from other works such as [23–25] which investigate the use of wavelets to
discretize quantum field theories, in that we use biorthogonal wavelets, which moreover
are specifically designed to target the Hamiltonian of the field theory. There is also a
different approach to entanglement renormalization for quantum field theories, known as
cMERA [33, 34]. This takes a different perspective by formulating a variational class of
states directly in the continuum, rather than considering a discretization. In both cases,
the correlation functions of the theory are accurately reproduced up to some cut-off. The
precise relation between MERA and cMERA is not very well understood, for instance it is
not clear that discretizing a cMERA state could yield a MERA. Intriguingly, cMERA is
formally strongly reminiscent of the continuous wavelet transform (CWT). The continuous
wavelet transform [14] can be defined for a much broader class of wavelet functions ψ, and
if ψ is a biorthogonal wavelet the CWT can be discretized to a discrete wavelet transform.
Reformulating cMERA as the second quantization of a CWT would therefore give a clear
relationship between MERA and cMERA for free bosonic systems. A starting point could
be the cMERA in [35], which reproduces some scaling dimensions exactly. However, the
CWT appears to break some of the symplectic properties of the discrete biorthogonal
wavelet transform and it remains an open problem to make this connection more explicit.
Finally, another reason why the field theory limit of entanglement renormalization is of
interest is its tentative relation to holography in theories of quantum gravity, as conjectured
in [36]. The entanglement renormalization circuit can be thought of as mapping a system
into one higher dimension by adding an additional ‘scale’ direction. An interpretation
in terms of wavelets was proposed in [37] for fermions and extended to bosonic systems
in [38].

14
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6 Conclusion

In this work we have explained how Gaussian entanglement renormalization circuits can
be naturally contructed from (and are in fact equivalent to) the second quantizations
of biorthogonal wavelet transforms. There are a few technical aspects that would be
interesting to study in more detail. First, one could carry out a fully rigorous analysis
of the continuum limit discussed in Section 5, as in [19]. This poses some mathematical
challenges. For example, if the system is not scale invariant then our notion of wavelet
functions goes beyond the standard framework of wavelet theory, and one would have
to identify suitable conditions on the filters that ensure that the wavelet and scaling
functions as defined in Eq. (22) are well-behaved functions and that standard wavelet
theory generalizes. Second, it would be desirable to identify conditions under which the
procedure outlined in Appendix B is rigorously guaranteed to find good approximate
solutions of Eq. (11). We note that even for Hilbert pair wavelets, which are relevant in
the fermionic setting and which inspired our construction, this is not known and a subject
of recent research in the signal processing community [39,40].

Overall, we believe that this work, together with [16,17] for the fermionic case, completes
our conceptual understanding of Gaussian entanglement renormalization for free theories
as the second quantization of wavelet decompositions. We hope that this offers a path
towards constructing and analyzing entanglement renormalization circuits for interacting
models. One clear direction is to apply perturbation theory in the wavelet basis. A similar
approach has already been taken for cMERA in [41], where one can also do perturbation
theory around a Gaussian cMERA. Another interesting direction is to investigate integrable
models, where we know explicit solutions for the ground state, and try to formulate these in
terms of wavelet modes. Finally, continuous wavelet transforms might also help illuminate
the relation between MERA and cMERA as we discussed in Section 5.4.
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A Review of the fermionic wavelet-MERA correspondence

In this appendix we briefly review the construction of entanglement renormalization
circuits for massless free fermions, as worked out in [16, 17,19]. While not strictly needed
to understand the results of the current work, which deals with free bosons, it is instructive
to contrast the construction and state of the art with the fermionic setting. We closely
follow the exposition in [17]. Let an for n ∈ Z be fermionic operators, satisfying the

anticommutation relations {a†n, am} = δn,m, {an, am} = {a†n, a†m} = 0. We work in the
framework of Gaussian or free fermions. We consider Hamiltonians of the form

H =
∑
n,m

hn,ma
†
nam (23)

where h is a Hermitian matrix. The ground state of such a Hamiltonian is given by

|ψ〉 =
∏
i

a†(fi)|Ω〉

15
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where |Ω〉 is the Fock vacuum and a†(f) :=
∑

n f [n]a†n and where the fi are all eigenvectors
of h with negative eigenvalue (so

∑
m hn,mfi[m] = λifi[n] with λi < 0). In other words,

precisely the negative energy modes are occupied in the ground state. The set of number-
preserving Gaussian operations is given by all evolutions along Hamiltonians of the form in
Eq. (23). Such transformations are the fermionic second quantization of unitaries acting on
the single-particle space. That is, to every unitary operator U acting on `2(Z) we associate
the unitary which maps an to ãn =

∑
m un,mam.

