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Abstract

We obtain exact formulas for the time-dependence of a few physical observ-
ables for the open XX spin chain with Lindbladian dynamics. Our analysis is
based on the fact that the Lindblad equation for an arbitrary open quadratic
system of N fermions is explicitly solved in terms of diagonalization of a 4N×4N
matrix called structure matrix by following the scheme of the third quanti-
zation. We mainly focus on the time-dependence of magnetization and spin
current. We observe that the spatio-temporal dependence of magnetization
and spin current show the light-cone structure. Moreover, for a fixed site,
we observe specific behaviors which are not seen in the closed XX spin chain.
Near the center of the chain, these quantities exhibit an exponential approach
to the steady state values and the decay time is given by the Liouvillian gap.
The contribution of the corresponding state becomes smaller for sites near a
boundary, where we observe a plateau regime where magnetization does not
change over a duration of time. Using the fact that the time derivative of
magnetization is written as a product of the Bessel function and exponential
function, we can explain various properties of the plateau regime analytically.
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1 Introduction

Open non-equilibrium systems, connected with external reservoirs, have been one of the
most important subjects in non-equilibrium statistical mechanics [1,2]. They are known to
show various interesting behaviors and phenomena, which are not seen in systems in ther-
mal equilibrium. A classical example is the Bernard convection, in which a characteristic
spatio-temporal pattern appears when the temperature difference between the top and
bottom sides of an intermediate liquid becomes large enough [3–5]. To understand basic
properties of non-equilibrium systems, studying simple model systems is useful. In par-
ticular, there have been extensive studies on classical one-dimensional models which show
nontrivial phenomena like boundary induced phase transition and anomalous transport
and at the same time are analytically tractable [6–8].

Recently, due to the development of experimental techniques, non-equilibrium states
are realized also in a variety of quantum systems, such as cold atoms [9–12], the optics
[13,14], and the quantum walks [15]. Correspondingly studying non-equilibrium properties
of open quantum systems from a theoretical point of view are also becoming more and
more important. In addition, for the last few years, connections to studies of non-hermitian
systems have been suggested and attracted attention [16–21], since open quantum systems
can be interpreted as non-hermitian systems.

There are a few theoretical frameworks to study the dynamics of open quantum sys-
tems. A conventional one is the use of non-equilibrium Green’s function (NEGF) [22,23],
which is an extension of the standard Green’s function [23, 24] and has been useful to
analytically calculate time dependent correlation functions for systems in equilibrium.
Recently, the method has been generalized to study systems in which the state evolves
from a given initial condition to another [25, 26]. It has been already applied to a few
concrete models such as the one-dimensional XY spin chain [27–29]. In this approach, the
time evolution is still given by a Hamiltonian, but calculations tend to be rather cumber-
some. It has turned out that a description by a quantum master equation (QME) [30–32] is
equally effective and useful to study various properties of non-equilibrium systems. There
are several versions of the QMEs, such as the Lindblad equation and the Redfield equation.
In this paper we employ the description by the Lindblad equation. In many works, the
Lindblad equation has been solved numerically. But it is not enough in particular when
we want to study non-equilibrium properties of large systems. We remark that recently
relationships between the QMEs and the NEGF have been examined [33].

As for simple systems, studying these with many degrees of freedom whose dynamics
is described by Lindblad equations would be useful. Indeed there have been already many
previous works for several one-dimensional systems described by the Lindblad equation.
In particular, several exact solutions for nonequilibrium steady states(NESSs) have been
obtained by using Matrix Product Ansatz (MPA) [34–42]. As for dynamics, there have
been also impressive recent progress for numerical calculations such as the Matrix Product
Operator method [43–45], the density matrix renormalization group method [46, 47], and
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so on. It is equally important to develop analytical techniques to study their dynamics
[48–50]. In particular, analytical solutions for some simple model systems would provide
invaluable information for understanding general open quantum systems.

In this paper, we will give an exact solution for the time-dependence of the magne-
tization and the spin current for the XX spin chain with boundary dissipation described
by the Lindblad equation. We will use the fact that an arbitrary open quadratic system
whose dynamics is described by the Lindblad equation admits an application of the third
quantization [51]. Although this method has been already known for about ten years and
has been applied to several fermionic and bosonic systems [51–57], as far as we know,
it has not been fully exploited for obtaining exact formulas for time-dependent physical
quantities. In this paper we will show how we can utilize the third quantization to obtain
exact time-dependence of physical quantities and provide explicit formulas for a few of
them.

In previous works [51,53–57], solving a Lindblad equation describing the dynamics for
open quadratic bosonic/fermionic systems has been shown to reduce to a diagonalization
of a 2N × 2N matrix. In this paper, we show that, in the case of the open XX spin chain,
the problem can be further reduced to a diagonalization of an N × N non-Hermitian
matrix and that this non-Hermitian matrix can be diagonalizable. Then we will show that
the time-dependence of physical quantities can be studied by solving the continuous-time
differential Lyapunov equation [58–60] and that this equation can indeed be solvable. By
combining these we can arrive at explicit formulas for the time-dependence for an open
quantum system described by the Lindblad equation.

As an example of applications of our formulas, we consider the time-dependence of the
magnetization and the spin current from the thermal equilibrium state in high temperature
limit β → 0. First, by taking the limit t → ∞, we obtain the exact solutions for NESS.
We will see that our formulas give a generalization of the formulas in a previous study
using MPA [35], in which only the case of opposite magnetizations at the boundaries was
treated. By the same formulas, we will also analyze behaviors for time-dependent physical
observables. By carefully examining the formulas, we observe that the spatio-temporal
dependence of the magnetization for the open XX chain using our formulas shows a light-
cone structure. A light-cone structure is shown in the quench dynamics or a dynamics
starting from the step initial condition, and our study is important to discuss the similarity
and difference with the dynamics of the closed XX spin chain [11, 61, 62] and the validity
of some approximations in the derivation of the QMEs [32]. Moreover, by examining the
formulas at the specific sites, such as a site near a boundary and a site near the center of
the chain, we can observe the specific behaviors which can not be observed in the closed
XX spin chain. We can analytically show that the magnetization and the spin current at
the center of the chain approach the steady state values slowly with oscillations, whereas
the magnetization and the spin current on a site near a boundary approach the steady state
values with oscillations after finishing the plateau regime where the magnetization does
not change over a duration of time. At another bulk site, as a site gets close to the center
of the chain, the plateau regime is quickly short by a fluctuation and the convergence to
the steady state value is slow. In particular, we discuss several behaviors in detail such as
the mechanism of the light-cone structure and the appearance of the plateau regime near
boundaries.

The paper is organized as follows. In the following section 2, we shortly explain the
general theorems of the third quantization to review the previous studies [51, 55], and
we calculate the exact spectrum of the Lindbladian. In section 3, we explain the main
results in this paper. These are that: (i) we can calculate the analytical steady state
solutions of the magnetization and spin current for open XX spin chain with left-right
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asymmetric dissipation strength and bath magnetization, and (ii) the exact solutions of
the time-dependence of magnetization and spin current are obtained, and these behaviors
for the sites near either left or right boundary are different to the ones for bulk sites. We
focus on the plateau regime where the magnetization does not change over a duration of
time in the behaviors of the time-dependence of the magnetization and the spin current,
in particular. In section 4, we summarize this paper, and in appendixes we comment
on the more detailed calculations for the physical observables for steady state and the
time-derivative of the magnetization on an arbitrary site.

2 Spectrum of the open XX spin chain with boundary dis-
sipation

2.1 Lindbladian in Liouvillian-Fock space

We consider the following Hamiltonian of XX spin chain,

H = J

N−1∑
k=1

(σx
kσ

x
k+1 + σy

kσ
y
k+1) −B

N∑
k=1

σz
k, (1)

where σx,y,z
k are the Pauli operators, J is the coupling constant between a site and nearest-

neighbor sites, and B is denoted as the magnetic field. The Lindblad equation [31] is
denoted as

d

dt
ρ(t) ≡ Lρ(t) = −i[H, ρ(t)] +

∑
µ

Lµρ(t)L†
µ − 1

2

{
L†
µLµ, ρ(t)

}
, (2)

where ρ(t) is the density operator and Lindblad dissipative operators are defined as

L1 =

√
εL

1 + µL

2
σ+
1 , L3 =

√
εR

1 + µR

2
σ+
N , (3)

L2 =

√
εR

1 − µL

2
σ−
1 , L4 =

√
εR

1 − µR

2
σ−
N , (4)

where σ± = (σx±iσy)/2, εL/R are dissipative strength between system and each reservoirs,
and µL/R are the magnetization on each reservoirs. We can explain the interpretation of
these parameters and the forms of the operators(3,4) when we derive the Lindblad equation
from the dynamics of the total system including the reservoirs [63, 64]. The Lindblad
operators L1, L2 (3,4) play the roles of entry and exclusion of the up-spin between left
boundary and left end, and L3, L4 (3,4) play the roles of entry and exclusion for the up-
spin between right boundary and right end. These parameters εL/R, µL/R are related to
the coupling strength in each boundary and the reservoir’s chemical potential.

