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Abstract

A Cardy formula for 6d superconformal field theories (SCFTs) conjectured by Di

Pietro and Komargodski in [1] governs the universal behavior of the supersymmetric

partition function on S1
β × S5 in the limit of small β and fixed squashing of the S5.

For a general 6d SCFT, we study its 5d effective action, which is dominated by the

supersymmetric completions of perturbatively gauge-invariant Chern-Simons terms in

the small β limit. Explicitly evaluating these supersymmetric completions gives the

precise squashing dependence in the Cardy formula. For SCFTs with a pure Higgs

branch (also known as very Higgsable SCFTs), we determine the Chern-Simons lev-

els by explicitly going onto the Higgs branch and integrating out the Kaluza-Klein

modes of the 6d fields on S1
β. We then discuss tensor branch flows, where an apparent

mismatch between the formula in [1] and the free field answer requires an additional

contribution from BPS strings. This “missing contribution” is further sharpened by

the relation between the fractional part of the Chern-Simons levels and the (mixed)

global gravitational anomalies of the 6d SCFT. We also comment on the Cardy formula

for 4d N = 2 SCFTs in relation to Higgs branch and Coulomb branch flows.

fOne-year civilian service for the Taiwanese government.
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1 Introduction

Universal features provide key checks of dualities and reliable handles on otherwise strongly-

interacting non-perturbative phenomena. It is long understood that the high tempera-

ture/energy limit of quantum field theories exhibits universality. In particular, the Cardy

formula for 2d conformal field theories (CFTs) [2] relates the torus partition function, which

counts operators (with refinement), to the Weyl anomaly coefficient (or Virasoro central

charge) c in the high temperature limit1

logZS1
β×S1 =

π2c

3β
+O(β0, log β) . (1.1)

Here, β is the circumference of one of the circles of the torus, while the other is of unit radius.

The O(log β) is due to the potential “noncompactness” of the CFT. For a holographic theory,

this formula maps to the universality of the Bekenstein-Hawking entropy of BTZ black

holes [3].

In [1], Di Pietro and Komargodski introduced analogs of the Cardy formula for 4d and 6d

superconformal field theories (SCFTs), establishing universal relations between perturbative

anomalies and the Cardy limit (high temperature limit) of the superconformal index.2 These

higher-dimensional Cardy formulae involve a sum of terms that depend on the background

geometry and gauge fields, whose overall coefficients are determined by the perturbative

anomaly coefficients. Supersymmetry plays a key role in their higher dimensional Cardy

formulae, particularly because supersymmetric partition functions are (expected to be) geo-

metric invariants – roughly speaking, quantities that depend only on a subset of the bosonic

background data [9–13]. Let us elaborate this point. Unlike the partition function of a 2d

CFT on an arbitrary Riemann surface, which only depends on the complex structure (in the

absence of chemical potentials), the metric dependence for the partition function of higher

1The convention for the torus moduli is τ = i β2π .
2There are other universal limits of the partition function of CFTs in d > 2. The governing formulae are

also called Cardy formulae in the literature. See e.g. [4–8].

2



dimensional CFTs is much more complicated in general. However, the supersymmetric par-

tition function ZMd
for a SCFT on a spacetime manifoldMd is (believed to be) sensitive to a

much smaller subset of the metric data; in the case of even dimensions, this subset comprises

the topology and the complex structure moduli of Md.
3 Taking Md to be S1 ×Md−1, the

complex structure dependence of ZMd
translates into the dependence on the “transversely

holomorphic foliation” structure of Md−1. In fact, the sole dependence of ZS1×Md−1
on the

transversely holomorphic foliation structure ofMd−1 has been proven for 3d N = 2 theories

in [11,12] and conjectured for 5d N = 1 theories in [14].4

The 4d Cardy formula was proven in [1] for Lagrangian theories continuously connected

to free theories via renormalization group (RG) flows triggered by marginal or relevant

deformations (moduli flows were not considered, which we remedy in this paper). They

evaluated the 3d geometric invariants on squashed sphere backgrounds (the evaluation on

lens space was later done in [15]), and determined the coefficients from the Kaluza-Klein

(KK) reduction of the free theory. The 6d Cardy formula was first conjectured in [1], and

further evidence for the conjecture from the superconformal indices of free theories was found

in [1, 16,17].

In the first part of this paper, we derive the universal background dependence of 6d SCFTs

on squashed S5 in the Cardy limit, by studying the 5d effective action from the reduction on

S1. Throughout, we make use of various effective actions, whose relations are summarized

in Figure 1. A key ingredient in the proof of the 6d Cardy formula is the classification of

the 5d supersymmetric Chern-Simons terms in [18] by the present authors, and their explicit

forms found earlier in [19–24]. We evaluate these 5d supersymmetric Chern-Simons terms

on the most general supersymmetric squashed S5 background, and produce the conjectured

expression of [1]. Along the way, we find further evidence for these supersymmetric Chern-

Simons terms to be geometric invariants.

In the second part, we determine the Chern-Simons levels that appear in the Cardy

formula for a specific SCFT. This is considerably harder in 6d than in 4d, because 6d SCFTs

do not have marginal or relevant supersymmetry preserving operator deformations, and there

are no known interacting 6d SCFTs with weakly-coupled (UV) Lagrangian descriptions [25,

26]. Fortunately, we can consider moduli space flows. Indeed, for theories with a pure Higgs

branch (i.e. very Higgsable theories in the language of [27]), where the effective theory far

away from the origin is particularly simple and described by free hypermultiplets, we can

3This is proven for 4d N = 1 SCFTs in [11,12], and it would be interesting to pursue a similar argument

in 6d by classifying Q-exact background couplings.
4In [11, 12], it was shown that supersymmetry further demands such a background dependence to be

holomorphic. Recently, in [13], it was pointed out that this statement is actually (slightly) scheme dependent.

Nonetheless, since the different regularization schemes are related by local counter-terms, which are of order

O(β) [13], they will not affect the singular terms in the Cardy limit.
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determine these Chern-Simons levels exactly. This gives a proof of the 6d Cardy formula

for very Higgsable SCFTs, which include in particular rank-N E-string theories [28,29] and

(G,G)-type minimal conformal matter theories [30].

A similar procedure applied to 4d extends the validity of the 4d proof of [1] to a larger

class of theories that includes various non-Lagrangian Argyres-Douglas type theories [31,32].

We also comment on moduli space flows on the tensor and mixed branches in 6d, and on the

Coulomb and mixed branches in 4d.

on vacuum moduli space

reduce on S1

integrate out massive

integrate out massless

integrate out massive

reduce on S1

integrate out all

6d/4d SCFT

6d/4d Wilsonian effective action

mmoduli < Λ, E < Λ

5d/3d Wilsonian effective action

mmoduli < Λ < β−1, E < Λ
5d/3d effective action

6d/4d effective action

E < mmoduli

Figure 1: Diagram depicting the relations among different effective actions. We denote

by Λ the cutoff of the effective action, and mmoduli is the mass scale associated with the

moduli scalar vacuum expectation value. The field contents are as follows: the Wilsonian

effective action contains light dynamical fields and background fields; the 6d/4d effective

action contains massless dynamical fields and background fields; the 5d/3d effective action

contains only background fields. On the one hand, the ↓→ direction is in principle correct

but difficult to carry out (unless the effective theory is weakly coupled). On the other

hand, except on the pure Higgs branch, where the Green-Schwarz/Wess-Zumino type terms

relevant for (mixed) gravitational anomalies are absent in the 6d/4d effective action, it is not

understood how to perform the dashed arrow on the right. This is the source of the puzzle

of Section 3.3.
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1.1 Review of the 4d Cardy formula

For any N ≥ 1 SCFT in 4d, we define the supersymmetric S1
β × S3 partition function (or

superconformal index) ZS1
β×S3 by [33–36],5

ZS1
β×S3 = TrH

[
(−1)F e−β̂{Q,Q

†}e−β
∑2
i=1 ωi(ji+R)

]
, (1.2)

where TrH denotes the trace over the Hilbert space H on S3 in radial quantization, and

j1, j2 and R are the Cartan generators of the Lorentz and U(1)R-symmetry groups.6 The

supercharge Q and its conjugate Q† generate an su(1|1) subalgebra of the full N = 1 super-

conformal algebra. The combinations ji + R commute with the su(1|1) and pair with the

chemical potentials (squashing parameters) ωi that refine and regularize the sum. Due to su-

persymmetry, only states annihilated by Q and Q† contribute to the partition function, and

consequently the β̂ dependence drops out. In the Cardy limit β → 0, this supersymmetric

partition function has the expansion (we fix the radius of S3 to be r3 ≡ 1)

logZS1
β×S3 =

π2

6β

ω1 + ω2

ω1ω2

κ+O(β0, log β) . (1.3)

The coefficient κ is related to the pertuburtive mixed gravitational-R-symmetry anomaly,

which appears in the anomaly polynomial 6-form as

I6 3
k

48(2π)3
FR ∧ tr (R ∧R) , (1.4)

with R the Riemann curvature 2-form and FR the field strength of the background U(1)R
gauge field VR. The relation between κ and the anomaly coefficient k is κ = −k.7 By

supersymmetry, κ and k are in turn related to the 4d conformal anomalies as

κ = −k = 16(c− a) . (1.5)

This provides a universal relationship between perturbative anomalies and the spectrum

of protected BPS operators, and has been explicitly checked in examples by localization

computations [1, 43, 44, 15]. The combination of (1.3) and (1.5) is dubbed the 4d Cardy

formula, due to its similarity to the 2d Cardy formula (1.1).8

5For simplicity, we neglect the fugacities for possible flavor symmetries of the system in this subsection.
6The superconformal index differs from the supersymmetric partition function by a Casimir factor [37–40],

which vanishes in the Cardy limit β → 0. The two are often used interchangeably in this paper, since we

are only concerned with the singular terms. Furthermore, one can replace the three-sphere more generally

with Seifert manifolds [41,42,9].
7See footnote 9 for a caveat.
8In 4d N = 2 SCFTs, an analogous Cardy formula was derived for the Schur index [44] (see also [45])

logZSchur
S1
β×S3 =

π2κ

2β
+O(β0, log β) , (1.6)

5



In [1], Di Pietro and Komargodski proved the 4d Cardy formula by considering the 4d

SCFT compactified on S1
β, which leads to a 3d effective action for a set of background fields

that include the 3d metric, the background graviphoton gauge field A, and the R-symmetry

background gauge field VR. To preserve supersymmetry, the fermionic degrees of freedom

are chosen to have periodic boundary condition along the S1
β. Thus, the 3d effective action

contains non-local terms due to integrating out certain massless modes. However, since these

modes are uncharged under the Kaluza-Klein U(1)KK symmetry, such non-local terms are

subleading O(β0, log β) in the β → 0 limit.9 The leading term in the small β expansion of

the effective action is a Chern-Simons term of order O(β−1),

iW = − logZ =
iκ

24π

(
−
∫
VR ∧ dA+ SUSY completion

)
+O(β0, log β) , (1.8)

where the graviphoton A is of order O(β−1).10 Evaluating this supersymmetric effective

action on the squashed three-sphere background, one produces the Cardy formula (1.3).

What remains is to establish the relation (1.5) between κ and the anomaly coefficient k.

Let us first provide a qualitative explanation of the relation (1.5) before proving it. In

canonical normalization, the Chern-Simons term in (1.8) has level κ
12

, which is in general

fractional. Consequently, under a large background U(1)KK gauge transformation, the parti-

tion function will pick up a phase. This is nothing but a manifestation of the global (mixed)

gravitational anomaly of the 4d CFT [48–50].

Proceeding with the proof, the coefficient κ first must be invariant under both marginal

and relevant deformations. Otherwise, by promoting the coupling constants of the defor-

mations to background fields, the Chern-Simons term becomes gauge non-invariant under

small background gauge transformations (which contradicts the absence of such perturbative

anomalies in 4d). In particular, this argument forbids not only the continuous dependence

of κ on the coupling constants, but also potential jumps of κ, since this would lead to gauge

which also naturally arises in the Cardy limit of the associated 2d chiral algebra [46]. The relative factor of
3
2 compared to (1.3) in the case ωi = 1 is due to the ratio between the U(1)R backgrounds that are turned

on in the Schur limit for N = 2 SCFTs versus the one for a generic N = 1 SCFT, i.e.

V Schur
U(1)R

=
3

2
VU(1)R . (1.7)

Note that the Schur limit also involves turning on the SU(2)R background gauge field along S1
β in the N = 2

SCFT, but this does not affect the Cardy limit.
9Strictly speaking, this is only true if the effective action of the 3d massless modes has a minimum at the

origin upon turning on general chemical potentials. In particular, there are counter-examples when c−a < 0

in which case the 1/β term in the Cardy limit gets shifted by a non-universal piece due to the existence of

nontrivial minima of the potential for the holonomies around S1 [44, 47, 15]. Here, for simplicity we restrict

to theories where this phenomena does not occur.
10Compared with the convention in [1], our graviphoton field Ahere = 2π

β athere.
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non-invariant domain wall configurations (for the coupling) after promoting the coupling

constants to background fields.11

Now, let us assume that our 4d SCFT is connected to a weakly coupled theory by either

marginal or irrelevant operators that preserve U(1)R.12 This happens, for example, when the

SCFT is located on the conformal manifold of an N = 1 conformal gauge theory or as the

IR fixed point of an asymptotically-free gauge theory.13 Given such a free-field point, one

can explicitly KK-reduce the free fields along the S1
β. The coefficient κ receives contributions

from the massive KK-modes via 1-loop diagrams. Summing over such contributions under

the appropriate regularization, one finds the relation (1.5) between the coefficient κ and the

mixed gravitational-R anomaly coefficient k, computed at the free point. Since both κ and

k are invariant under RG flows triggered by deformations in the action, the relation (1.5)

holds at the superconformal fixed point as well.

1.2 The 4d Cardy formula from moduli space flows

The argument in the previous section can be extended to SCFTs connected to free theories by

moduli space flows. Given a 4d SCFT with a vacuum moduli space, generic S1
β reductions

would lift these flat directions. However, for supersymmetric (Scherk-Schwarz type) S1
β

reductions which we consider here, the moduli space is (partly) preserved (and sometimes

enhanced) in the 3d theory. In particular, for 4d N = 2 SCFTs, the Higgs branch moduli

space is preserved and the Coulomb branch moduli space is enhanced (by line operators

wrapping the S1) [53]. However, for 4d N = 1 SCFTs described by IR fixed points of

asymptotically free gauge theories, it is known that upon S1 reduction parts of the Coulomb

branch are lifted due to Affleck-Harvey-Witten type monopole-instantons [54]. In such cases,

we use φ to denote the directions on the 4d moduli space that are not lifted upon S1 reduction.

Since the 4d moduli φ is unambiguously identified as a subspace of the 3d moduli, we will

use the same notation. The 3d Wilsonian effective action, which does not involve integrating

out the (massless) scalars φ parametrizing the moduli space (and their superpartners), takes

the form of (1.8), but with κ promoted to a function κ(φ) of the moduli fields.14 However,

11A priori, such jumps in κ could happen if there are extra massless degrees of freedom charged under

U(1)KK at special loci of the coupling space. Since we are assuming 1
β is the largest scale, this is not possible

in the present context.
12As explained in [25], there are no relevant deformations of an N = 1 SCFT without breaking the N = 1

supersymmetry and U(1)R symmetry. Moreover, marginal deformations can only become exactly marginal

or marginally irrelevant as explained in [51].
13In the latter case, one needs to perform a-maximization to identify the superconformal U(1)R symmetry

from a combination of the UV U(1)R symmetry and flavor symmetries [52].
14The effective action contains the usual kinetic term of φ plus higher derivative interactions which are of

order O(β0, log β)).
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any nontrivial dependence of κ(φ) on φ is again in violation of background small U(1)KK

gauge invariance, so the coefficient κ(φ) must be constant in φ.15

From the above argument, one would hope to extract κ from a weakly coupled description

on the 4d moduli space which may involve massive particles and (extended) solitons coupled

to the moduli fields.16 Since we are interested in the supersymmetric partition function, we

only expect BPS states to contribute [55–57]. Consequently, κ is simply determined by the

spectrum of BPS states and their U(1)R charges (in the full 4d theory on S1 × S3 but prior

to integrating out massive fields).

For a 4d N = 2 SCFT with a pure Higgs branch of quaternionic dimension dH , which

may not have a UV Lagrangian description, the low energy description is simply given by

dH massless hypermultiplets. There are no other BPS particles on the Higgs branch due to

the absence of a scalar central charge, but there can be BPS strings (see Appendix B.1 for

a discussion) [58–62]. Recall that the U(1)R symmetry of the N = 1 subalgebra is related

to the SU(2)R × U(1)r symmetry of the N = 2 algebra by

RN=1 =
4

3
I3 +

1

3
rN=2 , (1.9)

where I3 is the Cartan element of the SU(2)R. Upon supersymmetric S1 reduction, the 3d

Higgs branch is identical to the 4d Higgs branch [63]. Far on the Higgs branch, the effective

theory is described by dH free hypermultiplets. Thus, by a free field computation as in [1],

one finds that17

κ = −1

3
Tr (U(1)r) =

2dH
3
. (1.10)

On the other hand, from anomaly matching [64],

dH = 24(c− a) , (1.11)

which confirms (1.5).