We restrict to the nearest neighbor hopping Hamiltonian

H = −
∑
n∈Z

a†nan+1 + a†n+1an. (24)

As opposed to the current work on bosonic models, so far no general wavelet construction
for arbitrary free fermion models is known, but only for the Hamiltonian in Eq. (24) and
its higher dimensional generalizations. To prepare the ground state of this Hamiltonian we
separately consider the even and the odd sublattice and let a1,n = a2n and a2,n = a2n+1,
and we apply a phase gate, writing bi,n = (−1)nai,n. The Hamiltonian in Eq. (24) is then
transformed to

H = −
∑
n∈Z

b†1,nb2,n − b
†
2,nb1,n+1 + b†2,nb1,n − b

†
1,n+1b2,n. (25)

This Hamiltonian can be written in Fourier space as

H =

∫ π

−π

dk

2π

(
b1(k)
b2(k)

)†(
0 e−ik − 1

eik − 1 0

)(
b1(k)
b2(k)

)
The ground state |ψ〉 is now given by filling the negative energy modes (the Fermi sea),
which can be found by observing that for each k the matrix(

0 e−ik − 1
eik − 1 0

)
has a negative eigenvalue with eigenvector

1√
2

(
1

− sgn(k)iei
k
2

)

which means that the space of negative energy modes consists of all functions f = (f1, f2)

in `2(Z)⊗C2 which are such that their Fourier transforms satisfy f2(k) = − sgn(k)iei
k
2 f1(k).

That is, if f is such a function, then (b1(f1)† + b2(f2)†)|ψ〉 = 0. We now consider a pair of
orthogonal wavelet filters (note that in contrast to the bosonic case, this is not a pair of
biorthogonal filters, but two filters which are each orthogonal) gw and hw, and we let Wg

and Wh denote the corresponding wavelet decomposition maps, which are now orthogonal,
i.e. W−1a = WT

a for a = g, h. In particular, this means that we can apply the fermionic
second quantization of Wh to the b1 fermions and Wg to the b2 fermions. If the filters are
such that for −π < k < π

gw(k) = −i sgn(k)ei
k
2 hw(k) (26)

this will allow us to renormalize the ground state. To see this, consider any mode f = (f1, f2)

in the Fermi sea, so f2(k) = − sgn(k)iei
k
2 f1(k). When we apply the wavelet transforms fi

is mapped to (fi,w, fi,s), a wavelet and a scaling component. Then one can show that from

16
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Fermions (at criticality) [16,17] Bosons

Gaussian unitaries an 7→
∑

m Un,mam for U unitary qn 7→ An,mqm and pn 7→ An,mpm with
A−1 = BT

Hamiltonian H = −
∑

n a
†
nan+1 + a†n+1an H = 1

2

(∑
n∈Z p

2
n+
∑

n,m∈Z qnVn−mqm
)

with dispersion relation ω(k)

Wavelet filters g, h orthogonal wavelet filters (g, h) pair of biorthogonal wavelet filters

Filter relation gw(k) = −i sgn(k)ei
k
2 hw(k) for k ∈

(−π, π)
gw(k) = ω(k)hw(k)

Application of
wavelet transform

b1,n = (−1)na2n, b2,n = (−1)na2n+1,
and apply Wh to the b1 fermions and
Wg to the b2 fermions

A = Wg, B = Wh

Disentangling cir-
cuit

Apply wavelet decomposition, then H
on wavelet modes.

Apply squeezing to normalize disper-
sion relation, then apply the wavelet
decomposition.

Continuum theory Free Dirac fermion Free bosonic scalar field (for ω(k) =
|sin( k

2
)|)

Wavelet functions ψ̂g(k) = −i sgn(k)ψ̂h(k) ψ̂g(k) = |k|
4
ψ̂h(k)

Table 1: Comparison of the wavelet-MERA correspondence for fermions and bosons.

Eq. (26) it follows that f1,w = f2,w and f2,s(k) = − sgn(k)iei
k
2 f1,s(k). We may now apply

(the fermionic second quantization of) a Hadamard gate

H =
1√
2

(
1 1
1 −1

)
to the wavelet component, which then disentangles the wavelet component of the negative
energy mode. This shows that if we take the the ground state |ψ〉 and we first apply the
wavelet transforms Wg and Wh followed by H on the wavelet output, we map to |ψ〉 to

itself on the scaling output and the product state
∏
n b
†
1,n|Ω〉 (that is, the state in which

all even sublattice modes b1,n are filled and all odd sublattice modes b2n are not filled) on
the wavelet output. Thus we have implemented a layer of entanglement renormalization.
One can write the fermionic second quantization of an orthogonal wavelet transform with
a finite filter as a finite depth fermionic Gaussian circuit [18]. We may iteratively apply
the renormalization to the scaling component to completely completely disentangle the
ground state, and if we consider the circuit in the opposite direction then it maps layers of
product states to the ground state of Eq. (25). One may think of this way of preparing the
ground state as filling the Fermi sea layer by layer, now choosing a wavelet basis for the
Fermi sea instead of the usual Fourier basis.