Then, we introduce the Majorana fermion operators wj , j = 1, 2, · · · , 2N satisfying
the anticommutation relations {wj , wk} = 2δj,k. The XX spin chain is equivalent to the
one-dimensional free Majorana fermion model using the inverse of the Jordan-Wigner
transformation σ → w. These operators wj are related to Pauli operators σm as the
following Jordan-Wigner transformation [51],

w2k−1 = σx
k

∏
n<k

σz
n, w2k = σy

k

∏
n<k

σz
n, 1 ≤ k ≤ N. (5)
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This Hamiltonian in (1) and Lindblad dissipative operators in (3,4) are rewritten in terms
of the Majorana fermion operators wj as

H = −iJ

N−1∑
k=1

(w2kw2k+1 − w2k−1w2k+2) + iB
N∑
k=1

w2k−1w2k, (6)

and as

L1 =

√
εL

1 + µL

2

w1 + iw2

2
, L2 =

√
εR

1 − µL

2

w1 − iw2

2
, (7)

L3 =

√
εR

1 + µR

2

w2N−1 + iw2N

2
Ω, L4 =

√
εR

1 − µR

2

w2N−1 − iw2N

2
Ω, (8)

respectively. Here, Ω := (−1)N
∏2N

l=1wl is a Casimir operator which commutes with all
the elements of the Clifford algebra generated by Majorana operators wj , and satisfies
ΩΩ† = Ω†Ω = 1.

Throughout this paper, x = (x1, x2, · · · )T will designate a vector (column) of appropri-
ate scalar valued or operator valued symbols xk. Then, the Hamiltonian and the Lindblad
dissipative operators (6-8) can be expressed in a form of a quadratic form and linear forms
respectively as

H =
2N∑

j,k=1

wjHj,kwk = w ·Hw, (9)

Lµ =

2N∑
j=1

lµ,jwj = lµ · w, (10)

where A · B is the inner product between the vectors A and B, and 2N × 2N matrix
H can be chosen to be an antisymmetric matrix HT = −H. From Lindblad dissipative
operators, the matrix M is defined as

Mjk =
∑
µ

lµ,jl
∗
µ,k, (11)

which is a Hermitian matrix, and MR and MI are real and imaginary part of the matrix
M, respectively.

A fundamental concept of the third quantization [51] is the Fock structure on 4N -
dimensional Liouville space of operators K, called the operator space. This space is created
as the Hilbert space of density operators with the definition of an inner product ⟨A|B⟩ =
4−N tr

(
A†B

)
where A,B are operators. We use Dirac bra-ket notation for the operator

space K. This means replacing the relation between operators and states over physical
Hilbert space to the one between maps and operators over the operator space. Then,
symbols with a hat shall designate linear maps over the operator space K, and we note
the difference between an operator X over the physical Hilbert space and a map X̂ over
operator space K. By this transformation, the Lindblad equation (2) is rewritten as

d

dt
|ρ(t)⟩ = L̂ |ρ(t)⟩ . (12)

The Lindblad map L̂ is written in terms of the self-adjoint Hermitian Majorana fermion
maps âµ,r [51] satisfying {âµ,r, âν,s} = δµ,νδr,s, and this map takes a quadratic form with
the identity map term 1l as

L̂ = â ·Aâ−A01̂l, (13)
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where a matrix A is called the structure matrix

A =

(
−2iH + iMI iM

−iMT −2iH− iMI

)
, (14)

and the coefficient of identity term A0 is equal to the trace of the matrix M.
The Lindblad map conserves its parity. The operator space K can be decomposed

into a direct sum K = K+ ⊕ K− which are defined as K± =
1±exp(iπ

∑
k( 1

2
−iâ1,kâ2,k)

2 K.
Then, the parity of the Lindblad map in the operator space K corresponds to that of total
number of Majorana operator wj in physical Hilbert space H. In this paper, we consider
only the product of an even number of Majorana fermion operator wj , which is enough to
calculate usual physical observables, for example magnetization, spin current, energy, and
so on. Thus, we can restrict our attention to the subspace K+. If the structure matrix
A is written as the Jordan canonical form, the Lindblad map L̂ becomes the almost-
diagonal maps. Moreover, we obtain the exact solution of the time-dependence of physical
observables whose dynamics are described by the Lindblad equation.

2.2 Exact Spectrum of Lindbladian

As shown in [54], the structure matrix A is unitary equivalent to a following block-
triangular matrix,

Ã = UAU† =

(
−XT 2iMI

0 X

)
, (15)

where X = −2iH + MR is a real matrix, and the matrix U is trivially the 4N × 4N
permutation matrix which corresponds to the cyclic permutation of Pauli operators (σx →
σy, σy → σz, σz → σx). Also, as shown in [54], if the matrix X is diagonalizable, the
structure matrix is diagonalizable. Thus, we consider only the eigensystem of a 2N × 2N
matrix X. The case of open XY model without magnetic field was already studied in [57].
In this paper, we show, for the open XX spin chain with magnetic field, that the matrix
X can be decomposed into N ×N matrices.

Lemma 1. Using a unitary matrix S, the matrix X is unitarily equivalent to a block-
diagonal matrix

X̃ = SXS† =

(
iΞ 0
0 −iΞ†

)
, (16)

where Ξ is an N ×N matrix.

We can show this lemma easily. First, the matrix X is rewritten by using the Kronecker
product

X = i


B J
J B

. . . J
J B

⊗ σy +


εL
4

0
. . .

0
εR
4

⊗ 1l2. (17)

Then, we introduce the following permutation,

κ :→
{

1, 2, · · · , N, N + 1, · · · , 2N − 1, 2N
1, 3, · · · , 2N − 1, 2, 4, · · · , 2N

}
. (18)

6



SciPost Physics Submission

The 2N × 2N permutation matrices which correspond to the above permutation and the
cyclic permutation of Pauli operators are defined to be Πκ and Ǔ, and the unitary matrix
S is denoted as S = ǓΠκ. The matrix X is decomposed into the form of a block matrix
as

X̃ = SXS† =

(
iΞ 0
0 −iΞ†

)
, (19)

where the matrix Ξ is non-Hermitian matrix

Ξ =


B − i εL4 J

J B
. . .

B J
J B − i εR4

 . (20)

Also, we can decompose the characteristic polynomial of the matrix X into two charac-
teristic polynomials of the matrix Ξ, since the matrix X̃ is block-diagonalizable.

Corollary 1. The characteristic polynomial of the matrix X is decomposed into two
characteristic polynomials of the matrix Ξ

pX(λ) = pΞ(−iλ)p∗Ξ(−iλ∗), (21)

where pX(λ) := det(X− λ1l2N ), and pΞ(λ) := det(Ξ− λ1lN ).

Therefore, all the eigenvalues of the open XX spin chain are constructed by the eigen-
values of the N×N matrix Ξ. Moreover, the matrix Ξ is a tri-diagonal matrix and we can
obtain the eigenvalues and eigenvectors of the matrix Ξ [29,65–67]. Consider the eigenvalue

problem Ξq = λq where the k-th(1 ≤ k ≤ N) eigenvector q(k) = (q
(k)
1 , q

(k)
2 , · · · , q(k)N )T. The

r-th(1 ≤ r ≤ N) component of this eigenvector q(k) can be viewed as the r−th term of an

infinite sequence q(k) = {q(k)i }∞i=0. Then, we obtain the eigenvalue and the component of
the eigenvector [65,66]

λ(k) = B + 2J cos θk, (22)

and

q
(k)
j =

q1
sin θk

[
sin jθk + i

εL
4J

sin(j − 1)θk

]
, (23)

where the parameter θk is determined by the following condition,{
2 cos θk + i

( εL
4J

+
εR
4J

)}
sinNθk −

(
1 +

εL
4J

εR
4J

)
sin(N − 1)θk = 0. (24)

The distribution of the eigenvalues of the matrix Ξ has special eigenvalues which has larger
imarginary part than the other’s one in Fig.1, when boundary dissipative strength εL/R
are larger than 4J .
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Figure 1: eigenvalue distribution of matrix Ξ. Other parameters set N = 30, J = 1.0,
B = 0.0, and µL = −µR = 1.0.