One may worry about potential contributions from the BPS vortex strings [59–62]. For

Lagrangian theories, by looking at the Higgs branch localization formulae for the index [65,

66], we explicitly see that they do not give additional contributions in the Cardy limit.

Combined with the above agreement, we expect this to hold in general.

15We remark that this argument is not affected by the presence of the path-integral measure for φ, since

perturbative anomalies, which could potentially absorb such gauge non-invariant pieces are absent in 3d.
16Since an explicit mass term (with a U(1)R invariant mass parameter) pairs chiral and anti-chiral fermions

with the same U(1)R charge, integrating out such massive particles cannot contribute to the Chern-Simons

level κ. Consequently, κ can only receive contributions from massive particles when the U(1)R symmetry is

spontaneously broken, so that the mass parameter could carry nonzero U(1)R charge.
17The N = 2 hypermultiplet contains two left-handed Weyl fermions with (I3, rN=2) = (0,−1).
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The above argument extends the validity of the 4d Cardy formula to N = 2 SCFTs

with a pure Higgs branch, on which there is no additional contribution to κ beyond the

massless hypermultiplets. In particular, one can explicitly check that it is obeyed by a

large class of Argyres-Douglas type theories (for instance) using the relation to 2d chiral

algebras [31,45,46].18

On the contrary, the Coulomb branch is known to host a zoo of BPS particles which

undergo complicated decays and recombinations as one explores the moduli space (from one

chamber to another), characterized by the wall-crossing phenomena. However, as we have

argued, κ(φ) must remain constant. In other words, one can pick any chamber and compute κ

from the stable BPS spectrum within the given chamber. If the theory has a weakly coupled

chamber, such as in Lagrangian theories where the stable BPS particles are W-bosons and

massive hypermultiplets, it is easy to see that (1.5) holds.19 However, a complication arises

when there is no weakly coupled chamber. This happens for instance on the Coulomb branch

of 4d N = 2 Argyres-Douglas theories, which has mutually non-local BPS monopoles and

dyons, and consequently the effective theory is never weakly coupled [31,32]. In such cases,

the interactions between the BPS particles cannot be neglected in the Cardy limit and will

contribute to κ.

One may attempt to determine κ using a different procedure by first integrating out the

massive BPS states in 4d which induces various higher derivative terms for the moduli fields,

and then studying the S1 reduction of the effective action that only involves the massless

moduli (and the supersymmetric partners). For the supersymmetric partition function, only

F-type higher derivative terms contribute (D-terms are necessarily Q-exact). This includes

the supersymmetric Wess-Zumino term [67–69] (i.e. it contains the Wess-Zumino term

for the Weyl a-anomaly used in [70, 71] to prove the 4d a-theorem), which is essential for

matching the perturbative mixed anomaly of the CFT on the Coulomb branch involving the

spontaneously broken U(1)r symmetry [72]. When the Coulomb branch is one dimensional,

it was argued in [73] that this is the only F-term that can contribute on S1×S3.20 However,

it is not clear to us how the Wess-Zumino terms (and its supersymmetric completion) or

other F-terms can contribute to the level κ. We leave this for future investigation.21

18See footnote 8 for an explanation of a relative factor of 3
2 where comparing the Cardy formulae that

appeared in [44,46] with that in [1].
19Note that the massive N = 2 vector multiplet contains two left-handed Weyl fermions with (I3, rN=2) =

(±1/2, 1), respectively, so each W-boson contributes − 2
3 to κ.

20In [73], it was proven that for one dimensional Coulomb branches, the only F-terms are proportional to

the Weyl tensor and its derivatives which all vanish on S1 × S3.
21A logical possibility is that (a) integrating out the massive matter in 4d and (b) compactifying on S1

do not commute, and thus the order of first (a) then (b) misses subtle contributions to κ.
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1.3 6d Cardy formula

Now, let us consider a 6d N = (1, 0) SCFT in radial quantization. The states in the Hilbert

space are labeled by the energy E, the spins j1, j2, j3 of the SO(2)3 ⊂ SO(6) rotation of

the S5, and the R-charge R of the SU(2)R R-symmetry. The theory has eight Poincaré Q-

supercharges Qj1,j2,j3,R, and eight superconformal cousins. In principle, the full spectrum of

this theory is encoded in its S1×S5 partition function with anti-periodic boundary condition

for the fermions along the S1. However, such a quantity is generally difficult to compute

because the fermionic boundary condition breaks supersymmetry.

A more manageable quantity is the superconformal index, which is related by a Casimir

factor to the S1× S5 partition function with periodic boundary conditions for the fermions,

and with suitable chemical potentials turned on [76, 40]. It is also a counting function, but

only for states saturating a BPS bound. To define it, we first pick a particular supercharge

Q ≡ Q−−−+, whose anticommutator reads

{Q,Q†} = E − j1 − j2 − j3 − 4R ≥ 0 . (1.12)

Given this choice, the states annihilated by the supercharge Q and therefore saturating the

BPS bound (1.12) can be counted (with signs) by the superconformal index [74–76] (see

also [77] for a review),

ZS1
β×S5 = TrH

[
(−1)F e−β̂{Q,Q

†}−β
∑
I µ

I
fH

I
f −β

∑3
i=1 ωi(ji+R)

]
. (1.13)

Here, the trace is taken over the Hilbert space H of states on S5, and β is the circumference

of the S1. Furthermore, we have introduced (complex) chemical potentials {ωi}3
i=1 (with

Reωi > 0) for the isometries, and µIf for the flavor symmetries. Finally, HI
f are the generators

of the Cartan subalgebra of the Lie algebra of the flavor symmetry Gf .
22

Di Pietro and Komargodski [1] conjectured a Cardy formula for the Cardy limit β → 0

of the superconformal index, stating that the singular terms in this limit take the form

logZS1
β×S5 = − π

ω1ω2ω3

[
κ1

360

(
2π

β

)3

+
(ω2

1 + ω2
2 + ω2

3)(κ2 − 3κ3/2)

72

(
2π

β

)
+

(ω1 + ω2 + ω3)2κ3

48

(
2π

β

)
+
µ2

f κ
Gf
f

24

(
2π

β

)]
+O(β0, log β) ,

(1.14)

with the constants κi completely fixed by the perturbative anomalies as follows.23 We write

22The normalization of HI
f is chosen to be Tr (HI

f H
J
f ) = δIJ .

23As in the 4d/3d case, we assume that the 5d effective action of the massless modes has a minimum at

the origin as β → 0 (see footnote 9). We checked this explicitly when the 6d index has a known matrix

model description, i.e. for N = (2, 0) theories and E-string theories.
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the 8-form anomaly polynomial as

I8 =
1

4!

[
αc2(SU(2)R)2 + βc2p1 + γp2

1 + δp2

]
+ µGfp1c2(Gf) , (1.15)

where the explicit formulae for the Chern classes ci and Pontryagin classes pi in terms of

the field strengths and curvature are summarized in Appendix A. Here, Gf is the flavor

symmetry of the 6d SCFT. Then, the relations are

κ1 = −40γ − 10δ , κ2 −
3

2
κ3 = 16γ − 2δ , κ3 = −2β , κGf

f = −48µGf . (1.16)

N = (2, 0) theory check

Before pursuing a proof, let us explicitly check the 6d Cardy formula in N = (2, 0) theories

where we have a closed form expression for the superconformal index in the limit ω1 = ω2 =

ω3 = 1 (unsquashed) and µf = 1, computed by localization in [75, 76]. The result for the

theory of type-g, where g is a simply laced simple Lie algebra, is

Zg

S1
β×S5 = e

β
6
h∨g |g|

(
β

2π

) rg
2 ∏
α∈∆g

+

(
1− e−β(α·ρg)

)
η
(
e−

4π2

β
)rg

, (1.17)

where h∨g is the dual Coxeter number, rg is the rank, |g| is the dimension, ∆g
+ is the set of

positive roots, and ρg is the Weyl vector. Notice that the result for g = E is only conjectural,

as the instanton contributions are unknown. In the Cardy limit, the last factor of (1.17)

becomes the dominant contribution, and we find

logZg

S1
β×S5 =

rgπ
2

6β
+O(β0, log β) . (1.18)

To compare, the Cardy formula (1.14) with the Chern-Simons levels κi given in Table 2

dictates that the S1
β × S5 partition function in the Cardy limit is

logZS1
β×S5 =

rgπ
2

24βω1ω2ω3

(2ω1ω2 + 2ω2ω3 + 2ω3ω1 + µ2
f − ω2

1 − ω2
2 − ω2

3) +O(β0, log β) ,

(1.19)

which with ω1 = ω2 = ω3 = 1 (unsquashed) and µf = 1 matches with the localization

result (1.18).

The β → 0 limit of the type-g, N = (2, 0) superconformal index commutes with the “chi-

ral algebra limit” of the 6d theory in which its superconformal index reduces to the vacuum

character of a 2dWg algebra [78]. This implies that the Cardy formula of the corresponding

2d VOA coincides with the 6d (supersymmetric unsquashed) Cardy formula (1.18), and the

modular properties of the characters lead to a high/low-temperature relation in the 6d par-

ent between the Casimir energy and the Cardy limit. See [44, 46] for analogous statements

in the 4d case.
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1.4 Sketch of the proof

We presently outline our proof of the 6d Cardy formula, given by (1.14) and (1.16), for

theories with (at least) a pure Higgs branch. The first step is to analyze the most general

5d effective action of 6d SCFTs compactified on S1
β. As argued in [1] and in Section 3, the

5d effective action has an expansion in the small radius β → 0 limit as

iW = − logZ =
i

8π2

(
κ1

360
I1 +

κ2 − 3
2
κ3

144
I2 −

κ3

24
I3 −

κGf
f

24
IGf

4

)
+O(β0, log β) , (1.20)

which contains four types of supersymmetric Chern-Simons terms

I1 ≡
∫
A ∧ dA ∧ dA+ SUSY completion ,

I2 ≡
∫
A ∧ tr (R ∧R) + SUSY completion ,

I3 ≡
∫
A ∧ Tr (FR ∧ FR) + SUSY completion ,

IGf
4 ≡

∫
A ∧ Tr (FGf

∧ FGf
) + SUSY completion .

(1.21)

Here, A is the U(1)KK graviphoton (which in the β → 0 limit scales as β−1), R denotes the

Riemann curvature 2-form of the 5d background metric hij,

ds2
6 =

(
dτ +

β

2π
Aidx

i

)2

+ hijdx
idxj , (1.22)

FR is the field strength of the SU(2)R background gauge field, and lastly FGf
is the field

strength of background flavor symmetry gauge fields.24 The key realization is that only these

supersymmetric Chern-Simons terms contribute to singular terms in the β → 0 limit.

The squashing dependence of the 6d Cardy formula (1.14) is recovered by evaluating

the effective action (1.20) on the rigid supersymmetric background of a squashed S5, with

the squashing parameters ωi = 1 + ai of the 5d metric (see Section 2.1). We stress that

the contributions from the additional supersymmetric pieces in (1.21) are absolutely crucial

to our result; without them, the result is not a geometric invariant depending only on the

squashing parameters.

The second part of the 6d Cardy formula is the relation (1.16) between the Chern-Simons

levels κi in (1.14) and the perturbative anomaly coefficients. To derive this relation, we first

argue that the Chern-Simons levels are constant on the vacuum moduli space, similar to our

24Recall that on the supersymmetric background, the SU(2)R gauge field takes value in the Cartan of

SU(2)R (see Appendix C).
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argument in Section 1.1 for the 4d case. Consider the 5d Wilsonian effective action that

does not involve integrating out the (massless) moduli scalars φ (and the superpartners). It

takes the form (1.20) but with the Chern-Simons levels κi promoted to functions κi(φ) of

the moduli fields. Note that the scalars descend to moduli fields in the 5d theory, since these

flat directions are not lifted under supersymmetric S1
β reduction. Any nontrivial dependence

of κ(φ) on φ is in violation of background small gauge invariance, so the coefficients κi(φ)

must be constant on the entire vacuum moduli space.

For 6d SCFTs with a pure Higgs branch, on which we just have several massless hy-

permultiplets and no other BPS particles (see Appendix B.2 for a discussion), the above

argument allows us to determine the Chern-Simons levels by simply reducing free fields.

This procedure proves the relation (1.16) for theories possessing a pure Higgs branch, with

the understanding that γ = −7
4
δ, which is inherently true for such theories.

To derive the relation (1.16) on the tensor branch, we compute the one-loop contributions

from the free fields to the Chern-Simons levels κ, and find that there must be additional con-

tributions. It is known that the 6d tensor branch supports BPS strings which may contribute

to κ upon reduction on S1. Indeed, this is evident from the conjectured localization formulae

for the S1×S5 partition function of 6d SCFTs [75,76,79,77] (see also Section 3.3). However,

it is not clear how to systematically include contributions from such states to κ. Instead, if

we first integrate out the massive states on the 6d tensor branch, we obtain a tower of higher

derivative interactions in the effective action. In particular, one of the leading F-terms is

given by (the supersymmetric completion of) the Green-Schwarz term. Then, one needs to

study the contribution from such terms to κ upon reduction on S1; we will not pursue this

in the present paper.

To provide another perspective on the would-be contributions from BPS strings to κ,

we consider the relation between the Chern-Simons levels in the 5d effective action and the

global anomalies of the 6d SCFT, and explain that the extra contributions are essential for the

global anomaly matching. The global gravitational anomalies of the 6d SCFT can receive

contributions from the Green-Schwarz term in the tensor branch effective action [80–86]

(just as for perturbative anomalies), therefore we expect that such terms are responsible for

additional contributions to the 5d Chern-Simons levels upon compactification on S1.

The remainder of this paper is organized as follows. In Section 2, we prove the squash-

ing dependence of the 6d Cardy formula, by solving for appropriate 5d backgrounds with

rigid supersymmetry, and evaluating the supersymmetric Chern-Simons terms on such back-

grounds. In Section 3, we fix the Chern-Simons levels in terms of the perturbative anomaly

coefficients, by combining non-renormalization arguments and free field computations on the

pure Higgs branch. An analogous computation on the pure tensor branch is then performed

which yields a naive mismatch with (1.14) but the “missing” contributions must come from

13



the BPS strings. In Section 4, we remark on the relation between the Chern-Simons levels

and global gravitational anomalies, which further highlights the “missing” contributions on

the tensor branch. Section 5 closes with a summary and comments on future directions. Fi-

nally, in the four appendices we provide more details on various aspects discussed in the main

text. In particular, in Appendix C we detail the 6d supersymmetric background on S1×S5,

including its “modified/complexified version” and how it relates to our 5d backgrounds.

2 Supersymmetric Chern-Simons terms on the squashed

S5 background

In this section, we study the 5d supersymmetric Chern-Simons terms (1.21) and their su-

persymmetric completions arising from the dimensional reduction of the 6d theory, and

evaluate them on the squashed S5 background. These Chern-Simons terms correspond to

the higher-derivative terms in 5d Poincaré supergravity classified in [18].

We begin with the S1× S5 geometric background and reduce to the 5d background that

also includes a graviphoton field, and further embed this bosonic background into super-

gravity to obtain the full 5d supersymmetric background. We review various ingredients,

i.e. various (matter) multiplets and a version of Poincaré supergravity that arises from a

particular choice of gauge-fixing of the (conformal) standard Weyl multiplet together with a

vector and a linear multiplet.25 Then, following the general formalism of [36], we provide the

rigid supersymmetric background for a generically squashed S5. Finally, we detail the corre-

sponding higher-derivative terms (supersymmetric Chern-Simons terms) and their evaluation

on the supersymmetric squashed S5 background. We refer to [88] for a more general analysis

of the rigid supersymmetric backgrounds in 5d (Poincaré) supergravity, and more detailed

evaluations and statements about the higher-derivative supersymmetric Chern-Simons terms

on various types of backgrounds.

Readers who are not interested in the technicalities of 5d supersymmetric solutions for

various multiplets may skip this section and consult the results summarized in Section 2.5.

25Note that this is a different choice of Poincaré supergravity than the one employed in [87], and indeed

in [88] we end up with a different classification of backgrounds than the former reference.

14



2.1 Squashed S5 background from reduction of squashed S1 × S5

background

We begin by specifying the appropriate S1 × S5 background of the 6d theory. This can

be done most straightforwardly by employing a conformal transformation from flat R6 to

R×S5, and then compactifying the non-compact direction with twisted boundary conditions

for various fields induced by the chemical potentials in (1.13). The introduction of such

chemical potentials reduces the amount of preserved supercharges. We absorb the twists for

the isometries of the S5 into the geometry (for the sake of setting some background fields to

zero), and fix the (deformed) metric of S1 × S5 to be

ds2
S1×S5 = r2

5

3∑
i=1

[
dy2

i + y2
i

(
dφi +

iai
r5

dτ

)2
]

+ dτ 2 , (2.1)

where τ ∼ τ+β is the β-periodic S1 coordinate, and {yi, φi}i are polar coordinates, satisfying

y2
1 + y2

2 + y2
3 = 1 as well as φi ∼ φi + 2π. Finally, r5 is the radius of the five-sphere, and the

chemical potentials ωi are related to the metric deformations via

ωi = 1 + ai , (2.2)

the round case being ωi = 1. The full 6d supersymmetric background and the background

for the “modified” index are detailed in Appendix C.