The relation Eq. (26) can not be satisfied exactly by a pair of finite filters, but it
can be approximated. In [16] it was shown that a construction using Daubechies D4
filters already gives a good result, and in [17] a general method using known constructions
from signal processing applications [39] was suggested, and it was also shown that a good
approximation of Eq. (26) leads to a good approximation of the ground state (which
inspired our Theorem 1). The Hamiltonian in Eq. (25) is in fact the Kogut-Susskind
discretization of the Dirac fermion [42]. In [19] it has been worked out how the wavelet
and scaling functions corresponding to the filters g and h have a natural interpretation in
the quantum field theory, analogous to the discussion in Section 5. In Table 1 we give an
overview of the analogies between the fermionic and bosonic case.
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B Construction of filters

Next we will explain how to construct filter pairs that yield a good approximation of a
given dispersion relation. Suppose we are given a dispersion relation ω(k). Let us assume
that ω(k) = ω(−k). We would like to construct a biorthogonal filter pair (g, h) such that

gw(k) ≈ ω(k)hw(k) (27)

or equivalently
hs(k) ≈ ω(k + π)gs(k) (28)

We will describe a general approach to this problem inspired by the Daubechies wavelet
construction, similar to the construction of Hilbert pair wavelets due to Selesnick [39]
which were previously used in the construction of fermionic MERAs [17]. For this, we start
with a rational approximation

ω(k + π) ≈ a(k)

b(k)
,

where a and b are finite symmetric sequences on [−L,L]. The approximation only has to
be accurate around k = 0. We will make the following ansatz for the Fourier transform of
the scaling filters

gs(k) = b(k)(1 + eik)Kf(k),

hs(k) = a(k)(1 + eik)Kf(k).
(29)

The parameter K determines the number of vanishing moments of the biorthogonal wavelets,
just as in the Daubechies wavelet construction. By construction, gs(k) and hs(k) are small
near k = π, and Eq. (28) is satisfied. In order for Eq. (29) to generate biorthogonal wavelet
filters, they need to satisfy the condition in Eq. (1) which translates to

s(k)f(k)f(−k) + s(k + π)f(k + π)f(π − k) = 2

where s(k) = a(k)b(k)(2 cos(k2 ))2K . One may try to solve this by letting r(k) = f(k)f(−k).
Then r should be taken as a solution to the linear system∑

l

s[2n− l]r[l] = δ0[n].

Now, if possible, we perform a spectral factorization r(k) = f(k)f(−k). A necessary and
sufficient condition for this is that r(k) ≥ 0 for all k. Unfortunately, we do not know of a
condition on a and b that guarantees this. The resulting filters (g, h) will have support of
size 2M where M = K + 2L. Finally, in the scale-invariant case, the stability condition
that will be required in Theorem 1 can be checked explicitly for compactly supported filters
by looking at the operators P g and P h defined by

(P af)(k) = |a(
k

2
)|2f(

k

2
) + |a(

k

2
+ π)|2f(

k

2
+ π)

on the space of polynomials of degree at most 2M with zero mean. The filters yield square
integrable scaling functions and uniformly bounded wavelet decomposition maps if and
only if the eigenvalues of P g and P h are smaller in absolute value than 2 (see [43] or
Theorem 4.2 in [44]).

For the massless harmonic chain, one particular choice for a and b is given by

a(k) =
1

2
(e−iLkd(k)2 + eiLkd(−k)2),

b(k) = d(k)d(−k).
(30)
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where d[n] is a maximally flat all-pass filter with delay 1
4 of degree L [39], so it has the

property that e−iLkd(−k)/d(k) ≈ e−i
k
2 on k ∈ (−π, π). In Fig. 6 we show the goodness of

the approximation in Eqs. (27) and (28) as a function of K and L. The resulting filters
and wavelets for K = 2, L = 4 are shown in Fig. 5. We remark that the construction in
Eq. (30) is not necessarily optimal. From numerical evidence in Fig. 6 it appears that
the accuracy of the approximation improves exponentially with increasing support. An
interesting open problem is to rigorously prove the existence of approximate solutions to
Eq. (27) with (exponentially) improving approximation accuracy as the filter size increases.
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Figure 5: The results of using K = 2, L = 4 in the construction of Eq. (30): (a) scaling
filters gs and hs, (b) wavelet filters gw and hw, (c) absolute value squared of the Fourier
transforms of the scaling filters |gs(k)|2 and |hs(k)|2, (d) absolute value squared of the
Fourier transforms of the wavelet filters |gw(k)|2 and |hw(k)|2, (e) scaling functions φg

and φh, and (f) wavelet functions ψg and ψh.