Using the knowledge of the recurrence relation for the matrix Ξ, we obtain the char-
acteristic equation of the matrix Ξ as

βN+1 − αN+1 + i
( εL

4J
+

εR
4J

)
(βN − αN ) − εL

4J

εR
4J

(βN−1 − αN−1) = 0, (25)

where α + β = λ−B
J and αβ = 1.Therefore, if we can solve the equation (25), we obtain

the eigenvalue λ = B +J(β +β−1). Also, the characteristic equation (25) can be obtained
from (24) by β ≡ eiθk . As shown in [29], the solutions of the above equation are separated
by the magnitude of parameter β in long chain limit(N → ∞). If we consider the solutions
which satisfy |β| > 1, the equation (25) becomes

β2 + i
( εL

4J
+

εR
4J

)
β − εL

4J

εR
4J

= 0. (26)

The solutions of this equation (26) are β = −i εL4J ,−i εR4J . These solutions exist only when
εL/R > 4J . In a similar process, the solutions of equation (25) which satisfy |β| < 1 are

β = 4iJ
εL

, 4iJεR . Last, the solution of equation(25) which satisfies |β| = 1 is β = eiθ,θ ∈ R. We
call the eigenvalues without imaginary part Im(λ) = 0 normal eigenvalue(NE) expressed as
λ = B+2J cos θ and the eigenvalues with imaginary part Im(λ) ̸= 0 special eigenvalue(SE)
expressed as

λ = B − iJ

(
εL
4J

− 4J

εL

)
, B − iJ

(
εR
4J

− 4J

εR

)
. (27)

Since the matrix Ξ is a complex symmetric matrix, we can diagonalize it by using a
complex orthogonal matrix Q as

Ξ = QDQT, (28)

where

D = diag[λ(1), · · · , λ(N)], Q =
[
Q(1), · · · , Q(N)

]
, (29)

where Nk is the normalization factor of the k−th eigenvector, and is defined as Nk ≡
q(k) · q(k). We define Q(k) =

q(k)

Nk
. Then, by Lemma 1. and this diagonalization, the matrix
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X is digonalizable as follows,

X = S†
(

Q 0

0 Q

)(
iD 0
0 −iD†

)(
QT 0
0 Q†

)
S. (30)

Also, the matrix X can be rewritten in a Jordan canonical form,

X = P∆P−1, (31)

where P is a non-singular matrix, and ∆ is a Jordan canonical form. Let any Jordan cell
size be bigger than 1, and the component of the matrix P be the generalized eigenvectors
of the matrix X. Thus, if and if only the matrix X is diagonalizable, we can consider that
these representation are the same. Then, by using (30,31), we obtain the non-singular
matrix P and its inverse matrix P−1 as the follows,

P = S†
(

Q 0

0 Q

)
, P−1 =

(
QT 0
0 Q†

)
S. (32)

3 Exact solutions for time-dependence of physical observ-
ables

3.1 Exact formulas for magnetization and current

We consider the time-dependence of quadratic physical observables in terms of Majorana
fermion operators. The physical observables X(t) at time t is defined in Schrödinger
picture as X(t) = tr(Xρ(t)) [51,53,54]. Since the Lindbladian in Hilbert space is defficult
to study analytically, we consider the Heisenberg picture in Liouville-Fock space [68, 69].
We can define a quadratic physical observable as following,

Cj,k(t) = tr(wjwkρ(t)). (33)

Then, since the diagonal terms in Cj,k(t) are time-invariant Cj,j(t) = tr(ρ(t)) = tr(ρ(0)),

we define the correlation matrix C̃(t) =
{
C̃j,k(t)

}
1≤j,k≤N

by

C̃j,k(t) = tr(wjwkρ(t)) − δj,k = 2 ⟨1| â1,j(t)â1,k(t) |ρ0⟩ − δj,k, (34)

where the super-Heisenberg picture is defined by âk(t) := e−tL̂âke
tL̂. Using the Lindbla-

dian map L̂ (13), we can obtain the equation of motion for Majorana map as follows,

dâ(t)

dt
= 2Aâ(t). (35)

In terms of C̃j,k(t), the magnetization mz
k(t) on site k and the spin current jk,k+1(t)

between sites k and k + 1 can be written by using (5) as follows,

mz
k(t) = ⟨σz

k⟩ (t) = −iC̃2k−1,2k(t), (36)

jk,k+1(t) =
⟨
2J(σx

kσ
y
k+1 − σy

kσ
x
k+1)

⟩
(t) = −2JiC̃2k−1,2k+1(t) − 2JiC̃2k,2k+2(t).(37)

The time-dependence of correlation matrix C̃(t) satisfies the following differential equation
[68,69],

dC̃(t)

dt
= −2

{
XTC̃(t) + C̃(t)X

}
− 4iMI . (38)
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Since the components of the matrix C̃(t) correspond to the physical observables as (36,37),
obtaining the exact solution C̃(t) (34) is equivalent to obtain the time-dependence of the
physical observables. In some papers [68–71], this equation (38) can be solved numerically

or can be only examined the steady state (dC̃(t)
dt = 0), but the fact that this equation(37)

is solvable had been known in a different field, such as the control theory [72, 73] and
stability analysis [74]. By using the spectrum of the matrix Ξ (20) and the papers [58–60]
in the context of variation of constants, we can solve this equation and obtain the time-
dependence of the physical observables analytically for the first time.

As shown in [58–60], the time-dependence of correlation matrix is

C̃(t) = e−2tXT
C̃(0)e−2tX +

∫ t

0
e−2sXT

(−4iMI)e−2sX ds .

(39)

For the above formula (39), we can calculate the exact solution for the time-dependence
of the correlation matrix C̃(t), if the eigenvalues and the (general) eigenvectors of the
matrix X can be exactly calculated and the correlation matrix in the initial time C̃(0) can
be determined analytically. For the open XX spin chain, we can obtain the eigenvalues
and the (general) eigenvectors of the matrix X can be exactly calculated. Thus, when we
choose the correlation matrix in the initial time C̃(0) whose components can be determined
analytically, we can obtain the exact solution for the time-dependence of the physical
observables, and discuss their behaviors.

In this paper, we introduce the time-dependence from one of the simplest initial states
satisfying the condition that the correlation matrix in the initial time C̃(0) whose com-
ponents can be determined analytically. We choose the thermal equilibrium state in the
high-temperature limit (β → 0) as the initial state. Then, the correlation matrix C̃(t)
in (34) at the time t = 0 becomes zero C̃j,k(0) = 0. Thus, the time-dependence of the
correlation matrix takes the following form,

C̃(t) =

∫ t

0
e−2sXT

(−4iMI)e−2sX ds . (40)

For the open XX spin chain, since the matrix X is diagonalizable X = P∆P−1, the
correlation matrix is calculated as

C̃(t) = P−T

((∫ t

0
e−2s(βi+βj) ds

)
i,j=1,··· ,2N

⊙
(
PT(−4iMI)P

))
P−1, (41)

where βj is an eigenvalue of the matrix X, and we define the Hadamard product as (A⊙
B)i,j = Ai,jBi,j . Moreover, since the eigenvalues of X are calculated from the eigenvalues
of the matrix Ξ from the Corollary 1. and the imaginary parts of the eigenvalues of
the matrix Ξ are negative, the real parts of the eigenvalues of the matrix X are positive
Re{βj} > 0. Thus, the integral in (41) can be calculated as∫ t

0
e−2s(βi+βj) ds =

1 − e−2t(βi+βj)

2(βi + βj)
. (42)

Therefore, we obtain

C̃(t) = P−T

(1 − e−2t(βi+βj)

2(βi + βj)

)
i,j=1,··· ,2N

⊙
(
PT(−4iMI)P

)P−1. (43)

10



SciPost Physics Submission

The main results in this paper are that we obtain the following exact solutions for time-
dependence of magnetization in (36) and spin current in (37). The magnetization mz

k(t)
takes the following form,

mz
k(t) =

2N∑
l,n=1

e−2t(βl+βn) − 1

2(βl + βn)
P−T
2k−1,l

[
PT(4MI)P

]
l,n

P−1
n,2k.

(44)

Substituting imaginary part of dissipative matrix M, non-singular matrix P and that
inverse matrix P−1 (32) to (44), the magnetization in (36) takes the following spectral
decomposition form,

mz
k(t) =

N∑
l,n=1

Re

[
1 − e−2it(λ(l)−λ(n)∗)

2i(λ(l) − λ(n)∗)
Q

(l)
k

{
εLµLQ

(l)
1 Q

(n)∗
1 + εRµRQ

(l)
N Q

(n)∗
N

}
Q

(n)∗
k

]
. (45)

Similarly, spin current between sites k and k + 1 jk,k+1(t) in (37), and takes the following
spectral decomposition form,

jk,k+1(t) = 2J
N∑

l,n=1

Im

[
1 − e−2it(λ(l)−λ(n)∗)

2i(λ(l) − λ(n)∗)
Q

(l)
k

{
εLµLQ

(l)
1 Q

(n)∗
1 + εRµRQ

(l)
N Q

(n)∗
N

}
Q

(n)∗
k+1

]
.