As we are interested in the compactification to five dimensions, we can conveniently

rewrite the 6d metric as follows

ds2
S1×S5 = κ̃−2 (dτ + ir5Y)2 + ds2

5 , (2.3)

with the (squashed) S5 metric ds2
5,

ds2
5 =

3∑
i=1

(
dy2

i + y2
i dφ

2
i

)
+ κ̃−2Y2 ,

Y = κ̃2

3∑
i=1

aiy
2
i dφi ,

κ̃−2 = 1−
3∑
j=1

y2
ja

2
j ,

(2.4)

where the squashing parameters are ai ∈ R (ai = 0 corresponds to the round S5 limit). A

comparison of the metrics (1.22) and (2.3) (up to a conformal transformation) shows that

the graviphoton field A in the squashed S5 background is

A = mKKr5Y , mKK =
2πi

β
. (2.5)

In the following, we set r5 = 1.
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2.2 Off-shell 5d supergravity multiplets

The 5d higher-derivative supersymmetric Chern-Simons terms can be written in terms of

various 5d (off-shell) supergravity multiplets. On the one hand, we work with the standard

Weyl multiplet coupled to vector multiplets [19, 20]; on the other hand, we work with the

5d off-shell Poincaré supergravity. The former is enough if the Chern-Simons term preserves

conformal invariance, which in Poincaré supergravity is explicitly broken. The Poincaré

supergravity is obtained by gauge-fixing the (conformal) standard Weyl multiplet [19,20,89,

90]. In the following, we pick a particular gauge-fixing condition which naturally reduces the

su(2)R symmetry of the standard Weyl multiplet to its u(1)R truncation, which is convenient

because there is a general description of 5d rigid supersymmetric backgrounds of (the u(1)R
truncation of) the standard Weyl multiplet [14, 91].

We review the various multiplets of interest, before presenting the solution on the squashed

S5 in the next section.

Standard Weyl multiplet

The (full) 5d standard Weyl multiplet consists of the following matter content

SW =
(
gµν , D , V ij

µ , vµν , bµ , ψ
i
µ , χ

i
)
, (2.6)

given by the metric gµν , a dilaton D, an su(2)R gauge field V ij
µ , a two-form field vµν , a gauge

field bµ of the Weyl symmetry, and two su(2) Majorana fermions ψiµ and χi. To obtain a

rigid supersymmetric background [36], we have to set the fermions to zero and thus find

(at least) one non-vanishing spinors such that the supersymmetry variation of the fermions

vanish. In particular, for a generic transformation

δ = ε̄iQi + η̄iSi , (2.7)

whereQi and Si are the supercharges and their conformal cousins, and εi, ηi are the respective

parameters specifying the transformation, the supersymmetry variation of the fermions of

the standard Weyl multiplet reads

δψiµ = Dµε
i +

1

2
vνργµνρε

i − γµηi ,

δχi = εiD − 2γργµνεi∇µvνρ + γµνFµν
i
j(V )ε− 2γµεiεµνρσλv

νρvσλ + 4γµνvµνη
i .

(2.8)

Here, F (V ) is the field strength of the su(2)R symmetry gauge field V . The covariant

derivative is given by

Dµε
i = ∂µε

i +
1

2
bµε

i +
1

4
ωµ

abγabε
i − Vµijεj . (2.9)
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We recall that the doublet indices i, j ∈ {1, 2} are raised and lowered with the totally

antisymmetric tensor εij using NW-SE and SW-NE conventions, i.e.,

ζ i = εijζj , ζi = εijζ
j , (2.10)

with ε12 = −ε12 = 1. Notice that bµ corresponds to the gauge field for Weyl transformations

(and to obtain non-conformal supergravity we have to gauge-fix it). Furthermore, in the

present context we shall work with a u(1)-truncated version of the standard Weyl multiplet

– i.e. the gauge field (Vµ)ij only has components along the Cartan generator of su(2)R –

in which case the supersymmetry conditions (2.8) can be recast in terms of certain simple

geometric constraints on the 5d background [14,91].

Vector multiplet

The 5d supergravity vector multiplet contains the fields

V =
(
Wµ , M , Ωi

α , Y
ij
)
, (2.11)

where Wµ is the gauge field (the background gauge field for the 5d flavor symmetry), M a

scalar (the “scalar mass parameter”), Ωi
α the gaugino, and Y ij a triplet of auxiliary scalars.

In order to obtain a rigid supersymmetric background, we set the fermions to zero, and thus

their variation [20,92]

δΩi = − 1

4
γµνFµν(W )εi − 1

2
/DMεi + Y i

jε
j −Mηj (2.12)

has to vanish. Here, Fµν(W ) denotes the field strength of the vector multiplet gauge field

W . This version of the vector multiplet is naturally coupled to the standard Weyl multiplet

SW , with the same supersymmetry parameters, εi and ηi.

Linear multiplet

As we shall see, in order to describe Poincaré supergravity, we have to add a vector com-

pensator multiplet as well as another either linear or hypermultiplet compensator. We opt

to go with the former option, and thus introduce the 5d linear multiplet L here. It contains

the fields

L =
(
Lij , ϕ

i
α , E

µ , N
)
, (2.13)

where N and Lij are scalars, Eµ is a divergence-less vector, i.e.

∇µEµ = 0 , (2.14)
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and ϕiα are their fermionic partners. Again, to preserve rigid supersymmetry, we set the

fermions to zero and require their variation [20,92]

δϕi = − /DLijε
j +

1

2
γµεiEµ +

1

2
εiN + 2γµνvµνε

jLij − 6Lijηj (2.15)

to vanish.

Poincaré supergravity

Now, to obtain 5d Poincaré supergravity, we add compensators (denoted by hatted symbols)

to the standard Weyl multiplet SW and gauge-fix the conformal symmetry [20, 23, 93]. In

the following, we shall pick the compensators to be given by a vector multiplet V̂ and a linear

multiplet L̂.26 To gauge-fix the superconformal transformations and the dilatation one may

impose the following “standard gauge” conditions27

“Standard gauge”: M̂ = m, bν = 0 , L̂ij =
i

2
L̂(σ3)ij , Ω̂i = 0 . (2.16)

Here, m is (generally chosen to be) an arbitrary constant of mass dimension one, and bν
is the gauge field for dilatations. The first constraint fixes dilatations (up to a constant),

the second constraint fixes special conformal transformations, the third reduces the su(2)R
symmetry down to u(1)R, and the last one fixes the S-supersymmetry.

There is another way to gauge-fix the Weyl and the superconformal symmetries given by

the “KK gauge” condition,27

“KK gauge”: L̂ij =
i

2
L̂(σ3)ij , L̂ = 1 , bν = 0 , ϕ̂i = 0 . (2.17)

As before, the first constraint in (2.17) breaks su(2)R to u(1)R, the second and third fixes

dilatations and special conformal transformations, respectively, and the last one fixes the

S-supersymmetry transformation. Note that while L̂ij in the compensator linear multiplet

is completely fixed by the gauge condition, the scalar M̂ in the compensator vector multiplet

is unfixed; We are free to choose its value to be non-constant and proportional to the warping

factor κ̃ defined in (2.4),

M̂ = MKK , where MKK = −mKK κ̃ (2.18)

26Alternatively, one can add vector multiplets and a hypermultiplet as compensators; this was considered

in [89,21].
27The naming of the two gauge-fixing conditions is for the convenience of referencing in this paper, and is

not standard in the literature. There are various other ways to fix the conformal symmetry and get different

versions of Poincaré supergravity, none of which is distinguished (see e.g. [93]).
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is the (fixed) “KK-mass”.28

The compensator vector multiplets V̂ in these two gauges have different physical mean-

ings. In the standard gauge, V̂ should be interpreted as a background vector multiplet for a

Cartan component of the flavor symmetry, whose mass parameter is a constant. In the KK

gauge, V̂ should be interpreted as the background vector multiplet for the U(1)KK symmetry,

whose mass parameter is position-dependent and determined by the warping parameter κ̃.

The two gauge-fixing conditions, (2.16) and (2.17), are related to one-another by a Weyl

transformation (prior to gauge-fixing it); we refer to Appendix D for more details. In fact,

we explicitly find that evaluating the FRR terms for either gauge-fixing (2.16) or (2.17) leads

to the same answer in the case of (generic) squashed S5. This gives more credence to the

fact that the answers should be “geometric invariants”, i.e. only dependent on some general

geometric structure (in our case believed to be the transversely holomorphic foliation) and

not on the particular choice of background fields.

The fields of the standard Weyl multiplet SW together with the compensator vector V̂
and linear multiplet L̂, gauge-fixed using the conditions (2.16) make up the full (off-shell)

Poincaré supergravity multiplet

Pstd =
(
gµν , D , V ij

µ , vµν , Ŵµ , Ŷ
ij , Êµ , L̂ , N̂ , ψiµα , χ

i
α , ϕ̂

i
α

)
. (2.19)

In the case of the “KK gauge” (2.17), we get the following (independent) component fields

in the Poincaré multiplet

PKK =
(
gµν , D , V ij

µ , vµν , M̂ , Ŵµ , Ŷ
ij , Êµ , N̂ , ψiµα , χ

i
α , Ω̂i

α

)
. (2.20)

In the rest of this paper, we will work in the KK gauge if the compensator gauge field Ŵ is

identified with the graviphoton gauge field A. This involves the supersymmetric completion

of the A∧tr (R∧R) term, which contains the graviphoton and is written in terms of Poincaré

supergravity. On the other hand, when we evaluate the supersymmetric completion of the

A∧Tr (FGf
∧FGf

) term, we have to include some other (non-compensator) background vector

multiplets, in which the gauge fields AGf
of the flavor symmetry reside.

To get a supersymmetric background of Poincaré supergravity, we take the rigid limit, and

thus set the fermionic fields to zero. Hence, we are required to find non-trivial solutions for

the Killing spinors εi to the vanishing fermionic supersymmetry transformations (2.8), (2.12)

and (2.15), whilst imposing the gauge-fixing conditions of (2.16) or (2.17).

28Since the 6d geometry (2.4) is warped, the KK-mass is not constant but rather proportional to the

warping factor κ̃ defined in (2.3).
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2.3 Squashed S5 backgrounds in off-shell supergravity

To evaluate the 5d supersymmetric Chern-Simons terms on the squashed S5 background (2.4),

we consider the rigid limit of the various supergravity multiplets discussed in the previous

section. We first present the solution for the standard Weyl multiplet, SW , and then proceed

with solving for the flavor vector multiplets, the KK vector multiplets and finally the full

(KK-gauge fixed) Poincaré supergravity.

Solution for the standard Weyl multiplet

The solution for the bosonic background fields (V i
j, v,D) of the rigid standard Weyl multiplet

are detailed in [18], and we simply state the result29

v =
1

4κ̃
dY ,

D = 2

(
3∑
i=1

a2
i + 2atot − a2

tot

)
κ̃2 ,

V i
j = − i

2

[
(atot − 1)Y + d(φ1 + φ2 + φ3)

] (
σ3
)i
j ,

(2.21)

where atot =
∑3

i=1 ai. This solution for the background fields in the standard Weyl multiplet

satisfies the supersymmetry equations (2.8) with the following (conformal) Killling spinors

ε1 =

√
κ̃β̃

2
√

2


−i

i

1

−1

 , ε2 =

√
κ̃β̃

2
√

2


−i

−i

−1

−1

 ,

η1 =

[
i

6

(
(1− atot)κ̃

2 − 4

κ̃β̃

)
+

1

6
∂a log

(
κ̃β̃2
)
γa +

1

3
vabγ

ab

]
ε1 ,

η2 =

[
− i

6

(
(1− atot)κ̃

2 − 4

κ̃β̃

)
+

1

6
∂a log

(
κ̃β̃2
)
γa +

1

3
vabγ

ab

]
ε2 .

(2.22)

29There is some residual freedom in our choice of solution, which we have fixed in order to obtain a

(somewhat) simple-looking answer.
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We have chosen the frame

e1 =
1

y3

√
1− y2

2

[
(y2

2 − 1)dy1 − y1y2 dy2

]
,

e2 =
y1y3√
1− y2

2

[
(dφ1 − dφ3) +

a3 − a1

β̃
X
]
,

e3 =
1√

1− y2
2

dy2,

e4 =
y2√

1− y2
2

[
−dφ2 +

1 + a2

β̃
X
]
,

e5 =
1

κ̃β̃
X +

1

κ̃
Y ,

(2.23)

with the definitions

X =
3∑
i=1

y2
i dφi , Y = κ̃2

3∑
i=1

aiy
2
i dφi , β̃ = 1 +

∑
i

aiy
2
i , (2.24)

and the 5d gamma matrices are given by

γ1 = σ3 ⊗ 12×2 , γ2 = σ2 ⊗ 12×2 , γ3 = −σ2 ⊗ σ3 ,

γ5 = −σ2 ⊗ σ2 , γ5 = −σ2 ⊗ σ1 ,
(2.25)

with σi the standard Pauli matrices.

Flavor multiplet solution

Next we present the solution for nV flavor (background) vector multiplets VIf , I = 1, . . . , nV ,

coupled to the standard Weyl multiplet SW . As mentioned above, we fix the scalar M I
f to

be the constant mass mI
f of the Ith vector multiplet. Then, we find the following solution to

the vector multiplet supersymmetry condition (2.12) (of course this is also a solution to the

standard gauge-fixing of Poincaré supergravity given in (2.16))30

Flavor solution VIf :

M I
f = µIf ,

(W I
f )µdxµ = µIf

(
1− β̃κ̃

)( 1

(κ̃β̃)2
X +

1

κ̃2β̃
Y
)
,

(Y I
f )ij = iµIf

[
1− atot

β̃
+

(atot − 1)κ̃

2
+

2

β̃κ̃
− 3

(κ̃β̃)2

] (
σ3
)i
j .

(2.26)

30Notice, that for our purposes it is crucial that the solution presented here is continuously connected

to the round S5 solution, presented in [18]. In particular, this means that W I
f vanishes in the round limit,

ai → 0 – there is another general class of “topologically non-trivial” solutions, which is related to 5d instanton

backgrounds [88].
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KK multiplet solution

For this solution, we would like a connection between the KK gauge field WKK in the vector

multiplet and the graviphoton in the 6d metric (2.3). This will lead to a different solution

for the vector multiplet than the one in (2.26), and in particular, the mass MKK will not

be constant. Of course this is expected, since there is a warping factor in the 6d metric.

Although the two solutions are distinct, we spell out a way to relate them in Appendix D.

Then, the “KK solution” VKK is given by

KK solution VKK : MKK = −mKKκ̃ ,

(WKK)µdxµ = mKKY ,

(YKK)ij =
imKK

2
κ̃2(1− atot) (σ3)i j ,

(2.27)

where we remark that indeed WKK precisely agrees with the graviphoton gauge field in (2.3),

and we can further pick the constant mKK = 2πi
β

to fully match to 6d.

Poincaré solution in the “KK gauge”

Finally, in order to evaluate the last supersymmetric Chern-Simons term we require a solution

to Poicaré supergravity given by imposing the KK gauge-fixing conditions (2.17). This is

because the relevant Chern-Simons term, A∧ tr (R∧R), contains the U(1)KK gauge field, A,

rather than a flavor gauge field. Then, the corresponding solutions are given by the standard

Weyl solution (2.21) together with the KK solution (2.27) – which is now a compensator

vector multiplet within the Poincaré multiplet, i.e. V̂ = VKK – and the following compensator

linear multiplet

L̂ij =
i

2
(σ3)ij ,

Êµdxµ =
y2

1y
2
3

1− y2
2

(
4

β̃
(a1 − a3) + (a2

1 + a2
3)κ̃2

)[
(a1 − a3)

β̃
X − dφ1 + dφ3

]
+

y2
2

1− y2
2

(
4

β̃
(1 + a2) + (a2

2 − 1)κ̃2 − 3

)[
(1 + a2)

β̃
X − dφ2

]
,

N̂ =

(
4

κ̃β̃
+ (atot − 1)κ̃

)
.

(2.28)

This solution satisfies the supersymmetry conditions (2.8), (2.12) and (2.15) together with

the KK gauge fixing conditions (2.17), and thus constitutes a solution to KK gauge-fixed

Poincaré supergravity.
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2.4 Supersymmetric Euclidean Chern-Simons terms and their eval-

uation on the squashed S5

With the squashed S5 solutions for the various supergravity multiplets in hand, we can

proceed with evaluating the explicit 5d supersymmetric Chern-Simons terms corresponding

to the (minimal) supersymmetric completion of the pieces in the 5d effective theory, arising in

the Cardy limit of the 6d superconformal index. We first introduce their explicit expressions

for Riemannian manifolds, which requires a careful Wick rotation from the expressions in

the literature, and then provide their evaluation on the rigid supersymmetric background.31

There are four supersymmetric Chern-Simons terms: FFF, FfFfF, FWW, and FRR,

whose linear combinations correspond to I1, . . . , I4 in (1.21).32 The first two fall into the

same class in the classification of [18], while FWW and FRR constitute a subset of the

remaining three classes. The reason we can omit the F-Ric2 term is that it can be related

to a linear combination of FWW and FRR by a field redefinition.