C Construction of circuits from filters

We now discuss how to explicitly construct a Gaussian circuit from a given pair of
biorthogonal wavelet filters, and show that any translation-invariant Gaussian circuit of
the form of Fig. 3 always arises from such a filter pair.

Motivated by the fermionic setting it has been extensively discussed in [18] how to
construct unitary local circuits from orthogonal wavelet filters. The construction for
biorthogonal wavelet filters is very similar and the symmetric case has already been
discussed in [18], but for completeness we provide it here. Given a pair of biorthogonal
filters (g, h) of support 2M we will construct a binary circuit of depth M that implements
the wavelet decomposition map. We will assume that g and h are supported on [−M+1,M ],
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Figure 6: Approximation errors for ε = maxk |gw(k)− |sin(k2 )|hw(k)| and maxk |ψg(k)−
|k|
4 ψ

h(k)| for different values of K and L for a filter pair constructed using Eq. (30). For
fixed K the error appears to decrease exponentially in L.
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Figure 7: Illustration of Eq. (31), which gives the equations the ai have to satisfy in order
for the circuit to implement Wg.

which we can always achieve by a shift. By a binary circuit of depth M we mean a sequence
of maps A1, . . . AM on `2(Z) such that

Ai =
⊕

n=even

(ai)n,n+1

for i even, and similarly a sum over odd terms if i is odd. Here ai is a two by two matrix.
These maps will be such that A = AM ◦ . . . ◦ A1 implements the wavelet reconstruction
map in the sense that Af = WT

g (fodd ⊕ feven) and (AT)−1f = WT
h (fodd ⊕ feven) where

feven[n] = f [2n] and fodd[n] = f [2n− 1], as in Fig. 3. By shift invariance this is equivalent
to

Aδ1 = gs

Aδ2 = gw

(AT)−1δ1 = hs

(AT)−1δ2 = hw

(31)

as illustrated for g in Fig. 7. Now A⊕(AT)−1 is a binary circuit, and its second quantization
gives a Gaussian bosonic quantum circuit. It remains to construct the matrices ai given the
filters g and h. We will need the perfect reconstruction condition Eq. (1) which becomes∑

l

gs[2n+ l]hs[l] = δ0[n]

upon applying the inverse Fourier transform. In particular, the vectors (gs[−M+1], gs[−M+
2])T and (hs[M − 1], hs[M ])T are orthogonal, and so are (gs[M − 1], gs[M ])T and (hs[−M +
1], hs[−M + 2])T. Furthermore we will use that the wavelet filters are derived from the
scaling filters as

gw[n] = (−1)(1−n)hs[1− n]

hw[n] = (−1)(1−n)gs[1− n]
(32)
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which follows directly from Eq. (2). First suppose that M = 1. In that case we let

a1 =

(
gs[0] gw[0]
gs[1] gw[1]

)
.

Using the perfect reconstruction condition we may now check that

(aT1 )−1 =

(
hs[0] hw[0]
hs[1] hw[1]

)
so this satisfies Eq. (31). For M > 1 we will construct the Ai recursively. Let

gM =

(
gs[M − 1] gs[−M + 2]
gs[M ] gs[−M + 1]

)
aM =

1√
det(gM )

gM

then it is clear that A−1M maps gs to a sequence g
(M−1)
s on [−M + 2,M − 1] and AT

M maps

hs to a sequence h
(M−1)
s on [−M + 2,M − 1] using the orthogonality properties derived

from the perfect filter condition In the non-generic degenerate case that det(gM ) = 0,
the size of the support can only be decreased by 1 and an additional layer is needed.

Moreover, since AM is invariant under shifts of 2, it is easy to see that g
(M−1)
s and h

(M−1)
s

still satisfy the perfect reconstruction property. Finally, if we let α denote the map defined
by αx[n] = (−1)(1−n)x[1 − n], then in order to see that A−1M maps gw to the wavelet

filter g
(M−1)
w defined by αh

(M−1)
s , it suffices to check that A−1M α = αAT

M or equivalently
A−1M = αAT

Mα. This follows from the inversion formula for two by two matrices with
determinant 1, i.e., (

a b
c d

)−1
=

(
d −b
−c a

)
.

Now we can recursively apply the same procedure to (g(M−1), h(M−1)) to construct
AM−1, . . . , A1. We have now seen that we can construct a circuit from a filter pair.