(46)

In (45,46), the eigenvalues λ(j) = −iβj and the matrix elements Q
(j)
k are defined by using

(22-24,29) and the definition of the normalization factor Nj as

λ(j) = B + 2J cos θj , Q
(j)
k =

1

sin θj

[
sin kθj + i

εL
4J

sin((k − 1)θj)
]

√√√√ N∑
k=1

(
1

sin θj

[
sin kθj + i

εL
4J

sin((k − 1)θj)
])2

, (47)

where θj satisfies the following equation,{
2 cos θk + i

( εL
4J

+
εR
4J

)}
sinNθk −

(
1 +

εL
4J

εR
4J

)
sin(N − 1)θk = 0. (48)

3.2 Physical observables in steady state

Before going to discussions of dynamical behaviors, in this subsection, we consider briefly
the physical observables in steady state which is realized in the long time limit. Taking
the limit t → ∞ in (45,46), magnetization and spin current in steady state are expressed
as

mz
k =

N∑
l,n=1

Re

Q
(l)
k

{
εLµLQ

(l)
1 Q

(n)∗
1 + εRµRQ

(l)
N Q

(n)∗
N

}
Q

(n)∗
k

2i(λ(l) − λ(n)∗)

 , (49)

jk,k+1 = 2J
N∑

l,n=1

Im

Q
(l)
k

{
εLµLQ

(l)
1 Q

(n)∗
1 + εRµRQ

(l)
N Q

(n)∗
N

}
Q

(n)∗
k+1

2i(λ(l) − λ(n)∗)

 , (50)

11
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where λ(l) and Q
(l)
k are given by (47,48). After some calculations, we arrive at the following

simple formulas for the magnetization and the spin current for steady state (The detailed
calculations are written in Appendix A.).

mz
k = µL − bD

(L)
k = µR + bD

(R)
k , j =

2Jlr(µL − µR)

(1 + lr)(l + r)
, (51)

where l = εL/4J , r = εR/4J , b = j/2J and D
(L)
k and D

(R)
k are defined as

D
(L)
1 = l−1, D

(L)
k = l + l−1, (2 ≤ k ≤ N − 1) , D

(L)
N = l + l−1 + r, (52)

D
(R)
1 = r + r−1 + l, D

(R)
k = r + r−1, (2 ≤ k ≤ N − 1) , D

(R)
N = r−1, (53)

Our formulas for the magnetization and the spin current are valid for all parametric values
of µL/R, εL/R, and agree with the results in [34–36] obtained by MPA for the case of the
antisymmetric magnetization on reservoirs(µL = −µR). For Fig.2, we confirm that our
formula (51-53) for magnetization and spin current for steady state coincide with the ones
obtained by MPA [34–36] (when µL = −µR).

Figure 2: Magnetization (red dots and blue line) and spin current for steady state(The
parameters set N = 30, J = 1.0, B = 0.0, εL/R = 5 and µL = −µR = 1. The red dots and
blue line are the magnetization for steady state obtained by our formula (51-53) and MPA
solution obtained in [34–36], respectively, and the magenta dots and cyan line are the
spin current for steady state obtained by our formula (51-53) and MPA solution obtained
in [34–36], respectively.)

Our formulas (51-53) are the most general solution for the magnetization and the spin
current in steady state for the open XX spin chain with boundary dissipation in the sense
that they are valid for all parametric values of µL/R, εL/R. It is also interesting to consider
whether our results for the general parameters case can also be realized in terms of MPA.

4 The dynamics of physical observables

Analytical studies for open quantum systems with Lindblad dynamics for large systems
have been challenging in terms of the diagonalization of the Lindbladian. The exact
solution for open quantum systems has been studied by using other procedures. For the
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open XX spin chain with boundary dissipation, the solutions in steady state are obtained
by using MPA [34–36], but the dynamics have been much less understood analytically.
Since we obtain the analytical formula for the time-dependence of magnetization (45) and
spin current (46), the study for those behaviors becomes easier.

4.1 Behaviors of time-dependent physical observables

We first evaluate our formulas (45,46) numerically and observe several behaviors for the
time-dependence of the magnetization and the spin current for the open XX chain. We
will examine them analytically in subsequent discussions. In Fig.3, spatio-temporal regions
where the magnetization is large are displayed. We observe a clear and interesting light-
cone structure. In Fig.4, the time-dependence of the magnetization and the spin current
are plotted for several fixed-site k. We observe several specific behaviors depending on
the position of a site in the system. Some of them can be understood from the light-
cone structure in Fig.3 but others need further considerations. At sites near a boundary,
the magnetization and the spin current show a plateau regime as in Fig.4(b) and 4(e).
The plateau regime means the quasi-stabilized regime in which the magnetization almost
does not change over a duration of time before the magnetization reaches its steady state
value and appears as soon as the time evolution starts. This is consistent with the light-
cone structure in Fig.3. On the other hand, at a site near the center of the chain, the
magnetization shows a much slower convergence to the steady state value than that near
a boundary, compare Fig.4(a) with Fig.4(b).

Figure 3: Spatio-temporal dependence of the local magnetization by (45). The parameters
are set to N = 25, εL/R = 5.0, J = 1.0, B = 0.0, µL = −µR = 1.0.εL/R = 5.0. The black
lines are Jt = (k + 1)/4 and Jt = (N − k + 1)/4 which represent the initial and final time
of the plateau regime. The points at the intersection of the green and black lines are the
initial and final time of the plateau regime at the site 5. We show the detail of the analysis
of the plateau regime later in this section.

Also, at a bulk site which is not close to the center of the chain, we observe a plateau
regime which is shorter than that near a boundary. This is not only due to the shape of
the light cone but also because there appear oscillatory behaviors at the beginning of the
plateau. Convergence to the steady state value becomes slow, as the site gets closer to the
center of the chain. In the following, we first analytically discuss the light-cones structure
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in Fig.3 using the analogy to that in closed systems. Second, we consider the relation
between the slow convergence for the magnetization on a bulk site and the Liouvillian
gap. Lastly, we consider the issue of the plateau regime.

Figure 4: Time-dependence of physical observables by(45,46). We observe behaviors of the
time-dependence of the magnetization and spin current when the dissipative strength εL
are changed in (a), (b), (d) and (e), where the red, blue, green and black curves correspond
to εL = 1.0, 2.0, 5.0, 10.0, εR = 1.0 cases, respectively. (a) and (d): The time-dependence
of the magnetization and the spin current at the center site (k = 15). (b) and (e): The
time-dependence of the magnetization and the spin current near the left boundary (k = 1).
(c) and (f): The time-dependence of the magnetization and the spin current at the bulk
site (k = 5). Other parameters in these pictures are set to N = 30, J = 1.0, B = 0.0, µL =
−µR = 1.0. The light color dotted lines are the magnetization and spin current in the
steady state.

4.2 Light-cone struture

For quench dynamics in closed systems which exchange energy with external reservoirs, it
has been observed that frontiers of the magnetization show a light-cone structure due to the
Lieb-Robinson bounds, and the slope of the light-cone is determined from the maximum
velocity [11,61,75,76]. In particular, for the quench dynamics in the closed XX spin chain,
the slope of the light-cone corresponds to the velocity of the free magnon propagation,
and the propagating velocity can be calculated as the group velocity |v| = |dε(k) / dk|
from the dispersion relation ε = ε(k) of the one particle excitation [62, 76], where k is a
momentum, and ε(k) is an eigenenergy.

The slope of the light-cones in Fig.3 for our open XX spin chain may be determined
by using an analogy to the quench dynamics in the closed XX spin chain discussed above.
More precisely we may conjecture that the slope of the light-cones in Fig.3 is given by a
formula,

|v| =

∣∣∣∣∣d(2λ(l))

dθl

∣∣∣∣∣ = |4J sin θl|, (54)

where λl is the eigenvalue of the matrix Ξ(20,22) and θl is determined as (24). The factor
2 in front of λl in (54) may be attributed to the same factor in (35), which could be
absorbed in the definition of Majonara fermion operator by changing the inner product
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which the operator space K is orthonormal with respect to [51, 54]. At θl ≈ π/2, the
velocity approaches the maximum |v|max = 4J , and the eigenmode reaches the furthest
site from a boundary. Thus the slope of the sharp front in Fig.3 is supposed to be a quarter
with the dimensionless time unit Jt in Fig.3, and this is numerically indeed confirmed.