The FFF and FfFfF terms can be treated uniformly by first assuming a generic set of

vector multiplets labeled by I, J,K ∈ {0, 1, . . . , nV − 1} with structure constant cIJK . The

(Euclidean) supersymmetry completion of the A ∧ dA ∧ dA term in the rigid limit can be

written as follows [19,20] (see also [90])33

S1(VI) =

∫
M5

cIJK

[
1

2
W I ∧ F J(W ) ∧ FK(W )− 3

2
M IF J(W ) ∧ ∗FK(W )

+
3

2
M IdMJ ∧ ∗dMK − 3M IMJ

(
2FK(W ) +MKv

)
∧ ∗v

+M I

(
3(Y J)ij(Y

K)ij +
1

4
MJMK

[
R

2
−D

])
vol5

]
,

(2.29)

where we denoted by F I(W ) the two-form field strength of the gauge field W I , and the

volume five-form is explicitly given by34

vol5 =
√
g dy1 ∧ dy2 ∧ dφ1 ∧ dφ2 ∧ dφ3 . (2.30)

31In the following, we shall present the Euclidean version of the relevant supersymmetric Chern-Simons

terms; this is somewhat subtle and to the knowledge of the authors has not been discussed in the literature

before. We will postpone the description of the explicit Wick rotation to [88].
32Here, we are using the notation of [18], and label the Chern-Simons terms by the featured fields: F and

Ff for the KK and flavor-gauge fields/field strengths, W for the Weyl tensor, and R for the Ricci scalar.
33Here, we use the standard conventions for the 5d Hodge star operator, i.e. for p-forms α and β we have

α ∧ ∗β = 1
p!αµ1...µpβ

µ1...µp ∗ 1.
34This action also gives rise to the third supersymmetric Chern-Simons term S3 by replacing two instances

of the vector multiplet by composite expressions in terms of the linear multiplet, i.e. we have S1(V̂,V,V),

where by V we denote the vector multiplet expressed in terms of a linear compensator multiplet; See below.
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2.4.1 FFF term

We start by considering the first supersymmetric Chern-Simons term, given by the super-

symmetry completion of the 5d Chern-Simons action

A ∧ dA ∧ dA , (2.31)

where (as before) A is the U(1)KK graviphoton. The minimal supersymmetric extension is

simply given by a U(1) vector multiplet VKK coupled to the standard Weyl multiplet SW .

Therefore, there is no need to be working in Poincaré supergravity, and hence, we are not

required to impose any gauge-fixing conditions.

Here, we are solely dealing with the gauge fields arising from U(1)KK-photons, and thus

we may set I = J = K = 0 and c000 = 1 in (2.29). We may then plug in our solutions into the

supersymmetric action (2.29), i.e. we take V ≡ VKK, with corresponding solutions in (2.21)

and (2.27).35 We readily observe that up to some total derivative terms, the integrand

reduces to the 5d contact volume, i.e.

S1 (VKK,VKK,VKK) =
m3

KK

2

∫
M5

η ∧ dη ∧ dη +

∫
M5

d ∗ (· · · ) , (2.32)

where η is the contact 1-form on the squashed S5, given by

η = X + β̃Y , (2.33)

where X and Y are given in (2.24). This is true for a more general family of backgrounds,

see [88]. Then, a simple application of the Duistermaat-Heckman fixed-point formula [94]

shows that

S1 (VKK,VKK,VKK) =
m3

KK

2

(2π)3

ω1ω2ω3

. (2.34)

2.4.2 FfFfF term

We now turn towards the supersymmetric completion of the term

A ∧ Tr (FGf
∧ FGf

) , (2.35)

where we recall that FGf
is the field strength for a background flavor multiplet. For simplicity,

we focus on the background

FGf
= F I

f H
I
f = dW f

IH
I
f , (2.36)

35One could also simply evaluate the standard Poincaré supergravity action, which includes a compensator

linear multiplet piece. This would not correspond to the minimally extended version of the corresponding

Chern-Simons term, and it would only contribute to the subleading pieces O(β0) in the β-expansion.
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where HI
f are the generators of the Cartan subalgebra of the Lie algebra of the flavor sym-

metry Gf with the normalization Tr (HI
f H

J
f ) = δIJ .

We start again with the action in equation (2.29), where we now pick two of the vector

multiplets to be pure flavor multiplets,

VIf =
((
W I

f

)
µ
, M I

f ,
(
ΩI

f

)i
α
,
(
Y I

f

)ij)
, (2.37)

while the third one is given by the KK vector multiplet, VKK. The resulting action, S1(VIf ,VJf ,VKK)

with cIJK = δ(IJδK)0, is then given by

S1

(
VIf ,VJf ,VKK

)
=

∫
M5

δIJ

[
1

6

(
2W I

f ∧ FKK +WKK ∧ F I
f

)
∧ F J

f

− 1

2

(
2M I

f FKK +MKKF
I
f )
)
∧ ∗F J

f

+
1

2

(
2M I

f dMKK +MKKdM I
f )
)
∧ ∗dMJ

f

− 2M I
f

(
2MKKF

J
f +MJ

f FKK

)
∧ ∗v

− 3M I
f M

J
f MKKv ∧ ∗v

+ (Y I
f )ij

(
2MJ

f (YKK)ij +MKK(Y J
f )ij

)
vol5

− 1

4
M I

f M
J
f MKK

(
D − R

2

)
vol5

]
,

(2.38)

and we plug in the standard Weyl solution (2.21) together with one instance of the KK

solution (2.27) and two instances of the flavor solution (2.26). By the same arguments as

before, we end up with

S1(VIf ,VJf ,VKK) =
mKK

2

(2π)3

ω1ω2ω3

µ2
f , (2.39)

where µ2
f =

∑
I(µ

I
f )2.

2.4.3 FWW term

Let us now turn to the remaining two supersymmetric Chern-Simons terms. They are given

by the supersymmetry completion of the terms A∧ tr (R ∧R) and A∧Tr (FR ∧ FR), where

(as before) A is the U(1)KK-photon and FR = F (V ) the background su(2)R field strength.

These terms decompose into (a linear combination of) two supersymmetric higher-derivative

terms, which are themselves the supersymmetric completion of the Weyl- and Ricci-squared

higher-derivative actions in 5d. We shall first focus on the flavor-Weyl2 (FWW) term, and

below discuss the flavor-Ricci2 (FRR) one.
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First, we turn to the supersymmetric completion of the Weyl-squared higher-derivative

term. This term gives the supersymmetric completions of a combination of the following

Chern-Simons terms

A ∧ tr (R ∧R) and A ∧ Tr (FR ∧ FR) . (2.40)

As in the case of the FFF supersymmetric Chern-Simons term, the FWW term can be

written purely in terms of the vector multiplet coupled to the standard Weyl multiplet. It

was first written down in [21] (see also [90]), and its Euclidean (Wick rotated) version in the

rigid limit is given as follows36

S2(VI) =

∫
M5

cI
√
g

[
M I

(
1

8
C2 −

(
v2
)2

+
1

12
D2

)
+

(
D

6
− 4

9
v2

)
vµνF

I(W )µν

+ Cµνρσv
µν

(
1

3
M Ivρσ +

1

2
F I(W )ρσ

)
− 4

3
(Y I)ijF (V )µν

ijvµν

− 1

12
εµνρσλ(W I)µ

(
3

4
CνρτδCσλ

τδ − F (V )νρ
ijF (V )σλ ij

)
− εµνρσλF I(W )µν

(
2

3
vρτ∇τv

σλ + vρτ∇σvλτ
)

− 1

3
M I

(
F (V )µν

ijF (V )µνij + 4∇νvµρ∇µvνρ − 8vµν∇ν∇ρv
µρ
)

+
1

9
M I

(
16Rνρvµνv

µ
ρ + 12∇µvνρ∇µvνρ − 2Rv2

)
+

1

3
F I(W )µν

(
1

3
vµνv

2 + 4vµρv
ρλvνλ

)
+ 4M I vµνvνρv

ρσvσµ

+
2

3
M Iεµνρσλv

µνvρσ∇τv
λτ

]
,

(2.41)

where we have defined

C2 = CµνρσCµνρσ , (2.42)

with the Weyl tensor given by

Cµνρσ = Rµνρσ − 1
3
(gµρRνσ − gνρRµσ − gµσRνρ + gνσRµρ)

+ 1
12

(gµρgνσ − gµσgνρ)R .

As before, we use the solution for the KK vector multiplet VKK (2.27) together with the

36Here, we mostly follow the notation in [90], but with Dhere = 16Dthere + 128
3 T 2

there, vhere = 4Tthere, as

well as M I
here = −ρIthere.
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standard Weyl solution (2.21), and a straightforward yet tedious computation yields

S2 (VKK) =
(a2

1 + a2
2 + a2

3)− (a1a2 + a1a3 + a2a3)

3ω1ω2ω3

(2π)3mKK

=

[
ω2

1 + ω2
2 + ω2

3

2ω1ω2ω3

− (ω1 + ω2 + ω3)2

6ω1ω2ω3

]
(2π)3mKK ,

(2.43)

where we have set cI = δI,0 indicating that we are dealing with a single Abelian U(1)KK

gauge field.

2.4.4 FRR term

Finally, the FRR supersymmetric Chern-Simons term coincides precisely with the supersym-

metric completion of the piece

A ∧ Tr (FR ∧ FR) . (2.44)

It can be written in terms of Poincaré supergravity, which we introduced as a gauge-fixing

of the standard Weyl multiplet above. Notice that this term explicitly breaks conformal

invariance.

The full Lagrangian was first constructed in [90] (in Lorentzian signature), by taking

the vector multiplet action (2.29), and then writing part of the vector multiplet fields as

composite expressions in terms of the gauge-fixed linear multiplet. Therefore, we require

two steps to get the Lagrangian; we write down the vector multiplet action and then replace

the underlined fields by their composite expressions, which we provide further below. The

Ricci scalar squared term then arises from the Y ijY
ij term. By choosing cI,0,0 = cI and all

other cIJK to zero in the vector multiplet action, we obtain the following (Euclidean) Ricci

scalar squared action in the rigid limit

S3(V̂I) =

∫
M5

cI
√
g

[
M̂ IY ijY

ij − 2ρY ij(Ŷ I)ij +
1

8
M̂ Iρ2R− 1

4
M̂ IF µνF

µν

+
1

2
ρF µνF̂ I(Ŵ )µν −

1

2
M̂ I∂µρ∂

µρ− M̂ Iρ∂µ∂µρ

− 1

4
M̂ Iρ2

(
D + 6v2

)
− ρ2F̂ I(Ŵ )µνv

µν + 2M̂ IρF µνv
µν

+
1

8
εµνρσλ(Ŵ

I)µF νρF σλ

]
,

(2.45)
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where the composite expressions (in the rigid limit) are given by

ρ =
N̂

(L̂ijL̂ij)
1
2

,

F µν = 2∇[µ((L̂ijL̂ij)
− 1

2 Êν]) +
2

(L̂ijL̂ij)
1
2

F (V )µν
ijL̂ij −

2

(L̂ijL̂ij)
3
2

L̂lkD[µL̂
kpDν]L̂lp ,

Y ij =
3

8(L̂ijL̂ij)
1
2

L̂ijR−
1

(L̂ijL̂ij)
1
2

∂µDµL̂ij −
2

(L̂ijL̂ij)
1
2

Vµ
i
kD

µLjk

+
1

(L̂ijL̂ij)
3
2

DaL̂k(iD
aL̂j)mL̂

km − 1

4(L̂ijL̂ij)
3
2

N̂2L̂ij

+
1

4(L̂ijL̂ij)
3
2

ÊµÊ
µL̂ij +

1

4(L̂ijL̂ij)
1
2

(
D − 2v2

)
L̂ij −

1

(L̂ijL̂ij)
3
2

ÊµL̂k(iD
µL̂j)

k ,

(2.46)

with v2 defined as

v2 = vµνvµν , (2.47)

the covariant derivative DµL
ij given by

DµL̂
ij = ∂µL̂

ij + 2Vµ
(i
jL̂

j)k , (2.48)

and the symmetrization defined as as X(iYj) = 1
2
(XiYj + XjYi), and similarly for the anti-

symmetrization.

We can now plug in our explicit supersymmetric solutions for KK gauge-fixed Poincaré

supergravity, i.e. equations (2.8), (2.12) and (2.15), with gauge fixing conditions (2.17).

Again, a tedious analysis shows that it integrates to

S3(V̂) = − (ω1 + ω2 + ω3)2

ω1ω2ω2

(2π)3mKK , (2.49)

where we have set cI = δI,0 as we are to dealing with a single Abelian U(1)KK-photon.

2.5 Summary

Let us now conclude this technical section with a summary of our results. By carefully

evaluating the supersymmetric completion of the four Chern-Simons terms appearing in the

5d effective action, and imposing the following relation between the KK-masses mKK to the

S1 circumference β

mKK =
2πi

β
, (2.50)
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we have shown that

I1 ≡ 2S1 (VKK,VKK,VKK) =

∫
M5

A ∧ dA ∧ dA+ SUSY completion

=
(2π)3

ω1ω2ω3

(
2πi

β

)3

,

I2 ≡ −4

[
S2 (VKK)− 1

6
S3(V̂)

]
=

∫
M5

A ∧ tr (R ∧R) + SUSY completion

= − 2(2π)3 (ω2
1 + ω2

2 + ω2
3)

ω1ω2ω3

(
2πi

β

)
,

I3 ≡ −
1

2
S3(V̂) =

∫
M5

A ∧ Tr (FR ∧ FR) + SUSY completion

=
(2π)3

2

(ω1 + ω2 + ω3)2

ω1ω2ω3

(
2πi

β

)
,

I4 ≡ 2S1

(
VKK,VIf ,VJf

)
=

∫
M5

A ∧ Tr (FGf
∧ FGf

) + SUSY completion

=
(2π)3

ω1ω2ω3

µ2
f

(
2πi

β

)
.

(2.51)

3 Deriving the Chern-Simons levels

Having shown that the 5d supersymmetric Chern-Simons terms produce the form of the

Cardy formula, it remains to determine the Chern-Simons levels κi in (1.14). Let us revisit

the origin of these terms from the 6d perspective: they come from integrating out mas-

sive Kaluza-Klein (KK) modes, and are accompanied by non-local pieces arising from the

massless degrees of freedom. The latter are uncharged under the U(1)KK symmetry, so their

contributions are of order O(β0) or O(log β). Since we are interested in the parts of the 5d

effective action that are singular as β → 0, we only need to take into account the massive KK

contributions, and doing so allows us to determine the Chern-Simons levels. We emphasize

that such 5d Chern-Simons terms are unaffected by the local counter-terms in 6d.

The Chern-Simons terms that arise from integrating out massive KK modes can be

computed explicitly for various 6d free fields. For interacting SCFTs, our strategy is to

connect them to free theories by renormalization group flows on the vacuum moduli space.

To see that this produces the correct answer at the origin (i.e. the interacting superconformal

point), we recall the argument given in Section 1.4 that in the 5d Wilsonian effective action,

any dependence κ(φ) on the moduli fields violates background gauge invariance.

For Higgs branch flows, the free field computation allows us to determine the precise rela-

tion between the Chern-Simons levels and perturbative anomaly coefficients. This completes
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the proof of the 6d Cardy formula for general SCFTs with a Higgs branch. We also carry

out the computation for tensor branch flows, and discover that additional contributions from

the BPS strings wrapping the S1, are essential, though to compute them we need further

information about such objects.

3.1 Integrating out free field KK modes

The 5d Chern-Simons terms arise from integrating out KK modes from the S1 reduction of

6d tensor, vector and hypermultiplets. It is well-known that only chiral fermions ψ∓ and

(anti)-self-dual 2-forms B can generate such Chern-Simons terms. The Chern-Simons terms

of the first two types in (1.21) are given in [95]. The result is one-loop exact due to the usual

non-renormalization argument. For a conjugate pair of KK modes of U(1)KK charge ±n, we

get the following contributions

Inψ− =
1

48π2
n3I1 +

1

384π2
nI2 ,

Inψ+
= − 1

48π2
n3I1 −

1

384π2
nI2 ,

InB = − 4

48π2
n3I1 +

8

384π2
nI2 ,

(3.1)

where the various Chern-Simons terms are given in (1.21).

For 2m fermions transforming in the 2m representation of USp(2m), a similar computa-

tion gives

Ĩnψ∓ = ± 1

32π2
nĨ(USp(2m)) ,

Ĩ(USp(2m)) =

∫
A ∧ Tr

(
FUSp(2m) ∧ FUSp(2m)

)
+ SUSY completion .

(3.2)

A tensor multiplet contains the fields (B,ψi−), while a vector multiplet only contains the

fermions ψi+, where i ∈ {1, 2} is the fundamental index for SU(2)R. On the other hand, nH
hypermultiplets contain 2nH fermions ψi−, which are uncharged under SU(2)R and trans-

formed in 2nH representation of USp(2nH).

Putting these contributions together and using zeta function regularization to perform

the sum over KK modes,

∞∑
n=1

(n3) =
1

120
,

∞∑
n=1

(n) = − 1

12
, (3.3)
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we obtain

IT =
2− 4

48π2

1

120
I1 −

2 + 8

384π2

1

12
I2 −

2

32π2

1

12
I3 ,

IV =
−2

48π2

1

120
I1 −

−2

384π2

1

12
I2 −

−2

32π2

1

12
I3 ,

InHH =
2

48π2

1

120
I1 −

2

384π2

1

12
I2 −

2

32π2

1

12
I
USp(2nH)
4 ,

(3.4)

where I3 and I
USp(2nH)
4 are

I3 = Ĩ(SU(2)R ∼= USp(2)) , I
USp(2nH)
4 = Ĩ(USp(2nH)) . (3.5)

Thus, we conclude that

nTIT + nV IV + nHIH

=
(nH − nV − nT )

24π2

1

120
I1 −

(nH − nV + 5nT )

192π2

1

12
I2 −

(−nV + nT )

16π2

1

24
I3 −

1

16π2

1

24
I
USp(2nH)
4 ,

(3.6)

and comparing with the expression of (1.14) for free fields rewritten as

iW =
i

8π2

(
nT + nV − nH

360
I1 +

nH + 5nT − nV
288

I2 +
nT − nV

24
I3 +

1

24
I
USp(2nH)
4

)
+O(β0, log β) .

