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Abstract

We propose a platform for braiding Majorana non-Abelian anyons based on
a heterostructure between a d-wave high-Tc superconductor and a quantum
spin-Hall insulator. It has been recently shown that such a setup for a quan-
tum spin-Hall insulator leads to a pair of Majorana zero modes at each corner
of the sample, and thus can be regarded as a higher-order topological super-
conductor. We show that upon applying a Zeeman field in the region, these
Majorana modes split in space and can be manipulated for braiding processes
by tuning the field and pairing phase. We show that such a setup can achieve
full braiding, exchanging, and arbitrary phase gates (including the π/8 magic
gates) of the Majorana zero modes, all of which are robust and protected by
symmetries. Our analysis naturally includes interaction effects and can be gen-
eralized to cases with fractional bulk excitations. As many of the ingredients
of our proposed platform have been realized in recent experiments, our results
provide a new route toward universal topological quantum computation.
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1 Introduction

In the past two decades, topological quantum computation has attracted great interest in
the condensed matter community. They key ingredient of this idea is to encode and ma-
nipulate quantum information using non-Abelian anyons, which are inherently non-local
degrees of freedom and are thus immune to local error at the hardware level. One of the
most promising platform for the physical realization of non-Abelian anyons is topological
superconductors that host Majorana Zero Modes (MZM) at boundaries and defects [1–8].
Adiabatic braiding and exchange of the MZMs generate Clifford gates in a topologically
protected manner [9, 10], and implementations of such operations have been studied in
various platforms [11–15]. However, one drawback of the Majorana platform is that the
Clifford gates are not powerful enough to achieve universal quantum computation [16]. It
is well known that additional gates (i.e., the magic gate of a π/8 phase rotation) must be
supplemented to achieve universality, which however require non-topological operations.
A number of proposals to implement the magic gate in the Majorana platform have been
put forward [17–21], most of which rely on precise control over non-universal couplings to
essentially realize an arbitrary phase rotation (a notable example of a robust magic gate
using geometric decoupling was proposed in Ref. [20, 21]).

Recently, the concept of topological insulators and superconductors has been general-
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ized to higher-order topological insulators and superconductors. [22, 22–33, 33–56]. Pro-
tected by crystalline symmetries [39], higher-order topological superconductors host MZMs
at the corners in two spatial dimensions and Majorana modes at the hinges or vertices in
three dimensions. With the flourishing ideas on the realization of higher-order topologi-
cal superconductors, it is natural to search for new possibilities of manipulating Majorana
modes using a higher-order topological superconductor. For example, in a recent work [57],
the authors proposed a protocol through the manipulation of the Zeeman field and the
pairing order parameter, a full braid (corresponding to π/2 rotations) between a pair of
MZMs can be achieved (see also Ref. [58]). In another proposal [59,60], the authors showed
that the exchange of MZMs can be achieved through a multi-step process by tuning three
independent Zeeman fields, a protocol similar to that in a T-junction of superconducting
nanowires. [11]

In this work, we propose a different setup in a higher-order topological superconductor
that allows for a much richer set of non-Abelian rotations in the Hilbert space of Majo-
ranas zero modes, including Clifford and symmetry-protected phase gates for MZMs. Our
proposed setup is based on several recent works [61, 62] showing higher-order topological
superconductors can be achieved in a heterostructure involving a (first-order) topolog-
ical insulator and unconventional high-Tc superconductors coupled via superconducting
proximity effect. In particular, we focus on a heterostructure between a d-wave high-
Tc superconductor, for example the Bi based cuprate Bi2Sr2CaCu2O8+δ (BSCCO) that
has recently been realized in monolayers [63], and a quantum spin Hall insulator, such
as WTe2 [64]. For a d-wave cuprate superconductor, the pairing symmetry enforces the
proximity-induced gap to vanish along the certain directions. When such a pairing gap is
induced on the helical edge states of the underlying quantum spin Hall insulator, it creates
a Majorana mass domain wall at each corner, thus hosting two MZMs. In the context of
higher-order topology, the corner Majorana modes are protected by mirror reflection sym-
metries together with time-reversal symmetry and particle-hole symmetry. The mirror
symmetries pin the MZMs at high-symmetry directions, which form a Kramers pair.

For our purposes, however, the model-specific mirror symmetries are unnecessary, and
in fact intentionally broken by external control fields, so that the corner MZMs can move
along the edge. Instead, we identify two emergent symmetries, an effective time-reversal
and a chiral (an anti-unitary charge conjugation) symmetry of the low-energy edge theory,
which protect the MZMs even when they are away from the mirror symmetric locations.
Using a bosonized edge theory, we determine the localization length and the excitation
gap of the MZMs in the presence of interaction effects, which are consistent with the
celebrated Kosterlitz-Thouless scaling for infinite systems. Interestingly, even when the
spatial profiles of the MZM become large and overlap, their degeneracy remain protected
by these symmetries. These additional emergent symmetries also circumvent a no-go
theorem [65] that would have allowed local time-reversal-invariant perturbations to spoil
the universal non-Abelian Berry phases from braiding a Kramers pair of MZMs.

The key additional ingredient in our platform is an in-plane Zeeman field. To this end,
we note that recently, heterostructures involving two dimensional ferromagnets fabricated
via molecular-beam epitaxy has already been shown [66] to realize topological supercon-
ductivity [67]. In the presence of a Zeeman field, the physical time-reversal symmetry of
the quantum spin Hall insulator is broken. However, we show that the emergent effec-
tive time-reversal and chiral symmetries are still intact, protecting the MZMs. Since they
are no longer Kramers partners, the MZMs can split spatially. By tuning the Zeeman
field, the position of the Majorana modes can be manipulated. We show that this can
be utilized to achieve various non-Abelian rotations within the degenerate ground state
subspace. First, we show that rotating the in-plane Zeeman field by 2π is equivalent to a
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full braid between the two MZMs, which is analogous to previous proposals. Second, as
the main result of this work, we demonstrate that by taking the in-plane Zeeman field B
through a “half-moon” contour in the Bx-By plane that crosses B = 0 (see Fig. 3), one
can achieve an exchange process of the two MZMs localized in the same corner, resulting
in the hallmark non-Abelian exchange statistics of the Ising anyons. Crucially, we show
that the non-Abelian Berry phase of this exchange process is protected by the physical
time-reversal symmetry broken only by the Zeeman fields, robust against local pertur-
bations. Additionally, we show that dual to this process, one can tune the phase of the
complex superconducting order parameter along one edge of the sample to go through the
same “half-moon” contour in the complex plane, and achieve the exchange of two MZMs
from adjacent corners. The Berry phase during this process is protected by the emergent
chiral symmetry. The combination of these two exchange processes realize the Clifford
gates in a qubit formed by four MZMs in two adjacent corners. Notably, a finite sam-
ple of our setup realizes three qubits, with a set of Clifford gates available on each edge.
Third, we show that by going through a “slice of pie” contour (see Fig. 4), the Zeeman
field (and analogously the superconducting field) can perform an arbitrary phase gate of
the Majorana qubit, including the long-sought-after “magic gate” for MZMs, crucial for
universal topological quantum computing. Remarkably, the Berry phases in this process
are protected by U(1) symmetries (which can be exact or emergent).

Our proposal has several advantages. First and foremost, the high-Tc superconductor
platform ensures a higher operating temperature, a larger critical Zeeman field, and better
localization of the Majorana modes. As we mentioned, BSCCO and WTe2 are readily
available 2d materials for d-wave superconductivity and quantum spin Hall effect. Second,
our protocols of exchanging MZMs consist of simple manipulations of Zeeman or pairing
fields, which do not require physically moving around superconducting vortices or tuning
multiple parameters in each exchange process. Third, our setup can achieve a universal
phase gate protected by symmetries, including the π/8 magic gate, and thus holds promises
for universal topological quantum computation.

While the higher-order topological superconductor platform provides a feasible real-
ization of our proposal, our results are established within the framework of the universal
effective field theory description of the topological edge states, which can then be straight-
forwardly adapted to other systems with the same low-energy description. For instance,
we note that the corner MZMs have been shown to exist in similar platforms with iron-
based high-Tc superconductors [46,62]. In general, all of our results can be easily applied
to MZMs realized at domain walls between magnetic and superconducting regions on the
edge of a quantum spin Hall insulator.

Our analysis can also be directly extended to interacting topological phases with frac-
tional statistics in the bulk. We show that Z2m parafermion modes [68–72] can be realized
using a similar setup with a fractional quantum spin Hall insulator. A key difference
from the Majorana case is that, here there are m− 1 independent dynamical phases that
accompanies the non-Abelian Berry phases. Even thought he non-Abelian phase is not
topologically protected against unitary errors, for small m it may be possible to precisely
control the time of operation to tune these dynamical phases to zero. Interestingly, ev-
idence for parafermions have been observed in a similar setup with fractional quantum
Hall states in the presence of superconductivity [73].

The remainder of this paper is organized as follows. In Sec. 2 we describe the setup of
our proposed platform that hosts pairs of MZMs at its corners. In Sec. 3 we reformulate
the derivation of the corner Majorana modes using a bosonized language, which enables
the inclusion of interaction effects and a transparent interpretation of the non-Abelian
Berry phases. As the main result of this work, in Sec. 4 we show that such a setup allows
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symmetry protected Clifford gates and phase gates utilizing the MZMs by tuning an in-
plane magnetic field and the phase of the superconducting order parameter. In Sec. 5 we
generalize our setup to that with a fractional quantum spin Hall insulator with m 6= 1,
and show that the Berry phase accumulated using the same protocol corresponds exactly
to the exchange statistics of Z2m parafermions.

We include various details in the Appendices. In Appendix A we present an example
of a lattice model for the setup that is a higher-order topological superconductor protected
by mirror symmetries and time-reversal symmetry. In Appendices B, C, D, E, and F we
present a detailed analysis of the bosonization procedure for our setup and the non-Abelian
Berry phases we obtained in a more heuristic manner in the main text. In Appendices
G and H we prove the twofold ground state degeneracy at each corner corresponds to
the Majorana doublet, from both an operator algebra approach and ’t Hooft anomaly
perspective.

2 Corner MZMs in a high-Tc superconductor platform

Our platform is based on several recent proposals [61, 62] of higher-order topological su-
perconductivity realized in a heterostructure formed by a quantum spin Hall insulator
(QSH) and a high-Tc d-wave superconductor, coupled via superconducting proximity ef-
fect. As is well-known, a single-band d-wave superconductor hosts gapless Bogoliubov
quasiparticles with Dirac dispersion along the nodal (diagonal) directions. For our pur-
poses, the single-particle tunneling between the d-wave superconductor and the QSH needs
to be suppressed. This can be achieved by taking advantage of the fact that the single-
particle tunneling and superconducting proximity effect have distinct spatial profiles: the
former effect is peaked at the nodal direction and vanishes along the x and y directions,
while for the latter it is the opposite. Thus, single-particle tunneling can be effectively
suppressed by geometrically separating the diagonal portion QSH edge with the d-wave
superconductor. We depict such a setup in Fig. 1. Alternatively, we note that nodeless
d-wave superconductivity have been proposed for the high-Tc monolayer superconductor
FeSe/SrTiO3 [74, 75], which is free from the issue of single-particle tunneling.

For specific lattice models such a phase can be classified as a topological crystalline
superconductor with time-reversal and mirror reflection symmetries, which we analyze in
Appendix A by applying recent results on higher-order topological phases [39]. However,
as we will see below, our analysis actually does not rely on these symmetries, and it is
more general to start with a low-energy theory describing the edge modes of a QSH, which
we do below. For a full lattice model and its higher-order topology, we refer the reader to
Appendix A.

The existence of the corner Majorana pairs can be demonstrated by analyzing the
boundary states of the QSH and treating a superconducting gap ∆ and a Zeeman field B
as perturbations. Consider a portion of the edge near a corner of a QSH insulator shown
in Fig. 1. A low-energy field theory model of the QSH edge consists of a right-moving
fermion R(x) with spin up (in the z-direction) and a left-moving fermion L(x) with spin
down (also in the z-direction). These operators have standard anticommutation relations,
for example {R(x), R†(x′)} = δ(x− x′), and they also obey periodic boundary conditions.
The kinetic energy for this system takes the low-energy form

H0 = −i
∫
dx

(
R†(x)∂xR(x)− L†(x)∂xL(x)

)
. (1)

Here we have assumed that both fermions have the same velocity which is set to 1.

5



SciPost Physics Submission

Figure 1: The schematics of the proposed setup between a QSH insulator and a d-wave
superconductor coupled via superconducting proximity effect. The corner of the sample
is subject to a Zeeman field and hosts two MZMs.

The superconducting gap term, being a spin-singlet one, takes the low-energy form on
the edge

HSC =
∫
dx [∆(x)R(x)L(x) + h.c.] . (2)

Importantly, due to the d-wave pairing symmetry, the gap function is odd under mirror
reflection, and when projected onto the edge, ∆(x) is an odd function (we choose x to be
along the diagonal direction). Finally, the Zeeman term is projected to the edge as

HZ =
∫
dx BR†(x)L(x) + h.c. , (3)

where B ≡ Bx+iBy = |B|e2iτ . The full Hamiltonian is the sum of all three of these terms,
H = H0 +HSC +HZ.

This Hamiltonian can be diagonalized in the standard way by constructing lower-
ing operators of the form Oη =

∫
dx
{
η1(x)R(x) + η2(x)R†(x) + η3(x)L(x) + η4(x)L†(x)

}
that satisfy [H,Oη] = −EOη with a non-negative energy E ≥ 0. Indeed, imposing
this relation leads to the usual Bogoliubov-de Gennes equations for the “spinor” η(x) =
(η1(x), η2(x), η3(x), η4(x))T . Without loss of generality, taking ∆ and B as real (their
constant phases can be absorbed into the definition of R and L), we get

(iΓ1∂x + ∆(x)Γ2 +BΓ13) η(x) = Eη(x) , (4)

where Γ1,Γ2, and Γ13 are 4× 4 matrices defined as

Γ1 = sz ⊗ I (5a)
Γ2 = sy ⊗ τy (5b)

Γ13 = sx ⊗ τz , (5c)

and where sx,y,z and τx,y,z are the Pauli matrices. We note that {Γ1,Γ2} = {Γ1,Γ13} = 0,
but [Γ2,Γ13] = 0. This means that the superconducting and ferromagnetic mass terms
compete with each other.