Moreover, by carefully examining our formula (45), one sees that time-dependence of
the magnetization can be interpreted as a result of propagation of effects of boundary
dissipations. At an arbitrary site k, the propagation of the effect of either boundary dissi-
pation repeats reflecting at the other boundary after passing the site k. While repeating
such a propagation of the effect of the boundary dissipations, the magnetization converges
to the one in steady state. This picture can be understood by our formulas (45,46). We
consider the fluctuation from the steady state for the magnetization at the site k as the
following,

∣∣∣mz
k(t) −mz,NESS

k

∣∣∣ =

∣∣∣∣∣∣
N∑

l,n=1

Re

[
e−2it(λ(l)−λ(n)∗)

2i(λ(l) − λ(n)∗)
Q

(l)
k

{
εLµLQ

(l)
1 Q

(n)∗
1 + εRµRQ

(l)
N Q

(n)∗
N

}
Q

(n)∗
k

]∣∣∣∣∣∣.
(55)

For large system size N , the term e−2it(λ(l)−λ(n)∗)Q
(l)
k Q

(l)
1(N)Q

(n)∗
1(N)Q

(n)∗
k can be rewritten by

using (23) and the de Moivre’s theorem into

e−2it(λ(l)−λ(n)∗)Q
(l)
k Q

(l)
1 Q

(n)∗
1 Q

(n)∗
k

∝ (ei(kθl−2λ(l)t) + e−i(kθl+2λ(l)t))(ei(kθn+2λ(n)∗t) + e−i(kθ∗n−2λ(n)∗ t)), (56)

e−2it(λ(l)−λ(n)∗)Q
(l)
k Q

(l)
N Q

(n)∗
N Q

(n)∗
k

∝ (ei((N−k)θl−2λ(l)t) + e−i((N−k)θl+2λ(l)t))(ei((N−k)θn+2λ(n)∗t) + e−i((N−k)θ∗n−2λ(n)∗ t)).

(57)

Therefore, the term e−2it(λ(l)−λ(n)∗)Q
(l)
k Q

(l)
1(N)Q

(n)∗
1(N)Q

(n)∗
k is rewritten as the product of the

parts which are derived from the time-evolution for a state and its dual state, and con-
tributions of the left and right boundaries are interpreted as a superposition of incident
waves and reflected waves which spread with group velocities, respectively. The value of
the group velocity vg is calculated from (56,57) to be

vg =
∆k

∆t
=

∆(2λ(l))

∆θl
≈ d(2λ(l))

dθl
, (58)

which is nothing but (54). Thus, we have demonstrated that the light-cone structure of the
magnetization observed in Fig.3 can be analytically understood as a result of propagations
of effects of the boundary dissipations from our formulas (45,46).

4.3 The relation between a slow convergence and the Liouvillian gap

Next, we consider a relation between the slow convergence of the magnetization at a
bulk site near the center of the system and the Liouvillian gap ∆. Asymptotic behaviors
for long time of time-dependence of physical observables after long time are expected to
be characterized by the eigenmode corresponding to the Liouvillian gap [77]. For some
estimates of the Liouvillian gap, see for instance [51–53,78]. Also, the relaxation time τ is
determined as the inverse of the double of the Liouvillian gap ∆ which is defined in this
system as

∆ = −2 max Im[λ(k)], (59)
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where λ(k) is the eigenvalue of the matrix Ξ which defined as (22,24). In Fig.5(a), we show
semi logarithmic plots of the difference of the magnetization at time t to its asymptotic
value, where we observe that its asymptotic behaviors at an arbitrary site k becomes
an exponential decay. In our numerical results, the inverse of the relaxation times 1/τ
which are obtained by fitting to the data for the time-dependence of the magnetization
from t = 500 to t = 1000 using our formula (45) are 1.717 × 10−3(εL = 2.0, εR = 1.0),
2.035 × 10−3(εL = 5.0, εR = 1.0), and 1.675 × 10−3(εL = 2.0, εR = 1.0), which should be
compared to twice the Liouvillian gaps 2∆ = 1.721 × 10−3(εL = 2.0, εR = 1.0), 2.041 ×
10−3(εL = 10.0, εR = 1.0), and 1.678 × 10−3(εL = 10.0, εR = 1.0) computed using (59).
We see that the relaxation time τ for these exponential decay are almost the same as the
inverse of the double of the Liouvillian gap τ ≈ 1/2∆. The slow convergence which is
observed in Fig.4(a) is related to the eigenmode corresponding to the Liouvillian gap.

Figure 5: Asymptotic behavior of the magnetization after long time: (a) The time-
dependence of the magnetization at the site k = 15. The inserted figure is the time-
dependence of the magnetization at the site 1 and the function fitting to exponential. The
cyan, yellow and gray lines represent the fittings to exponential decays. The values of their
slopes are given in the text. (b) The coefficient for the eigenmode corresponding to the
Liouvillian gap and the special eigenvalues (27). In the inserted figure, the blue and cyan
curves (εL = 2, εR = 1) are the coefficients for the eigenmode corresponding the Liouvillian
gap and the eigenvalue with the largest value of the imaginary part which becomes the
special eigenvalue when εL/R > 4J . The black and gray curves (εL = 10, εR = 1) are the
coefficients for the eigenmode corresponding the Liouvillian gap and the special eigenvalue.
Other parameters in these figures are set to N = 30, J = 1.0, B = 0.0, µL = −µR = 1.0.

The Liouvillian gaps for open quantum systems have not been much discussed analyti-
cally, though they have been calculated numerically or by using an analogy from infinitely
closed systems in a few previous works. For example the Liouvillian gap for open trans-
verse Ising spin chain and XY spin chain has been estimated by the asymptotic result using
analogy from infinitely closed systems [51,52,79]. For our case of open XX spin chain, we
can estimate the magnitude of the Liouvillian gap ∆ by using the exact spectrum of the
Lindbladian for a finite-size system obtained in section 2. The angle θk in the eigenvalue
λ(k) which defined as (22,24) is separated as θk = k

N+1π + ηk where ηk ∼ O(N−2), and we

define the values δk ≡ Re[ηk], and ξk ≡ Im[ηk] (δk, ξk ∼ O(N−2)). Then, we can calculate
the Liouvillian gap exactly and estimate its asymptotic behavior to be

∆ = −2 max

[
sin

(
π

N + 1
+ δk

)
sinh ξk

]
= −2

(
N−1 + N−2 + · · ·

) (
N−2 + N−3 + · · ·

)
∼ N−3. (60)
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Since the slope of the lines in Fig.5(a) is estimated as the double of the Liouvillian gap
2∆ by exponential fitting and the Liouvillian gap is estimated as ∆ ∼ N−3, the relaxation
time τ for the magnetization at a site near the center of the chain can be estimated to
behave as τ ∼ N3, and the slow convergence in Fig.4(a) is characterized by the eigenmode
corresponding to the Liouvillian gap ∆.

On the other hand, the magnetization on a site near a boundary seems to converge
faster than the one at a site near the center of the chain in Fig.4(b). Whether the
slow convergence occurs or not is determined by the trade-off between the coefficients

Q
(l)
k

{
εLµLQ

(l)
1 Q

(n)∗
1 + εRµRQ

(l)
N Q

(n)∗
N

}
Q

(n)∗
k in (45) for the eigenmode corresponding to

the Liouvillian gap ∆ and the one corresponding to the largest value of the imaginary
part which becomes the special eigenvalue when εL/R > 4J . In Fig.5(b), we compare
the coefficient for the eigenmode corresponding to the Liouvillian gap with the one corre-
sponding to the largest value of the imaginary part which becomes the special eigenvalue
when εL/R > 4J . We observe that the former is smaller than the latter near a boundary
and the former is larger than the latter near the center. In particular, when εL ≫ 4J , the
former on a site near a boundary is as small as we can neglect compared with the latter.
Similarly the latter on a bulk site is as small as we can neglect compared with the former.
This explains why we observe the rapid convergence on a site near a boundary and the
slow convergence on a site near the center of the chain.

