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Topological order in solid state systems is often calculated from the integration of an appropriate
curvature function over the entire Brillouin zone. At topological phase transitions where the single
particle spectral gap closes, the curvature function diverges and changes sign at certain high symme-
try points in the Brillouin zone. These generic properties suggest the introduction of a supervised
machine learning scheme that uses only the curvature function at the high symmetry points as input
data. We apply this scheme to a variety of interacting topological insulators in different dimensions
and symmetry classes, and demonstrate that an artificial neural network trained with the nonin-
teracting data can accurately predict all topological phases in the interacting cases with very little
numerical effort. Intriguingly, the method uncovers a ubiquitous interaction-induced topological
quantum multicriticality in the examples studied.

I. INTRODUCTION

Topological order is typically quantified by an integer-
valued topological invariant that is often calculated from
the momentum space integration of a certain curva-
ture function, whose precise form depends on the di-
mension and symmetry class of the system.1–3 Though
the profile of the curvature function in a topological
phase varies with the system parameters, the topolog-
ical invariant remains unchanged. Across topological
phase transitions (TPTs) where the topological invari-
ant jumps discretely, the curvature function displays a
rather universal feature:4–7 it gradually diverges at cer-
tain high-symmetry points (HSPs) in momentum space,
and the divergence changes sign as the system crosses
the TPT, causing the discrete jump in the topological
invariant. Through analyzing the divergence of the cur-
vature function, various statistical aspects of the Lan-
dau second-order phase transitions can be transposed to
TPTs. This includes the notion of critical exponents,
scaling laws, universality classes, and correlation func-
tions. This forms the basis of the curvature renormaliza-
tion group (CRG) method which can capture the TPTs
solely based on the renormalization of the curvature func-
tion near the HSP,8 regardless of whether the system
is noninteracting9–13 or interacting14,15 or periodically
driven.16–19

The CRG method demonstrates that, although topol-
ogy is a global property of the entire manifold of the
D-dimensional Brillouin zone (BZ), the knowledge about
topology can be entirely encoded in the curvature func-
tion near a HSP. Motivated by this intuition, in this
paper we present a supervised machine learning (ML)
scheme that utilizes only the curvature function at the
HSPs as input data to predict TPTs. The proposed
ML scheme answers an important question regarding

the application of ML to topological phases: what is
the minimal amount of data that is sufficient to distin-
guish topological phases? Various ML strategies have
been suggested to address this issue, including the con-
cept of quantum loop topography,20,21 and using ei-
ther the wave function,22–24 Hamiltonian,25–28 electron
density,29 system parameters,30,31 transfer matrix,32 or
density matrix33 as the input data. In contrast to these
methods, we present a simple ML scheme based on in-
put data comprising at most D + 1 real numbers in D
dimensions applicable to different symmetry classes and
weakly interacting systems. We train a simple fully-
connected artificial neural network with a single hid-
den layer with data from prototypical noninteracting TIs
whose topological phases are well-known, and then use
the trained network to predict the topological phase di-
agram when many-body interactions are adiabatically
turned on such that the single-particle curvature func-
tion gradually evolves into its many-body version. We
demonstrate how the ML scheme accurately captures the
topological phases and phase transitions driven by inter-
action with very little numerical effort and simultane-
ously uncover interaction-driven multicritical points.

The article is organized in the following manner. In
Sec. II A, we first review the generic features of the cur-
vature function and the proposed supervised ML scheme
based upon it. We then apply this scheme to predict
the topological phase diagram of the Su-Schrieffer-Heeger
model under the influence of nearest-neighbor interaction
in Sec. II B as a concrete example. In Sec. II C 1, we ap-
ply the ML scheme to 2D Chern insulators with nearest-
neighbor interaction, and in section II C 2 to Chern insu-
lators with electron-phonon interaction, elaborating on
the quantum multicriticality caused by the interactions.
The results are finally summarized in Sec. III.
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II. MACHINE LEARNING TOPOLOGICAL
PHASES THROUGH LOCAL CURVATURE

A. Supervised machine learning based on local
curvature

The topological systems we consider are those whose
topological invariant C is given by a D-dimensional mo-
mentum space integration

C =

∫
BZ

dDkF (k,M) , (1)

where F (k,M) is referred to as the curvature function
or local curvature, and M = (M1,M2...MDM