To analyze this system we can use the fact that [Γ2,Γ13] = 0 to rotate to a basis in
which Γ2 and Γ13 are both diagonal. The required unitary matrix U is given by

U = 1
2


−1 −1 −1 1
−1 1 1 1
−1 −1 1 −1
1 −1 1 1

 . (6)
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Figure 2: A spatially varying superconducting mass ∆(x) (blue curve) and a constant
magnetic field B (solid red line). The dashed red line is the curve −B. For a QSH edge
with this configuration of ∆(x) and B, single Majorana fermions (represented by the blue
dots) are localized at the points where ∆(x) = B and where ∆(x) = −B. The central
region where B ≥ |∆(x)| has a length `.

If we define a new spinor η̃(x) via η(x) = U †η̃(x), then we find that η̃(x) satisfies(
iΓ̃1∂x + ∆(x)Γ̃2 +BΓ̃13

)
η̃(x) = Eη̃(x) , (7)

with

Γ̃1 = sx ⊗ τz (8a)
Γ̃2 = sz ⊗ I (8b)

Γ̃13 = sz ⊗ τz . (8c)

The key property of this new equation for η̃(x) is that it breaks up into two decoupled
2×2 Dirac equations with masses equal to M±(x) = ∆(x)±B. Just as in the Jackiw-Rebbi
model, a fermion zero mode is associated with each domain wall in M+(x) and M−(x),
i.e., where ∆(x) = B or ∆(x) = −B (see Fig. 2). For the profile given by solid lines in
Fig. 2, there is a mass domain wall in M−(x) (marked by the blue dot to the left), and
the zero-energy solution is

η(x) = 1
2


i
−i
1
1

 e−
∫ x
x0
ds |M−(s)| (9)

where x− is the location where ∆ = B. Another MZM, located at M+(x) = 0, marked by
the blue dot to the right in Fig. 2, can be similarly obtained. It is straightforward to verify
that both solutions for Oη are Hermitian, and correspond to Majorana fermions. Therefore
we find that, for odd ∆(x), there exist a pair of MZMs separated by a length `, the length
of the region where |∆| = B. If B = 0, the two MZMs overlap in space, and form a Dirac
zero mode. Indeed, they form a Kramers doublet required by the time-reversal symmetry.

Interestingly, we note that as one tunes the Zeeman field in a given direction through
zero, the two MZMs swaps positions. We can also consider an alternative configuration in
which ∆ is a constant and B(x) changes sign. This is relevant for a given edge of the QSH
with opposite Zeeman field applied to the two corners it connects, which we will discuss
in Sec 4.2. By the same token, MZMs are nucleated at the nodes of ∆±B(x) = 0. These
two MZMs switch positions when ∆ is tuned through zero. Later we will build upon this
observation and propose a protocol for non-Abelian braiding of the Majorana modes.
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2.1 Emergent symmetries

As we discuss in Appendix A in a specific lattice model, the corner Majorana modes are
protected by crystalline (mirror) symmetries of the bulk theory. However, these sym-
metries are rather restrictive for manipulating of the Majoranas, and in experimental
realizations of QSH these symmetries may not be present anyway. Here we show that
fortunately there are several emergent symmetries in the edge theory that protect the
MZMs and allow for additional perturbations to be included.

The edge theory including both the pairing field ∆ and a Zeeman field B can be written
in first quantized BdG form as

H =kszτ0 + Re ∆(x)syτy + Im ∆(x)syτx
+Bxsxτz +Bysyτ0, (10)

where, e.g. szτ0 := sz ⊗ τ0. Here sz = ±1 distinguishes two counter-propagating modes,
which transform and couple to external field like physical spin, which we will refer to as
such. We define B = (Bx, By) coupling to edge modes in such a way as the “in-plane”
fields, while it is understood that they may not lie in the plane of the two-dimensional
system.

First we give the full emergent symmetries when ∆ and B are absent. There are two
U(1) subgroups: U(1)s generated by spin:

Us,φ = exp(iszτzφ/2), (11)

and U(1)c generated by charge

Uc,θ = exp(iτzθ/2). (12)

Note that Uc,2π = Us,2π = −s0τ0 is the fermion parity symmetry. The theory also enjoys
a number of discrete symmetries. It is invariant under the time-reversal symmetry

T = isyK, T H(k)T −1 = H(−k), (13)

where K is the complex conjugation. In addition, there is a chiral symmetry

C = sy, CH(k)C−1 = −H(k). (14)

As we will see in the next Section, C is an anti-unitary charge-conjugation symmetry for
many-body states. [76] The BdG Hamiltonian (10) also has a particle-hole symmetry

P = τxK, PH(k)P−1 = −H(−k)∗, (15)

which is not a physical symmetry, but rather a redundancy of the BdG formalism.
Now we consider the full Hamiltonian (10). The in-plane Zeeman field Bx,y breaks

the spin rotation and the time-reversal symmetries, but is invariant under the composite
symmetry

T̃ ≡ Us,πT = sxτzK, (16)

which is a symmetry of (10) for a uniform phase of ∆ (taken to be real without loss of
generality). Such an anti-unitary symmetry which squares to one, along with C̄ places
the edge theory in class BDI, which admits a Z classification, corresponding to a winding
number that equals the number of symmetry protected MZMs. Therefore, the two MZMs
at a given corner can be viewed as being protected by T̃ . In addition, we note that
Us,2π = −s0τ0, the fermion parity, is obviously still a symmetry.
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In the opposite situation in which the magnitude of the unidirectional Zeeman field
(say B = Bxx̂) is spatial dependent and has a domain wall and max(B) > |∆|, two of the
Majorana modes from different corners move to the edge connecting the two corners. In
this case, the composite symmetry T̃ does not protect MZMs from different corners from
hybridizing (their winding numbers under BDI are opposite), unless additional symmetries
exist. Similar to the spin symmetry, the pairing field breaks both U(1)c and the chiral
symmetry, but preserves their combination

C̃ ≡ Uc,πC = syτz. (17)

With the composite chiral symmetry C̄, the edge theory additionally belongs to class
AIII, which admits another Z classification. Such a classification protects the two corner
Majorana modes overlapping on the edge – as can be verified from Eq. (9) and its counter-
part for the other corner, they carry opposite quantum numbers of the unitary operator
C̃PT̃ = szτx.

So far we have identified the symmetries at the level of the effective BdG Hamiltonian
for the edge states. Typically some of the symmetries are not exact in the microscopic
theory. For instance, in the bulk theory of the QSH, in general due to the spin-orbit
coupling, the spin of edge states L(x) and R(x) depends on momentum and on location
of the edge. However, U(1)s is realized as an emergent symmetry at low energies as
long as the pairing gap is much greater than the specific spin-orbit coupling that causes
momentum and position dependent spin texture.

Similarly, while C is an exact symmetry of our lattice model for QSH in Appendix A,
a generic QSH insulator is not particle-hole symmetric. However, for the edge theory, C
emerges as an approximate symmetry as long as the chemical potential is tuned to the
crossing point of the helical edge states. For a 2d system, this can be experimentally
achieved via gating.

Finally, we note that while our analysis of the emergent symmetries for a given corner
and for a given edge appear quite different within the BdG formalism, as we shall see,
within the field-theoretical approach, the treatments for a given corner and for a given
edge are completely symmetric. In fact, the T-duality of the compact free boson theory,
the (1+1)d version particle-vortex duality [77], relates the two symmetries C̃ and T̃ .

3 Corner MZMs from bosonization

We now switch to a bosonization description of the edge of a QSH insulator and the
resulting ground state degeneracy representing the MZMs in the presence of a proximity
SC field. The bosonized treatment has two advantages. First, interactions can be easily
incorporated by turning on a Luttinger parameterK 6= 1 and by generalizing to a fractional
QSH (FQSH) state. In particular, we obtain the scaling behavior of localization length of
the Majorana zero modes upon varying the Luttinger parameter. Second, the calculation
of the non-Abelian Berry phases are rather transparent in the bosonized formalism, which
has an analog of the Berry phases in a 1d lattice.

For the sake of generality, in the bosonized theory we replace the QSH insulator with
a ν = 1/m fractional quantum spin Hall (FQSH) state [78, 79] and include a Luttinger
parameterK to capture interaction effects. The non-interacting QSH state we have focused
on thus far corresponds to the special case with m = 1 and K = 1. We note that in a
recent work [80], the authors developed a similar bosonization apporach to Majorana zero
modes for a non-interacting open system.
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3.1 Review of bosonization

The edge of the FQSH state with an emergent U(1)s symmetry can be described by two
bosonic fields φ↑(x) and φ↓(x) obeying the commutation relations

[
φ↑(x), ∂x′φ↑(x′)

]
= 2πi

m
δ(x− x′) (18a)

[φ↓(x), ∂x′φ↓(x)] = −2πi
m
δ(x− x′) (18b)[

φ↑(x), φ↓(x′)
]

= 0 . (18c)

In the K-matrix formalism for edges of Chern-Simons theories, this system corresponds
to the matrix K = mσz. Both fields φ↑/↓(x) are defined to have compactification radius
2π. This means that all physical operators must be invariant under the shift φ↑(x) →
φ↑(x) + 2π, and likewise for φ↓(x). Then the allowed operators containing zero derivatives
of these fields must be built from exponentials of the form einφ↑/↓(x) for some integer n ∈ Z.

The charge density current, and spin operator for the edge are defined to be

ρ(x) = 1
2π (∂xφ↑(x) + ∂xφ↓(x))

j(x) = 1
2π (∂xφ↑(x)− ∂xφ↓(x))

s(x) = 1
4π (∂xφ↑(x)− ∂xφ↓(x)) . (19)

We then find that the right- and left-moving electron operators for the free fermion case
are given by

R(x) ∼ 1√
`

: e−imφ↑(x) : (20a)

L(x) ∼ 1√
`

: eimφ↓(x) : , (20b)

where ` is the length of the system. We present the details of the bosonization dictionary
in Appendices B and C for m = 1 and in Appendix F for m 6= 1.

With this definition we find that acting with R(x) or L(x) lowers the total charge by
one unit, as expected for an operator that annihilates a single electron. In addition, the
anticommutation relation {R(x), R(x′)} = 0 (which should be obeyed by any fermionic
operator) follows from the fact that m is an odd integer.

The basic kinetic energy term for the bosonic fields φ↑/↓(x) takes the form

H0 = 1
2π

∫
dx

1
2
∑
σ=↑,↓

(∂xφσ(x))2 + g∂xφ↑(x)∂xφ↓(x)

 . (21)

Here we have also incorporated a density-density interaction (with coupling constant g)
between the spin up and spin down fermions1. We see that g > 0 corresponds to a repulsive
interaction, while g < 0 corresponds to an attractive interaction.

For the domain wall configurations that we study in this paper, it is convenient to
introduce new non-chiral fields ϕ(x) and ϑ(x) defined as

ϕ(x) = m

2 (φ↑(x) + φ↓(x)) (22a)

ϑ(x) = 1
2 (φ↑(x)− φ↓(x)) , (22b)

1Note that 1
2π∂xφσ(x) is the density operator for excitations with spin σ ∈ {↑, ↓}.
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which satisfy the commutation relation

[ϕ(x), ∂x′ϑ(x′)] = πiδ(x− x′). (23)

In terms of these fields we find that

ρ(x) = 1
πm

∂xϕ(x)

j(x) = 1
π
∂xϑ(x)

s(x) = 1
2π∂xϑ(x), (24)

and that H0 can be rewritten in the form

H0 = v

2π

∫
dx

[ 1
mK

(∂xϕ(x))2 +mK(∂xϑ(x))2
]
, (25)

where the renormalized velocity v and Luttinger parameter K are related to the coupling
constant g as

v = 1
m

√
1− g2 (26a)

K =
√

1− g
1 + g

. (26b)

Note the singularity in K at g = −1 and the zeros in v and K at g = 1. In addition, we
have K < 1 for repulsive interactions and K > 1 for attractive interactions, while K = 1
in the absence of interactions (g = 0). For later use it is convenient to combine m and K
into a modified Luttinger parameter

K ′ = mK , (27)

as it is this modified Luttinger parameter that actually appears in H0.
In this bosonized formalism, a superconducting mass term takes the form

∆R†(x)L†(x) + h.c.∝ cos [2mϑ(x) + 2ρ] , (28)

where ρ is the superconducting phase. Similarly, a ferromagnetic mass term takes the
form

(Bx + iBy)R†(x)L(x) + h.c.∝ cos [2ϕ(x) + 2τ ] , (29)

where Bx+ iBy = |B|e2iτ . A more rigorous derivation of the mass terms in terms of boson
fields is done using the mode expansion, as we describe below and in Appendix D.

It is instructive to see how the bosonic variables ϕ and ϑ transform under the emergent
symmetries identified in the previous section:

Us,φ : ϑ→ ϑ, ϕ→ ϕ− φ/2
Uc,θ : ϕ→ ϕ, ϑ→ ϑ− θ/2
T : ϑ→ −ϑ, ϕ→ ϕ+ π/2
C : ϕ→ −ϕ, ϑ→ ϑ− π/2. (30)

Despite their different forms for the BdG Hamiltonian, at the field theory level both C
and T are antiunitary symmetries, since each flips the sign on one of the dual fields ϑ

11
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and ϕ. In particular C flips the sign of the charge but not the current, which is thus an
anti-unitary charge conjugation symmetry.

The composite symmetries T̃ = Us,πT and C̃ = Uc,πC now become

T̃ : ϑ→ −ϑ, ϕ→ ϕ

C̃ : ϕ→ −ϕ, ϑ→ ϑ. (31)

Thus under T̃ (C̃), the Zeeman (SC) term remains invariant. Under the T-duality of the
free boson theory ϕ ↔ ϑ (which is an emergent symmetry when K = 1), T̃ and C̃ are
exchanged, as well as the Zeeman and the SC terms.

In our analysis below we will mainly invoke Us,φ, T̃ for the MZMs localized at a given
corner, and due to the T-duality, the results directly carry over to the case of MZMs
overlapping on an edge.