Conversely, given a circuit of the form A = AM ◦ . . . ◦ A1 as described above, define
filters g and h by Eq. (31). We can then check that these filters form perfect reconstruction
filters, in the sense that WT

h = W−1g . If we assume det(ai) = 1 for i = 1, . . . ,M , the wavelet
and scaling filters are related as in Eq. (32).

D Approximation theorem

In this appendix we state and prove a general approximation result for translation-invariant
quadratic Hamiltonians of the form Eq. (3). We obtain the theorem in the main text by
specializing to the harmonic chain (as explained at the very end of this appendix). Our
proof strategy is inspired by the techniques in [17], with the technical complications that
the wavelet transforms are not unitary and are allowed to vary layer by layer.

If gs, hs ∈ `2(Z) are a pair of scaling filters that satisfy the perfect reconstruction
condition in Eq. (1) of the main text, then we can define corresponding wavelet filters
gw, hw ∈ `2(Z) and single-layer decomposition maps Wg,Wh : `2(Z)→ `2(Z)⊕ `2(Z) such
that W T

h Wg = W T
g Wh = 1.

Now suppose that we are given a sequence of filters g
(l)
s , h

(l)
s as above. Here, l ∈ N

for convenience of notation. In practice, one is usually interested in a finite number of
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layers; in this case we may choose the sequence of filters to eventually become constant.
For a = g, h and L ∈ N, we define the L-layer decomposition maps

W (L)
a : `2(Z)→ `2(Z)⊗(1+L),

W (L)
a :=

(
Wa(L−1) ⊕ 1⊕(L−1)

)
◦ . . . ◦

(
Wa(1) ⊕ 1

)
◦Wa(0) ,

and write W (L) = W
(L)
h ⊕W (L)

g . We assume that the family is stable in the sense that
the corresponding (generalized) scaling functions φal defined in Eq. (22) exist, are square
integrable, and bounded in L∞-norm. We can also define the wavelet decomposition maps
starting at layer L′ ≥ 0, that is,

W (L′,L)
a : `2(Z)→ `2(Z)⊗(1+L−L

′),

W (L′,L)
a :=

(
Wa(L) ⊕ 1

⊕(L−L′−1)) ◦ . . . ◦ (Wa(L′+1) ⊕ 1
)
◦Wa(L′) .

For L′ = 0 we recover W
(L)
a as defined earlier. We assume that the wavelet decomposition

maps are bounded. Finally, we shall assume that the filters have finite support. Then the
same is true for the scaling functions. In the case that the filters are independent of l,
the above notion of stability is equivalent to the familiar notion from wavelet theory. For
finitely supported filters there exists an easy criterion to determine this, see [30].

For the entanglement renormalization circuit, we also insert a squeezing operation

between each wavelet decomposition layer, defining Ra(l) , R
(L)
a and RL for a = g, h as in

Eq. (10). Our approximation to the covariance matrix is then given by

γ
q,(L)
MERA =

1

2
R

(L),T
h R

(L)
h ,

γ
p,(L)
MERA =

1

2
R(L),T
g R(L)

g .

(33)

Suppose the filter pairs g(l), h(l) approximately satisfy the renormalized dispersion relation
at each level as in Eq. (11). That is,

|g(l)w (k)− ω(l)(k)

ω(l)(π)
h(l)w (k)| = |g(l)w (k)− g̃(l)w (k)| ≤ ε, (34)

where we have introduced the filter

g̃(l)w (k) :=
ω(l)(k)

ω(l)(π)
h(l)w (k). (35)

This filter, together with h̃
(l)
w (k) := ω(l)(π)/ω(l)(k)× g(l)w (k), forms a pair of biorthogonal

wavelet filters, with corresponding scaling filters g̃
(l)
s , h̃

(l)
s that satisfy Eq. (1). However,

these filters are almost never finitely supported. By construction, g̃(l), h(l) satisfy Eq. (4)
exactly.

We now state our approximation theorem for general dispersion relations. We measure
the approximation error in terms of quantities

δp := max
n,m
|γpnm − (γ

p,(L)
MERA)nm|,

δq := max
n,m
|γqnm − (γ

q,(L)
MERA)nm|.

If ω(0) = 0, then it is also interesting to regulate the covariance matrix γq as γ̃qnm :=
γqnm − γqnn and consider

δ̃qnm := |γ̃qnm − (γ̃
q,(L)
MERA)nm|.

22



SciPost Physics Submission

Theorem 1. Consider a translation-invariant Hamiltonian of the form of Eq. (3), with
dispersion relation ω(k) such that ω(l)(π) ≤ 1 and ω(l)(k) ≤ Ω for l = 1, . . . ,L for some
Ω ≥ 1. Suppose we have a sequence of filters such that Eq. (34) holds for ε ≤ 1, with finite
support of size at most M and scaling functions that are uniformly bounded by ‖φal ‖∞ ≤ B
for a = g, h and l = 1, . . . ,L. Assume moreover that the wavelet decomposition maps are

uniformly bounded by ‖W (l′,l)
a ‖ ≤ D for all a = g, h, g̃ and 1 ≤ l ≤ l′ ≤ L, where D ≥ 1.