(3.7)

3.2 On the Higgs branch

On the Higgs branch, the free-field analysis above is sufficient to fully capture the 6d Cardy

formula. The reason is as follows. From the perspective of the 6d effective action (see

Figure 1), the free-field analysis can potentially miss contributions from extended BPS ob-

jects. In Appendix B.2, we classify such objects by studying the central extensions of the

supersymmetry algebra, and find that the only extended BPS objects allowed on the Higgs

branch are codimension-two vortex branes. However, such objects wrapped on S1 have in-

finite energy (unlike the BPS strings on the tensor branch), and thus cannot contribute to

the Chern-Simons levels in the 5d effective action. We now proceed with explicitly deriving

the relation between the Chern-Simons levels κi in the 5d effective action (1.20) and the

(perturbative) anomaly coefficients in the anomaly polynomial (1.15).

Let us assume that the 6d SCFT has a non-Abelian flavor symmetry group Gf and

a Higgs branch, whose infrared limit consists of free vector and hypermultiplets. At an

arbitrary point on the Higgs branch, the global symmetry group SU(2)R ×Gf is broken to

SU(2)R ×Gf → SU(2)D ×G1 × · · · ×Gn , (3.8)
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where SU(2)D is the diagonal subgroup of SU(2)R and SU(2)X , with SU(2)X×G1×· · ·×Gn ⊂
Gf .

37 The infrared theory consists of m half-hypermultiples in the doublet of SU(2)D, and

free half-hypermultiplets in a pseudo-real representation r1⊕ r2⊕ · · · ⊕ rn of G1× · · · ×Gn.

Let us denote the dimension of the representation ri by dri , and dtot =
∑n

i=1 dri .

By using the perturbative anomaly matching [64] and global anomaly matching on the

Higgs branch, we prove the formula (1.16) for the class of theories considered here. Let us

start with the anomaly polynomial of the UV SCFT, which contains the terms

I
(8)
UV ⊃

1

4!

[
δp2 + γp2

1 + βc2(SU(2)R)p1 + 24µc2(Gf)p1

]
. (3.9)

Under the general symmetry breaking pattern (3.8), we have the following relations involving

the second Chern classes:

c2(Gf) = c2(SU(2)D) +
n∑
i=1

aic2(Gi) ,

c2(SU(2)R) = c2(SU(2)D) ,

(3.10)

where ai are some coefficients that could be determined by the details of the symmetry

breaking pattern (3.8). Thus, the UV anomaly polynomial (3.9) admits a rewriting in terms

of the residual symmetry group as

I
(8)
UV ⊃

1

4!

[
δp2 + γp2

1 + (β + 24µ)c2(SU(2)D)p1 + 24µ

(
n∑
i=1

aic2(Gi)

)
p1

]
. (3.11)

On the Higgs branch, the anomaly polynomial of the IR effective theory receives contributions

from the hypermultiplets and contains the terms

I
(8)
HB =

1

4!

{
− 1

60

(
m+

dtot

2

)
p2 +

7

240

(
m+

dtot

2

)
p2

1

+
m

2
c2(SU(2)D)p1 +

1

2

n∑
i=1

TGi(ri)c2(Gi)p1

}
,

(3.12)

where TG(r) is defined by

tr r(F
2
G) = TG(r)Tr (F 2

G) . (3.13)

We have also used

Tr (F 2
usp(dtot)) = tr fund(F 2

usp(dtot)) =
∑
i

tr ri(F
2
Gi

) =
∑
i

TGi(ri)Tr (F 2
Gi

) . (3.14)

37We have assumed that Gi are simple Lie groups. Our argument can straightforwardly be generalized to

the case with U(1) factors appearing on the right-hand side of (3.8).

32



By perturbative anomaly matching [64], we conclude that

δ = − 1

60

(
m+

dtot

2

)
, γ =

7

240

(
m+

dtot

2

)
,

β + 24µ =
m

2
, 48µai = TGi(ri) .

(3.15)

Notice that for theories with a Higgs branch,

γ = −7

4
δ . (3.16)

Now, let us turn to the corresponding effective action on the Higgs branch. We start

with the general expression

iWUV =
iκ1

2880π2

∫
M5

A ∧ dA ∧ dA

− i

96

∫
M5

A ∧
[

2

3

(
κ2 −

3

2
κ3

)
p1 + 4κ3c

SU(2)R
2 + 4κfc

G
2

]
,

(3.17)

which under the Higgs branch symmetry breaking pattern (3.8) reduces to the following

expression

iWUV =
iκ1

2880π2

∫
M5

A ∧ dA ∧ dA

− i

96

∫
M5

A ∧

[
2

3

(
κ2 −

3

2
κ3

)
p1 + 4(κ3 + κf )c2(SU(2)D) + 4κf

(
n∑
i=1

aic2(Gi)

)]
.

(3.18)

On the other hand, plugging in the field content on the Higgs branch to the effective ac-

tion (3.7), we find

WHB = − i
m+ dtot

2

2880π2

∫
M5

A ∧ dA ∧ dA

− i

96

∫
M5

A ∧

[
1

3

(
m+

dtot

2

)
p1 − 4mc2(SU(2)D)− 4

n∑
i=1

TGi(ri)c2(Gi)

]
.

(3.19)

Thus, comparing (3.18) with (3.19), we find the relations

κ1 = −1

2
(2m+ dtot) , κ2 −

3

2
κ3 =

1

4
(2m+ dtot) ,

κ3 + κf = −m, κfai = −TGi(ri) .
(3.20)
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Hence, from (3.15) and (3.20) we derive the universal formulae for SCFTs with a Higgs

branch (with the relation between γ and δ (3.16)):

κ1 = 60δ ,

κ2 −
3

2
κ3 = −30δ,

κ3 = −2β ,

κf = −48µ .

(3.21)

This is consistent with the general formulae conjectured in [1], namely

κ1 = −40γ − 10δ ,

κ2 −
3

2
κ3 = 16γ − 2δ,

κ3 = −2β ,

κf = −48µ .

(3.22)

3.3 On the tensor branch

To extend the analysis to theories without a Higgs branch, a natural step is to derive the

coefficients κi and κf on the tensor branch. In this section, we compute the “naive” Chern-

Simons levels κi and κf from the one-loop free field contributions on the tensor branch of

several theories, and show that additional contributions must be present. In particular, in

theories that also have a Higgs branch, we find a “mismatch” between the two results.38

Although in 6d there are no massive particles, there are massive (tensionful) BPS strings –

including “M-strings” in N = (2, 0) theories and “E-strings” in the E-string theory – that

can potentially contribute to the Chern-Simons levels. A key difference between the Higgs

branch and the tensor or mixed branch is that BPS strings are absent in the former, but are

in general present in the latter. In the M-theory picture, such BPS strings are M2-branes

stretched between M5-M5 or M5-M9 branes, and are massive only when there are separations

between the M5/M9 branes (i.e. on the tensor or mixed branch).

Using supersymmetric localization, the superconformal index can be computed by a con-

tour integral on the complexified tensor branch, and one can explicitly see that the BPS

38A quick way to see that additional contributions must be present is the following. Many 6d SCFTs

have a one-dimensional tensor branch, on which the massless free field content is the same, but have very

different Cardy limits according to (1.14). It is plausible that the difference comes from the Green-Schwarz

type terms, which appear upon integrating out the appropriate BPS objects appearing on the tensor branch

(see Appendix B.2). Likewise, for 4d SCFTs that have a complex one-dimensional Coulomb branch, the

contributions from the supersymmetric Wess-Zumino terms – again upon integrating out the heavy BPS

states – may be crucial for recovering the Cardy formula at the fixed point.
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strings crucially contribute to the Cardy limit of the superconformal index. The integrand

is a product of three copies of the supersymmetric partition function on R4× T 2 [75,79,76],

which can further be written as a product of the partition function of the free tensor multi-

plets and a sum over the elliptic genera of multiple BPS strings winding around the T 2 [96,97].

The Cardy (β → 0) limit of the superconformal index reduces to the Cardy limit of the el-

liptic genera, which is controlled by the central charge (1.1) of the theory living on the BPS

strings. Therefore, a potential way to compute the Chern-Simons levels on the tensor branch

is to relate them to the 2d central charges of the BPS strings using the above relations. We

leave this for future investigation.

Below, we elaborate on the one-loop free field contributions and highlight the difference

compared to (1.14) which should come from BPS strings.

Theory nH nV nT

E-string N − 1 0 N

type-g (2, 0) rg 0 rg

TN,ΓAk−1
k2N (k2 − 1)(N − 1) N − 1

TN,ΓDk 2(2k − 8)N k(2k − 1)(N − 1) + (k − 4)(2k − 7)N 2N − 1

TN,ΓE6
0 86N − 78 4N − 1

TN,ΓE7
16N 160N − 133 6N − 1

TN,ΓE8
16N 334N − 248 12N − 1

Table 1: Field content on the tensor branch of various theories.

35



Coefficient SCFT Naive tensor branch Difference

κ1 −nH + nV + nT −nH + nV + nT 0

Free theory κ2 − 3
2
κ3

1
2
(nH − nV + 5nT ) 1

2
(nH − nV + 5nT ) 0

κ3 nV − nT nV − nT 0

κ
USp(2nH)
f −1 −1 0

κ1 −30N + 1 1 −30N

E-string κ2 − 3
2
κ3 15N − 1

2
3N − 1

2
12N

κ3 N(6N + 5) −N 6N(N + 1)

κE8
f −12N 0 −12N

κ1 0 0 0

type-g (2, 0) κ2 − 3
2
κ3 3rg 3rg 0

κ3 −rg −rg 0

κ
SU(2)
f −rg −rg 0

Table 2: Anomaly coefficients κ1,2,3 for an assortment of 6d SCFTs I. We exhibit both the

values computed at the SCFT point using the formula (1.16), and the naive values by simply

adding free fields on the tensor branch.

In the fourth columns of Table 2 and 3, we give the values of the Chern-Simons levels

κi’s and κf inferred from the free field content of various theories on their tensor branches.

The values of the κi’s can be straightforwardly computed using the numbers of the free

multiplets given in Table 1. In the following, we give more details on the computation of

the Chern-Simons level κf , which only receives contributions from the hypermultiplets. On

the tensor branch, the hypermultiplets transform under the USp(2nH) symmetry. By the

one-loop computation in Section 3.1, we find

κ
USp(2nH)
f = −1 . (3.23)

In general a subgroup H of the UV flavor symmetry group G acts nontrivially on the hyper-

multiplets, and it is embedded into the USp(2nH) symmetry. The κGf can be computed by

the formulae
κHf = IH↪→GκGf ,

κHf = IH↪→USp(2nH)κ
USp(2nH)
f = −IG↪→USp(2nH) ,

(3.24)

where IH↪→G and IH↪→USp(2nH) are the embedding indices of the embedding of the UV flavor

subgroup H into the UV flavor group or the USp(2nH) symmetry or nH free hypermultiplets.
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For the E-string, TN,E6 , TN,E7 , and TN,E8 theories, the UV flavor group G does not act

on the hypermultiplets, i.e. the subgroup H is trivial. Hence, the Chern-Simons level κf for

those theories on the tensor branches is zero.

For the type-g, N = (2, 0) theories viewed as N = (1, 0) theories, the UV SU(2) symme-

try is embedded as the diagonal subgroup of USp(2)rg ⊂ USp(2rg). The embedding index

is

ISU(2)↪→USp(2)rg = rg , and IUSp(2)rg ↪→USp(2rg) = 1 . (3.25)

We find the Chern-Simons level

κ
SU(2)
f = −rg (3.26)

for the type-g N = (2, 0) theories on the tensor branch.

For TN,ΓAk−1
, there are k2N hypermultiplets on the tensor branch. Only k2 of them are

charged under the UV flavor symmetry SU(k)L. In the IR limit, the k2 free hypermulti-

plets transform under USp(2k2). The UV SU(k)L symmetry embeds into the IR USp(2k2)

symmetry as SU(k) ↪→ SU(k) × SU(k) ↪→ SU(k2) ↪→ USp(2k2). We find the following

embedding indices

ISU(k)↪→SU(k)×SU(k) = k , ISU(k)×SU(k)↪→SU(k2) = 1 , ISU(k2)→USp(2k2) = 2 . (3.27)

Therefore, the Chern-Simons levels κ
SU(k)L
f and κ

SU(k)R
f on the tensor branch are

κ
SU(k)L
f = κ

SU(k)R
f = −2k . (3.28)
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Coefficient SCFT Naive tensor branch Difference

κ1 −k2 −k2 0

TN,ΓAk−1
κ2 − 3

2
κ3

1
2

(k2 + 6N − 6) 1
2

(k2 + 6N − 6) 0

κ3 (k2 − 2) (N − 1) (k2 − 2) (N − 1) 0

κ
SU(k)L
f or κ

SU(k)R
f −2k −2k 0

κ1 −2k2 + k − 1 −2k2 + k + 30N − 1 −30N

TN,ΓDk κ2 − 3
2
κ3 k2 − k

2
+ 3N − 5

2
k2 − k

2
− 9N − 5

2
12N

κ3
k2(4N−2)−4kN

+k−10N+1
k2(4N−2)−16kN

+k+26N+1
12(k − 3)N

κ
SO(2k)L
f or κ

SO(2k)R
f 4− 4k 16− 4k −12

κ1 −79 90N − 79 −90N

TN,ΓE6
κ2 − 3

2
κ3 3N + 73

2
−33N + 73

2
36N

κ3 166N − 77 82N − 77 84N

κ
(E6)L
f or κ

(E6)R
f −24 0 −24

κ1 −134 150N − 134 −150N

TN,ΓE7
κ2 − 3

2
κ3 3N + 64 −57N + 64 60N

κ3 382N − 132 154N − 132 228N

κ
(E7)L
f or κ

(E7)R
f −36 0 −36

κ1 −249 330N − 249 −330N

TN,ΓE8
κ2 − 3

2
κ3 3N + 243

2
−129N + 243

2
132N

κ3 1078N − 247 322N − 247 756N

κ
(E8)L
f or κ

(E8)R
f −60 0 −60

Table 3: Anomaly coefficients κ1,2,3 for an assortment of 6d SCFTs II. We exhibit both the

values computed at the SCFT point using the formula (1.16), and the naive values by simply

adding free fields on the tensor branch.

For TN,ΓDk , there are 2k(2k−8)N hypermultiplets on the tensor branch, but only k(2k−8)

of them are charged under the UV flavor symmetry SO(2k)L. In the IR limit, the k(2k− 8)

free hypermultiplets transform under USp(2k(2k−8)). The UV SO(2k)L symmetry embeds

into the IR USp(2k(2k−8)) symmetry as SO(2k) ↪→ SO(2k)×USp(2k−8) ↪→ USp(2k(2k−
8)). We find the embedding indices

ISO(2)↪→SO(2k)×USp(2k−8) = 2k − 8 , ISO(2k)×USp(2k−8)↪→USp(2k(2k−8)) = 2 . (3.29)
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Therefore, the Chern-Simons levels κ
SO(2k)L
f and κ

SO(2k)R
f on the tensor branch are

κ
SO(2k)L
f = κ

SO(2k)R
f = 16− 4k . (3.30)

4 Chern-Simons levels and global anomalies

There is a direct relation between the Chern-Simons levels κi in the 5d effective action and

the phases from global anomalies in the 6d theory [48,98,49]. This connection immediately

implies that the Chern-Simons levels κi can only jump by an appropriate quantized amount

along renormalization group flows into the Higgs or tensor branch moduli spaces. This

supports the argument of Section 1.4 that κi are in fact constant on the entire vacuum

moduli space.

We put the theory on a six manifoldM6 (1.22) that is an S1 fibration over a five manifold

M5, and study the large diffeomorphisms of the coordinate τ of the S1 fiber. The coordinate

τ has periodicity β, i.e. τ ∼ τ + β. The boundary condition for the fermionic degrees of

freedom along the S1 fiber is chosen to be periodic to preserve supersymmetry. Due to this

boundary condition, the fermionic degrees of freedom onM5 have integer charges under the

background graviphoton,
1

2π

∫
Σ2

dA ∈ Z , (4.1)

where Σ2 is a two-cycle inM5. Therefore, the five manifoldM5 must be a spin manifold.39

In the low energy limit, the tensor or Higgs branch effective theories always contain free

fermions. For the partition function on M6 to be nonzero, we need to choose a background

such that there is no fermionic zero mode. Let us now assume that M5 = S1
x5
×M4, with

the radius of S1
x5

being R5, i.e.

x5 ∼ x5 + 2πR5 . (4.3)

The boundary condition of the fermionic degrees of freedom on S1
x5

is chosen to be periodic.