3.2 Derivation of the corner modes

We analyze the states hosted by a corner region with Zeeman fields sandwiched between
two superconducting regions with opposite pairing gap related by the d-wave symmetry.
To simplify the calculations, let us fix the length of the magnetic region to be `, within
which the Zeeman field is a constant, and take the limit in which the superconducting gap
|∆| → ∞ in the superconducting region and thus the ϑ at the two ends of the magnetic
region are completely pinned. Without loss of generality, we take

ϑ(0) = 0 mod π

m
, ϑ(`) = π

2m mod π

m
. (32)

In the magnetic region, the Hamiltonian is given by

H =
∫ `

0
dx
{ v

2π

[ 1
mK

(∂xϕ(x))2 +mK(∂xϑ(x))2
]

+ b cos[2ϕ(x) + 2τ ]
}
, (33)

where b is a coupling constant induced by B. To analyze the low-energy spectrum of this
Hamiltonian it is helpful to perform a mode expansions for ϕ and ϑ:

ϕ(x) = mq −
∞∑
n=1

e−
εn
2

√
n

cos(κnx)(bn + b†n) (34a)

ϑ(x) =
(
p+ 1

2

)
πx

m`

+ i
∞∑
n=1

e−
εn
2

√
n

sin(κnx)(bn − b†n) , (34b)

where κn = πn
` , and where we included the dimensionless ultraviolet cutoff ε to control

the oscillator sums. Removing the cutoff corresponds to taking ε → 0, and one can
check that in this limit the fields obey the correct commutation relations in Eq. (23) (see
Appendix C.3). One can also see that the field ϑ(x) obeys the boundary conditions from
Eq. (32) with quantized winding number p ∈ Z. Importantly, from Eq. (23) we have the
commutation relation

[q, p] = i, [bn, b†n] = 1, (35)

indicating q and p are conjugate variables. As a result of the quantization of p, q is a
compact variable with q ∼ q + 2π.

12
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In the absence of the Zeeman field, the eigenstates of H0 are labeled by the winding
number p and the occupation number for a set of new quasiparticle modes:

H0 = πvK

2m`

(
p+ 1

2

)2
+ v

∑
n

κna
†
nan + const. (36)

The operators {an} are related to {bn} via a Bogoliubov transformation

an = cosh(η)bn + sinh(η)b†n , e−2η = K. (37)

which we discuss in details in Appendix D. The Fock space structure is guaranteed by T̃
symmetry; for example a symmetry breaking Zeeman term ∼ Bz∂xϑ term would condense
the quasiparticles in the ground state.

The Zeeman field term makes the quasiparticles massive, and further increases the
quasiparticle gap. Therefore, for low-energy states we only need to focus on the Fock
vacuum sector and consider the q and p modes. The effective Hamitonian is given by

Heff = αp̃2 − β cos(2mq + 2τ) (38)

in which p̃ ≡ p + 1/2, and α, β are coupling constants renormalized by quasiparticle
fluctuations. In Appendices D and F, using a variational approximation, we derive the
coefficients for K ′ < 2, and for the Zeeman field within the range

1
a

(
a

`

)2−K′

� B � 1
a
, (39)

where a is a short-distance cutoff, e.g., given by the underlying lattice. The results are
given by

α = vK ′

2πm2`

β ∼ B
2

2−K′ a
2K′−2
2−K′ `. (40)

Using Eq. (39), it is straightforward to see that here β � α.2
The Schrödinger equation with the Hamiltonian in Eq. (38) is known as the Mathieu’s

equation [81–83], and can be viewed as the equation of motion of a single particle in a 1d
ring modeled by a periodic lattice potential. According to Bloch’s theorem, the eigenstates
|ψk〉 of this Hamiltonian is labeled by lattice momenta k 3, i.e. ei

π
m
p̃ |ψk〉 = ei

π
m
k |ψk〉,

which take quantized values inside the Brillouin zone. The lattice constant is π/m, and
thus k ∈ [−m,m). Since p̃ takes half-integer quantized values, so does k. The offset 1/2
in the quantization of p̃ is analogous to the effect of a magnetic flux through the lattice
ring, causing a twisted boundary condition and the same amount of offset in the lattice
momenta k. Therefore, we have

k ∈ (Z + 1/2) ∩ (−m,m). (41)

Under T̃ , p̃, k → −p̃,−k. From Eqs. (24) and (34), we see that physically the tunneling
current and spin quantum numbers are directly related to the k via

J = 2S =
∫ `

0

dx

mπ
∂xϑ(x) = k

m
mod 1

m
. (42)

2Interestingly, we note that for the free fermion case with K = 1, the prefactor β of the cosine term is
actually proportional to B2 rather than B.

3This is not to be confused with the actual lattice momenta of our QSH/d-SC system.
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The eigenstates of this Hamiltonian form energy bands labeled by the band index and
lattice momenta {k}. Each band consists of 2m states. We will focus on the lowest band.

In the limit of large ` or large B, we have β � α and the 1d lattice is in a flat-band
limit. As we show in Appendix E.1, in the limit β � α (which is the same as Eq. (39))
the bandwidth is exponentially suppressed as

∆E ∼ const× exp
(
− `
ξ

)
. (43)

Here the correlation length ξ for K ′ < 2 is expressed as

ξ =
√
α

β
` ∼

( 1
Ba

) 1
2−K′

a, (44)

following the familiar Kosterlitz-Thouless scaling behavior. The 2m states in the lowest
band are approximately degenerate. This is the same 2m degeneracy given by a pair of
Z2m parafermions [68–70,84–86].

In particular for m = 1, the ground state degeneracy corresponds to a pair of MZMs,
consistent with what we found using the BdG formalism. The exponential supression of
the hybridization energy of the parafermions indicates that these modes are exponentially
localized in space, consistent with the results we obtained for the free fermion case. Indeed,
for m = 1,K = 1 we restore the familiar result ξ ∼ 1/B; see Eq. (9).

In the flat band limit β � α, the gap separating the MZMs from excited states can be
obtained by approximating Eq. (38) by expanding the cosine potential. We find for the
excitation gap

∆ex ∼
√
αβ =

√
KB(Ba)

K−1
2−K . (45)

For the free fermion system, this expression reduces to the Zeeman energy ∼ B.
In the opposite limit α � β, the Mathieu’s equation is in the weak potential limit,

and the band dispersion is similar to that of a free particle. In particular, as B goes to
zero, the band gap closes at the BZ boundary (±1 for m = 1) and the spectrum restores
the parabolic dispersion. If either of the states in the lowest bands reside at the Brillouin
zone boundary, the MZMs will be “poisoned” by excited states.

Fortunately, in the presence of the twist boundary condition causing k ∈ Z + 1/2, the
quantized lattice momentum k do not take values at the BZ boundary, and the Majorana
states in the lowest band remain degenerate and separated from higher bands. This is
consistent with our findings in the previous Section. The size of their spatial profile is O(`).
The analysis here further shows that the excitation gap results from the quantization of
lattice momentum, and is given by

∆ex ∼ v/`. (46)

We prove the two-fold degeneracy for a general β/α more rigorously in Appendix G.
Interestingly, such a robust ground state degeneracy has been elucidated [87] from the

perspective of a mixed ’t Hooft anomaly between time-reversal symmetry (corresponding
to our generalized time-reversal T̃ ) and fermion parity symmetry ϕ→ ϕ+π (generated by
our Us,2π) of field theories with a Θ-term at Θ = π. The anomaly ensures that independent
of basis choice, one of the two classical symmetries is represented as a double cover at the
quantum level, leading to the two-fold degeneracy. The two states are related by time-
reversal and differ by fermion parity quantum numbers. We present the proof of the
degeneracy in Appendices H in a way that reveals a clear analogy with Appendix D of
Ref. [87].

We end this section by noting that in the alternative configuration when the Zeeman
fields at two different corners are antiparallel, the two MZMs can be obtained in a dual
bosonized theory, related to our discussion above by ϑ↔ ϕ and T̃ ↔ C̃.
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4 Symmetry-protected quantum gates of Majorana qubits

In this Section we focus on the m = 1 case where the degenerate corner states correspond
to a pair of MZMs. As we showed in the fermionic language, these two MZMs are located
at ∆(x) = ±B and switch position when the Zeeman field is flipped. We now show that
when the in-plane Zeeman field is rotated back, the full process induces an non-Abelian
Berry phase that is the same as exchanging two-dimensional MZMs (or Ising anyons).
Furthermore, we show that by tuning the Zeeman field as well as the superconducting
order parameter, one can realize all Clifford gates and universal phase gates on the ground
state qubit, protected by the emergent symmetries of the theory.

As is well-known, with a fixed fermion parity, four MZMs form a two-level qubit.
This is realized by two adjacent corners of the higher-order topological superconductor
platform. The Clifford gates consist of exchanging the Majorana modes both within the
same corner and across different corners, the protocol of which we discuss below.

4.1 Manipulating Majorana corner modes via Zeeman field

4.1.1 Full braid via 2π rotation of the Zeeman field

Before we discuss the exchange process of the Majorana modes, let us first consider an
adiabatic process involving a full 2π rotation of the in-plane Zeeman field and compute
the Berry phase. In our conventions this corresponds to keeping the magnitude B of the
magnetic field fixed while tuning the angular parameter τ from 0 to π in Eq. (38). We
will show that this correspond to a full braid of two Majoranas at a given corner.

Let |ψk(B, τ)〉 be the ground state of Heff(B, τ) with lattice momentum k. According
to Eq. (41), k = ±1/2. In other words,

eiπp̃|ψk(B, τ)〉 = eiπk|ψk(B, τ)〉 = ±i|ψk(B, τ)〉. (47)

In the 1d lattice interpretation, the parameter rotation angle of the Zeeman field 2τ
corresponds to a displacement of the periodic potential by an amount of τ , and thus the
eigenstate can be expressed via a translation operator:

|ψk(B, τ)〉 ∼ e−iτ p̃|ψk(B, 0)〉. (48)

However, from Eq. (47), the right hand side is not single-valued upon a full 2π rotation
(τ = π) of the Zeeman field. For an unambiguous calculation of the Berry phase, one
should choose the phases of the states |ψk(B, τ)〉 so that these states are single-valued
functions of B and τ (defined modulo π) in the region of the parameter space that is of
interest for the Berry phase calculation.

This issue can be addressed by adding to each ground state a c-number phase factor
eiτk corresponding to their lattice momenta

|ψk(B, τ)〉 = eiτke−iτ p̃|ψk(B, 0)〉 . (49)

From Eq. (47), this choice ensures that |ψk(B, τ)〉 returns to itself when we wind the
Zeeman field by 2π (translating τ by π), i.e., we have

|ψk(B, τ + π)〉 = |ψk(B, τ)〉 . (50)

This is not the only possible choice, and it is well-known that the Berry phases that we
obtain are invariant under any redefinition |ψk(B, τ)〉 → |ψ̃k(B, τ)〉 = eiθk(B,τ)|ψk(B, τ)〉,
provided that the new states |ψ̃k(B, τ)〉 are also single-valued functions of B and τ in the
relevant region of the parameter space.
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We now compute the Berry phases γk picked up by the states |ψk(B, τ)〉 during the
2π rotation of the Zeeman field. The Berry phases γk are given by the standard formula

γk = i

∫ π

0
dτ 〈ψk(B, τ)|∂τ |ψk(B, τ)〉 , (51)

and so using Eqs. (49) we find that

γk = π〈ψk(B, 0)|p̃|ψk(B, 0)〉 − πk . (52)

Intuitively, the first term evaluates the average momentum of the Bloch states, and the
second term lattice momentum. As we mentioned, depending on the depth of the periodic
potential in Eq. (38) there are two important limits – the tight-binding limit (β � α) and
weak periodic potential limit (α � β). In the first limit, Bloch states are approximately
a linear superposition of bound states each at a potential minimum, while in the second
limit, Bloch states are approximately plane-wave states. Therefore, heuristically we find
that in former limit the average momentum 〈p̃〉 approaches zero, while in the latter 〈p̃〉
approaches the lattice momentum k. Thus we have in the tight-binding limit,

γk = −πk, k = ±1
2 , (53)

which can be understood as coming from “dragging” the Bloch state by a lattice constant.
In the opposite limit, the Berry phase vanishes, i.e., the lattice potential is so weak that
translating it does not induce a significant change in the wave function.

Here focus on the tight-binding limit (β � α). This is the same condition as (39),
i.e., Ba� (a/`)2−K . In Appendix E.3 we directly compute the Berry phase for the state
|ψk(B, 0)〉 using our analysis of that state based on Mathieu’s equation. There we show
that the deviations of the Berry phase from the approximate result in Eq. (53) is indeed
exponentially small in `. This result is topological, in the sense that the Berry phase does
not depend on parameters such as B and K up to exponentially small corrections.

Noting that k = ±1/2, the result in (53) matches exactly the non-Abelian Berry
phases accrued during a full 2π braiding of two MZMs. [88] We note that the full braiding
of the Majorana modes have also been proposed in a similar higher-order topological
superconductor platform in Ref. [57].

4.1.2 Single exchange via π rotation and flip of Zeeman field

We now show that owing to symmetries of the system, one can also perform a single
exchange of two Majoranas using a different adiabatic process that also involves only the
external Zeeman field. To motivate this process, recall from the previous subsection that
the Berry phase for a 2π rotation of the Zeeman field within the x-y plane is equal (at large
`) to the Berry phase for a full braid (double exchange) of the fractional quasiparticles
localized near the ends of the FM region. In this subsection we show that this Berry phase,
and the adiabatic process itself, can be split into two equal contributions in a symmetry-
protected manner, such that each contribution on its own yields the Berry phase for a
single exchange of fractional quasiparticles. The Berry phase γ̃k for this process is then
given by half of the value γk for the full braid,

γ̃k = −πk2 , k = ±1
2 . (54)

We find that γ̃±1/2 for the two ground states differ by π/2, and this is exactly the relative
Berry phase expected for a single exchange of two MZMs [10].
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Figure 3: The “half-moon”-shaped contours C′B (blue) and C′′B (red) in the Bx-By plane.
The magnetic field in the semicircle portion is in the tight-binding regime Ba� (a/`)2−K .
The Berry phase for either one of these paths is equal (up to exponentially small correc-
tions) to the known Berry phase for a single braid of fractional quasiparticles.