4.4 The emergence of the plateau regime near a boundary

Lastly, for understanding behaviors of the plateau regime, it is useful to consider the time
derivative of the magnetization. Since the magnetization in the plateau regime does not
change over a duration of time t, the time derivative of the magnetization becomes zero
during the plateau regime. Thus, we can expect to estimate the plateau time τp defined
as a duration of time that magnetization does not change using the analysis of the time
derivative of the magnetization. A time derivative of magnetization for the site k can be
calculated from (45) as

µk(t) :=
∂mk

∂t
= εLµL

∣∣∣∣∣
N∑
l=1

e−2itλ(l)
Q

(l)
1 Q

(l)
k

∣∣∣∣∣
2

+ εRµR

∣∣∣∣∣
N∑
l=1

e−2itλ(l)
Q

(l)
N Q

(l)
k

∣∣∣∣∣
2

. (61)

The first and the second terms in the time derivative of the magnetization (61) will be
called the left and right dissipation contributions, respectively. After some calculations
(see Appendix.B for details), we obtain the time derivative of magnetization µk(t) for large
system N ≫ 1 as

µk(t) ≈ εLµL (fno(1, k; t) − fsp(1, k; t))2 + εRµR (fno(N, k; t) − fsp(N, k; t))2 , (62)

where the functions fno(n,m; t) and fsp(n,m; t) are the parts of the normal eigenstates
and the special eigenstates corresponding to the normal and special eigenvalues for the
matrix Ξ (20), respectively. These functions are calculated as

fno(n,m; t) ≡ 8J2

εL

∫ ∞

t
ds e

−2J
(

εL
4J

− 4J
εL

)
(t−s)

Yn,m(4Js)

−8J2

εL

∫ ∞

−∞
ds e

−2J
(

εL
4J

− 4J
εL

)
(t−s)

Yn,m(4Js)I
( εL

4J

)
+
(
(−1)n+m − (−1)nδn,m

)
δ εL

4J
,1, (63)
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fsp(n,m; t) ≡ e
−2J

(
εL
4J

− 4J
εL

)
t
(

1 +
( εL

4J

)2)(
− εL

4J

)−n−m
I
( εL

4J

)
+(−1)N+1e

−2J
(

εR
4J

− 4J
εR

)
t
(

1 +
( εR

4J

)2)( εR
4J

)−2N−2+n+m
I
( εR

4J

)
,(64)

where the function I(x) takes the value 1 if x > 1 and 0 if x ≤ 1, and we define the
function Yn,m(t) as

Yn,m(t) = (−1)mJn−m(t) − Jn+m(t)

+
εL
4J

(2Jn+m−1(t) + (−1)mJn−m+1(t) − (−1)mJn−m−1(t))

−
ε2L

16J2
(Jn+m−2(t) + (−1)mJn−m(t)). (65)

Now, we carefully examine the functions (63-65). The function Yn,m(t) (65) is the sum of
the Bessel functions of the first kind, and its behavior is important for discussing behaviors
of the part of the normal eigenstates. The Bessel function Jα(x) has the following series
expansion,

Jα(x) =
∞∑
n=0

(−1)n

n!Γ(n + α + 1)

(x
2

)2m+α
. (66)

Thus, the part of the normal eigenstates fno is the sum of the products of monomials and

the exponential function of the form (2Jt)2m+αe
−2Jt

(
εL
4J

− 4J
εL

)
. On the other hand, since

the part of the special eigenstates fsp and the cross terms between the part of the special
and normal eigenstates fspfno behaves exponentially, these decay more rapidly than the
part of the normal eigenstates. This implies that the contribution of the part of the special
eigenstates is much smaller than the one of the part of the normal eigenstates except near
the initial time, and the part of the special eigenstates fsp (64) and the cross terms between
the part of the special and normal eigenstates fspfno do not contribute to the formalization
of the plateau regime.

Figure 6: Time-dependence of the time derivative of magnetization at a boundary and
bulk: (a) dependence for the dissipative strength at the left boundary for the case of
εL = 1.0, 2.0, 5.0, 10.0, εR = 1.0. (Other parameters set N = 30, J = 1.0, B = 0.0, µL =
−µR = 1.0.), (b) dependence for the position of site k for the case of k = 1, 2, 5, 10. (Other
parameters set N = 30, J = 1.0, B = 0.0, εL/R = 1.0, µL = −µR = 1.0.), (c) the plateau
regime on the left boundary(k = 1) (Other parameters set N = 30, J = 1.0, B = 0.0, µL =
−µR = 1.0.). The two vertical dot lines are the initial and final time for the plateau regime
which are obtained as ti = (k + 1)/4J , tf = (N − k − 1)/4J from the calculation for the
time-derivative of the magnetization(62-65).

Since the left and right dissipation contributions in the time derivative of magnetization
µk(t) are separated as (62), we can consider these contributions individually. Moreover,
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each term includes the part of the normal eigenstates fno and the part of the special
eigenstates fsp. We will consider each part individually. Considering above, since the part
of the special eigenstates fsp in (64) and the cross terms between the part of the special
and normal eigenstates fspfno do not contribute to the formalization of the plateau regime,
we only focus on the part of the normal eigenstates fno.

The functions fno(1, k; t) and fno(N, k; t) in (63) in the time derivative of magnetization
µk(t) in (62) is constructed by the integral of the product of the exponential function

e
−2J

(
εL
4J

− 4J
εL

)
(t−s)

and the function Y1(N),k(4Js). Moreover, Since the function Y1(N),k(4Js)
is the sum of the Bessel function of the first kind defined as (66), we can understand
the contribution to the behavior of the time derivative of magnetization µk(t) (62) by
using property of the Bessel function of the first kind such as the asymptotic behavior
of the Bessel function of the first kind of the α-th order Jα(x) is Jα(x) ≈ 1

Γ(α+1)x
k

around x ∼ 0 [80], and the fact that the Bessel function Jα(x) is close to zero when
x ≲ k. By this later property, the behavior of the function Y1,k(4Js) (65) changes when
4Js = max(0, k− 2), k + 1. When 0 ≤ 4Jt < max(0, k− 2), the function Y1,k(4Js) is close
to zero. When max(0, k− 2) ≤ 4Jt < k + 1, the only terms including Jk−1, Jk−2, Jk in the
function Y1,k(4Js) are non-zero. When k+1 ≤ 4Jt, the all terms in the function Y1,k(4Js)
become non-zero, but the part of the normal eigenstates fno(1, k; t) (63) becomes almost
zero. Since the magnitude of integrated function in the part of the normal eigenstates

fno(n,m; t) decays exponentially with the relaxation time
(

2J
(

εL
4J − 4J

εL

))−1
, this is close

to zero, and the part of the normal eigenstates fno(n,m; t) is also close to zero. Similarly,
the behavior of the function YN,k(4Js) included in the left dissipation contribution for the
time derivative of magnetization µk(t) changes when 4Js = N − k − 1, N + k.

Figure 7: The system-size dependence for the time-dependence of the magnetization (a)
and spin current (b) on the left boundary (k = 1). Other parameters in these pictures
are set to J = 1.0, B = 0.0, εL = εR = 1.0, µL = −µR = 1.0. The gray dotted line is the
magnetization and spin current in the steady state.

From the above analysis and Fig.6, we can examine that the plateau time τp is in-
dependent of boundary dissipative parameters εL/R, µL/R, and depends on system-size N
and the position of site k observing in Fig.4 and 7, and obtain the fact that the time
derivative of the magnetization µk(t) is mostly always equal to zero between t = k+1

4J and

t = N−k−1
4J . When a time derivative of magnetization is equal to zero, the magnetization

does not change over a duration of time at time t. Thus, we can regard the plateau regime
as the duration of time between t = k+1

4J and t = N−k−1
4J , and obtain the plateau time

τp =
∣∣N−2k−2

4J

∣∣. Since the plateau time decreases to zero as the site becomes closer to the
center of the system, the plateau regime is clearly observed for sites near a boundary.
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This change in the plateau regime can be understood by the analysis of the light-
cone structure. The light-cones show the frontier of the propagation of the effect of the
boundary dissipations. After the effect of a boundary dissipation passes the site k, the
state at the site k will be stabilized for a while. However, when the effect of dissipation at
the other boundary reaches the site k, stability at the site k is lost. For bulk sites near the
center, the times at which the effects of the two boundaries are close, so that the plateau
time becomes short. The initial time and final time of the plateau regime at a fixed site
k are represented as the boundaries of the light-cones in Fig.3 at the site k, and the red
or blue part in Fig. 3 shows the plateau regime. A light-cone can spread indefinitely in
quench dynamics [76], but not in the open XX spin chain due to the presence of boundaries.
Thus, the plateau regime is a phenomenon which appears due to a combination of light-
cone structures, similar to the ones in a closed system, and the reflections of them at the
boundaries. As such the plateau regime can be kept only in a finite duration of time.
Since there is not such a quasi-stabilized regime in a dynamics in quench dynamics for the
closed XX spin chain, we may say that the plateau regime is one of the specific phenomena
for the open quantum XX spin chain.

Also, the height of the plateau regime can be calculated by using the time-derivative
of the magnetization µk(t) (62). Since the height of the plateau regime depends on either
the left or right contribution to the time derivative of the magnetization µk(t) (62), we
only consider the left half of the system. In this case, the height of the plateau regime at
the site k Hp(J, εL, µL; k) is estimated as

Hp(J, εL, µL; k) ≈ εLµL

∫ k+1
4J

0
dt (fno(1, k; t) − fsp(1, k; t))2 , (67)

where we define the functions fno(1, k; t), fsp(1, k; t) in (63,64). This estimation is almost
exact, but causes a little error by the finite-size effect. The plateau regime may be in-
terpreted as the quasi-steady state where the magnetization seems not to change over a
duration of time t formed by the left or right dissipation, but a physical meaning of its
height is not very clear for the moment.