) is a set
of tuning parameters in the Hamiltonian. This form
of topological invariant has been proved to be true for
any noninteracting system described by Dirac models in
any dimension and symmetry class.34 The points k0 in
momentum space satisfying k0 = −k0 (up to a recipro-
cal vector) are referred to as the high symmetry points
(HSPs). For a D-dimensional cubic system, there are
D + 1 distinguishable HSPs, such as k0 = (0, 0), (π, 0),
and (π, π) in 2D. Note that (0, π) and (π, 0) are indis-
tinguishable in the sense that the curvature function has
the same value at these two points. As the system ap-
proaches the TPT, the F (k0,M) generally diverges and
flips sign as the system crosses the critical point

lim
M→M+

c

F (k0,M) = − lim
M→M−c

F (k0,M) = ±∞. (2)

Our aim is to construct a supervised ML scheme to iden-
tify the critical point Mc of TPTs in the DM -dimensional
parameter space. Certainly we may use the entire pro-
file of the curvature function F (k,M) as the input data
for ML, but this would be numerically expensive. The
question then amounts to what is the minimal amount
of data that can accurately predict Mc with the small-
est numerical effort. Since the critical behavior described
by Eq. (2) is a defining feature of the TPT, it motivates
us to design an ML scheme that uses only the curvature
function at the D+1 distinguishable HSPs as input data.
Our investigation suggests a supervised ML scheme that
consists of the following steps:

(1) In the training step, we seek a subspace M̃ of the

parameter space in which all the critical points M̃c and
their corresponding HSPs k0 at which the curvature func-
tion diverges are known.

(2) We generate F (k0, M̃) for several points in M̃, and
label them according to the value of the corresponding
topological invariant. We use this data to train the neural
network.

(3) Once the neural network is trained, for an un-
explored point in the parameter space M, we generate
F (k0,M) at the same HSP as input data and ask the
neural network to predict which phase this points belongs
to. The procedure may be repeated to scan through the
M space.

(4) Choose a different HSP to repeat the same pro-
cedure to ensure that all TPTs in the larger parameter
space M have been captured.

This supervised ML scheme can be easily extended
to studying interacting TIs. We choose the noninter-

acting limit as the subspace M̃ to train the neural net-
work, whose topology is often easier to solve, and ask
the trained neural network to predict the situation when
the interaction is turned on. Our approach assumes that
the non-interacting system can indeed manifest nontriv-
ial topology in parts of its parameter space, and that the
interacting system is adiabatically connected to the same
topological class as the non-interacting one, i.e. the in-
teractions do not change the underlying nonspatial sym-
metries. Because the scheme only relies on the curvature
function at the D + 1 distinguishable HSPs, it circum-
vents the tedious integration in Eq. (1) for the interact-
ing cases, and consequently serves as a very efficient tool
to obtain the phase diagram in the vast M parameter
space. We now demonstrate the efficiency of our method
by studying different interacting TIs.

B. Su-Schrieffer-Heeger model with
nearest-neighbor interaction

We study the 1D Su-Schrieffer-Heeger (SSH) model in
the presence of nearest-neighbor interaction to demon-
strate the efficiency of the proposed supervised ML
scheme. The noninteracting part of the Hamiltonian is
given by

H0 =
∑
i

(t+ δt)c†AicBi + (t− δt)c†Ai+1cBi + h.c.

=
∑
k

Qkc
†
AkcBk +Q∗kc

†
BkcAk , (3)

where cIi is the spinless fermion annihilation operator
on sublattice I = {A,B} at site i, t + δt and t − δt
are the hopping amplitudes on the even and the odd
bonds, respectively, and Qk = (t+ δt)+(t− δt)e−ik after
a Fourier transform. We consider the nearest-neighbor
interaction14,35

He−e = V
∑
i

(nAinBi + nBinAi+1)

=
∑
kk′q

Vqc
†
Ak+qc

†
Bk′−qcBk′cAk , (4)

where nIi ≡ c†IicIi, and Vq = V (1 + cos q). In the
limit of weak interaction, the changes to the topology of
the model can be described by renormalizing the Hamil-
tonian with self-energies calculated from Dyson’s equa-
tion.14 To one-loop order, the self-energies are given by

ΣAA(k) = ΣBB(k) = V , (5)

ΣAB(k) =
1

2

∑
q

Vqe
−iαk+q = [ΣBA(k)]

∗
, (6)



3

where the phase αk is defined by Qk ≡ |Qk|e−iαk . The
ΣAA and ΣBB are the Hartree terms that introduce a
finite chemical potential that shifts the entire spectrum
by −V . ΣAB and ΣBA are the Fock terms that modify
the off-diagonal elements of the 2×2 Hamiltonian matrix
in the sublattice space. The phase of the modified off-
diagonal element then reads