To achieve this, we consider “half-moon” paths of the Zeeman field B = (Bx, By)
denoted in Fig. 3. This path consists of a half circle from τ = 0 to τ = π/2, and a
straight line with By = 0 sweeping the B field back to the initial configuration passing
through the origin. Crucially, along the arc B must be in the tight-binding regime, i.e.,
Ba � (a/`)2−K . As we shall see below, the precise shape of the arc does not matter, as
long as it is in the flat-band limit. We denote such a contour transversed counterclockwise
by C′B, and its image under inversion in the Bx −By plane, transversed clockwise, by C′′B.

Let |ψk(B)〉 = |ψk(Bx, By)〉 be the ground state of the Hamiltonian in the sector
with “lattice momentum” k. In our previous notation we had Bx = B cos(2τ) and By =
B sin(2τ), and so |ψk(B)〉 can be identified with the state |ψk(B, τ)〉 that we defined in
Eq. (49). The Berry phase γk for the full 2π rotation of B can be written as the line
integral

γk = i

∮
CB
dB · 〈ψk(B)|∇B|Ψk(B)〉 , (55)

where CB is the circular contour of radius B centered at the origin of the Bx-By plane.
The integral expression for γk can be split into two contributions as

γk = i

∮
C′B
dB · 〈ψk(B)|∇B|Ψk(B)〉

+ i

∮
C′′B
dB · 〈ψk(B)|∇B|Ψk(B)〉

≡ γ′k + γ′′k . (56)

Here γ′k and γ′′k are the contributions to the total Berry phase from the half-moon paths
C′B and C′′B, respectively.

An important prerequisite for a well-defined Berry phase is that the system remains
gapped during the process. This is indeed true for the half-moon contour, since the ground
state qubit is always energetically separated from the excited states: on the outer arc, the
corner region is gapped by the Zeeman field (see Eq. (45)). Near the origin, the Zeeman
field vanishes but a finite size gap still exists (see Eq. (46)). In addition, in order for the
dynamical phases to cancel, the two ground states should remain degenerate, which is
guaranteed by the T̃ symmetry for any value of B, including at B = 0.
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Figure 4: The “slice-of-pie” countour in the Bx-By plane, which achieves a phase gate for
the two Majorana modes at a given corner. The magnetic field in the semicircle portion
is in the tight-binding regime Ba� (a/`)2−K .

Provided that the Zeeman field is the only odd component under the T symmetry
(the physical time-reversal symmetry preserved by the quantum spin Hall and d-wave
superconductor; not to be confused with T̃ ), the contour C′B → −C′′B under T (which
reverses both the Zeeman field and the orientation of the contour). The Berry phase, is
obviously odd under time-reversal, and therefore,

γ′k − γ′′k =i
∮
C′B
dB · 〈ψk(B)|∇B|Ψk(B)〉

+ i

∮
−C′′B

dB · 〈ψk(B)|∇B|Ψk(B)〉

= 0. (57)

Combining Eqs. (56, 57), we see that

γ′k = γ′′k = γ̃k = −πk2 , k = ±1
2 , (58)

precisely the Berry phase during an exchange process of the Majoranas.
Let us summarize the conditions required to have the quantized value of the Berry

phase:

1. The Berry phase is robust against small deformations of the arc as long as the
flat-band condition is maintained.

2. The track of the magnetic field must be invariant under B → −B in regions other
than Ba � (a/`)2−K and Ba � (a/`)2−K , such as the straight line segment in
Fig. 3.

3. The system must have the T symmetry in the absence of the Zeeman field, and the
T̃ = Us,πT symmetry in its presence. This means that the phase difference between
the two superconducting regions right outside the corner region must be π, which is
naturally realized in our setup with a d-wave superconductor.

4.1.3 Phase gate via generic rotation of Zeeman field

In this last subsection we build on the idea of the previous subsection and show that it is
possible to obtain a continuous family of Berry phase values by taking the system along
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a “slice of pie” path in the parameter space of the external magnetic field B = (Bx, By),
shown in Fig. 4. The specific path that we consider is as follows. We start with Bx = B > 0
and By = 0. In the first part of the path we rotate the Zeeman field counterclockwise by
an angle of 2τ0, ending up at Bx = B cos(2τ0) and By = B sin(2τ0). In the second part
of the path we traverse the straight line segment from B = (B cos(2τ0), B sin(2τ0)) to the
origin B = (0, 0). Finally, in the third part of the path we traverse the straight segment
from the origin B = (0, 0) back to our starting point B = (B, 0). Crucially, we assume
that the first part of the path, namely the curved segment that is traversed at constant
magnitude |B| = B, is taken in the tight-binding regime. We will also assume that in the
absence of B, the theory has U(1)s symmetry.

To calculate the Berry phase γk(τ0) in this process, we first consider the contribution
from the two straight line paths, CB(0) and CB(τ0). Since the only term in the system
that violates the spin rotation symmetry Us,θ in Eq. (11) is the Zeeman field, and that the
two paths CB(0) and −CB(τ) are related by the U(1)s symmetry, the total contribution to
the Berry phase along the straight paths CB(0) + CB(τ) is zero.

Then γk(τ0) is exactly equal to the contribution from the curved part of the path, and
so

γk(τ0) = i

∫ τ0

0
dτ 〈ψk(B, τ)|∂τ |ψk(B, τ)〉 . (59)

If we evaluate this using our variational approximation in the large B regime (following
the ideas from earlier in this section), then we find the total Berry phase as

γk(τ0) = −kτ0, k = ±1
2 . (60)

We note that this argument can also be applied to the symmetry protection for the ex-
change process. The result (60) is protected by the spin-rotation symmetry U(1)s when
there is no Zeeman field.

Again let us summarize the conditions required to have the quantized value of the
Berry phase:

1. The Berry phase is robust to small deformations of the arc as long as the flat-band
condition is maintained.

2. In regions outside Ba � (a/`)2−K or Ba � (a/`)2−K , The tracks of magnetic field
must be precisely related by a 2τ0 rotation in the Bx −By plane.

3. The system must have U(1)s symmetry when there is no Zeeman field, and the
T̃ = Us,πT symmetry in its presence to protect the ground state degeneracy.

Due to the ground state degeneracy it is also possible to choose as the initial state a
superposition of k = ±1/2. In the next subsection we discuss such a situation where we
choose a different basis for initial states.

4.2 Clifford and phase gates via manipulating Majorana modes within
and across corners

In this Subsection we consider a configuration of two adjacent corners subject to antipar-
allel Zeeman fields and the edge between them are gapped by SC order, which we depict
in Fig. 5. From Eq. (24), the tunneling current through each corner is given by Eq. (42):

J =
∫ `

0

dx

π
∂xϑ(x) = k

m
mod 1

m
(61)
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Figure 5: A qubit formed by four MZMs from adjacent corners. By tuning the Zeeman
field B and the superconducting order ∆ one can achieve symmetry protected Clifford
gates.

corresponding to the fermion parity at the corner

(−)F ≡ eiπk. (62)

Since quasiparticles can tunnel between corners through the edge, only the combined
fermion parity of the two corners is conserved. For a given parity (say even), such a
configuration with two corners and one edge form a single qubit, with the two energy
levels distinguished by the parity at a given corner, which we label as

| ↑〉 ≡|k = 1
2 , k

′ = 1
2〉,

| ↓〉 ≡|k = −1
2 , k

′ = −1
2〉, (63)

where k and k′ are the respective lattice momenta in the two corners. With this notation,
the exchange operation in either corner leads to a Berry phase represented by

γ̃ = ei
πσz

4 , (64)

where σz is the Pauli matrix in the Hilbert space of (63).
To realize Clifford gates, one additionally needs to achieve the non-Abelian unitary

operator
γ̄ = ei

πσx
4 . (65)

In Ref. [10] this can be achieved by swapping different sets of Majorana pairs. Similarly,
here we show that γ̄ is achieved by manipulating two Majorana modes across different
corners.

As we discussed in Sec. 2.1, with antiparallel in-plane Zeeman fields in the two corners
the edge region is described by a theory dual to the one for the corner regions, with
Majorana modes protected instead by C̃ symmetry. According to (60), such a duality is
simply the usual ϑ↔ ϕ duality in bosonization. In this basis, the two states forming the
qubit are then eigenstates of

Q =
∫

edge

dx

π
∂xϕ(x), (66)

which is the fermion parity in the superconducting edge. Within the subspace of the ground
state qubit, the charge eigenstate is a superposition between the two different eigenstates
for tunneling current J , thus we can rewrite Q as (which is time-reversal invariant)

Q = | ↑〉〈↓ |+ | ↓〉〈↑ | = σx, (67)

and its eigenstates are labeled by 〈σx〉 = ±1.
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In order to induce Berry phases, we can similarly design contours in the complex plane
of ∆ similar to that of B = Bx + iBy. Assuming that the system size is much larger
than the superconducting coherence length, one can tune the pairing fields for different
edges independently. Due to the ϑ ↔ ϕ duality, one can straightforwardly obtain that a
“half-moon” contour leads to the non-Abelian phase given in (65). Notice here this value
is topological and protected by the dual C̃ symmetry, in which, as we showed C is an
emergent symmetry guaranteed by properly gating the sample to charge neutrality.

In addition, it is straightforward to see that the phase gate operation can be realized
for Majorana’s across different corners by taking a “slice of pie” contour (analog of that
in Fig. 4) of an angle 2ρ0 in ∆, which is protected by the U(1)c symmetry. Thus we have
two types of phase gates available, namely,

γ̃(τ0) = eiτ0σz , γ̄(ρ0) = eiρ0σx , (68)

which for τ0 = ρ0 = π/8 correspond to the magic gates [16].
We note that in Ref. [65] the authors pointed out that a qubit made out of a Kramers

doublet of MZMs can be subject to a non-Abelian Berry phase in the presence of an
adiabatic local perturbation without lifting the Kramers degeneracy, unless they carry
distinct quantum numbers. In our case at B = 0, the Majorna zero modes overlap in space
and form a Kramers pair. However, the two states associated with the corner MZMs are
distinguished by their “lattice momenta” k ∈ {−1/2, 1/2} and their fractional spins (see
Eq. (42)) S = ±k/2, and hence are protected by symmetry from local perturbations.

Finally, note here that so far our platform has only involved two edge-sharing corners
of a semi-infinite sample. By simple math, a d-wave superconductor setup produces four
such corners, corresponding to three qubits (with a fixed fermion parity for the sample).
With the protocol above, one can realize a set of Clifford gates on each edge, leading to a
richer set of quantum gates in the enlarged Hilbert space.

5 Braiding parafermion modes

In Sec. 4 we have completely focused on the m = 1 case, in which the ground states are
MZMs. It is straightforward to generalize our full braid, exchange, and phase gates to a
generic m. For example, via a half-moon contour in B, we obtain

γ̃k = − πk2m, k = [−m,m) ∩ (Z + 1/2) . (69)

This result is exactly the exchange statistics of Z2m parafermions. [68–70,84–86]
However, unless β � α, the 2m eigenstates in the lowest band are not degenerate. In

the half-moon contour, this indicates that on the straight line portion through B = 0 of
the contour, even though the 2m states remain separated from the other excited states,
the topological Berry phase cannot be separated from a k-dependent dynamical phase that
is non-universal. The 2m states come in m pairs, leading to m − 1 independent relative
dynamical phases.

For small m, it may be possible to eliminate dynamical phases by precisely controlling
the system parameters and the duration of the exchange process such that it is a common
period for all m−1 modes. However, the result is not topological protected against unitary
errors induced by imperfect cancelation of dynamical phases.
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6 Conclusion

In this work we have proposed a platform for topological quantum computing based on a
heterostructure between a high-Tc d-wave superconductor and a quantum spin Hall insula-
tor, which can be regarded as a higher-order topological superconductor. We demonstrated
that, via tuning the a Zeeman field applied to the corner region and the superconducting
order parameter, such a setup can realize non-Abelian Clifford gates of Majorana qubits
that are protected by time-reversal and charge conjugation symmetries, as well as phase
gates (including the π/8 magic gates needed for universal topological quantum computing)
protected by U(1) symmetries. Within our analysis, interaction effects and generalization
to a fractional quantum spin Hall states can naturally be incorporated.

In our proposed setup, the d-wave superconductor ensures a large critical temperature
and a large critical field, making the manipulation of Majorana’s via an external Zeeman
field easier to realize in experiments. Recent advancements in low-dimensional materials
have made the key components of the heterostructure, including d-wave superconductors
(and its monolayer version [63]), quantum spin Hall insulators [64] and two-dimensional
ferromagnets [66], readily available. Other than the specific combination of ingredients in
our proposal, our theoretical analysis is based on low-energy effective field theories, which
can be easily adapted to other topological materials with magnetism and superconduc-
tivity. We note that recently signatures of parafermions have been observed in a similar
setup with a fractional quantum Hall insulator [73]. It will be extremely interesting to see
if one can demonstrate and manipulate these non-Abelian anyons using the protocols we
propose in this work.

A Lattice model for second-order topological superconduc-
tor

In this Appendix we present a lattice model for the second-order topological superconduc-
tor given by a quantum spin Hall (QSH) insulator with a proximity effect induced d-wave
superconudcting (d-SC) gap, given by H0 +HSC =

∫
dkΨ†(k) (H0 +HSC) (k)Ψ(k), where

Ψ† = (ψ†(k), ψ(−k)) and

H0(k) +HSC(k) = sin kaszσzτ0 + sin kbs0σyτz

+ (cos ka + cos kb +m− 1)s0σxτz

+ ∆ sin kx sin kysyσ0τy. (70)

Here sx,y,z denotes the spin degree of freedom, σx,y,z is a band index, and τx,y,z are Pauli
matrices in the Nambu space. The first three terms describes the normal state, which is
a quantum spin Hall insulator, and the last term is a pairing term of d-wave symmetry,
coming from the proximity effect with a high-Tc superconductor. The Hamiltonian has a
time-reversal symmetry given by T = isyK, diagonal mirror symmetries Ma = sxσzτy,
Mb = syσyτx, and a particle-hole symmetry P = τxK.