The fermion zero modes of the IR free fermions can be lifted by turning on a nontrivial

39If the fermionic degrees of freedom have antiperiodic boundary conditions along the S1, then after the

dimensional reduction the fermionic degrees of freedom on M5 would have half-integer charges under the

background U(1)KK graviphoton gauge field A given in the metric (1.22). The five manifold M5 could be a

more general spinc manifold. More precisely, the fermionic degrees of freedom on M5 have integer charges

under a spinc connection Ac = 1
2A, which satisfies

1

2π

∫
Σ2

dAc =
1

2

∫
Σ2

w2 mod Z , (4.2)

where w2 is the second Stiefel-Whitney class of M5.
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flat connection of either the R-symmetry or flavor symmetry background gauge fields along

the x5 direction. This is equivalent to trivial background gauge fields but with nontrivial

boundary conditions for the charged degrees of freedom.

Consider a background diffeomorphism as follows

τ → τ +
nβ

2πR5

x5 , (4.4)

where n ∈ Z to preserve the boundary conditions for the fermionic degrees of freedom

along the S1
x5

. The background diffeomorphism corresponds to the background large gauge

transformation of the graviphoton A,

A → A+
n

R5

dx5 . (4.5)

In general, for theories with (mixed) gravitational anomalies, the partition function is not

invariant under such a background diffeomorphism, and transforms by a phase,

Z[A+ δA] = e−iπηZ[A] . (4.6)

The 5d effective action completely captures this anomalous diffeomorphism. Under the

large gauge transformation (4.5), the effective action transforms as

δW

= n

∫
M4

(
κ1

480π
dA ∧ dA− π

72
(κ2 −

3

2
κ3)p1 −

π

12
κ3c2(SU(2)R)− π

12
κGf

f c2(Gf)

)
.

(4.7)

The above integral satisfies quantization conditions given by various index theorems on the

spin manifold M4

m1 ≡
1

2(2π)2

∫
M4

dA ∧ dA ∈ Z ,

m2 ≡
1

24

∫
M4

p1 ∈ 2Z ,

m3 ≡
∫
M4

c2(SU(2)R) ∈ Z ,

mf ≡
∫
M4

c2(Gf) ∈ Z .

(4.8)

We find that the anomalous phase is given by

η =
nm1

60
κ1 +

2nm2

3
(κ2 −

3

2
κ3)− n

12
(m3κ3 +mfκ

Gf
f ) mod 2 . (4.9)

From the fifth columns of Table 2 and 3, we find explicitly the mismatches between the

global anomaly η of the UV SCFT (computed using the formula (1.16)) and the IR effective
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theory on the tensor branch. However, anomaly matching on the tensor branch is more

difficult due to the (possible) subtle contributions of Green-Schwarz type terms which are

generated from integrating out massive BPS strings. Recent progress on understanding the

contribution of the Green-Schwarz type terms to global anomalies has been made in [80–86].

For theories that also have a Higgs branch (where the formula (1.16) was proven), anomaly

matching between the two branches then predicts what the Green-Schwarz type contributions

must be.

5 Conclusion

We have proven the universality of the Cardy limit of the superconformal index for 6d SCFTs

with a pure Higgs branch, embodied in a precise formula (1.14) conjectured by Di Pietro

and Komargodski in [1] for the singular terms, with coefficients related to the perturbative

anomalies via (1.16).

Summary of proof

i) Compactifying the 6d SCFT on S1
β, in the Cardy limit (β → 0), one obtains the 5d

effective action (1.20) that contains four supersymmetric Chern-Simons terms Ij, for

j = 1, . . . 4, with explicit expressions given in (1.21).

ii) We evaluate {Ij}4
j=1 on the supersymmetric squashed S5 background, and determine the

explicit dependence on the squashing parameters ωi. The dependence is in agreement

with the proposal (1.14). The pieces that supersymmetrically complete the Chern-

Simons terms contribute nontrivially; in fact, their contributions are crucial for the final

answer to be a geometric invariant, i.e. dependent only on the transverse holomorphic

structure.

iii) To prove the relation (1.16) between the Chern-Simons levels κj and the coefficients

α, β, γ and δ in the 8-form anomaly polynomial (1.15), the following are the steps.

a) First, we use background infinitesimal gauge invariance to argue that the Chern-

Simons levels κj are invariant under RG flows of the 6d SCFT on its moduli space.

b) The IR effective theory on the Higgs branch is a theory of hypermultiplets (free at

large moduli), whose field content can be determined explicitly from the generic

(global) symmetry breaking pattern along the RG flow.

c) We explicitly KK-reduce the free hypermultiplets along the S1
β, and determine the
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Chern-Simons levels κj by integrating out massive KK modes at one-loop. The

result can be expressed in terms of the perturbative anomaly coefficients α, β, γ

and δ as in (3.22).

d) Since κi, α, β, γ and δ are all invariant under the pure Higgs branch flow, the

relation (3.22) holds at the UV superconformal fixed point as well.

A puzzle on the tensor branch

iv) By looking at various examples, we remarked that the invariance of the Chern-Simons

levels along the tensor branch flow requires extra contributions to the κi’s, in addition

to the one-loop contributions from the free fields. We leave a more in-depth study of

these extra contributions for future work [99].40

Global anomaly matching

v) We relate the Chern-Simons couplings κj to global gravitational anomalies. By explic-

itly studying the variation of the effective action under large diffeomorphisms, we derive

a relation between the anomalous factor η in (4.6) and the Chern-Simons levels κj.

Future prospects

An obvious avenue for exploration is to study more general 5d manifolds with non-trivial

topology. This is especially interesting in view of the relation between the 5d Chern-Simons

coefficients and global anomalies, the latter being sensitive to the topology of the space.

The 2d Cardy formula is intimately related to modular properties of the torus partition

function. In fact, modularity properties for N = (2, 0) [75,79,76] have also been understood.

It is an intriguing question to ask whether the Cardy formula for N = (1, 0) theories also

has a modular origin.

An alternative abstract way of determining the Chern-Simons levels for the 5d effective

action in the Cardy limit was given in [100, 101]. Their argument involves putting the

CFT on conical geometries, and assuming that the partition function is well-defined. In

particular, the answer should not depend on the different resolutions of the singularity. It

would be interesting to extend their analysis to the supersymmetric setting, in which case

the supersymmetric partition function is known to be insensitive to the resolutions of conical

singularities [102–104], which may put their arguments on a more rigorous footing.

40We note that the full 6d anomaly polynomial for a large class of theories are not fully determined as of

the writing of this paper.
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Lastly, we comment on the relation between the Cardy formula proven in this paper,

and recent work relating the “Cardy limit” of superconformal indices in 4d and 6d to black

holes entropies [5–8]. There is an ambiguity in nomenclature here. Whereas the Cardy limit

considered in this paper fixes the squashing parameters, the limit considered in [5–7] has the

(complexified) squashing parameters scale with β. The fugacities ωi in [5–8] are related to

our notation by

βω
(here)
1 = ω

(there)
1 , βω

(here)
2 = ω

(there)
2 , βω

(here)
3 = 2πi + ω

(there)
3 , (5.1)

and the “Cardy limit” defined in [5–7] is the small ω
(there)
i limit. The terms in the 5d effective

action that dominate in this new limit are different from our limit – additional terms that

are non-invariant under background perturbative gauge transformations must be included.41

Since this new limit appears important for black hole entropy-matching, it would be inter-

esting to prove the universal relation between this new limit and the anomalies, by similar

arguments as in the present work applied to a different 5d squashed sphere background. As

a matter of fact, we show in Appendix C, that the squashed S5 background for the “modified

6d index” can be obtained by a simple shift of ω3. Nonetheless, it remains to understand the

supersymmetric completion of the additional pieces appearing in the corresponding effective

action.42
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A Conventions for characteristic classes

We denote by p1 and p2 the first and second Pontryagin classes, and c1(U(1)) and c2(G) the

first and second Chern class of the groups U(1) and G, respectively. They can be written in

terms of the corresponding curvatures as follows:

p1 = − 1

2(2π)2
trR2 ,

p2 =
1

(2π)4

[
−1

4
trR4 +

1

8
(trR2)2

]
,

c1(U(1)) =
1

2π
FU(1) ,

c2(G) =
1

2(2π)2
TrF 2

G .

(A.1)

Here, the trace tr is over the vector representation, and the trace Tr is defined as

Tr(·) ≡ 1

2h∨
tradj(·) , (A.2)

where h∨ is the dual Coxeter number.

B Central extensions of supersymmetry algebras and

(extended) BPS objects for 4d N = 2 and 6d N =

(1, 0) theories

In this Appendix, we provide a brief classification of BPS objects appearing in Higgs/Coulomb/mixed

branch flows for 4d N = 2 theories and tensor/Higgs/mixed branch flows for 6d N = (1, 0)

theories.
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B.1 4d N = 2

The BPS states of 4d N = 2 theories can be classified by looking at the central extensions

of the supersymmetry algebra,

{Qi
α, Q

j
β} = εαβε

ijZ + σµναβZ
(ij)
µν ,

{Q̄i
α̇, Q̄

j

β̇
} = εα̇β̇ε

ijZ̄ + σ̄µν
α̇β̇
Z̄(ij)
µν ,

{Qi
α, Q̄

j

β̇
} = σµ

αβ̇
(εij(Pµ + Zµ) + Z(ij)

µ ) .

(B.1)

Here, Z is the usual central charge for BPS particles, whereas Zµ, Z
(ij)
µ and Z

(ij)
µν are the

brane charges for BPS strings and domain-walls, respectively.43 In particular, the brane

charges are related to the (higher-form) brane currents for a p-form symmetry by

Z(p)
µ1µ2...µp

≡ T (p)

∫
dd−1x J

(p)
0µ1µ2...µp

, (B.2)

where the integral is over the spatial directions, and T (p) is the brane tension with mass

dimension p + 1 (since the current J (p) has dimension d − p − 1). In terms of coupling to

background non-conformal supergravity, the brane tension T (p) is given by the scalar vev

of certain compensator multiplets. As argued in [106, 108], Zµ should vanish for 4d N = 2

theories that come from deforming SCFTs, because they are expected to have Ferrara-

Zumino (FZ) multiplets (with respect to any N = 1 subalgebra) [109].

As for the other brane charges that appear in the central extension of the 4d N = 2

supersymmetry algebra, the central charge Z for BPS particles is given by the complex

scalars in the vector multiplets, whereas the tensions for the BPS strings and domain walls

also depend on the real SU(2)R triplet scalars in the linear multiplets. For effective theories

on the moduli space of an SCFT, these tensions are determined by the vevs of vector multiplet

and hypermultiplet scalars. In particular, the tension for a (unit-charge) BPS string is given

by qq̃, where q, q̃ denote the chiral scalars in a hypermultiplet (this follows from the composite

expression of a linear multiplet in terms of hypermultiplets). As for the BPS domain wall,

the 3-form current is proportional to the Hodge dual of dφ where φ is a complex scalar in a

vector multiplet, and the tension for a BPS domain is given by qq̃(φ(+∞)−φ(−∞)), where

the q, q̃ are hypermultiplet scalars charged under the vector multiplet.44

Consequently, the possible massive stable BPS states are:

43Equivalently, one can study non-conformal modifications of the conformal supercurrent multiplets which

contain additional brane currents, or non-conformal extensions of the conformal supergravity by introducing

compensator multiplets (for reviews see [105–107]).
44Note that in N = 1 notation, this is just the usual statement that domain wall tensions are determined

by the difference between the values of the superpotential at adjacent vacua.
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(i) BPS particles on the Coulomb branch,

(ii) BPS strings on the Higgs branch,

(iii) BPS particles, strings and domain-walls on the mixed branches.

B.2 6d N = (1, 0)

The BPS states of 6dN = (1, 0) theories can be classified by looking at the central extensions

of the supersymmetry algebra,

{Qi
α, Q

j
β} = γµαβε

ij(Pµ + Zµ) + γµνραβ Z
(ij)
µνρ . (B.3)

Here, Zµ is the string charge and Zµνρ the 4-brane charge, and due to supersymmetry, the

corresponding brane tensions are respectively given by the real scalar in the tensor multiplet

and the real SU(2)R-triplet scalars in the linear multiplet (which contains a 4-form gauge

field that couples to the brane). By a similar reasoning as for 4d N = 2, the possible massive

BPS states are

(i) BPS strings on the tensor branch,

(ii) BPS codimension-two vortex branes on the Higgs branch, and

(iii) BPS strings and vortex branes on the mixed branches.

Upon compactification on S1 (and before compactifying the 5d theory on S5), the

(wrapped) vortex branes have infinite energy and thus do not contribute to the Chern-

Simons levels in the 5d effective action. Thus, in conclusion, there are no massive BPS

states contributing to the 5d effective action for Higgs branch flows.

C Supersymmetric S1 × S5 background for the index

and modified index

This appendix discusses the supersymmetric background for 6d theories on S1 × S5 twisted

by chemical potentials. The notation used in this section is independent of the main text.

We start with the 6d metric in equation (2.1), where we set r5 = 1, and pick the following

frame
e1 = dτ , e2 = dθ ,

e3 = sin θdψ , ej+3 = yj(dφj + iajdτ) , j = 1, 2, 3 ,
(C.1)
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where we have introduced the spherical coordinates

y1 = sin θ cosψ , y2 = sin θ sinψ , y3 = cos θ , (C.2)

with ψ ∈ [0, 2π) and θ ∈ [0, π).

In order to preserve some supersymmetry, we couple the theory to 6d background (off-

shell) conformal supergravity. More precisely, we couple to the “6d Weyl 1 multiplet”, also

known as the “6d standard Weyl multiplet” [110–112],45 which contains the bosonic fields

given by the metric, gµν , the gauge field for Weyl transformations bµ, an su(2)R symmetry

gauge field Vµ
i
j, an antisymmetric tensor T−abc and finally a real scalar D as well as fermionic

fields, ψiµ, χi su(2)R Majorana-Weyl spinors of positive, negative chirality, respectively.

We are interested in the rigid limit [36], and thus set the fermionic fields to zero. Fur-

thermore, to preserve some SUSY, we have to find non-trivial Killing spinors εi and their

conformal cousins, ηi, such that the variations of the fermionic fields vanish. The first con-

straint, δχi = 0, is automatically solved by setting

T−abc = D = 0 . (C.3)

With this, the remaining supersymmetry condition is then given by

δψiµ = ∂µε
i +

1

4
ωµ

abΓabε
i + Vµ

i
jε
j + Γµη

i = 0 . (C.4)

In the following, we pick the 6d Gamma matrices as follows

Γi = iσ2 ⊗ γi (i = 1, . . . , 5) , Γ6 = σ1 ⊗ 14×4 , (C.5)

where we recall that by γi are the 5d Gamma matrices, defined in equation (2.25). We may

solve (C.4) by turning on a background u(1)R ⊂ su(2)R gauge-field,

Vµ
i
jdx

µ =

(
1 +

V0

2

)
dτ (σ3)i j . (C.6)

We explicitly find the following solutions for the 6d Killing spinors εi and their conformal

45This is to make a distinction from another 6d N = (1, 0) Weyl multiplet – “6d Weyl 2 multiplet” or

“dilaton Weyl multiplet” – which has the same gauge but different matter fields [110,111].
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cousins ηi:

εj (τ) =
√

2e−
τ
2

(1+atot+(−1)j+1(2+V0))+ i
2
φtot



04×1

i sin θ
2
eiψ

2

− sin θ
2
e−iψ

2

i cos θ
2
eiψ

2

− cos θ
2
e−iψ

2


,

ηj (τ) =
1√
2
e−

τ
2

(1+atot+(−1)j+1(2+V0))+ i
2
φtot



− sin θ
2
eiψ

2

−i sin θ
2
e−iψ

2

cos θ
2
eiψ

2

i cos θ
2
e−iψ

2

04×1


,

(C.7)

where φtot =
∑3

i=1 φi and similarly atot =
∑3

i=1 ai, and with 04×1 a column vector with four

zeroes as entries.

So far we have effectively been dealing with R×S5. Now, we compactify the τ -direction,

and require the Killing spinors to satisfy the following consistency condition as we go around

the τ -circle

εj (τ + β) ≡ eπinεj (τ) , n ∈ {0, 1} , (C.8)

where n = 0 gives us back the usual index as defined in (1.13), while n = 1 gives us the

background for the modified index [5, 113].46 Therefore, we arrive at the conditions

V0 + ω1 + ω2 + ω3 =
2πin

β
, (C.9)

where ωi = 1 + ai. The analogous constraint in 4d was found in [113] by considering the 4d

background S1 × S3 with modified periodicity for the fermions along the S1.

To go from the usual index (i.e. n = 0 in (C.9)) considered throughout the present paper

to the modified index (i.e. n = 1 in (C.9)), we can simply shift (e.g.) ω3, i.e.

ω3 −→ ω3 +
2πi

β
. (C.10)

Applying this shift to the evaluation of the supersymmetric completions of the higher-

46See [57], where a similar modification has originally been considered in the N = 2 superconformal Schur

index.
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derivative terms (2.51), we find the following answers for the modified background:

Imod
1, n=1 = − i

ω1ω2

(2π)5

β2
+

ω3

ω1ω2

(2π)4

β
+

iω2
3

ω1ω2

(2π)3 +O
(
β1
)
,

Imod
2, n=1 =

2i

ω1ω2

(2π)5

β2
+

2ω3

ω1ω2

(2π)4

β
− 2i(2π)3 (ω2

1 + ω2
2)

ω1ω2

+O
(
β1
)
,

Imod
3, n=1 = − iπ2

ω1ω2

(2π)3

β2
− π2 (2ω1 + 2ω2 + ω3)

ω1ω2

(2π)2

β

+
2iπ3 (ω2

1 + 2ω2ω1 + ω2
2)

ω1ω2

+O
(
β1
)
,

Imod
4, n=1 = − i(2π)3(mI

f )2

ω1ω2

+O
(
β1
)
.