ϕk = − arg (Qk + ΣAB)

= − arg

(
Qk +

1

2

∑
q

Vqe
−iαk+q

)
, (7)

and the topological invariant is simply the winding num-
ber of this phase

C =

∫ 2π

0

dk

2π
∂kϕk ≡

∫ 2π

0

dk

2π
F (k, δt, V ) . (8)

The curvature function is thus F (k, δt, V ), with the pa-
rameter space M = (δt, V ). Note that in the noninter-
acting limit V = 0, the curvature function recovers the
more familiar Berry connection.14

To realize the ML scheme proposed in Sec. II A, since
the noninteracting SSH model is known to go through
TPT via gap closing at k0 = π, we use the curvature func-
tion F (π, δt, 0) at k0 = π as the input data to train a neu-
ral network that consists of a single dense hidden layer,
as indicated in Fig. 1 (a). The noninteracting V = 0 sub-

space M̃ = (δt, 0) is used to train the neural network, as
indicated by the colored lines in Fig. 1 (c). The details
of the training procedure are given in appendix A. In ac-
cordance to the usual notation, the δt < 0 data is labeled
as nontrivial with C = 1, and δt > 0 as trivial with C = 0.
After the neural network is trained, we use it to predict
the topology in the interacting case V 6= 0 in the large
M = (δt, V ) parameter space. For each M (darker col-
ored areas in Fig. 1 (c)) we feed the curvature function
at the same HSP F (π, δt, V ) to the network to obtain
C. The resulting phase diagram shown in Fig. 1 (c) cor-
rectly captures the phase boundary between the C = 1
and the C = 0 phases, as can be compared by the re-
sults obtained from the curvature renormalization group
(CRG) approach.14 A comparison with Eq. (7) immedi-
ately points to the advantage of this ML scheme, because
it does not require to an explicit calculation of the highly
cumbersome integral in Eq. (8).

C. Interacting Chern insulators in 2D

We now apply our algorithm to study interacting TIs in
two dimensions. To illustrate the power of the method-
ology, we consider two kinds of interactions: electronic
interactions and electron-phonon interactions. In both
cases, we find that the ML scheme predicts a complex
phase diagram and the emergence of interaction-driven
multicriticality.

π

0.5

(a)

(c)

δt/t 0.25-0.25
-1.0

1.0

V/t

0

0 2π

training data

...

input 
layer

hidden 
layer

output 
layer

(b)

FIG. 1. Machine learning scheme to classify different topolog-
ical phases in the interacting SSH model. (a) The profile of
the curvature function F (k, δt, V ) and the value at the HSP
k0 = π used as input data to train a neural network – whose
architecture is shown in (b) – to recognize different topolog-
ical phases. (c) The topological phase diagram predicted by
the network for the interacting model (V 6= 0), using a one-
loop self-energy approximation. The training set is that of
the noninteracting SSH model at V = 0 given by the topolog-
ically trivial phase δt > 0 (light red line) and the nontrivial
phase δt < 0 (light blue line).

1. Chern insulator with nearest-neighbor electronic
interaction

The noninteracting Hamiltonian matrix of the Chern
insulator takes the form H0 = d(k) · σ in the (A,B)
sublattice space for every momentum k, where

d0(k) = 0, d1 = sin kx, d2(k) = sin ky,

d3(k) = M + 2− cos kx − cos ky . (9)

For concreteness, we will examine the nearest-neighbor
interaction of a form analogous to Eq. (4), with the vertex

Vq = V (2 + cos qx + cos qy) . (10)

The effect of the interaction is to modify the Green’s
function by

G−1(k, iω) =

(
iω + d′0 − d′3 −d′1 + id′2
−d′1 − id′2 iω + d′0 + d′3

)
, (11)
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where the d-vector is renormalized by the intra- and
inter-sublattice self-energies

d′1 = d1 + ReΣAB , d′2 = d2 − ImΣAB ,

d′3 = d3 +
ΣAA − ΣBB

2
, d′0 =

−ΣAA − ΣBB
2

, (12)

which generally depend on both momentum and energy.
The precise form of the self-energies has been discussed
previously in detail in Ref. 14. The topological invariant
in terms of the full Green’s function in this case reads36,37

C =
π

3

∫
BZ

d2k

(2π)2

∫ ∞
−∞

dω

2π

×εabcTr
[
(G−1∂aG)(G−1∂bG)(G−1∂cG)