Such a Hamiltonian has been studied in Refs. [61, 62] as a second-order topological
superconductor protected by time-reversal symmetry and a C4 rotation symmetry. For
our purposes, we will instead rely on the mirror reflection symmetries Ma,b. Higher-
order topological crystalline insulators and superconductors with mirror symmetries have
been classified in Ref. [39] based on a K-theory analysis by Shiozaki and Sato [89]. In
our case, the reflection symmetry anticommutes with both time-reversal and particle-hole
conjugation. According to the terminology in Ref. [39], it belongs to symmetry class
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DIIIM++ , which in terms of second-order topology admits a Z2 classification in 2d. In
the nontrivial phase symmetric corners of the sample host a pair of MZMs that form
Kramer doublet and have the same mirror eigenvalue. Here the Z2 classification is an
intrinsic bulk property. As such, one cannot remove the Majorana doublet by modifying
the boundary termination without breaking the symmetry. For example, one can glue a
1d time-reversal invariant topological superconductor on one of the edges, upon coupling
to the bulk, this gaps out the corner Majorana doublet, but this procedure necessarily
violates mirror symmetry.

We also consider an in-plane Zeeman field, either applied throughout the bulk or only
near the corners, given by HZ =

∫
dkΨ†(k)HZ(k)Ψ(k) where

HZ =Bxsxσ0τz +Bysyσ0τ0. (71)

The Zeeman field breaks both T andMa,b, but preserves the composite symmetry TMa,b.
Importantly, the other Zeeman term ∼ Bzszσ0τz is odd under this action and is forbidden.
Together with the particle-hole symmetry P = τxK, the Hamiltonian H = H0 + HZ
preserves composite chiral (anti)symmetries PMa,b = szσzτz, which anticommutes with
P. Such a phase belongs to class DPM− , which also admits a Z2 classification. This
indicates the MZMs in the absence of HB remains robust, despite time-reversal symmetry
being broken. However, as pointed out in Ref. [39], this Z2 invariant is extrinsic. In fact,
as we show in the main text, the Majorana modes can be moved (or evem removed) by
symmetric boundary perturbations.

Experimentally, a d-SC/QSH heterostructure can be achieved by stacking d-wave high-
Tc superconductor BSCCO and quantum spin Hall insulator WTe2. Of course, depending
material details and the geometry of stacking, such a heterostucture may not realize the
mirror symmetries we specified above. However, as we show in the main text, the Majorana
modes can be protected by other emergent on-site symmetries.

B Mode expansion of the bosonic fields

In this appendix we explain in more detail the mode expansions for ϕ(x) and ϑ(x) that we
use in our analysis in this paper. To obtain the mode expansion for ϑ(x), we first identify a
complete set of functions of x ∈ (0, `) that also obey the boundary conditions Eq. (32), and
then we expand ϑ(x) as a series in these functions with operator-valued coefficients. We
then expand ϕ(x) in terms of a complementary set of functions (also with operator-valued
coefficients) in such a way that ϑ(x) and ϕ(x) obey the correct commutation relations.

In our case the operator-valued coefficients that appear in the mode expansions consist
of zero mode operators q and p and a set of oscillator raising and lowering operators bn
and b†n, with n ∈ N\{0} (i.e., we have an oscillator variable for each integer n ≥ 1). These
operators obey the standard commutation relations [q, p] = i and [bn, b†n′ ] = δnn′ (with
all other commutators vanishing). In addition, the zero mode operator q is a compact
variable and is defined modulo 2π, while its conjugate momentum p is defined to have
integer eigenvalues. This means that the Hilbert space Hzm associated with the zero
mode operators q and p is spanned by the states |s〉, s ∈ Z, which are eigenstates of p,
p|s〉 = s|s〉, and with e±iq|s〉 = |s ± 1〉. We can also define a basis |q〉 of eigenstates of q,
with 〈q|s〉 = eiqs√

2π , and we have 〈q|q′〉 = δ2π(q− q′), where δ2π(q− q′) =
∑
s∈Z

1
2πe

i(q−q′)s is
the 2π-periodic delta function.

In terms of these operators, the mode expansions for ϕ(x) and ϑ(x) take the form
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ϕ(x) = mq −
∞∑
n=1

e−
εn
2

√
n

cos(κnx)(bn + b†n) (72a)

ϑ(x) = (p+ δ)πx
m`

+ i
∞∑
n=1

e−
εn
2

√
n

sin(κnx)(bn − b†n) , (72b)

where κn = πn
` . Here we have set the twist for ϑ at the two ends as a generic δ; in

the setup discussed in the main text, we have δ = 1/2. The exponential factor ε is a
dimensionless ultraviolet cutoff, which we will discuss in details for m = 1 (Appendix
C) and m 6= 1 (Appendix F). We can see that this cutoff serves to control the oscillator
sums at high momenta κn. Removing the cutoff corresponds to taking a→ 0, and one can
check that in this limit the fields obey the correct commutation relations [ϑ(x), ∂x′ϕ(x′)] =
[ϕ(x), ∂x′ϑ(x′)] = πiδ(x − x′) (these follow from Eqs. (18) and the definition of ϕ(x) and
ϑ(x) in terms of φ↑/↓(x)).

Finally, as in the main text, it is convenient to define the shifted zero mode momentum
operator p̃ via

p̃ = p+ δ . (73)

This will be useful because almost all of our expressions will involve the shifted momentum
p̃ instead of the original momentum p. Note that, since p is defined to have integer
eigenvalues, the eigenvalues of p̃ lie in the set Z + δ (the integers shifted by δ).

C Bosonization in the m = 1 case

In this appendix we explain how to carefully define the fermionic operators R(x) and
L(x) in terms of the bosonic fields φ↑(x) and φ↓(x) in the non-fractional case with m =
1. Specifically, we define R(x) and L(x) as normal-ordered exponentials of φ↑(x) and
φ↓(x), and with a dimensionful prefactor that depends on the length `. We then show
that the operators R(x) and L(x) constructed in this way actually do obey the standard
anticommutation relations of fermionic fields.

C.1 Important identities

There are two basic identities that we will use repeatedly in the derivations in this ap-
pendix, and so we record them here for reference. Let X and Y be any two operators such
that their commutator [X,Y ] is a c-number. Then we have

eXeY = eY eXe[X,Y ] (74)

and
eXeY = eX+Y e

1
2 [X,Y ] . (75)

C.2 Definition of the fermion operators

We now present the definition of the operators R(x) and L(x). We start with the mode
expansions for the fields φ↑(x) and φ↓(x), which take the form (recall that we take m = 1)
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φ↑(x) = q + p̃
πx

`
−
∞∑
n=1

e−
εn
2

√
n

(
e−iκnxbn + h.c.

)
(76a)

φ↓(x) = q − p̃πx
`
−
∞∑
n=1

e−
εn
2

√
n

(
eiκnxbn + h.c.

)
. (76b)

In addition, recall that κn = πn
` and that ε = πa

` . For later use, we note here that
φ↓(x) = φ↑(−x) (this relation actually holds for any m and not just m = 1).4

Given these mode expansions, our definition of the fermion operators R(x) and L(x)
is as follows. First, for any operator O of the form

O = Aq +
∞∑
n=1

Bnb
†
n +

∞∑
n=1

Cnbn +Dp , (77)

we define the normal-ordered exponential : eO : by

: eO : = eAqe
∑∞

n=1 Bnb
†
ne
∑∞

n=1 CnbneDp . (78)

Then our definition of R(x) and L(x) is

R(x) = eiδ
πx
`

√
2`

: e−iφ↑(x) : (79a)

L(x) = eiδ
πx
`

√
2`

: eiφ↓(x) : . (79b)

In other words, the fermionic operators R(x) and L(x) are defined in terms of normal-
ordered exponentials of φ↑(x) and φ↓(x), with an additional prefactor proportional to `−

1
2 .

This prefactor ensures that the fermionic operators have the correct units and anticommu-
tation relations, as we show below. We can also use the definition of the normal-ordered
exponential to write out these operators in more detail. For example, we find that

R(x) = 1√
2`
e−iqexp

{
i
∞∑
n=1

e−
εn
2

√
n
eiκnxb†n

}

× exp
{
i
∞∑
n=1

e−
εn
2

√
n
e−iκnxbn

}
e−ip

πx
` . (80)

We now mention a few important properties of the operators R(x) and L(x). First,
these operators, as we have defined them above, are functions of the ultraviolet cutoff a,
although we have not indicated this dependence in our notation. Later we will show that
these operators behave exactly like fermionic fields in the a→ 0 limit. We also note that,
in our open geometry (and with our choice of boundary conditions), the fields R(x) and
L(x) are not independent but are actually related by the identity

L(x) = ei
πx
` R†(−x) . (81)

This identity can be derived by taking the Hermitian conjugate of our expression for
R(−x), and by using the rearrangement identity

eiqe−ip
πx
` = e−ip

πx
` eiqei

πx
` , (82)

which can be derived using Eq. (74). For our setup, however, we will focus on the interval
(0, `), in which L and R† can be treated as independent fields.

4It should be clear that there is no problem with plugging a negative value of the position coordinate
into our mode expansions for φ↑(x) and φ↓(x).
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C.3 Derivation of anticommutation relations

We now show that, in the limit ε → 0, the operators R(x) and L(x) that we defined
actually do obey the standard anticommutation relations for fermionic fields. We start by
deriving the anticommutator {R(x), R(y)} between the right-moving field at two different
points x and y. For this calculation we first define four quantities (1), (2), (3), and (4) via

(1) = e−ip
πx
` (83a)

(2) = e−iq (83b)

(3) = exp
{
i
∞∑
n=1

e−
εn
2

√
n
e−iκnxbn

}
(83c)

(4) = exp
{
i
∞∑
n=1

e−
εn
2

√
n
eiκnyb†n

}
. (83d)

Then using Eq. (74) we find that

(1)(2) = (2)(1)ei
πx
` (84)

and

(3)(4) = (4)(3)e−
∑∞

n=1
e−εn
n

e−iκn(x−y)

= (4)(3)e
ln
[

1−e−εe−i
π
`

(x−y)
]

= (4)(3)
[
1− e−εe−i

π
`

(x−y)
]
, (85)

where we used the infinite series ln(1 − z) = −
∑∞
n=1 z

n/n (valid for |z| < 1) to get from
the first to the second line. Putting these results together yields the formula

R(x)R(y) = 1
2` : e−iφ↑(x)−iφ↑(y) :

[
ei
πx
` − e−εei

πy
`

]
. (86)

By examining the term in square brackets, which tends to ei
πx
` − ei

πy
` as a → 0, we can

see that
lim
a→0
{R(x), R(y)} = 0 ∀ x, y , (87)

which is the expected anticommutator for a fermionic field with itself.
Next, we consider the anticommutator of R(x) with R†(y). For this calculation we

define the operator A(x) by

A(x) =
∞∑
n=1

e−
εn
2

√
n
eiκnxb†n , (88)

and so
A†(x) =

∞∑
n=1

e−
εn
2

√
n
e−iκnxbn . (89)

In terms of this operator we can rewrite R(x) and R†(y) as

R(x) = 1√
2`
e−iqeiA(x)eiA

†(x)e−ip
πx
` (90)

R†(y) = 1√
2`
eip

πy
` e−iA(y)e−iA

†(y)e−iq . (91)
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Then, using similar rearrangement identities as in our previous calculation (using Eq. (74)
again), we obtain the formulas

R(x)R†(y) = 1
2`e
−ipπ

`
(x−y)eiA(x)−iA(y)eiA

†(x)−iA†(y)

× e−i
π
`

(x−y)

1− e−εe−i
π
`

(x−y) (92)

and

R†(y)R(x) = 1
2`e
−ipπ

`
(x−y)eiA(x)−iA(y)eiA

†(x)−iA†(y)

× 1
1− e−εei

π
`

(x−y) . (93)

For the anticommutator we then find the formula

{R(x), R†(y)} = e−ip
π
`

(x−y)eiA(x)−iA(y)eiA
†(x)−iA†(y)

× d(x− y; ε) , (94)

where we defined the function d(x− y; a) by

d(x− y; ε) = 1
2`

[
e−i

π
`

(x−y)

1− e−εe−i
π
`

(x−y) + 1
1− e−εei

π
`

(x−y)

]
. (95)

We now examine the properties of the function d(x− y; a). For a > 0 we can expand
the denominators in d(x− y; a) as geometric series to obtain

d(x− y; ε) = 1
2`

[
e−i

π
`

(x−y)
∞∑
n=0

e−εne−i
πn
`

(x−y)

+
∞∑
n=0

e−εnei
πn
`

(x−y)
]
. (96)

From this expression we can see that

lim
ε→0

d(x− y; ε) = δ2`(x− y) , (97)

where
δ2`(x− y) = 1

2`
∑
n∈Z

ei
2πn
2` (x−y) (98)

is the 2`-periodic delta function. Since this function is zero for x 6= y modulo 2`, and since
all of the prefactors from Eq. (94) are equal to 1 when x = y modulo 2`, we then find that

lim
a→0
{R(x), R†(y)} = δ2`(x− y) . (99)

Therefore we have proven that, in the limit ε→ 0, the operator R(x) obeys the standard
anticommutation relations for a fermionic field operator. Since the anti-commutation
relation (99) holds down to the smallest length scales, one can identify the ultraviolet
cutoff ε in the bosonic theory as that in the fermionic theory, which is given by the lattice
constant a as

ε = πa

`
. (100)
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For the left-moving field L(x), we can use our results for R(x) and the relation (81)
between L(x) and R(x) to immediately conclude that L(x) also obeys the standard anti-
commutation relations for a fermionic field operator.

Finally, there is one more interesting anticommutation relation that we can obtain for
our system with open boundary conditions. Since in this case the left- and right-moving
fermionic fields are not independent, we find that, for x, y ∈ (0, `),

{R(x), L(y)} = ei
πy
` {R(x), R†(−y)}

= ei
πy
` δ2`(x+ y)

= 0 , (101)

where the last line holds since x+ y 6= 0 for x, y ∈ (0, `). For x, y ∈ (0, `) we also have

{R(x), L†(y)} = e−i
πy
` {R(x), R(−y)}

= 0 . (102)

Therefore, for our system with open boundary conditions, we find that the left- and right-
moving fermionic fields already have the correct anticommutation relations, and we do
not need to include any extra Klein factors to ensure that R(x) and L(y) (and R(x) and
L†(y)) anticommute.