(C.11)

We remark that this is the answer (together with the constraint (C.9)) in the strict

β → 0 limit. In fact, the constraint is crucial to render the result in (C.11) invariant under

the exchange of ωi. Finally, in order to move to the “new Cardy limit” [5], we need to further

rescale

βωi → ωi , (C.12)

and then take the ωi → 0 limit. However, as mentioned in the main text, the background

gauge-invariant supersymmetric Chern-Simons terms treated in this paper are not the com-

plete set of terms contributing to that limit.

D Geometric invariance and the equivalence between

gauges

In the main text, we introduced two different solutions for background vector multiplets cou-

pled to the standard Weyl multiplet: one was the “flavor solution” (2.26), and the other was

the “KK solution” (2.27), where the gauge field is naturally identified with the 6d gravipho-

ton. Accordingly, we introduced two distinct gauge-fixed version of Poincaré supergravity:

the “standard gauge-fixed” (2.16) and the “KK gauge-fixed” (2.17) one. As one can explic-

itly confirm, the various types of solutions (in different combinations) lead to the exact same

results for the evaluation of the supersymmetric Chern-Simons terms, giving more credence

to the expectation that they are geometric invariants, i.e. only dependent on some simple

geometric properties, believed to be the transversally holomorphic foliation inherent in the

u(1)R truncated rigid supersymmetric backgrounds [14]. In this appendix, we provide a

relation between the various solutions.

Let us first focus on the vector multiplet. A vector multiplet coupled to the standard

Weyl multiplet is conformal. The (bosonic) fields in the standard Weyl and vector multiplet
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transform under Weyl rescaling as follows: (for completeness, we added the Weyl transfor-

mation of the linear multiplet)

SW : g → Λ2g , V i
j → V i

j , D → Λ−2D , v → Λ2v ,

V : M → ΛM , Wµ → Wµ , (Y )ij → Λ2(Y )ij ,

L : Lij → Λ3Lij , Eµ → Λ3Eµ , N → Λ4N .

(D.1)

From these expressions, it is clear that starting with the KK solution, we can fix the scalar M

to be a constant by Λ = µfM
−1, where m is the constant flavor mass. However, this would

change the metric, which is not what we want. Instead, we may connect the flavor solution

to the KK solution by Weyl transforming the standard Weyl solution (2.21) according to the

first line in (D.1) with the explicit Weyl factor

Λ = 2κ̃+
1

β̃κ̃
. (D.2)

Then, one explicitly finds

dWKK = d [w(Wf)] +
4

β̃
(e1 ∧ e2 + e3 ∧ e4) , (D.3)

where by w(Wf) we mean the Weyl transform of the ingredients in the standard Weyl mul-

tiplet defining Ŵ , i.e. in the constant-M solution, Wf = −µf(1 − (β̃κ̃)−1)e5, which Weyl-

transforms as follows47

Ŵ → w(Ŵ ) = (1− (Λβ̃κ̃)−1)(Λe5) . (D.4)

Consequently, in the supersymmetry condition (2.12), part of the explicit Λ in (D.2) will

get absorbed by Y and the κ̃ piece will be absorbed by M , making it non-constant. Thus,

we move from the flavor solution with constant M to a solution where M is non-constant.

Upon a (now) full Weyl transformation acting on the Standard Weyl as well as the vector

multiplet back by

Λ =
1

2κ̃+ 1
β̃κ̃

, (D.5)

we end up with the same metric but a different solution given by the KK solution.

By the same logic, one can relate the two gauge fixing conditions. These arguments then

suggest that the resulting superconformal Chern-Simons terms, i.e. the FFF, FfFfF and

47The reason for this curious Weyl transformation is that the ingredients in the (general) flavor solutions

are actually bilinears in the Killing spinors, i.e. W = (1− 1/S)K1, where K1 ∼ ε†γ(1)ε and S ∼ ε†ε (see [14]

for more details), which transform as in (3.8) of [14] under Weyl transformations. We also refer to [88] for

more details.
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FWW terms, should be the same when evaluated on various solutions (which we explicitly

checked), as they are by construction Weyl invariant. However, the reason for the FRR

term, whose Weyl invariance is broken, to remain unchanged (explicitly checked) must be

explained by the fact that it is a geometric invariant, i.e. solely depends on the transversely

holomorphic structure of the solution.

References

[1] L. Di Pietro and Z. Komargodski, Cardy formulae for SUSY theories in d = 4 and

d = 6, JHEP 12 (2014) 031, [1407.6061].

[2] J. L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories,

Nucl. Phys. B270 (1986) 186–204.

[3] M. Banados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional

space-time, Phys. Rev. Lett. 69 (1992) 1849–1851, [hep-th/9204099].

[4] E. Shaghoulian, Modular forms and a generalized Cardy formula in higher

dimensions, Phys. Rev. D93 (2016) 126005, [1508.02728].

[5] S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT,

1810.12067.

[6] A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, The asymptotic growth of

states of the 4d N=1 superconformal index, Submitted to: J. High Energy Phys.

(2019) , [1904.05865].

[7] J. Kim, S. Kim and J. Song, A 4d N = 1 Cardy Formula, 1904.03455.

[8] J. Nahmgoong, 6d superconformal Cardy formulas, 1907.12582.

[9] C. Closset, T. T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric

Field Theories on Three-Manifolds, JHEP 1305 (2013) 017, [1212.3388].

[10] L. F. Alday, D. Martelli, P. Richmond and J. Sparks, Localization on

Three-Manifolds, JHEP 10 (2013) 095, [1307.6848].

[11] C. Closset, T. T. Dumitrescu, G. Festuccia and Z. Komargodski, The Geometry of

Supersymmetric Partition Functions, JHEP 1401 (2014) 124, [1309.5876].

[12] C. Closset, T. T. Dumitrescu, G. Festuccia and Z. Komargodski, From Rigid

Supersymmetry to Twisted Holomorphic Theories, Phys. Rev. D90 (2014) 085006,

[1407.2598].

[13] C. Closset, L. Di Pietro and H. Kim, ’t Hooft anomalies and the holomorphy of

supersymmetric partition functions, JHEP 08 (2019) 035, [1905.05722].

51

http://dx.doi.org/10.1007/JHEP12(2014)031
http://arxiv.org/abs/1407.6061
http://dx.doi.org/10.1016/0550-3213(86)90552-3
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://arxiv.org/abs/hep-th/9204099
http://dx.doi.org/10.1103/PhysRevD.93.126005
http://arxiv.org/abs/1508.02728
http://arxiv.org/abs/1810.12067
http://arxiv.org/abs/1904.05865
http://arxiv.org/abs/1904.03455
http://arxiv.org/abs/1907.12582
http://dx.doi.org/10.1007/JHEP05(2013)017
http://arxiv.org/abs/1212.3388
http://dx.doi.org/10.1007/JHEP10(2013)095
http://arxiv.org/abs/1307.6848
http://dx.doi.org/10.1007/JHEP01(2014)124
http://arxiv.org/abs/1309.5876
http://dx.doi.org/10.1103/PhysRevD.90.085006
http://arxiv.org/abs/1407.2598
http://dx.doi.org/10.1007/JHEP08(2019)035
http://arxiv.org/abs/1905.05722


[14] L. F. Alday, P. B. Genolini, M. Fluder, P. Richmond and J. Sparks, Supersymmetric

gauge theories on five-manifolds, 1503.09090.

[15] L. Di Pietro and M. Honda, Cardy Formula for 4d SUSY Theories and Localization,

JHEP 04 (2017) 055, [1611.00380].

[16] L. Di Pietro, “unpublished notes.”.

[17] M. Beccaria and A. A. Tseytlin, Superconformal index of higher derivative N = 1

multiplets in four dimensions, JHEP 10 (2018) 087, [1807.05911].

[18] C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Spheres, Charges, Instantons, and

Bootstrap: A Five-Dimensional Odyssey, 1710.08418.

[19] E. Bergshoeff, T. de Wit, R. Halbersma, S. Cucu, M. Derix and A. Van Proeyen,

Weyl multiplets of N=2 conformal supergravity in five-dimensions, JHEP 06 (2001)

051, [hep-th/0104113].

[20] T. Fujita and K. Ohashi, Superconformal tensor calculus in five-dimensions, Prog.

Theor. Phys. 106 (2001) 221–247, [hep-th/0104130].

[21] K. Hanaki, K. Ohashi and Y. Tachikawa, Supersymmetric Completion of an R**2

term in Five-dimensional Supergravity, Prog. Theor. Phys. 117 (2007) 533,

[hep-th/0611329].

[22] E. A. Bergshoeff, J. Rosseel and E. Sezgin, Off-shell D=5, N=2 Riemann Squared

Supergravity, Class. Quant. Grav. 28 (2011) 225016, [1107.2825].

[23] M. Ozkan and Y. Pang, Supersymmetric Completion of Gauss-Bonnet Combination

in Five Dimensions, JHEP 03 (2013) 158, [1301.6622].

[24] D. Butter, S. M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal

supergravity in five dimensions: New approach and applications, JHEP 02 (2015)

111, [1410.8682].

[25] C. Cordova, T. T. Dumitrescu and K. Intriligator, Deformations of Superconformal

Theories, JHEP 11 (2016) 135, [1602.01217].

[26] C.-M. Chang, 5d and 6d SCFTs Have No Weak Coupling Limit, 1810.04169.

[27] K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6d N = (1, 0) theories on

T 2 and class S theories: Part I, JHEP 07 (2015) 014, [1503.06217].

[28] N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl.

Phys. B471 (1996) 121–134, [hep-th/9603003].

[29] O. J. Ganor and A. Hanany, Small E(8) instantons and tensionless noncritical

strings, Nucl. Phys. B474 (1996) 122–140, [hep-th/9602120].

52

http://arxiv.org/abs/1503.09090
http://dx.doi.org/10.1007/JHEP04(2017)055
http://arxiv.org/abs/1611.00380
http://dx.doi.org/10.1007/JHEP10(2018)087
http://arxiv.org/abs/1807.05911
http://arxiv.org/abs/1710.08418
http://dx.doi.org/10.1088/1126-6708/2001/06/051
http://dx.doi.org/10.1088/1126-6708/2001/06/051
http://arxiv.org/abs/hep-th/0104113
http://dx.doi.org/10.1143/PTP.106.221
http://dx.doi.org/10.1143/PTP.106.221
http://arxiv.org/abs/hep-th/0104130
http://dx.doi.org/10.1143/PTP.117.533
http://arxiv.org/abs/hep-th/0611329
http://dx.doi.org/10.1088/0264-9381/28/22/225016
http://arxiv.org/abs/1107.2825
http://dx.doi.org/10.1007/JHEP03(2013)158, 10.1007/JHEP07(2013)152
http://arxiv.org/abs/1301.6622
http://dx.doi.org/10.1007/JHEP02(2015)111
http://dx.doi.org/10.1007/JHEP02(2015)111
http://arxiv.org/abs/1410.8682
http://dx.doi.org/10.1007/JHEP11(2016)135
http://arxiv.org/abs/1602.01217
http://arxiv.org/abs/1810.04169
http://dx.doi.org/10.1007/JHEP07(2015)014
http://arxiv.org/abs/1503.06217
http://dx.doi.org/10.1016/0550-3213(96)00189-7
http://dx.doi.org/10.1016/0550-3213(96)00189-7
http://arxiv.org/abs/hep-th/9603003
http://dx.doi.org/10.1016/0550-3213(96)00243-X
http://arxiv.org/abs/hep-th/9602120


[30] M. Del Zotto, J. J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter,

JHEP 02 (2015) 054, [1407.6359].

[31] P. C. Argyres and M. R. Douglas, New phenomena in SU(3) supersymmetric gauge

theory, Nucl. Phys. B448 (1995) 93–126, [hep-th/9505062].

[32] P. C. Argyres, M. R. Plesser, N. Seiberg and E. Witten, New N=2 superconformal

field theories in four-dimensions, Nucl. Phys. B461 (1996) 71–84, [hep-th/9511154].

[33] J. Kinney, J. M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional

super conformal theories, Commun.Math.Phys. 275 (2007) 209–254,

[hep-th/0510251].

[34] C. Romelsberger, Counting chiral primaries in N = 1, d=4 superconformal field

theories, Nucl.Phys. B747 (2006) 329–353, [hep-th/0510060].

[35] C. Romelsberger, Calculating the Superconformal Index and Seiberg Duality,

0707.3702.

[36] G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace,

JHEP 1106 (2011) 114, [1105.0689].

[37] B. Assel, D. Cassani and D. Martelli, Localization on Hopf surfaces, JHEP 08 (2014)

123, [1405.5144].

[38] J. Lorenzen and D. Martelli, Comments on the Casimir energy in supersymmetric

field theories, JHEP 07 (2015) 001, [1412.7463].

[39] B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen and D. Martelli, The

Casimir Energy in Curved Space and its Supersymmetric Counterpart, JHEP 07

(2015) 043, [1503.05537].

[40] N. Bobev, M. Bullimore and H.-C. Kim, Supersymmetric Casimir Energy and the

Anomaly Polynomial, JHEP 09 (2015) 142, [1507.08553].

[41] C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on Curved Spaces and

Holography, JHEP 08 (2012) 061, [1205.1062].

[42] T. T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring Curved Superspace, JHEP

1208 (2012) 141, [1205.1115].

[43] A. Arabi Ardehali, J. T. Liu and P. Szepietowski, High-Temperature Expansion of

Supersymmetric Partition Functions, JHEP 07 (2015) 113, [1502.07737].

[44] A. Arabi Ardehali, High-temperature asymptotics of supersymmetric partition

functions, JHEP 07 (2016) 025, [1512.03376].

[45] M. Buican and T. Nishinaka, On the superconformal index of Argyres–Douglas

theories, J. Phys. A49 (2016) 015401, [1505.05884].

53

http://dx.doi.org/10.1007/JHEP02(2015)054
http://arxiv.org/abs/1407.6359
http://dx.doi.org/10.1016/0550-3213(95)00281-V
http://arxiv.org/abs/hep-th/9505062
http://dx.doi.org/10.1016/0550-3213(95)00671-0
http://arxiv.org/abs/hep-th/9511154
http://dx.doi.org/10.1007/s00220-007-0258-7
http://arxiv.org/abs/hep-th/0510251
http://dx.doi.org/10.1016/j.nuclphysb.2006.03.037
http://arxiv.org/abs/hep-th/0510060
http://arxiv.org/abs/0707.3702
http://dx.doi.org/10.1007/JHEP06(2011)114
http://arxiv.org/abs/1105.0689
http://dx.doi.org/10.1007/JHEP08(2014)123
http://dx.doi.org/10.1007/JHEP08(2014)123
http://arxiv.org/abs/1405.5144
http://dx.doi.org/10.1007/JHEP07(2015)001
http://arxiv.org/abs/1412.7463
http://dx.doi.org/10.1007/JHEP07(2015)043
http://dx.doi.org/10.1007/JHEP07(2015)043
http://arxiv.org/abs/1503.05537
http://dx.doi.org/10.1007/JHEP09(2015)142
http://arxiv.org/abs/1507.08553
http://dx.doi.org/10.1007/JHEP08(2012)061
http://arxiv.org/abs/1205.1062
http://dx.doi.org/10.1007/JHEP08(2012)141
http://dx.doi.org/10.1007/JHEP08(2012)141
http://arxiv.org/abs/1205.1115
http://dx.doi.org/10.1007/JHEP07(2015)113
http://arxiv.org/abs/1502.07737
http://dx.doi.org/10.1007/JHEP07(2016)025
http://arxiv.org/abs/1512.03376
http://dx.doi.org/10.1088/1751-8113/49/1/015401
http://arxiv.org/abs/1505.05884


[46] C. Beem and L. Rastelli, Vertex operator algebras, Higgs branches, and modular

differential equations, JHEP 08 (2018) 114, [1707.07679].

[47] A. Arabi Ardehali, High-temperature asymptotics of the 4d superconformal index.

PhD thesis, Michigan U., 2016. 1605.06100.

[48] S. Golkar and D. T. Son, (Non)-renormalization of the chiral vortical effect

coefficient, JHEP 02 (2015) 169, [1207.5806].

[49] S. D. Chowdhury and J. R. David, Global gravitational anomalies and transport,

JHEP 12 (2016) 116, [1604.05003].

[50] P. Glorioso, H. Liu and S. Rajagopal, Global Anomalies, Discrete Symmetries, and

Hydrodynamic Effective Actions, JHEP 01 (2019) 043, [1710.03768].

[51] D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly Marginal

Deformations and Global Symmetries, JHEP 06 (2010) 106, [1005.3546].

[52] K. A. Intriligator and B. Wecht, The Exact superconformal R symmetry maximizes a,

Nucl. Phys. B667 (2003) 183–200, [hep-th/0304128].

[53] N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions,

in The mathematical beauty of physics: A memorial volume for Claude Itzykson.

Proceedings, Conference, Saclay, France, June 5-7, 1996, pp. 333–366, 1996.

hep-th/9607163.

[54] O. Aharony, S. S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities,

JHEP 07 (2013) 149, [1305.3924].