]
(13)

Note that εabc is the Levi-Civita tensor where {a, b, c} =
{ω, kx, ky}, and G ≡ G(k, iω) is the interaction-dressed
single-particle Green’s function. Because the lowest or-
der self-energy is frequency-independent, Eq. (13) greatly
simplifies to

C= 1

4π

∫
BZ

d2k d̂′ ·
(
∂kx d̂

′ × ∂ky d̂′
)
. (14)

This form is similar to that of noninteracting 2D class A
models, where it simply counts the associated skyrmion
number of the self-energy-renormalized d′-vector. The
integrand in Eq. (14) is then treated as the curvature
function F (k,M) = F (kx, ky,M, V ), with the mass term
and interaction strength M = (M,V ) forming a 2D pa-
rameter space.

We again use a neural network with a single hidden
layer to determine the topology in the interacting case,
as indicated by Fig. 2 (a), where the curvature function
at the three distinguishable HSPs is used as the input

data. The noninteracting subspace M̃ = (M, 0) is used
to train the neural network. The noninteracting subspace
has 3 critical points corresponding to the divergence of
curvature function at the 3 distinguishable HSPs.38 Once
the neural network is trained, we use it to predict the
interacting case V 6= 0 in the larger parameter space
M = (M,V ), yielding the phase diagram shown in Fig. 2
(c), which correctly captures the three topological phases,
as can be compared with the CRG result that has pre-
viously solved part of the phase diagram.14 This again
suggests that our ML scheme is a very efficient numeri-
cal tool, since it circumvents the cumbersome integration
of Eq. (14).

An unexpected result unveiled by our ML method is
the prediction of an interaction-driven multicritical point
between the C = 1 and C = −1 phases, as indicated
by the red star in Fig. 2 (c) where four regions meet.
Although the precise location of this multicritical point
and the phase boundaries surrounding it can be altered
by higher order self-energy corrections, our result sug-
gests that many-body interactions can be a mechanism
for the generation of multicritical TPTs. Such a feature
has also been seen in 1D Creutz model with Hubbard-
type interaction.39

π

input 
layer

...

hidden 
layer

output 
layer

(a) (b)

-6.0
-1.0

1.0

V

training  data

π
-π

-π

M 2.0
0.0

u

1.0

(c)

(d)

2.0M

-6.0

FIG. 2. Machine learning scheme to classify different topo-
logical phases in interacting 2D Chern insulators. (a) The
curvature function at zero frequency ω = 0 and the three
inequivalent high-symmetry points k0 = (0, 0), (0, π), (π, π)
used as input data for the neural network – whose architec-
ture is depicted in (b). The ML predicted topological phase
diagram for the interacting Chern insulators: (c) electron-
electron interactions and (d) electron-phonon interactions. In
both cases, the neural network is trained with noninteracting
data (shaded lines at V = 0 in c) and d)), corresponding to
the three inequivalent topological phases with C = 0,±1. The
method unveils the existence of multicritical points between
the C = 1 and C = −1 phases, indicated by the red stars.

2. Chern insulator with electron-phonon interaction

As electron-phonon interactions are ubiquitous in real
materials and can affect properties such as transport of
surface states, we now consider the impact of such in-
teractions on the Chern insulator.40–56 In particular, we
consider the deformation potential coupling between an
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(a) (b)

ω 0.2-0.2
0

100
A
(k
0,
ω
)

ω 0.2-0.2

FIG. 3. (a) The spectral function A(k0 = (0, π), ω) for the
Chern insulator with electron-phonon interaction. We fix
the electron-phonon coupling at u = 0.4 and plot A(k0 =
(0, π), ω) for different masses from M = −2.4 (bottom curve)
to M = −1.6 (top curve). One sees a gap-closure at zero
frequency at the topological transition point Mc = −2. (b)
The spectral function A(k = (0, 0), ω) at fixed M = 0.2 and
different couplings from u = 0.2 (bottom curve) to u = 0.8
(top curve). The gap closure occurs at uc ≈ 0.5. These re-
sults indicate gap-closures at ω = 0 at the TPTs predicted by
the ML scheme, driven by a change in either M or u.

acoustic phonon mode and spinless fermions of the form57

He−ph =
∑

kqMq(c
†
Ak+qcAk+c

†
Bk+qcBk)(aq+a

†
−q), (15)

where aq is the phonon annihilation operator, ωq = vs q
is the phonon dispersion with sound velocity vs, and
Mq = u

√
q with u a phenomenological coupling constant

determined by sound velocity, electron-ion potential, and
ion density. The noninteracting part is that given by
Eq. (9). The results for the corresponding self-energies
are presented in Appendix B, and extend the calculation
of the one-loop self-energies for optical phonons detailed
in Ref. 14 to the case of acoustic phonons.