C.4 Correlation functions in the free theory

To complete this section we present the formulas for the two-point correlation functions of
R(x) and L(x) in the free theory before adding any perturbation terms. The form of these
correlation functions will complete the demonstration that we have correctly constructed
the fermionic operators from the bosonic fields.

We consider the free bosonic vacuum |0〉 that satisfies p|0〉 = 0 and bn|0〉 = 0 for all
n ∈ {1, 2, 3, . . . }. Using our previous rearrangement of the product R†(y)R(x), we find
that in this state we have

〈0|R†(y)R(x)|0〉 = 1
2`

1[
1− e−εei

π
`

(x−y)
] , (103)

and by taking the complex conjugate we find that

〈0|R†(x)R(y)|0〉 = 1
2`

1[
1− e−εe−i

π
`

(x−y)
] . (104)

To check that this formula makes sense, we can investigate its behavior in the bulk of the
system, which corresponds to taking the limit ` → ∞ while keeping x − y, δ. We also
hold the ultraviolet cutoff a fixed in this limit (although it is safe to take it to zero at this
point). Then in this limit we find that

〈0|R†(x)R(y)|0〉 → 1
2π

1
[i(x− y) + a] , (105)

which is the correct bulk correlation function of a free right-moving fermion in one spatial
dimension (with the correct normalization).

We can now do a similar calculation for the left-moving fermion. Using the relation
between R(x) and L(x), we first find that

〈0|L†(x)L(y)|0〉 = e−i
π
`

(x−y)〈0|R(−x)R†(−y)|0〉 . (106)
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Then, using our previous rearrangement of 〈0|R(x)R†(y)|0〉, we find that

〈0|L†(x)L(y)|0〉 = 1
2`

1[
1− e−εei

π
`

(x−y)
] . (107)

If we now take the bulk limit then in this case we find that

〈0|L†(x)L(y)|0〉 → 1
2π

1
[−i(x− y) + a] , (108)

which is the correct bulk correlation function of a free left-moving fermion in one spatial
dimension.

D The variational approximation

In this appendix we explain the variational approximation that we use to study the ground
states of the domain wall Hamiltonian from Eq. (33) of Sec. 3.2 of the main text. This
variational approximation leads us to an effective Hamiltonian that only involves the zero
mode operators q and p from the mode expansions of ϕ(x) and ϑ(x), and in the later
appendices we analyze this effective Hamiltonian in detail and use it to make predictions
for the physical properties of the original domain wall model.

The variational method is familiar from quantum mechanics. It allows one to obtain
information about the ground state of a system by making sufficiently clever guesses for the
form of the ground state wave function. Here we apply this method to study the ground
state of a quantum field theory, and in this setting there are additional complications
associated with divergences present in a quantum field theory without a proper cutoff.
Therefore, we perform our variational calculation for the domain wall model with a finite
ultraviolet cutoff a. Then, at the end of the calculation, we consider the system with a
small but finite value of a, as in condensed matter systems it is sensible to keep a finite
ultraviolet cutoff a (which can be intuitively thought of as being related to the scale of
the crystal lattice).

Our starting point is the full Hamiltonian for the domain wall model. We denote this
Hamiltonian by H(a) to indicate that we are working with a finite ultraviolet cutoff a > 0.
As in Sec. 2, this Hamiltonian takes the form

H(a) = H0(a)−B
∫ `

0
dx

(
R†(x)L(x) + h.c.

)
. (109)

Here, R(x) and L(x) are the fermionic operators from Eq. (79) that we constructed from
the bosonic fields φ↑(x) and φ↓(x). For simplicity we also assume that the magnetic field
points along the positive x-axis, so that τ = 0 in our previous notation. Finally, H0(a) is
the part of the Hamiltonian that contains the kinetic energy term and the density-density
interactions.

To prepare for our variational approximation, we first write out the term H0(a) using
our mode expansions for ϕ(x) and ϑ(x). We find that

H0(a) = vKπ

2` p̃2

+ v

4

( 1
K

+K

) ∞∑
n=1

e−εnκn(b†nbn + bnb
†
n)

+ v

4

( 1
K
−K

) ∞∑
n=1

e−εnκn(bnbn + b†nb
†
n) . (110)
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The oscillator part of H0(a) can be diagonalized by making a Bogoliubov transformation
to new oscillator variables an defined by

an = cosh(η)bn + sinh(η)b†n , (111)

where the real parameter η is related to K as

e−2η = K. (112)

In terms of these new variables, we find that

H0(a) = vKπ

2` p̃2

+ v

2

∞∑
n=1

e−εnκn(a†nan + ana
†
n) . (113)

For later use we also note the reverse Bogoliubov transformation,

bn = cosh(η)an − sinh(η)a†n , (114)

which allows us to express bn in terms of an and a†n.
As we mentioned in the main text, the Zeeman term ∼ B

∫
R†L gaps out the region

and makes the oscillator modes massive. To find a suitable trial state for the oscillator
part of the Hilbert space, an additional Bogoliubov transformation is needed. To this
end we introduce yet another set of oscillator variables, which we denote by ãn (with
Hermitian conjugates ã†n). These will be related to the an oscillators via the Bogoliubov
transformation

an = cosh(ζn)ãn − sinh(ζn)ã†n , (115)

where we have allowed the parameter ζn ∈ R that determines the transformation to depend
on the index n. Using these new variables, we can rewrite H0(a) in the form

H0(a) = vKπ

2` p̃2

+ v

2

∞∑
n=1

e−εnκn cosh(2ζn)(ã†nãn + ãnã
†
n)

− v

2

∞∑
n=1

e−εnκn sinh(2ζn)(ãnãn + ã†nã
†
n) . (116)

We also find that bn is related to ãn via the relation

bn = cosh(η + ζn)ãn − sinh(η + ζn)ã†n , (117)

which follows from identities for the hyperbolic trigonometric functions.
We now discuss our choice of variational trial state. Let |0, ζ〉 be the Fock vacuum

state annihilated by all the ãn,

ãn|0, ζ〉 = 0 ∀ n . (118)

Note also that, as we are now working in terms of the ãn oscillator variables, the full
Hilbert space Htot of our domain wall model is equal to the tensor product

Htot = Hzm ⊗HF , (119)
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where HF is the Fock space generated by the action of the raising operators ã†n on the
Fock vacuum |0, ζ〉, and Hzm is the Hilbert space for the zero modes (q and p act within
Hzm). The trial ground state |Ψ〉 that we consider respects the tensor product structure
of the Hilbert space and it takes the tensor product form

|Ψ〉 = |ψ〉 ⊗ |0, ζ〉 , (120)

where |ψ〉 is a state in the zero mode Hilbert space Hzm and |0, ζ〉 is the Fock vacuum for
the ãn variables.

The nontrivial part of our variational calculation is the problem of finding the param-
eters ζn and the zero mode state |ψ〉 ∈ Hzm that minimize the energy expectation value
〈Ψ|H(a)|Ψ〉. In fact, we will not carry out this optimization procedure completely on the
ζn parameters. Instead, we will use a heuristic argument to obtain the behavior of the
energy expectation value with the correct choice of ζn.

To proceed with the variational calculation we need to compute the expectation value
〈Ψ|H(a)|Ψ〉 and then consider this expectation value in the small a limit. We now present
this calculation, omitting many of the details since the required manipulations are similar
to the ones we used in Appendix C to prove the bosonization formulas. For the kinetic
term we find that

〈Ψ|H0(a)|Ψ〉 = vKπ

2` 〈ψ|p̃
2|ψ〉+ v

2

∞∑
n=1

e−εnκn cosh(2ζn) , (121)

where the second term here is the vacuum energy for the ãn oscillators. For the Zeeman
term we find that

〈Ψ|R†(x)L(x)|Ψ〉 = 1
2f(x; a; ζ)〈ψ|ei2q|ψ〉 , (122)

where the function f(x; a; ζ) is given by

f(x; a; ζ) = 1
`

1
1− e−ε

[
1− e−ε−i

2πx
`

1− e−ε+i
2πx
`

] 1
2

ei
2πx
` e−

∑∞
n=1

e−εn
n

e−2(η+ζn)(1+cos(2κnx)) . (123)

We note that the summation in the exponent of the last factor
∞∑
n=1

e−εn

n
e−2(η+ζn) (124)

is logarithmical, with the series effectively truncated by the factors e−εn and e−2ζn . The
first factor e−εn, with ε = πa/`, is a ultraviolet cutoff for the mode number, n . `/a. The
second factor e−2ζn , on the other hand, is due to the quasiparticle mass gap ∆Z induced
by the Zeeman field B. Obviously we have

∆Z = B for free fermions, (125)

but in general ∆Z is renormalized by interactions and is a parameter determined by the
choice of {ζn}. The e−2ζn factor effectively serves as an infrared cutoff for the mode number
n, as for high enough modes κn � ∆Z the effect of the Zeeman field can be neglected. This
means that the correct choice of ζn sets a lower limit of summation, n & ∆Z`. Therefore
in the regime

a� 1/∆Z � `, (126)
the following summation can be approximated by

∞∑
n=1

e−εn

n
e−2(η+ζn) ≈ −K ln(∆Za), (127)
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where we have used Eq. (112). Plugging (127) into (123) we obtain

f(x; a; ζ) = ∆K
Z a

K−1f0(x; a; ζ), (128)

where f0 is a well-behaved O(1) function. With this choice, we then define an energy scale
β via

β = B

∫ `

0
dx f(x; a; ζ) , (129)

and we find that at small a we have an extensive behavior

β ∼ B∆K
Z a

K−1`. (130)

For a free fermion system with K=1, this energy is ∼ B2`. Using these results, we can
now complete our calculation of 〈Ψ|H(a)|Ψ〉. We find that

〈Ψ|H(a)|Ψ〉 = α〈ψ|p̃2|ψ〉 − β〈ψ| cos(2q)|ψ〉 , (131)

where the coefficients α and β are given by

α = vKπ

2` (132a)

β ∼ B∆K
Z a

K−1` , (132b)

and we have omitted the c-number vacuum energy term for the ãn oscillators. This result
tells us that for our variational approximation the zero mode state |ψ〉 should be chosen
to be the lowest energy state of the effective zero mode Hamiltonian

Heff = αp̃2 − β cos(2q). (133)

We notice that in the limit β � α, this Hamiltonian describes an approximate harmonic
oscillator, with energy level spacing given by ∼

√
αβ. These energy levels form a Fock

space of zero modes, now with mass ∼
√
αβ. We can identify the mass scale of former

zero modes with that of the oscillator modes:

∆Z ∼
√
αβ. (134)

Self-consistency between Eqs. (132) and (134) fixes the scale of ∆Z as

∆Z ∼ B (Ba)
K−1
2−K . (135)

Notably, we indeed recover ∆Z = B for the free fermion case K = 1. With Eq. (135), the
condition (126) translates to

1
a

(
a

`

)2−K
� B � 1

a
, (136)

which requires K < 2. For K ≥ 2 a separate variational ansatz is needed, which we
postpone to future studies. As a sanity check, we see that the condition β � α we
needed is precisely one of the conditions in Eq. (136). We note that the condition K < 2
is consistent with Kosterlitz renormalization group results on the sine-Gordon model in
infininte spacetime, under which the cosine term is a relevant perturbation.

We can rewrite the parameters α and β as

α = vKπ

2` (137a)

β ∼ B
2

2−K a
2K−2
2−K `. (137b)
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As we discuss in the next appendix, Heff is closely related to Mathieu’s equation, and
so we can use known results on that equation to study Heff and solve our variational
problem. In that appendix we present error estimates for various quantities, and those
error estimates are exponentially small in `. The key to obtaining that scaling for the error
estimates is the fact that the parameters α and β in Heff satisfy the relation

λ2 ≡ β

α
∼ B

2
2−K a

2K−2
2−K `2 . (138)

It is convenient to define a correlation length such that λ ∝ `/ξ, and we have

ξ/a ∼
( 1
Ba

) 1
2−K

, (139)

which diverges at K → 2 obeying the familiar Kosterlitz-Thouless scaling behavior.
The full Hamiltonian H(a) and the effective Hamiltonian Heff both have a Z2 symmetry

generated by the operator eiπp (the symmetry is Z2 because p has integer eigenvalues).
This means that the Hilbert space of the domain wall model is broken up into two different
sectors, where the states in each sector have opposite eigenvalues (±1) of eiπp. It also means
that we should carry out our variational calculation separately in each sector to study the
ground state of the Hamiltonian within each sector.

We can gain a more physical understanding of this Z2 symmetry by noting that eiπp
is proportional to the parity eiπS of the total spin S in the FM region, since S is given
explicitly by

S = 1
2π

∫ `

0
dx [∂xφ↑(x)− ∂xφ↓(x)]

= p+ δ

= p̃ . (140)

From a physical point of view this makes sense since the spin parity eiπS commutes with
the Hamiltonian in the FM region. Therefore in what follows it is convenient for us to
label the two sectors of the Hilbert space by a “lattice momentum” k ∈ [−1, 1) ∩ (Z + δ),
such that any given state is an eigenstate of eiπp̃ with eigenvalue eiπk.5 Note that, since
p has integer eigenvalues, there are only two such values of k in the set [−1, 1) ∩ (Z + δ).
For example, in the case of δ = 1

2 , which is our main interest, we have k ∈ {−1
2 ,

1
2}.

Our variational method can be used to study the lowest energy states of H(a) with
all possible eigenvalues of eiπp̃ (i.e., all possible values of the lattice momentum k). In
particular, we are interested in estimating the energy splitting between the lowest energy
states of H(a) with different eiπp̃ eigenvalues. We therefore define separate variational
trial states |Ψk〉 = |ψk〉 ⊗ |0, ζ〉 for each allowed value of k, where |ψk〉 should be chosen
to be the ground state of Heff in the sector of Hzm with eiπp̃ = eiπk.