Then the approximation error of the covariance matrices can be bounded as follows:

δp ≤ D2
(
C2−

L
2 + 3εD log2

C

ε

)
,

δq ≤ 2D2
(
C2−

L
2 + 3εD log2

C

ε

)
‖γqδ0‖,

δ̃qnm ≤ 2D2
(
C2−

L
2 + 3εD log2

C

ε

)
‖γq(δn − δm)‖,

where C := 4B2M
3
2 Ω.

To interpret the error bounds, we note that ‖γp,(L)‖ = maxk
ω(L)(k)

2 , which is typically O(1).
Furthermore:

‖γqδ0‖2 =

∫ π

−π

dk

ω(k)2
, (36)

‖γq(δn − δm)‖2 =

∫ π

−π
dk

sin2(12(n−m)k)

ω(k)2
. (37)

As mentioned earlier, our proof strategy follows [17] with two technical complications: the
wavelet transforms are not unitary and are allowed to vary layer by layer.

We will first bound the error that arises from only taking a finite number of layers.

Let p
(L)
s denote the projection onto the first tensor factor of `2(Z)⊗(L+1) and p

(L)
w = 1−p(L)s

the projection onto the remaining tensor factors. Thus, p
(L)
s W

(L)
a f is the scaling component

of the decomposed signal and p
(L)
w W

(L)
a its wavelet component. The following lemma

confirms the intuition that, for finitely supported signals, lower-frequency wavelet modes
contribute less.

Lemma 1. Suppose we have sequence of filters as above, with finite support of size at
most M and scaling functions that are uniformly bounded by ‖φal ‖∞ ≤ B for a = g, h and
l = 1, . . . ,L. Then,

‖p(L)s W (L)
a δn‖ ≤ 2−

L−1
2 B2M

3
2 (38)

where δn is the unit signal concentrated at n.

Proof. Let b denote the filters dual to a (i.e., b = h if a = g, and vice versa). We

note that p
(L)
s W

(L)
a δn[m] = 〈φb0,n, φaL,m〉, where φaL,m(x) := 2−L/2φaL(2−Lx − m) are the

translated and shifted scaling functions. This follows from the fact that 〈φb0,n, φa0,m〉 = δnm
and by applying inductively the fact that by definition of the scaling functions φal+1,m =
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∑
n a

(l+1)
s (2m−n)φal,n. Now we can proceed as in the proof of Lemma 1 in [17] and estimate

‖p(L)s W (L)
a δn‖2 =

∑
m

∣∣∫ ∞
−∞

dxφb0(x− n)2−
L
2 φaL(2−Lx−m)

∣∣2
=
∑
m

∣∣∫ x0+n+M−1

x0+n
dxφb0(x− n)2−

L
2 φaL(2−Lx−m)

∣∣2
≤
∑
m

‖φb0‖2
∫ x0+n+M−1

x0+n
dx |2−

L
2 φaL(2−Lx−m)|2

= 2−L‖φb0‖2
∑
m

∫ x0+n+M−1

x0+n
dx |φaL(2−Lx−m)|2

≤ 2−L+1M2‖φb0‖2‖φaL‖2∞,

where in the second line we use that φb is compactly supported on [x0, x0 + M − 1] for
some x0, in the third inequality we use Cauchy-Schwarz, and for the final inquality we
use that at most 2M terms in the sum have nonzero overlap. Finally we may estimate
‖φb0‖2 ≤MB2 and ‖φaL‖2∞ ≤ B2, which yields Eq. (38).

The following lemma bounds the approximation error for L layers as a function of an
intermediate layer L′ that will later be chosen appropriately.

Lemma 2. Suppose we have a sequence of filters such that Eq. (34) holds, with finite
support of size at most M and scaling functions that are uniformly bounded by ‖φal ‖∞ ≤ B
for a = g, h and l = 1, . . . ,L. Assume moreover that the wavelet decomposition maps are

uniformly bounded by ‖W (l′,l)
a ‖ ≤ D for all a = g, h, g̃ and 1 ≤ l ≤ l′ ≤ L, where D ≥ 1.

Finally, let L′ ∈ {1, . . . ,L}. Then we have the following bounds:

(i) For all f ∈ `2(Z) and n ∈ N,

|〈δn|γq − γq,(L)MERA|f〉| ≤ 2D2

(
εL′D + 2−

L′−1
2 B2M

3
2 max {2‖γp,(L)‖, 1}

)
‖γqf‖.