We treat the mass term M and the electron-phonon
coupling u in Eq. (15) as tuning parameters M = (M,u),
and aim to find the TPTs in this 2D parameter space.
A crucial difference from the case of electron-electron
interaction in Sec. II C 1 is that here, even at the one-
loop level, the self-energy depends on both momentum
and frequency K = (ω, kx, ky), and so does the curva-

ture function F̃ (K,M) (the integrand of the multidi-
mensional integral in (13) ). Consequently, the numer-
ical integration of the topological invariant in Eq. (13)
becomes even more tedious, especially given the un-
bounded frequency integration. Nevertheless, we find
that close to TPTs, the curvature function at ω = 0
diverges and flips at the HSPs of momentum k. In other
words, the appropriate HSPs in this problem are given
by K0 = (ω, kx, ky) = (0, 0, 0), (0, π, 0), and (0, π, π),
at which the critical behavior of F (K0,M) follows that
discussed in Sec. II A. This critical behavior at zero fre-
quency is a reminiscence of gap closures at the Fermi en-
ergy at typical quantum critical points that is manifested
in the spectral function A(k, ω) (detailed in Appendix B).

Our ML scheme becomes a powerful tool in this case,
since it circumvents the momentum-frequency integra-

tion in Eq. (13), relying instead on the divergence of the
curvature function. As in Sec. II C 1, we use the non-
interacting limit in the absence of phonons u = 0 as
training data, and apply the ML scheme as illustrated
in Fig. 2 (a)-(b). Fig. 2 (d) shows the phase diagram
obtained by our ML scheme using the three distinct
HSPs K0 as input data. To check the validity of the
results, we plot the spectral function across two repre-
sentative TPTs (driven by either the mass term M or
the electron-phonon coupling u), predicted by the ML
scheme in Fig. 3. Note that the corresponding spec-
tral functions clearly display a continuous closure and
opening of gaps at ω = 0 consistent with a continuous
phase transition. This implies that both TPTs driven
by the electron-phonon interaction and the mass are sec-
ond order transitions. To summarize, the phase diagram
correctly captures all phases and phase boundaries, and
moreover indicates the appearance of a multicritical point
as a function of coupling u around M = −2.0, indicat-
ing that electron-phonon interaction can also serve as a
mechanism to induce multicriticality. Thus, many-body
interactions are added to the list of several recently un-
covered mechanisms that can trigger topological multi-
criticality, including periodic driving or quantum walk
protocols,17–19,58 long range hopping or pairing,12,13,59

spin-orbit coupling,11,60 topological insulator/topological
superconductor hybridization,61 as well as more compli-
cated mechanisms in the spin liquid62 and toric code
models.63

We close this section by making a comparison between
the CRG8–15,17,18 and the ML scheme proposed here.
Though both methods have their advantages and disad-
vantages, the ML scheme is more efficient than the CRG
for obtaining the phase diagram and the related invari-
ants while the latter is more useful to extract critical
exponents associated with the TPTs.

III. CONCLUSIONS

In summary, we propose a supervised machine learning
scheme based on the divergence of the curvature func-
tion at high-symmetry points, to rapidly identify differ-
ent topological phases in interacting systems, thereby cir-
cumventing costly multi-dimensional integrations. The
machine learning scheme consists of an artificial neural
network that utilizes as input data D + 1 real numbers,
representing the values of the curvature function atD dis-
tinguishable HSPs in either momentum or momentum-
frequency space. The strategy is to train the neural net-
work by the data in a subspace where the topological
phases are known – typically the noninteracting case –
and then use the trained neural network to predict the
topology in a larger parameter space. Because the ma-
chine learning scheme circumvents the tedious multidi-
mensional integration of topological invariants, especially
in interacting systems, it is a highly efficient tool to map
out the topology in a large parameter space regardless
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the type of interaction and dimension of the system, as
demonstrated for several examples. The efficiency of this
ML scheme also helps to quickly uncover the multicriti-
cality caused by both the electron-electron and electron-
phonon interactions, where multiple topological phases
join at a single point on the phase diagram, indicating
that these many-body interactions serve as new mech-
anisms to generate multicritical TPTs. Though the re-
sults presented were based on the first order self-energy
corrections, a valid approximation for weakly interact-
ing systems, the proposed ML scheme can straightfor-
wardly be extended to higher order self-energy terms.
The scheme is widely applicable to topological materi-
als in any dimension and symmetry class, provided the
topological invariant is defined from the integration of a
local curvature. Future directions include the study of
strongly interacting TIs within the paradigm presented
here in conjunction with numerical methods like exact
diagonalization,15 as well as the interplay of topology
and symmetry-broken phases in interacting topological
systems.
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Appendix A: Neural network architecture and
training