Thus, our formulas for the time-dependence of the magnetization and the spin current
(45,46) can examine an arbitrary behavior for all time. When one applies our approach
to other physical observables, for example energy, correlation function and susceptibility,
one can understand behaviors of the physical observables analytically.

5 Conclusion

We have applied the general procedure of the third quantization to the open XX spin chain.
We find that the structure matrix of the open XX spin chain is diagonalizable analytically.
Moreover, we find that although the structure matrix is ordinarily decomposed into 2N ×
2N matrix, the structure matrix for the open XX spin chain is decomposed into N×N non-
Hermitian matrix, and the eigenvalues and eigenvectors of this non-Hermitian matrix are
calculated analytically. The eigenvalue distribution of this non-Hermitian matrix changes
dramatically with the increment of boundary dissipative strength. If a dissipative strength
is larger than four times the coupling constant between sites on the system, we could
find the emergence of a special eigenvalue which is a larger imaginary part than the
others. Since the open XX spin chain is diagonalizable, we can exactly calculate time-
evolution from a general initial condition including the thermal equilibrium state. We
obtain the linear differential equation for the correlation matrix which is constructed from
the expectation value of the product of two Majorana operators. The several components
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of the correlation matrix correspond to magnetization on the site k and spin current
between the site k and k + 1.

The exact solutions of time-dependent magnetization on arbitrary site k and spin
current between arbitrary sites k and k + 1 are the main results in this study. These
formulas also include the solutions for NESS which is defined as t → ∞. Our analytical
formulas for magnetization and spin current in steady state generalize the ones obtained
by the MPA solutions for the special case of antisymmetric magnetization on reservoirs
[34–36]. Evaluating the exact solutions of time-dependent magnetization on arbitrary site
k and spin current between arbitrary sites k and k+1 numerically, we observe some specific
behaviors. Using our formulas, we can examine these analytically. The spatio-temporal
regions where the magnetization is large are displayed. We observe a clear and interesting
light-cone structure. We conjecture that the slope of the light-cones for our open XX
spin chain may be determined by using an analogy to the quench dynamics in the closed
XX spin chain. At a site near the center of the chain, the magnetization shows a much
slower convergence to the steady state value than that near a boundary. The decay rate of
this slow convergence is estimated by the Liouvillian gap. Whether the slow convergence
occurs or not is determined by the trade-off between the magnitude of the contribution
of the eigenmode corresponding to the Liouvillian gap and the one corresponding to the
largest value of the imaginary part which becomes the special eigenvalue when εL/R > 4J .
The time-dependent magnetization at the site near a boundary and spin current between
the sites near a boundary exhibit specific behaviors before the system reaches steady state.
They do not approach the steady state values exponentially or by power-law but approach
the steady state with oscillation after finishing the plateau regime. The plateau regime
means that magnetization does not change over a duration of time before the magnetization
reaches its steady state value. The plateau time is defined as the duration of time that
magnetization does not change. When we consider the time-derivative of magnetization,
this derivative takes the form of the product of Bessel function and exponential function.
For this analysis, we find there is the duration of time over which this derivative is equal
to zero. We verify the existence of the plateau regime and the plateau time depends on
the system size N and site number k. This behavior always occurred despite the existence
of special eigenvalues, and is independent of the boundary dissipation strength.

It is important that one can obtain the exact formula for the time-dependence of phys-
ical observables analytically. Applying this fact, higher-order physical observables will
be calculated analytically. Moreover, since the Lindbladian map takes Jordan canonical
form in an arbitrary quadratic fermion chain, XY spin chain, XX spin chain with homo-
geneous bulk dissipation and long-range interaction systems can be analyzed. Though
we can discuss the exact behaviors of the physical observables for an arbitrary time for
the open XX spin chain by our analysis, we did not find a phase transition. However,
the phase transition has been studied in the context of the analysis of the non-Hermitian
systems which is applied to the open quantum systems. In future studies, we hope to find
new non-Hermitian phenomena for our system and others beyond the post-selection which
usually approximates in the context of non-Hermitian physics. Our studies in this paper
are fully based on exact calculations for microscopic models. It would be also interesting
to study similar dynamical behaviors of open quantum systems by using macroscopic or
hydrodyamical methods. Some studies in such a direction have recently been performed,
see for instance [81–83].
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A Physical observables for steady state

In the main part of the paper, we find formulas for magnetization and spin current for
steady state as follows,

mz
k =

N∑
l,n=1

Re

[
1

2i(λ(l) − λ(n)∗)
Q

(l)
k

{
εLµLQ

(l)
1 Q

(n)∗
1 + εRµRQ

(l)
N Q

(n)∗
N

}
Q

(n)∗
k

]
, (68)

jk,k+1 = 2J

N∑
l,n=1

Im

[
1

2i(λ(l) − λ(n)∗)
Q

(l)
k

{
εLµLQ

(l)
1 Q

(n)∗
1 + εRµRQ

(l)
N Q

(n)∗
N

}
Q

(n)∗
k+1

]
,

(69)

where eigenvectorβj = iλ(j) and the component of eigenvector Q
(j)
k is obtained (22,23),

and the parameter θj satisfies the conditional equation (24). Then, separating left and
right boundary contributions,

mz
k,L = εLµL

N∑
l,n=1

Re

[
1

2i(λ(l) − λ(n)∗)
Q

(l)
k Q

(l)
1 Q

(n)∗
1 Q

(n)∗
k

]
, (70)

mz
k,R = εRµR

N∑
l,n=1

Re

[
1

2i(λ(l) − λ(n)∗)
Q

(l)
k Q

(l)
N Q

(n)∗
N Q

(n)∗
k

]
, (71)

jk,k+1,L = 2JεLµL

N∑
l,n=1

Im

[
1

2i(λ(l) − λ(n)∗)
Q

(l)
k Q

(l)
1 Q

(n)∗
1 Q

(n)∗
k+1

]
, (72)

jk,k+1,R = 2JεRµR

N∑
l,n=1

Im

[
1

2i(λ(l) − λ(n)∗)
Q

(l)
k Q

(l)
N Q

(n)∗
N Q

(n)∗
k+1

]
. (73)

Defining [Rl]m,n ≡ Q
(l)
m Q

(l)
n , and using eigenvalues and eigenvectors (22,23), magneti-

zation on site k is obtained as

mz
k,L =


lµL

l + r
Re
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q
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(
λ̃∗
q

2

)
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(
λ̃∗
q

2

)
UN−1

(
λ̃∗
q

2

) [
R∗

q

]
1,k

 , (k = 1 ∼ N − 1),

lµL

(l + r)(1 + lr)
, (k = N),

(74)

mz
k,R =



rµR

(l + r)(1 + lr)
, (k = 1),
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q

2

) [
R∗

q

]
N,k

 , (k = 2 ∼ N),
(75)
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and spin current between sites k and k + 1 is obtained as

jzk,k+1,L =
2JlµL

l + r
Im

∑
q

UN−k

(
λ̃∗
q

2

)
+ irUN−k−1

(
λ̃∗
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)
UN−1

(
λ̃∗
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) [
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q

]
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 , (76)

jzk,k+1,R =
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(77)

where Uk(x) is Chebyshev polynomial of the second kind for order k. Calculating these
formulas, we derive the following Lemma.

Lemma 2. For the Hermitian conjugate of normalized matrix Ξ̃ ≡ (Ξ − B1l)/J , the
component of (k −m)-th power of the normalized matrix Ξ̃ is obtained as

[(
Ξ̃†
)k−m

]
1,k

=


il, (m = 0),

1, (m = 1),

0, (m = 2 ∼ k).

(78)

This lemma can be proved easily. Since the normalized matrix Ξ̃† has non-zero term at
only secondary-diagonal part, the (1, k)-component of (k−m)-th power of the normalized
matrix Ξ̃ is [(

Ξ̃†
)k−m

]
1,k

= Ξ̃†
1,m+1Ξ̃

†
m+1,m+2Ξ̃

†
m+2,m+3 · · · Ξ̃

†
k−1,k. (79)

For all m(0 ≤ m ≤ k), the component Ξ̃†
j,j+1 is equal to 1, so the component

[(
Ξ̃†
)k−m

]
1,k

is equal to Ξ̃†
1,m+1. Therefore, the component

[(
Ξ̃†
)k−m

]
1,k

is classified by Ξ̃†
1,m+1.