(39)

(ii) Assuming ω(l)(π) ≤ 1 for all l = 0, . . . ,L − 1, we have the following bound for all
n ∈ N:

‖(γp − γp,(L)MERA)δn‖ ≤ D2

(
εL′D + 2−

L′−1
2 B2M

3
2 max {2‖γp,(L′)‖, 1}

)
. (40)

Here, we recall that γq(k) = 1
2ω(k) and γp,(l)(k) = 1

2ω
(l)(k).

As a remark, for the critical harmonic chain we that ω(l)(π) = 1
2 , in which case it is not

hard to see that the scaling of Eq. (40) can be improved to 2−
3
2
L′ .

Proof of Lemma 2. (i) To prove Eq. (39), we first observe that by definition of g̃ it holds
that

Rh(l)ω
(l)(k) = (ω(l+1) ⊕ 1)Rg̃(l)

and hence

R
(L)
h γp = (γp,(L) ⊕ 1

2
1)R

(L)
g̃ , (41)
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where γp,(L)(k) = 1
2ω

(L)(k) denotes the covariance matrix defined using the renormalized
dispersion relation. We use this, together with the fact that 4γpγq = 1 on the domain
of γq to write

γq − γq,(L)MERAf = (I − γq,(L)MERA4γp)γqf

= (W
(L′),T
h W (L′)

g −R(L),T
h R

(L)
h 2γp)γqf

= (W
(L′),T
h W (L′)

g −R(L),T
h (2γp,(L) ⊕ 1)R

(L)
g̃ )γqf

= (W
(L′),T
h W (L′)

g −W (L),T
h (2γp,(L) ⊕ 1)W

(L)
g̃ )γqf.

for f in the domain of γq. Thus,

|〈δn|γq − γq,(L)MERA|f〉| ≤ |〈δn|W
(L′),T
h p(L

′)
s W (L′)

g |γqf〉|

+ |〈δn|W (L′),T
h p(L

′)
w

(
W (L′)
g −W (L′)

g̃

)
|γqf〉|

+ |〈δn|(W (L),T
h (2γp,(L) ⊕ 1)W

(L)
g̃ −W (L′),T

h p(L
′)

w W
(L′)
g̃ )|γqf〉|.

(42)

We will bound the three terms separately, starting with the second term. By our assumption
on the filters (Eq. (34)), ‖Wg(l) −Wg̃(l)‖ ≤ 2ε. Hence, using a telescoping sum,

‖W (L′)
g −W (L′)

g̃ ‖ ≤
L′−1∑
l=0

‖W (l+1,L′)
g ‖‖Wg(l) −Wg̃(l)‖‖W

(l)
g̃ ‖ ≤ 2εL′D2, (43)

so we obtain the estimate

|〈δn|W (L′),T
h p(L

′)
w

(
W (L′)
g −W (L′)

g̃

)
|γqf〉| ≤ ‖W (L′)

h ‖‖W (L′)
g −W (L′)

g̃ ‖‖γqf‖ ≤ 2εL′D3‖γqf‖.

The first term in Eq. (42) can be bounded directly using Lemma 1,

|〈δn|W (L′),T
h p(L

′)
s W (L′)

g |γqf〉| ≤ ‖p(L′)s W
(L′)
h δn‖‖W (L′)

g γqf‖ ≤ 2−
L′−1

2 B2M
3
2D‖γqf‖,

and the third term may be similarly bounded as

|〈δn|(W (L),T
h (2γp,(L) ⊕ 1)W

(L)
g̃ −W (L′),T

h p(L
′)

w W
(L′)
g̃ )|γqf〉|

= |〈δn|(W (L′),T
h (W

(L′,L),T
h ⊕ 1⊕L′)(2γp,(L) ⊕ 1⊕(L−L′) ⊕ 0⊕L

′
)W

(L)
g̃ |γ

qf〉|

= |〈δn|(W (L′),T
h p(L

′)
s (W

(L′,L),T
h ⊕ 0⊕L

′
)(2γp,(L) ⊕ 1⊕L)W

(L)
g̃ |γ

qf〉|

≤ ‖p(L′)s W
(L′)
h δn‖‖W (L′,L)

h ‖‖2γp,(L) ⊕ 1⊕L‖‖W (L)
g̃ ‖‖γ

qf‖

≤ 2−
L′−1

2 B2M
3
2D2 max {2‖γp,(L)‖, 1}‖γqf‖.

By combining the three estimates we obtain Eq. (39).
(ii) To prove Eq. (40) we use Eqs. (33) and (41) to write

γp − γp,(L)MERA = γp − 1

2
R(L),T
g R(L)

g = γpR
(L′),T
h R(L′)

g − 1

2
R(L),T
g R(L)

g

= R
(L′),T
g̃ (γp,(L

′) ⊕ 1

2
1)R(L′)

g − 1

2
R(L),T
g R(L)

g .