Let Ek be the energy of the ground state |ψk〉 of Heff in the sector with eiπp̃ = eiπk,

Heff|ψk〉 = Ek|ψk〉 , eiπp̃|ψk〉 = eiπk|ψk〉 , (141)

and let k1 and k2 be the two allowed values of k in the set [−1, 1)∩(Z+δ). Our variational
estimate for the energy splitting ∆E between the ground states of the domain wall model
in the sectors with eiπp̃ = eiπk1 and eiπp̃ = eiπk2 is then given by

∆E ≈
∣∣∣(〈Ψk1 |H(a)|Ψk1〉 − 〈Ψk2 |H(a)|Ψk2〉

)∣∣∣
= |Ek1 − Ek2 | . (142)

5Note that k should lie in [−1, 1) because this is the first Brillouin zone for a lattice with lattice spacing
equal to π.
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In the next appendix we use known results on Mathieu’s differential equation to show
that |Ek1 −Ek2 | is exponentially small in `. Then our variational approximation predicts
that the ground states of the domain wall model with different eiπp̃ eigenvalues are very
nearly degenerate for large `. In addition, for the special case where δ = 1

2 , which is
our main interest in this paper, we show in Appendices G and H that the full domain
wall Hamiltonian H(a) has an additional discrete symmetry that guarantees that every
eigenstate of H(a) has a partner with the exact same energy, and so the ground state of
of H(a) is exactly degenerate for any ` (not just approximately degenerate for large `).

E Results from the variational approximation (Mathieu’s
equation)

In this appendix we present our main results on the domain wall model that we described in
Sec. 3.2. We first apply known mathematical results on Mathieu’s equation to understand
the ground states of the effective zero mode Hamiltonian Heff. We then use these results in
our variational approximation to obtain nontrivial predictions for certain properties of the
domain wall model, including the finite-size splitting of the nearly degenerate ground states
(when δ 6= 1/2 – there is an exact degeneracy at δ = 1

2 that we discuss in Appendices G and
H), the correlation functions of the fermionic operators, and the Berry phase for certain
adiabatic processes involving the external magnetic field.

E.1 Bound on |Ek1 − Ek2| for Heff and estimate of the splitting ∆E
We first explain how known results on Mathieu’s differential equation can be used to
bound the difference |Ek1 − Ek2 | between the energies of the lowest energy states of Heff
in the two sectors with different eiπp̃ eigenvalue. We start by explaining the relation
between Heff and Mathieu’s differential equation. We first note that, by construction,
p has integer eigenvalues. It follows from this that all states in the zero mode Hilbert
space Hzm are invariant under the action of ei2πp, which is the operator that translates
q by 2π, ei2πpqe−i2πp = q + 2π. Therefore, if |ψ〉 is any state in Hzm, then its wave
function ψ(q) = 〈q|ψ〉 is 2π-periodic in q, ψ(q + 2π) = ψ(q). Next, as we discussed in
the previous appendix, Heff also commutes with the operator eiπp that translates q by π,
eiπpqe−iπp = q + π. Accordingly, all eigenstates of Heff can be chosen to be eigenstates of
eiπp, as we have discussed (and we actually labeled states by their eigenvalue of the closely
related operator eiπp̃).

Let |ψ〉 be an eigenstate of Heff with energy E. Then the wave function ψ(q) satisfies
the Schrodinger equation

α

(
−i d
dq

+ δ

)2
ψ(q)− β cos(2q)ψ(q) = Eψ(q) , (143)

where p has become the differential operator −i ddq . If we define a new wave function χ(q)
by

ψ(q) = e−iδqχ(q) , (144)
then we find that χ(q) satisfies

−αχ′′(q)− β cos(2q)χ(q) = Eχ(q) , (145)

where χ′(q) = dχ(q)
dq . This equation can be brought into the standard form of Mathieu’s

equation by dividing through by α 6= 0 to obtain

−χ′′(q)− λ2 cos(2q)χ(q) = Eχ(q) , (146)
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where we remind λ2 = β/α and E = E/α. In addition, the 2π-periodicity of ψ(q) implies
that χ(q) obeys the periodicity condition

χ(q + 2π) = ei2πδχ(q) . (147)

To apply known results from the study of the Mathieu’s equation, we need to study
the behavior of χ(q) under translations by π, which is the period of the potential cos(2q)
that appears in the equation. This behavior will depend on the eigenvalue of a given
state under the action of the operator eiπp. In particular, for a state |ψk〉 that satisfies
eiπp|ψk〉 = eiπ(k−δ)|ψk〉 (so that eiπp̃|ψk〉 = eiπk|ψk〉), we find that the corresponding
function χk(q) = eiδqψk(q) = eiδq〈q|ψk〉 satisfies the periodicity condition

χk(q + π) = eiδ(q+π)ψk(q + π)
= eiπkχk(q) , (148)

and this simple relation explains why we chose to label our states by their eigenvalue of
eiπp̃ instead of their eigenvalue of eiπp.

It is known from Floquet theory (similar to Bloch’s theorem from condensed matter
physics), that the spectrum of the Mathieu operator − d2

dq2 −λ2 cos(2q) is divided into dis-
tinct energy bands. In addition, the eigenfunctions within each energy band are labeled by
a wave number k ∈ [−1, 1), which corresponds to the Brillouin zone of a one-dimensional
lattice with period π. An eigenfunction χk(q) characterized by the wave number k obeys
exactly the periodicity condition from Eq. (148). From this we see that the lowest energy
state of Heff in the sector with eiπp̃ = eiπk corresponds exactly to the eigenfunction labeled
by k within the lowest band of the spectrum of − d2

dq2 − λ2 cos(2q). Therefore, the energy
splitting |Ek1 −Ek2 | between the two lowest energy states of Heff with different eiπp̃ eigen-
values is certainly less than α times the width |W0(λ)| of the lowest band of the Mathieu
operator − d2

dq2 − λ2 cos(2q) (we multiply by α because E = αE).
An asymptotic formula for the width |W0(λ)| at large λ was obtained in Ref. [81] (see

also Ref. [82] for a convenient summary of the properties of the spectrum of the Mathieu
operator). It takes the form6

|W0(λ)| = 2
19
4

π
1
2
λ

3
2 e−λ

√
8
[
1 +O(λ−

1
2 )
]
. (149)

The key feature of this formula is the factor of e−λ
√

8. The presence of this factor implies
that, when λ is large, the width |W0(λ)| of the lowest band is exponentially small in λ.
Now for our model (which we obtained from our variational approximation), this means
that the splitting |Ek1 − Ek2 | is exponentially small in `,

|Ek1 − Ek2 | . constant× e−
`
ξ , (150)

where ξ ≡ λ
√

8 is the correlation length given by Eq. (139)). Thus, our variational
approximation predicts that for large ` the energy splitting ∆E of the two ground states
in our domain wall model is exponentially small in the length ` of the FM region. For the
free fermion case with K = 1, the correlation length is given by ξ ∼ 1/B, consistent with
the decaying behavior from solving the Dirac equation with a mass domain wall.

Finally, we close this section by noting that the case we are most interested in in this
paper is the special case where δ = 1

2 . In Appendices G and H we will show that in this
case the two ground states of our domain wall model are exactly degenerate, and not just
approximately degenerate as we have predicted here for a general δ.

6In Ref. [81] the bandwidth |W0(λ)| was denoted by |B0(λ)|, but we use |W0(λ)| here to avoid confusion
with the magnetic field in our problem.
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E.2 Approximate form of χk(q) at large λ

For the Berry phase calculation later in this appendix we will need to understand the form
of the eigenfunctions χk(q) of the Mathieu operator in the limit of large λ (we referred to
this as the “tight-binding” limit in the main text). Therefore, in this subsection we review
some known facts about χk(q) in this limit.

When λ is large, the eigenfunctions of the Mathieu operator in its lowest band are
well-approximated by a weighted sum of Gaussians localized in each valley of the cos(2q)
potential (see the proof of Theorem 1 in Ref. [83]). These approximate eigenfunctions can
be constructed as follows. We first expand cos(2q) to order q2 about its minimum at q = 0
and study the resulting approximate Mathieu operator near q = 0. Up to a constant, we
find the operator − d2

dq2 + 2λ2q2, and it is well-known that the lowest energy eigenfunction
of this operator is a Gaussian of the form

χ0(q) =
(
λ
√

2
π

) 1
4

e
− λ√

2
q2
, (151)

where we have chosen the coefficient so that
∫∞
−∞ dq |χ0(q)|2 = 1.

Let χk(q) be the eigenfunction in the lowest band of the Mathieu operator and obeying
the periodicity condition χk(q + π) = eikπχk(q). At large λ, this eigenfunction is given
approximately by the periodic sum

χk(q) = 1√
2
∑
n∈Z

eiknπχ0(q − nπ) , (152)

which contains all translations of χ0(q) by integer multiples of π, with the translation by
nπ accompanied by the k-dependent phase factor eiknπ. The factor of

√
2 is included here

so that χk(q) obeys the normalization condition7

∫ 2π

0
dq χk(q)χk(q) = 1 +O(e−

π2
2
√

2
λ) , (153)

where the integral is restricted to [0, 2π) because this is the physical range of q in our
problem. To understand the error estimate here, note that the overlap of χ0(q) and
χ0(q − d) is exponentially small in λ,∫ ∞

−∞
dq χ0(q)χ0(q − d) = e

− d2
2
√

2
λ
. (154)

This means that the dominant contribution to
∫ 2π

0 dq χk(q)χk(q) comes from the overlap
between Gaussians in the same position, while the overlap between Gaussians that are
offset by some amount accounts for the error term. The smallest possible offset is equal
to the period π of the cos(2q) potential, and so the error estimate in our expression for∫ 2π

0 dq χk(q)χk(q) follows from taking d = π in Eq. (154). Finally, for later use we remind
the reader that for our model the parameter λ is proportional to ξ/`, where the correlation
length ξ was defined in Eq. (139).

7In our problem the original wave functions are defined for q ∈ [0, 2π). This explains our extra factor of√
2 as compared with Ref. [83], where the wave functions were normalized for integration over one period

of the periodic potential (which is π in our case).
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E.3 Calculating the Berry phase γk

We now calculate the Berry phase γk in Eq. (52) using properties of the eigenstates of our
effective zero mode Hamiltonian Heff. To simplify the notation we denote |ψk(B, 0)〉 by
|ψk〉 in what follows.

To start, we note that 〈ψk|p̃|ψk〉 = 〈ψk|p|ψk〉 + δ, and so we focus on evaluating
〈ψk|p|ψk〉. For this matrix element we have

〈ψk|p|ψk〉 = −i
∫ 2π

0
dq ψk(q)

d

dq
ψk(q)

= −δ
∫ 2π

0
dq |χk(q)|2 − i

∫ 2π

0
dq χk(q)

d

dq
χk(q) , (155)

where we remind the reader that ψk(q) = e−iδqχk(q). We then use the approximate form
(152) of the wave functions χk(q) at large ` (more precisely, at large λ) to find that∫ 2π

0
dq |χk(q)|2 = 1 +O(e−

π2
8
`
ξ ) (156)

and
−i
∫ 2π

0
dq χk(q)

d

dq
χk(q) = O(e−

π2
8
`
ξ ) , (157)

where the error terms on these estimates come from the calculation of the overlap of two
shifted Gaussians (recall Eq. (154)). Therefore our final result is that

〈ψk|p|ψk〉 = −δ +O(e−
π2
8
`
ξ ) , (158)

and so we find that the Berry phase γk is given (within our variational approximation) by

γk = −kπ +O(e−
π2
8
`
ξ ) . (159)

The most interesting aspect of our result for γk is that, for ` � ξ, the Berry phase is
equal to the topological value

γk,top = −kπ , (160)

up to corrections that are exponentially small in the length ` (which is also the separation
between the fractional quasiparticles at the ends of the FM region). These exponentially
small corrections to topological Berry phases are always expected in finite size systems,
but they are very rarely calculated explicitly. Our ability to capture these corrections here
is a significant demonstration of the power of our variational method.

F Generalization to m 6= 1

In this appendix we briefly explain the generalization of our results to the fractional case
of m > 1 (i.e., a domain wall configuration at the boundary of a fractional quantum
spin Hall system). Recall from Appendix C that in the m = 1 case we were able to
precisely construct bosonized fermion operators R(x) and L(x) that obey the correct
anticommutation relations of fermion field operators. In contrast to that result, in the
m > 1 case we are not aware of a precise construction of bosonized fermion operators
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R(x) and L(x) that exactly obey the correct anticommutation relations. One possible
guess in this case is to define R(x) and L(x) via

R(x) = eiδ
πx
`

√
2`

: e−imφ↑(x) : (161a)

L(x) = eiδ
πx
`

√
2`

: eimφ↓(x) : . (161b)

With these definitions one still finds that {R(x), R(y)} = 0 and {L(x), L(y)} = 0. How-
ever, the other anticommutators no longer exactly match the expected answer for fermionic
operators. For example, in the limit of ε → 0, {R(x), R†(y)} 6= δ2`(x − y) but is in-
stead equal to some more complicated distribution.8 Heuristically, the deviation between
{R(x), R†(y)} and δ2`(x − y) is due to a short length scale of the strongly interacting
system above which interacting fermion systems develops topological order, which we can
identify as the ultraviolet cutoff ε in the mode expansion (72) of the boson fields.

Because of this issue, in this appendix only we adopt a less precise (but commonly
used) definition of the bosonized fermion operators. Specifically, we define R(x) and L(x)
via

R(x) ∼ 1√
2a
e−imφ↑(x) (162a)

L(x) ∼ 1√
2a
eimφ↓(x) , (162b)

where we have not used any normal-ordering prescription, and where we used the ultra-
violet cutoff a (instead of the infrared cutoff `) to obtain the correct dimensions. Loosely
speaking, using this definition we have {R(x), R†(0)} = 0 if x 6= 0, and {R(x), R†(0)} ∼
1/a→∞, similar to a δ-function.

We again carry out a variational calculation using a trial state |Ψ〉 = |ψ〉⊗|0, ζ〉, where
ζ = (ζ1, ζ2, . . . ) is again chosen so that the expectation value of the magnetic field term in
the state |Ψ〉 is extensive. In particular, in this case we find that

〈Ψ|R†(x)L(x)|Ψ〉 ∼ 1
2fm(x; a; ζ)〈ψ|ei2mq|ψ〉 , (163)

where the function fm(x; a; ζ) is given by

fm(x; a; ζ) =1
a
ei
πmx
` e

i
m

∑∞
n=1

e−εn
n

sin(2κnx)

× e−
∑∞

n=1
e−εn
n

e−2(η′+ζn)(1+cos(2κnx)) , (164)

e−2η′ = K ′ ≡ mK . (165)

Since the first line in Eq. (164) is equal to 1/a times a pure phase factor (i.e., a complex
number of unit modulus), we find that by performing the summation in the exponent of
the last factor of Eq. (164) with the same variational scheme in Appendix D,

fm(x; a; ζ) = ∆K′
Z aK

′−1fm,0(x; a; ζ), (166)

where fm,0(x; a; ζ) is an order one quantity. This result is very similar to the m = 1 case
from Appendix D, with the important difference that K is replaced by K ′ = mK.