[55] S. Cecotti, A. Neitzke and C. Vafa, R-Twisting and 4d/2d Correspondences,

1006.3435.

[56] A. Iqbal and C. Vafa, BPS Degeneracies and Superconformal Index in Diverse

Dimensions, Phys. Rev. D90 (2014) 105031, [1210.3605].

[57] C. Cordova and S.-H. Shao, Schur Indices, BPS Particles, and Argyres-Douglas

Theories, JHEP 01 (2016) 040, [1506.00265].

[58] M. Alishahiha and Y. Oz, AdS / CFT and BPS strings in four-dimensions, Phys.

Lett. B465 (1999) 136–141, [hep-th/9907206].

[59] A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037,

[hep-th/0306150].

[60] R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, NonAbelian

superconductors: Vortices and confinement in N=2 SQCD, Nucl. Phys. B673 (2003)

187–216, [hep-th/0307287].

[61] M. Shifman and A. Yung, NonAbelian string junctions as confined monopoles, Phys.

Rev. D70 (2004) 045004, [hep-th/0403149].

54

http://dx.doi.org/10.1007/JHEP08(2018)114
http://arxiv.org/abs/1707.07679
http://arxiv.org/abs/1605.06100
http://dx.doi.org/10.1007/JHEP02(2015)169
http://arxiv.org/abs/1207.5806
http://dx.doi.org/10.1007/JHEP12(2016)116
http://arxiv.org/abs/1604.05003
http://dx.doi.org/10.1007/JHEP01(2019)043
http://arxiv.org/abs/1710.03768
http://dx.doi.org/10.1007/JHEP06(2010)106
http://arxiv.org/abs/1005.3546
http://dx.doi.org/10.1016/S0550-3213(03)00459-0
http://arxiv.org/abs/hep-th/0304128
http://arxiv.org/abs/hep-th/9607163
http://dx.doi.org/10.1007/JHEP07(2013)149
http://arxiv.org/abs/1305.3924
http://arxiv.org/abs/1006.3435
http://dx.doi.org/10.1103/PhysRevD.90.105031
http://arxiv.org/abs/1210.3605
http://dx.doi.org/10.1007/JHEP01(2016)040
http://arxiv.org/abs/1506.00265
http://dx.doi.org/10.1016/S0370-2693(99)01034-5
http://dx.doi.org/10.1016/S0370-2693(99)01034-5
http://arxiv.org/abs/hep-th/9907206
http://dx.doi.org/10.1088/1126-6708/2003/07/037
http://arxiv.org/abs/hep-th/0306150
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.029
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.029
http://arxiv.org/abs/hep-th/0307287
http://dx.doi.org/10.1103/PhysRevD.70.045004
http://dx.doi.org/10.1103/PhysRevD.70.045004
http://arxiv.org/abs/hep-th/0403149


[62] A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP

04 (2004) 066, [hep-th/0403158].

[63] N. Seiberg and S. H. Shenker, Hypermultiplet moduli space and string compactification

to three-dimensions, Phys. Lett. B388 (1996) 521–523, [hep-th/9608086].

[64] H. Shimizu, Y. Tachikawa and G. Zafrir, Anomaly matching on the Higgs branch,

JHEP 12 (2017) 127, [1703.01013].

[65] Y. Yoshida, Factorization of 4d N=1 superconformal index, 1403.0891.

[66] W. Peelaers, Higgs branch localization of N = 1 theories on S3 x S1, JHEP 08 (2014)

060, [1403.2711].

[67] M. Henningson, Extended superspace, higher derivatives and SL(2,Z) duality, Nucl.

Phys. B458 (1996) 445–455, [hep-th/9507135].

[68] B. de Wit, M. T. Grisaru and M. Rocek, Nonholomorphic corrections to the one loop

N=2 superYang-Mills action, Phys. Lett. B374 (1996) 297–303, [hep-th/9601115].

[69] M. Dine and N. Seiberg, Comments on higher derivative operators in some SUSY

field theories, Phys. Lett. B409 (1997) 239–244, [hep-th/9705057].

[70] Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four

Dimensions, JHEP 12 (2011) 099, [1107.3987].

[71] Z. Komargodski, The Constraints of Conformal Symmetry on RG Flows, JHEP 07

(2012) 069, [1112.4538].

[72] A. D. Shapere and Y. Tachikawa, Central charges of N=2 superconformal field

theories in four dimensions, JHEP 09 (2008) 109, [0804.1957].

[73] S. Hellerman, S. Maeda, D. Orlando, S. Reffert and M. Watanabe, Universal

correlation functions in rank 1 SCFTs, 1804.01535.

[74] J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for

Superconformal Field Theories in 3,5 and 6 Dimensions, JHEP 02 (2008) 064,

[0801.1435].

[75] H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, JHEP 05

(2013) 144, [1206.6339].

[76] H.-C. Kim, J. Kim and S. Kim, Instantons on the 5-sphere and M5-branes,

1211.0144.

[77] S. Kim and K. Lee, Indices for 6 dimensional superconformal field theories, 2016.

1608.02969.

[78] C. Beem, L. Rastelli and B. C. van Rees, W symmetry in six dimensions, JHEP 05

(2015) 017, [1404.1079].

55

http://dx.doi.org/10.1088/1126-6708/2004/04/066
http://dx.doi.org/10.1088/1126-6708/2004/04/066
http://arxiv.org/abs/hep-th/0403158
http://dx.doi.org/10.1016/S0370-2693(96)01189-6
http://arxiv.org/abs/hep-th/9608086
http://dx.doi.org/10.1007/JHEP12(2017)127
http://arxiv.org/abs/1703.01013
http://arxiv.org/abs/1403.0891
http://dx.doi.org/10.1007/JHEP08(2014)060
http://dx.doi.org/10.1007/JHEP08(2014)060
http://arxiv.org/abs/1403.2711
http://dx.doi.org/10.1016/0550-3213(95)00567-6
http://dx.doi.org/10.1016/0550-3213(95)00567-6
http://arxiv.org/abs/hep-th/9507135
http://dx.doi.org/10.1016/0370-2693(96)00173-6
http://arxiv.org/abs/hep-th/9601115
http://dx.doi.org/10.1016/S0370-2693(97)00899-X
http://arxiv.org/abs/hep-th/9705057
http://dx.doi.org/10.1007/JHEP12(2011)099
http://arxiv.org/abs/1107.3987
http://dx.doi.org/10.1007/JHEP07(2012)069
http://dx.doi.org/10.1007/JHEP07(2012)069
http://arxiv.org/abs/1112.4538
http://dx.doi.org/10.1088/1126-6708/2008/09/109
http://arxiv.org/abs/0804.1957
http://arxiv.org/abs/1804.01535
http://dx.doi.org/10.1088/1126-6708/2008/02/064
http://arxiv.org/abs/0801.1435
http://dx.doi.org/10.1007/JHEP05(2013)144
http://dx.doi.org/10.1007/JHEP05(2013)144
http://arxiv.org/abs/1206.6339
http://arxiv.org/abs/1211.0144
http://arxiv.org/abs/1608.02969
http://dx.doi.org/10.1007/JHEP05(2015)017
http://dx.doi.org/10.1007/JHEP05(2015)017
http://arxiv.org/abs/1404.1079


[79] G. Lockhart and C. Vafa, Superconformal Partition Functions and Non-perturbative

Topological Strings, 1210.5909.

[80] S. Monnier, Global gravitational anomaly cancellation for five-branes, Adv. Theor.

Math. Phys. 19 (2015) 701–724, [1310.2250].

[81] S. Monnier, The global anomalies of (2,0) superconformal field theories in six

dimensions, JHEP 09 (2014) 088, [1406.4540].

[82] S. Monnier, The anomaly field theories of six-dimensional (2,0) superconformal

theories, 1706.01903.

[83] S. Monnier, G. W. Moore and D. S. Park, Quantization of anomaly coefficients in 6D

N = (1, 0) supergravity, JHEP 02 (2018) 020, [1711.04777].

[84] S. Monnier and G. W. Moore, A Brief Summary Of Global Anomaly Cancellation In

Six-Dimensional Supergravity, 1808.01335.

[85] S. Monnier and G. W. Moore, Remarks on the Green-Schwarz terms of

six-dimensional supergravity theories, 1808.01334.

[86] C.-T. Hsieh, Y. Tachikawa and K. Yonekura, On the anomaly of the electromagnetic

duality of the Maxwell theory, 1905.08943.

[87] Y. Imamura and H. Matsuno, Supersymmetric backgrounds from 5d N=1

supergravity, JHEP 07 (2014) 055, [1404.0210].

[88] C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Counterterms of 5d Theories, To

appear .

[89] E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren and A. Van Proeyen,

N = 2 supergravity in five-dimensions revisited, Class. Quant. Grav. 21 (2004)

3015–3042, [hep-th/0403045].

[90] M. Ozkan and Y. Pang, All off-shell R2 invariants in five dimensional N = 2

supergravity, JHEP 08 (2013) 042, [1306.1540].

[91] A. Pini, D. Rodriguez-Gomez and J. Schmude, Rigid Supersymmetry from Conformal

Supergravity in Five Dimensions, JHEP 09 (2015) 118, [1504.04340].

[92] E. Bergshoeff, S. Cucu, T. De Wit, J. Gheerardyn, R. Halbersma, S. Vandoren et al.,

Superconformal N=2, D = 5 matter with and without actions, JHEP 10 (2002) 045,

[hep-th/0205230].

[93] M. Ozkan, Off-shell N = 2 linear multiplets in five dimensions, JHEP 11 (2016) 157,

[1608.00349].

[94] J. J. Duistermaat and G. J. Heckman, On the Variation in the cohomology of the

symplectic form of the reduced phase space, Invent. Math. 69 (1982) 259–268.

56

http://arxiv.org/abs/1210.5909
http://dx.doi.org/10.4310/ATMP.2015.v19.n3.a5
http://dx.doi.org/10.4310/ATMP.2015.v19.n3.a5
http://arxiv.org/abs/1310.2250
http://dx.doi.org/10.1007/JHEP09(2014)088
http://arxiv.org/abs/1406.4540
http://arxiv.org/abs/1706.01903
http://dx.doi.org/10.1007/JHEP02(2018)020
http://arxiv.org/abs/1711.04777
http://arxiv.org/abs/1808.01335
http://arxiv.org/abs/1808.01334
http://arxiv.org/abs/1905.08943
http://dx.doi.org/10.1007/JHEP07(2014)055
http://arxiv.org/abs/1404.0210
http://dx.doi.org/10.1088/0264-9381/23/23/C01, 10.1088/0264-9381/21/12/013
http://dx.doi.org/10.1088/0264-9381/23/23/C01, 10.1088/0264-9381/21/12/013
http://arxiv.org/abs/hep-th/0403045
http://dx.doi.org/10.1007/JHEP08(2013)042
http://arxiv.org/abs/1306.1540
http://dx.doi.org/10.1007/JHEP09(2015)118
http://arxiv.org/abs/1504.04340
http://dx.doi.org/10.1088/1126-6708/2002/10/045
http://arxiv.org/abs/hep-th/0205230
http://dx.doi.org/10.1007/JHEP11(2016)157
http://arxiv.org/abs/1608.00349
http://dx.doi.org/10.1007/BF01399506


[95] F. Bonetti, T. W. Grimm and S. Hohenegger, One-loop Chern-Simons terms in five

dimensions, JHEP 07 (2013) 043, [1302.2918].

[96] B. Haghighat, A. Iqbal, C. Kozaz, G. Lockhart and C. Vafa, M-Strings, Commun.

Math. Phys. 334 (2015) 779–842, [1305.6322].

[97] J. Kim, S. Kim, K. Lee, J. Park and C. Vafa, Elliptic Genus of E-strings, JHEP 09

(2017) 098, [1411.2324].

[98] S. Golkar and S. Sethi, Global Anomalies and Effective Field Theory, JHEP 05

(2016) 105, [1512.02607].

[99] C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Global Anomalies and the Cardy

limit, Work in progress. .

[100] K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational

anomalies and cones, JHEP 02 (2013) 088, [1207.5824].

[101] K. Jensen, R. Loganayagam and A. Yarom, Chern-Simons terms from thermal circles

and anomalies, JHEP 05 (2014) 110, [1311.2935].

[102] T. Nishioka and I. Yaakov, Supersymmetric Renyi Entropy, JHEP 10 (2013) 155,

[1306.2958].

[103] X. Huang, S.-J. Rey and Y. Zhou, Three-dimensional SCFT on conic space as

hologram of charged topological black hole, JHEP 03 (2014) 127, [1401.5421].

[104] X. Huang and Y. Zhou, N = 4 Super-Yang-Mills on conic space as hologram of STU

topological black hole, JHEP 02 (2015) 068, [1408.3393].

[105] D. Butter and S. M. Kuzenko, N=2 supergravity and supercurrents, JHEP 12 (2010)

080, [1011.0339].

[106] T. T. Dumitrescu and N. Seiberg, Supercurrents and Brane Currents in Diverse

Dimensions, JHEP 07 (2011) 095, [1106.0031].

[107] Y. Korovin, S. M. Kuzenko and S. Theisen, The conformal supercurrents in diverse

dimensions and conserved superconformal currents, JHEP 05 (2016) 134,

[1604.00488].

[108] T. T. Dumitrescu, An introduction to supersymmetric field theories in curved space,

J. Phys. A50 (2017) 443005, [1608.02957].

[109] S. Ferrara and B. Zumino, Transformation Properties of the Supercurrent, Nucl.

Phys. B87 (1975) 207.

[110] E. Bergshoeff, E. Sezgin and A. Van Proeyen, Superconformal Tensor Calculus and

Matter Couplings in Six-dimensions, Nucl. Phys. B264 (1986) 653.

57

http://dx.doi.org/10.1007/JHEP07(2013)043
http://arxiv.org/abs/1302.2918
http://dx.doi.org/10.1007/s00220-014-2139-1
http://dx.doi.org/10.1007/s00220-014-2139-1
http://arxiv.org/abs/1305.6322
http://dx.doi.org/10.1007/JHEP09(2017)098
http://dx.doi.org/10.1007/JHEP09(2017)098
http://arxiv.org/abs/1411.2324
http://dx.doi.org/10.1007/JHEP05(2016)105
http://dx.doi.org/10.1007/JHEP05(2016)105
http://arxiv.org/abs/1512.02607
http://dx.doi.org/10.1007/JHEP02(2013)088
http://arxiv.org/abs/1207.5824
http://dx.doi.org/10.1007/JHEP05(2014)110
http://arxiv.org/abs/1311.2935
http://dx.doi.org/10.1007/JHEP10(2013)155
http://arxiv.org/abs/1306.2958
http://dx.doi.org/10.1007/JHEP03(2014)127
http://arxiv.org/abs/1401.5421
http://dx.doi.org/10.1007/JHEP02(2015)068
http://arxiv.org/abs/1408.3393
http://dx.doi.org/10.1007/JHEP12(2010)080
http://dx.doi.org/10.1007/JHEP12(2010)080
http://arxiv.org/abs/1011.0339
http://dx.doi.org/10.1007/JHEP07(2011)095
http://arxiv.org/abs/1106.0031
http://dx.doi.org/10.1007/JHEP05(2016)134
http://arxiv.org/abs/1604.00488
http://dx.doi.org/10.1088/1751-8121/aa62f5
http://arxiv.org/abs/1608.02957
http://dx.doi.org/10.1016/0550-3213(75)90063-2
http://dx.doi.org/10.1016/0550-3213(75)90063-2
http://dx.doi.org/10.1016/0550-3213(86)90503-1


[111] F. Coomans and A. Van Proeyen, Off-shell N=(1,0), D=6 supergravity from

superconformal methods, JHEP 02 (2011) 049, [1101.2403].

[112] E. Bergshoeff, F. Coomans, E. Sezgin and A. Van Proeyen, Higher Derivative

Extension of 6D Chiral Gauged Supergravity, JHEP 07 (2012) 011, [1203.2975].

[113] A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, Microscopic origin of the

Bekenstein-Hawking entropy of supersymmetric AdS5 black holes, 1810.11442.

58

http://dx.doi.org/10.1007/JHEP02(2011)049, 10.1007/JHEP01(2012)119
http://arxiv.org/abs/1101.2403
http://dx.doi.org/10.1007/JHEP07(2012)011
http://arxiv.org/abs/1203.2975
http://arxiv.org/abs/1810.11442

	Introduction
	Review of the 4d Cardy formula
	The 4d Cardy formula from moduli space flows
	6d Cardy formula
	Sketch of the proof

	Supersymmetric Chern-Simons terms on the squashed S5 background
	Squashed S5 background from reduction of squashed S1 S5 background
	Off-shell 5d supergravity multiplets
	Squashed S5 backgrounds in off-shell supergravity
	Supersymmetric Euclidean Chern-Simons terms and their evaluation on the squashed S5
	FFF term
	FfFfF term
	FWW term
	FRR term

	Summary

	Deriving the Chern-Simons levels
	Integrating out free field KK modes
	On the Higgs branch
	On the tensor branch

	Chern-Simons levels and global anomalies
	Conclusion
	Conventions for characteristic classes
	Central extensions of supersymmetry algebras and (extended) BPS objects for 4d N=2 and 6d N=(1,0) theories
	4d N = 2
	6d N = (1,0)

	Supersymmetric S1S5 background for the index and modified index
	Geometric invariance and the equivalence between gauges