Therefore,

‖(γp − γp,(L)MERA)δn‖ ≤ ‖R(L′),T
g̃ γp,(L

′)p(L
′)

s R(L′)
g δn‖

+
1

2
‖(R(L′),T

g̃ −R(L′),T
g )p(L

′)
w R(L′)

g δn‖

+
1

2
‖(R(L′),T

g p(L
′)

w R(L′)
g −R(L),T

g R(L)
g )δn‖
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As before we bound the three terms separately, starting with the second term. Since

ω(l)(π) ≤ 1, we may estimate ‖R(L′)
g ‖ ≤ ‖W (L′)

g ‖ ≤ D and ‖R(L′)
g̃ −R(L′)

g ‖ ≤ 2εL′D2 by a
telescoping sum as in Eq. (43). Thus:

1

2
‖(R(L′),T

g̃ −R(L′),T
g )p(L

′)
w R(L′)

g δn‖ ≤
1

2
‖(R(L′),T

g̃ −R(L′),T
g )‖‖R(L′)

g ‖ ≤ εL′D3.

For the remaining terms, we note that ω(l)(π) ≤ 1 also implies that ‖p(L
′)

s R
(L′)
g δn‖ ≤

‖p(L
′)

s W
(L′)
g δn‖ ≤ 2−

L′−1
2 B2M

3
2 using Lemma 1. We can thus bound the first term by

‖R(L′),T
g̃ γp,(L

′)p(L
′)

s R(L′)
g δn‖ ≤ ‖R(L′),T

g̃ ‖‖γp,(L′)‖‖p(L′)s R(L′)
g δn‖ ≤ 2−

L′−1
2 B2M

3
2D‖γp,(L′)‖,

and similarly the third term, where we find

1

2
‖(R(L),T

g R(L)
g −R(L′),T

g p(L
′)

w R(L′)
g )δn‖ =

1

2
‖R(L),T

g R(L′,L)
g p(L

′)
s R(L′)

g δn‖

≤ 1

2
‖R(L),T

g ‖‖R(L′,L)
g ‖‖p(L′)s R(L′)

g δn‖

≤ 1

2
2−
L′−1

2 B2M
3
2D2.

By combining the three estimates we obtain Eq. (40).

We finally prove our general approximation theorem.

Proof of Theorem 1. Choosing L′ = min {b2 log2
C
ε c,L}, we see that

εL′D + 2−
L′−1

2 B2M
3
2 max {2‖γp,(L′)‖, 1} ≤ εL′D + 2−

L′−1
2 B2M

3
2 Ω

≤ 2εD log2
C

ε
+ max{C2−

L
2 , ε}

≤ 3εD log2
C

ε
+ C2−

L
2 ,

where we have used that C
ε ≥ 2. Now the result follows from Eq. (40) and Eq. (39) in

Lemma 2, choosing f = δm or f = δm − δn in the latter (and using ‖γqδm‖ = ‖γqδ0‖).

Finally, we claim that the theorem in the main text is just the specialization of
Theorem 1 to the harmonic chain. We first normalize the dispersion relation of the
harmonic chain ω(k) by a factor

√
m2 + 1 to ω̃, so that ω̃(π) = 1. There ω̃(l)(k) ≤ 1 and

we may apply Theorem 1 with Ω = 1. We write γ for the original covariance matrix of the
harmonic chain and γ̃ for the covariance matrix where the dispersion relation has been
normalized, that is, γ̃p = 1√

m2+1
γp and γ̃q =

√
m2 + 1γq. Then,

1

m2 + 1
‖γ̃qδ0‖2 = ‖γqδ0‖2 =

∫ π

−π

dk

ω(k)2
=

∫ π

−π

dk

m2 + sin2
(
k
2

) ≤ 2π

m2
,

so applying Theorem 1 using the covariance matrix γ̃ and restoring the factor
√
m2 + 1

yields the results for δp and δq. In the massless case we can use Eq. (37) and estimate

‖γq(δn − δm)‖2 =

∫ π

−π
dk

sin2( |n−m|k2 )

sin2(k2 )

≤ 2

(∫ 2
|n−m|

0
dk

π2|n−m|2

4
+

∫ π

2
|n−m|

dk
π2

k2

)
≤ 2π2|n−m|,

since |sin(k2 )| ≥ |k|
π and |sin(nk2 )| ≤ min {n|k|2 , 1} on the interval (−π, π), yielding the

estimate for δ̃qnm.
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