By this lemma, magnetization and spin current for steady state is simplified. By
using the recurrence relation for Chebyshev polynomial of the second kind Un+1(x) =
2xUn(x) − Un−1(x), the numerators in (74-77) is calculated as
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{
ir
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}
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Substituting (80,81) to (74-77),
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mz
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(85)

Applying lemma to the above formulas,

mz
k = µL − bD

(L)
k = µR + bD

(R)
k , j =

2Jlr(µL − µR)

(1 + lr)(l + r)
, (86)

where l = εL/4J ,r = εR/4J and j = 2b. The sequences DL/R are defined as

D
(L)
k =

{
l−1, l + l−1, · · · , l + l−1, l + l−1 + r

}
, (87)

D
(R)
k =

{
r + r−1 + l, r + r−1, · · · , r + r−1, r−1

}
. (88)

B Calculation of time derivative of magnetization

We start the calculation of the time derivative of magnetization µk(t) from (61). The
summations in (61) include the terms for the special eigenstates and the term for the
normal eigenstates, and is separated as

N∑
l=1

e−2tβlQ(l)
n Q(l)

m =
∑
l∈ℓ′

e−2tβlQ(l)
n Q(l)

m +
∑

l∈{sp}

e−2tβlQ(l)
n Q(l)

m , (89)

where ℓ′ ∈ {1, 2, · · · , N} \ {sp}. The first term in (89) is the part of the normal eigenstates,
and the second one is the part of the special eigenstates. At first, we calculate the part of
the normal eigenstates. For large N , normalization factor Nl for the normal eigenstate can
be calculated by using the component of the l-th eigenvector corresponding to a normal
eigenvalue (23) as

N 2
l ≈ N

2 sin2 θl

(
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iεL
2J

cos θl +
ε2L

16J2

)
, (90)

and eigenvalues of matrix X are βl = iλ(l) = 2iJ cos l
N+1π + O(N−2). Then, the summa-
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(91)
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The exponential in integrated function for above equation (91) is transformed as
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(92)

Using the integral form of the Bessel function of nth order

Jn(z) =
in

π

∫ π

0
e−iz cos θ cosnθ dθ , (93)

we can calculate (91) when εL < 4J

∑
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n Q(l)
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εL
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t
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Yn,m(4Js), (94)

where we define the function Yn,m(t) as

Yn,m(t) = (−1)mJn−m(t) − Jn+m(t)

+
εL
4J

(2Jn+m−1(t) + (−1)mJn−m+1(t) − (−1)mJn−m−1(t))

−
ε2L

16J2
(Jn+m−2(t) + (−1)mJn−m(t)). (95)

We can calculate the εL > 4J case by a similar procedure.
We can also calculate the εL = 4J case using a slightly different procedure. When

εL = 4J , (91) is calculated as

∑
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The expornential in the integrated function for above equation (96) is transformed as
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1
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)
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Using the integral form of the Bessel function of nth order, we can calculate (96)
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Using the lemma for integrations using the Chebyshev polynomial [84] as the follows,∫ 1

−1

Tn(x)

(x− y)
√

1 − x2
dx = πUn−1(y),

∫ 1

−1

√
1 − x2Un−1(x)
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dx = −πTn(y), (99)

and the lemma for integration using the Bessel function [80] as the follows,∫ ∞

0
Jν(t) dt = 1, (Re{ν} > −1), (100)

25



SciPost Physics Submission

we obtain the following form when εL = 4J ,∑
l∈ℓ′

e−2tβlQ(l)
n Q(l)

m ≈ i−n−m

(
2J
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t
Yn,m(4Js) ds + (−1)n+m − (−1)nδn,m

)
. (101)

Thus, the formula (101) when εL = 4J takes the formula of adding the static term for
time t to the formula (94) when εL < 4J .

Next, we calculate the part of the special eigenstates. In this paper, we obtain the
formula of special eigenvalue for infinite and finite system size (22,27). For large N , we
define θsp = xsp + iysp. Since cos θsp is a pure imaginary, i.e., cos θsp ∈ iR, we determine

xsp = ±π
2 , and we consider xsp = π

2 . Then, we can calculate ysp = log
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)
. Then, we

can calculate sin kθsp = 1
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(
− iεL/R

4J
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, and normalized factor Nsp is
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(102)

The leading term for the part of the special eigenstates is calculated as

e−2tλspQ(sp)
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(103)

Then, we can obtain the formulas (62).
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J. I. Cirac, G. Rempe and S. Dürr, Strong dissipation inhibits losses and in-
duces correlations in cold molecular gases, Science 320(5881), 1329 (2008),
doi:10.1126/science.1155309.

[11] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T. Fukuhara, C. Gross,
I. Bloch, C. Kollath and S. Kuhr, Light-cone-like spreading of correlations in a
quantum many-body system, Nature 481(7382), 484 (2012), doi:10.1038/nature10748.

[12] T. Tomita, S. Nakajima, I. Danshita, Y. Takasu and Y. Takahashi, Observation of
the mott insulator to superfluid crossover of a driven-dissipative bose-hubbard system,
Sci. adv. 3(12), e1701513 (2017), doi:10.1126/sciadv.1701513.

[13] P. Nation, J. Johansson, M. Blencowe and A. Rimberg, Iterative solutions to the
steady-state density matrix for optomechanical systems, Phys. Rev. E 91(1), 013307
(2015), doi:10.1103/PhysRevE.91.013307.

[14] P. Nation, Steady-state solution methods for open quantum optical systems,
arXiv:1504.06768 (2015).

[15] L. Xiao, X. Zhan, Z. Bian, K. Wang, X. Zhang, X. Wang, J. Li, K. Mochizuki, D. Kim,
N. Kawakami et al., Observation of topological edge states in parity–time-symmetric
quantum walks, Nature Physics 13(11), 1117 (2017), doi:10.1038/nphys4204.

[16] M. van Caspel, S. E. T. Arze and I. P. Castillo, Dynamical signatures of topo-
logical order in the driven-dissipative kitaev chain, SciPost Phys. 6, 26 (2019),
doi:10.21468/SciPostPhys.6.2.026.

[17] N. Shibata and H. Katsura, Dissipative spin chain as a non-hermitian kitaev ladder,
Phys. Rev. B 99(17), 174303 (2019), doi:10.1103/PhysRevB.99.174303.

[18] N. Shibata and H. Katsura, Dissipative quantum ising chain as a
non-hermitian ashkin-teller model, Phys. Rev. B 99(22), 224432 (2019),
doi:10.1103/PhysRevB.99.224432.

[19] J. Huber, P. Kirton, S. Rotter and P. Rabl, Emergence of pt-symmetry breaking in
open quantum systems, SciPost Phys. 9, 52 (2020), doi:10.21468/SciPostPhys.9.4.052.

[20] J. Huber, P. Kirton and P. Rabl, Nonequilibrium magnetic phases in
spin lattices with gain and loss, Phys. Rev. A 102(1), 012219 (2020),
doi:10.1103/PhysRevA.102.012219.

[21] N. Shibata and H. Katsura, Quantum ising chain with boundary dephasing, Progr.
Theor. Exp. Phys. 2020(12), 12A108 (2020), doi:10.1093/ptep/ptaa131.

[22] J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2(3), 407
(1961), doi:10.1063/1.1703727.

27

http://dx.doi.org/10.1007/s10955-014-0933-y
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1126/science.1155309
http://dx.doi.org/10.1038/nature10748
http://dx.doi.org/10.1126/sciadv.1701513
http://dx.doi.org/10.1103/PhysRevE.91.013307
https://arxiv.org/abs/1504.06768
http://dx.doi.org/10.1038/nphys4204
https://scipost.org/10.21468/SciPostPhys.6.2.026
http://dx.doi.org/10.21468/SciPostPhys.6.2.026
http://dx.doi.org/10.1103/PhysRevB.99.174303
http://dx.doi.org/10.1103/PhysRevB.99.224432
http://dx.doi.org/10.21468/SciPostPhys.9.4.052
http://dx.doi.org/10.1103/PhysRevA.102.012219
http://dx.doi.org/10.1093/ptep/ptaa131
http://dx.doi.org/10.1063/1.1703727


SciPost Physics Submission

[23] L. V. Keldysh, Diagram technique for nonequilibrium processes, Sov. Phys. JETP
20(4), 1018 (1965).

[24] L. P. Kadanoff and G. A. Baym, Quantum Statistical Mechanics, Benjamin, New
York, ISBN 020141046X (1962).

[25] M. Cini, Time-dependent approach to electron transport through junctions:
General theory and simple applications, Phys. Rev. B 22(12), 5887 (1980),
doi:10.1103/PhysRevB.22.5887.

[26] G. Stefanucci and C.-O. Almbladh, Time-dependent partition-free approach
in resonant tunneling systems, Phys. Rev. B 69(19), 195318 (2004),
doi:10.1103/PhysRevB.69.195318.
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