In this appendix, we give a brief overview of the details
of the neural network architecture and training used to
obtain the phase diagrams of the interacting topological
insulators mentioned in the main text. The construc-
tion, training, and evaluation of neural networks was im-
plemented using Tensorflow.64,65 For all of the results
shown in the main text, we employed a neural network
with a single fully-connected hidden layer and varying
input and output layer depending on the dimensionality
of the system and the number of phases in the topo-
logical phase diagram (input: a single neuron for the
1D SSH model, three neurons for the 2D Chern insula-
tors, output: two neurons for the 1D SSH model, three
neurons for the 2D Chern insulators). We employed a
hidden layer with 10 neurons to generate the results pre-
sented in the main text, but we empirically found that the
width of the hidden layer can be reduced to 2-3 neurons
without significant performance reduction. As activation
function, we used a sigmoid for the hidden layer and a
softmax for the output layer to obtain classification prob-

abilities. To train the network, we used noninteracting
data. We used 4096 points randomly distributed between
δt/t = −1.0 and δt/t = 1.0 in the SSH model, and be-
tween M = −12.0 and M = 12.0 for the 2D Chern insu-
lator, fed in batches of size 32. The training lasted for 50
epochs. The optimizer used during training was ADAM
and the loss function was the categorical cross entropy.

Appendix B: Self-energy of Chern insulator with
electron-phonon interaction

For the Chern insulator with electron-phonon inter-
actions discussed in Sec. II C 2, in the zero temperature
limit T → 0, taking the Bose distribution N0 = 0 and
the Fermi distribution nF (x) = θ(−x), the self-energies
are given by

ΣAA(k, iωn) =
∑
q

M2
q

×
[

(1 + d3k−q/dk−q)/2

iωn − ωq − dk−q
+

(1− d3k−q/dk−q)/2

iωn + ωq + dk−q

]
,

ΣBB(k, iωn) =
∑
q

M2
q

×
[

(1− d3k−q/dk−q)/2

iωn − ωq − dk−q
+

(1 + d3k−q/dk−q)/2

iωn + ωq + dk−q

]
,

ΣAB(k, iωn) =
∑
q

M2
q

Qk−q

2dk−q

×
[

1

iωn − ωq − dk−q
− 1

iωn + ωq + dk−q

]
,

ΣBA(k, iωn) =
∑
q

M2
q

Q∗k−q
2dk−q

×
[

1

iωn − ωq − dk−q
− 1

iωn + ωq + dk−q

]
, (B1)

which depend on both momentum and the Matsubara
frequency iωn. We then replace the Matsubara frequency
by a continuous one, iωn → iω, in the calculation of the
curvature function. The topological invariant is again
given by Eq. (13), whose integrand can be expressed in
terms of the d′-vector in Eq. (12) by

π

3
εabcTr

[
(G−1∂aG)(G−1∂bG)(G−1∂cG)

]
{a,b,c}={ω,kx,ky}

=
4πi

[(iω + d′0)2 − d′2]
2

{
−iεabcd′a∂xd′b∂yd′c|{a,b,c}={1,2,3}

+εabcdd′a∂ωd
′
b∂xd

′
c∂yd

′
d|{a,b,c,d}={0,1,2,3}

+iωεabc∂ωd
′
a∂xd

′
b∂yd

′
c|{a,b,c}={1,2,3}

}
,

= F (K,M) , (B2)

where we have denoted K = (ω, kx, ky). Note that in
the noninteracting limit d′ → d, only the first term in
Eq. (B2) survives, which recovers the Berry connection
F (k,M) in the integrand of Eq. (14) after a frequency
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integration. On the other hand, when calculating the spectral function

A(k, ω) = − 1

π
Im
[
TrGret(k, ω)

]
, (B3)

we use the retarded version Gret(k, ω) of the interacting
Green’s function in Eq. (11) obtained through an analyt-
ical continuation iω → ω + iη.
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