8This fact about the bosonized fermion operators in the fractional case does not seem to be widely
known. At least, we are not aware of any discussion of it in the literature.
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In this way we find that |ψ〉 should again be chosen to be the ground state of an
effective zero mode Hamiltonian, and in this case this zero mode Hamiltonian takes the
form

Heff = αp̃2 − β cos(2mq) . (167)

Following the self-consistency relation in Appendix D, we have

α = vK ′π

2` (168a)

β ∼ B
2

2−K′ a
2K′−2
2−K′ `. (168b)

We see that we again have α ∝ 1
` and β ∝ `, and so we again have

λ2 = β

α
∝ `2 . (169)

The main difference between the analysis in this case and the analysis in the m = 1 case
is that Heff (and the full domain wall Hamiltonian H(a)) have a Z2m symmetry instead
of a Z2 symmetry. This symmetry is generated by the operator ei

πp
m , and it can again be

related to the conservation of the parity of the spin S in the FM region. Indeed, in this
case we have

S = 1
2π

∫ `

0
dx [∂xφ↑(x)− ∂xφ↓(x)] = p̃

m
, (170)

and the Hamiltonian commutes with eiπS = ei
πp̃
m . The Hilbert space of the model breaks

up into sectors labeled by the different eigenvalues of the Z2m symmetry operator, and for
our convenience we choose to label the different sectors by their eigenvalue of eiπS = ei

πp̃
m ,

which involves the shifted momentum operator p̃.
Consider the sector of the Hilbert space characterized by ei

πp̃
m = ei

πk
m , where k takes

on one of the 2m values in the set {−m+ δ, . . . ,−1 + δ, δ, . . . ,m− 1 + δ}. Our variational
approximation for the ground state of H(a) in this sector is the trial state |Ψk〉 = |ψk〉 ⊗
|0, ζ〉, where |ψk〉 should be chosen to be the ground state of Heff in the sector with
ei
πp̃
m = ei

πk
m . By again exploiting the connection to the Mathieu’s equation,9 we find that

〈q|ψk〉 = ψk(q) = e−iδqχk(q), where now the function χk(q) should be chosen to be the
eigenfunction in the lowest band of the operator − d2

dq2 −λ2 cos(2mq) that also satisfies the
periodicity condition

χk(q + π
m) = eik

π
mχk(q) . (171)

All of our previous results can now be carried over to this case. The only difference
is that there are now small changes in the asymptotic formula for the width |W0(λ)| of
the lowest band of the Mathieu operator, and the approximate form of the eigenfunction
χk(q) in the tight-binding regime of large λ. These quantities are now given by

|W0(λ)| = m2 2
19
4

π
1
2

(
λ

m

) 3
2
e−

λ
m

√
8
[
1 +O(λ−

1
2 )
]
, (172)

and
χk(q) = 1√

2m
∑
n∈Z

eikn
π
mχ0(q − n π

m) , (173)

9Actually, the standard form of Mathieu’s equation has the potential cos(2q), which has a period of π.
In our case we instead have cos(2mq), with a period of π/m, but it is a simple matter to take this rescaling
of the period into account in our analysis.
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where now

χ0(q) =
(
mλ
√

2
π

) 1
4

e
−mλ√

2
q2
. (174)

Note that the new factors of m in |W0(λ)| can be understood from the expression for
|W0(λ)| at m = 1 by making the change of variables q′ = mq in the Mathieu’s equation
with m 6= 1. Also, the factor of 1/

√
2m in the expression for χk(q) is again present to

ensure approximate normalization when integrated over the interval [0, 2π), which is 2m
times larger than the period π/m of cos(2mq).

Using these new formulas we again predict (in the tight-binding regime) an exponen-
tially small splitting between the ground state energies Ek of H(a) in sectors with different
values of k,

|Ek1 − Ek2 | . constant× e−
`
ξm , (175)

where the new correlation length ξm is of the same order as the correlation length in the
m = 1 case. Finally, we find that the Berry phase γk associated with the full 2π rotation
of the in-plane magnetic field is given approximately by

γk = −k π
m

+O(e−
`
ξm

π2
8 ) . (176)

The main difference compared to the integer case is the presence of the factor of 1/m,
indicating a fractional value for the Berry phase. We again find exponential suppression
of the corrections to this topological value. One important point for this Berry phase
calculation is that we now choose the phase of the state |ψk(B, τ)〉 according to the formula

|ψk(B, τ)〉 = ei
τk
m e−i

τp̃
m |ψk(B, 0)〉 , (177)

and this choice will ensure that the states are single-valued along the path that we take
through the parameter space. In particular, with this choice we will again have |ψk(B, τ +
π)〉 = |ψk(B, τ)〉.

G Exact two-fold degeneracy of the domain wall model at
δ = 1/2

Our main interest in this paper is domain wall configurations in which the central FM
region is surrounded by two SC regions with opposite signs of the superconducting mass
∆(x). In this case, the central FM region is described by our domain wall model with the
parameter value δ = 1

2 . In this appendix we show that in this situation the domain wall
Hamiltonian H(a) has an exact two-fold degeneracy of all of its eigenstates (and this holds
for any value of the integer m). We explain this symmetry structure in the particular case
that the in-plane magnetic field B points along the positive x-axis, as the Hamiltonian
with a rotated B is unitarily equivalent to this case (and so the structure of the energy
spectrum will be the same).

We start by noting that, since H(a) commutes with ei
πp
m , it also commutes with the

Z2 symmetry operator Γ1 = eiπp = (ei
πp
m )m, which satisfies Γ2

1 = 1 since p has integer
eigenvalues. For m = 1 this is the fermion parity symmetry. Next, we identify a second
operator Γ2 that (i) commutes with H(a), (ii) squares to the identity, Γ2

2 = 1, and (iii)
anticommutes with Γ1, {Γ1,Γ2} = 0. The existence of two operators Γ1 and Γ2 with these
properties implies the two-fold degeneracy of all eigenstates of H(a). Indeed, if |Ψ〉 is an
eigenstate of H(a) with Γ1|Ψ〉 = |Ψ〉, then these properties imply that |Ψ′〉 = Γ2|Ψ〉 is an
eigenstate of H(a) with the same energy as |Ψ〉, but with Γ1|Ψ′〉 = −|Ψ′〉.
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We define the operator Γ2 by its action on the operators q, p, bn, and b†n that appear in
the mode expansions of the bosonic fields ϕ(x) and ϑ(x) in our model. As we mentioned
above, we also choose Γ2 to be anti-unitary. We define Γ2 in such a way that it squares
to the identity operator,

Γ2
2 = 1 , (178)

and we define its actions on q, p, bn, and b†n as:

Γ2qΓ2 = q (179a)
Γ2pΓ2 = −p− 1 (179b)

Γ2bnΓ2 = bn ∀ n (179c)
Γ2b
†
nΓ2 = b†n ∀ n . (179d)

Therefore, Γ2 only acts nontrivially on p. However, it can also act on other expressions
by complex conjugation since it is anti-unitary. We also note that Γ2p̃Γ2 = −p̃, where
p̃ = p + 1

2 at δ = 1
2 . With these definitions one can easily see that Γ2ϕ(x)Γ2 = ϕ(x)

and Γ2ϑ(x)Γ2 = −ϑ(x). From Eq. (60) of the main text, this Γ2 operator is precisely the
antiunitary time-reversal symmetry T̃ .

These relations in turn imply that Γ2φ↑(x)Γ2 = φ↓(x) and Γ2φ↓(x)Γ2 = φ↑(x). Finally,
these relations imply that the bosonized fermion operators R(x) and L(x) satisfy

Γ2R(x)Γ2 = L(x) (180a)
Γ2L(x)Γ2 = R(x) , (180b)

and so we find that Γ2 does indeed commute with the domain wall Hamiltonian H(a) at
δ = 1

2 .
Finally, we investigate the interplay between Γ2 and Γ1. We have

Γ2Γ1Γ2 = Γ2e
iπpΓ2 (181)

= e−iπ(−p−1)

= −eiπp

= −Γ1 , (182)

and so Γ2 anticommutes with Γ1. This completes our demonstration of the three properties
of Γ2 that we stated above. As we mentioned above, this then implies an exact two-fold
degeneracy of all of the eigenstates of the domain wall Hamiltonian H(a).

H Ground state degeneracy from the perspective of the ’t
Hooft anomaly

In this Appendix we show that the ground state degeneracy due to the Majorana pair
in each corner can be viewed as a consequence of a mixed ’t Hooft anomaly between the
generalized time-reversal symmetry Us,πT and fermion parity symmetry Us,2π.

We begin with the partition function of the corner region in terms of the boson fields
ϑ and ϕ (we set v = 1 and keep a generic m), given by Z =

∫
DϕDϑeiS , where

S[ϑ, ϕ] = 1
2π

∫
dt

∫ `

0
dx[

2∂x(ϑ+ α)∂tϕ−K ′(∂xϑ)2 − 1
K ′

(∂xϕ)2 + 2πb cos(2ϕ)
]
, (183)
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subject to the spatial boundary condition

ϑ(`)− ϑ(0)) =
(
p+ 1

2

)
π

m
, p ∈ Z. (184)

The parameter α is rather unusual and absent from most literature on bosonization, which
we will explain and determine shortly. Recall that the first term arises from the insertion
of complete sets of conjugate coherent states |ϕ〉 and |π〉 ≡ |∂x(ϑ + α)〉, which gives the
matrix element ∏

x

〈ϕ(x, t+ dt)|π(x, t)〉〈π(x, t)|ϕ(x, t)〉

= exp
[
dt

∫
i∂x(ϑ(x) + α(x))∂tϕ(x)

π
dx

]
. (185)

Indeed, it is straightforward to verify that [ϕ(x), π(x′)] = iπδ(x− x′).
In the above we have used∏

x

〈ϕ(x, t)|π(x, t)〉 = exp
[∫

i∂x(ϑ(x) + α(x))ϕ(x)
π

dx

]
. (186)

and from this the parameter α(x) can be determined by noticing the Hilbert space con-
straint of the compactification ϕ(x) ∼ ϕ(x) + 2πm. This requires that∫ `

0

dx

π
∂x(θ + α) ∈ Z

m
. (187)

Given the spatial boundary condition Eq. (184), we can choose

α = Θx
2m, Θ = π. (188)

Note that this procedure is essentially the same as the one adopted in Eq. (49).
After integrating the ϑ field, this leads to the action

S[ϕ] =
∫
d2x

2π

[
Θ∂tϕ
m
− (∂µϕ)2

K ′
+ 2πb cos(2ϕ)

]
. (189)

Notice that compared to the usual sine-Gordon model, we have an additional term with
Θ = π. After integrating over x ∈ [0, `), this is precisely a Θ-term in a 1d quantum field
theory.

The partition function Z =
∫
eiS has two symmetries, a generalized time-reversal T̃

under which ϕ→ ϕ, t→ −t, and a translation ϕ→ ϕ+π (for m = 1 this is fermion parity
Us,2π). In particular, the former symmetry is only realized at Θ = 0, π in the presence
of periodic temporal boundary conditions. As pointed out in Ref. [87], such the theory
Θ = π admits a ’t Hooft anomaly between the two symmetries. To this end, we couple
the spin up and down fermions with a gauge field ±As, via ∂ϕ→ ∂ϕ− As, and we show
that gauge invariance and time-reversal symmetry are incompatible.

After integrating out spatially oscillatory modes, we have

S[q, As] =
∫
dt

2π
[
Θ(q̇ −As/m)− (mq̇ −As)2

K ′

+ 2πβ cos(2mq)
]
, Θ = π. (190)
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With the cosine term, the gauge group is lowered from U(1) to Z2m. Indeed this partition
function

Z[As] =
∫
dqeS[q,As] (191)

is gauge invariant, including the large gauge transformation∫
dtq̇ →

∫
dtq̇ + 2π,

∫
dtAs →

∫
dtAs + 2πm (192)

However, in doing so, we have introduced a 1d Chern-Simons counter-term ∼
∫
dtAs,

which necessarily breaks time-reversal symmetry, since As is odd under time reversal.
We can alternatively keep time-reversal symmetry, by taking a different way of coupling

to the gauge field

S[q, As] =
∫
dt

2π
[
Θq̇ − (mq̇ −As)2

K ′

+ 2πβ cos(2mq)
]
, Θ = π. (193)

However, this theory is not gauge invariant under the large gauge transformation above.
A simple analysis shows that the partition function

Z[As]→ −Z[As] (194)

under such a transformation. Here the incompatibility of Z2m and time-reversal of the
quantum theory is characteristic of a ’t Hooft anomaly.

In general, the ground state degeneracy due to the ’t Hooft anomaly can be proven
by contradiction. Suppose there is a unique ground state, and then due to time-reversal
symmetry of the partition function Z[As], the ground state must carry zero charge under
the gauge field, since the (temporal) gauge field As is odd under time-reversal. However,
if so, the ground state path integral could not admit a gauge anomaly, since being charge
neutral it would not respond to any gauge transformation. Therefore, the ground state
must be degenerate.

In this special case of m = 1, the symmetry properties of Z[As] from Eq. (194) can be
captured by [87]

Z[As] ∼ exp
(
i

∫
dtAs/2

)
+ exp

(
−i
∫
dtAs/2

)
, (195)

which indicates that the ground state is two-fold degenerate in the absence of the back-
ground gauge field. Each ground state carries a fractional charge ±1

2 , and therefore, the
gauge group is represented projectively, or equivalently as a double cover. While classically
the Z2 time-reversal symmetry and the Z2 gauge symmetry combines to D4, at a quantum
level the symmetry group is D8.

Recalling that spin-1/2 fermions are charged ±1 objects under As, we conclude that
the two ground states have spin S = ±1

4 . This indeed agrees with the results from the
main text using (42)

S = 1
2

∫ `

0
dx
∂xϑ

π
= 1

4 mod 1
2 . (196)
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