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Abstract

We obtain exact formulas for the time-dependence of a few physical observables
for the open XX spin chain with Lindbladian dynamics. Our analysis is based
on the fact that the Lindblad equation for an arbitrary open quadratic system
of N fermions is explicitly solved in terms of diagonalization of a 4N×4N matrix
called structure matrix by following the scheme of the third quantization. We
mainly focus on the time-dependence of magnetization and spin current. As a
short-time behavior at a given site, we observe the plateau regime except near
the center of the chain. Basic features of this are explained by the light-cone
structure created by propagations of boundary effects from the initial time,
but we can explain their more detailed properties analytically using our exact
formulas. On the other hand, after the plateau regime, the magnetization
and spin current exhibit a slow decay to the steady state values described
by the Liouvillian gap. We analytically establish its O(N−3) scaling and also
determine its coefficient.
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1 Introduction

Open non-equilibrium systems, connected with external reservoirs, have been one of the
most important subjects in non-equilibrium statistical mechanics [1,2]. They are known to
show various interesting behaviors and phenomena, which are not seen in systems in ther-
mal equilibrium. A classical example is the Bernard convection, in which a characteristic
spatio-temporal pattern appears when the temperature difference between the top and
bottom sides of an intermediate liquid becomes large enough [3–5]. To understand basic
properties of non-equilibrium systems, studying simple model systems is useful. In par-
ticular, there have been extensive studies on classical one-dimensional models which show
nontrivial phenomena like boundary induced phase transition and anomalous transport
and at the same time are analytically tractable [6–8].

Recently, due to the development of experimental techniques, non-equilibrium states
are realized also in a variety of quantum systems, such as cold atoms [9–12], optics [13,
14], and quantum walks [15]. Correspondingly studying non-equilibrium properties of
open quantum systems from a theoretical point of view is also becoming more and more
important. In addition, for the last few years, connections to studies of non-hermitian
systems have been suggested and attracted attention [16–21], since open quantum systems
can be interpreted as non-hermitian systems.

There are a few theoretical frameworks to study the dynamics of open quantum sys-
tems. A conventional one is the use of non-equilibrium Green’s function [22,23], which is
an extension of the standard Green’s function [23, 24] and has been useful to analytically
calculate time dependent correlation functions for systems in equilibrium. Recently, the
method has been generalized to study systems in which the state evolves from a given
initial condition to another [25, 26]. It has been already applied to a few concrete models
such as the one-dimensional XY spin chain [27–29]. In this approach, the time evolution is
still given by a Hamiltonian, but calculations tend to be rather cumbersome. It has turned
out that a description by a quantum master equation [30–32] is equally effective and useful
to study various properties of non-equilibrium systems. There are several versions of the
quantum master equations, such as the Lindblad equation and the Redfield equation. In
this paper we employ the description by the Lindblad equation. We remark that rela-
tionships between the quantum master equations and the method of the non-equilibrium
Green’s function have been recently examined [33].

The Lindblad equation has been mainly solved numerically, by which one can treat only
relatively small systems. But by taking simple models which are analytically tractable, we
may study non-equilibrium properties of large systems. Indeed there have been already
some previous works for several one-dimensional systems described by the Lindblad equa-
tion. In particular, a few exact solutions for the nonequilibrium steady states(NESSs)
have been obtained by using Matrix Product Ansatz (MPA) [34–42]. As for dynamics,
there has been some recent progress in numerical calculations such as the Matrix Product
Operator method [43–45], the density matrix renormalization group method [46, 47]. It
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is equally important to develop analytical techniques to study their dynamics [48–50]. In
particular, analytical solutions for some simple model systems would provide invaluable
information for understanding general open quantum systems.

In this paper, we will give an exact solution for the time-dependence of the magne-
tization and the spin current for the XX spin chain with boundary dissipation described
by the Lindblad equation. We will use the fact that an arbitrary open quadratic system
whose dynamics is described by the Lindblad equation admits an application of the third
quantization [51]. Although this method has been already known for about ten years and
has been applied to several fermionic and bosonic systems [51–57], as far as we know,
it has not been fully exploited for obtaining exact formulas for time-dependent physical
quantities. In this paper we will show how we can utilize the third quantization to obtain
exact time-dependence of physical quantities and provide explicit formulas for a few of
them.

In previous works [51,53–57], solving a Lindblad equation describing the dynamics for
open quadratic bosonic/fermionic systems has been shown to reduce to a diagonalization of
a 2N×2N matrix. In this paper, we show that, in the case of the open XX spin chain, the
problem can be further reduced to a diagonalization of an N×N non-Hermitian matrix and
that this non-Hermitian matrix can be diagonalizable. We remark on the fact that solving
a Lindblad equation describing the dynamics has been shown to reduce a diagonalization
of the N ×N non-Hermitian matrix in a few specific cases, such as for the open XX spin
chain whose specific dissipative strengths satisfy the condition 4J2 = εLεR [56], and the
open XY spin chain without magnetic field [57]. Using our procedure, the non-Hermitian
matrix for the open XX spin chain can be diagonalized for arbitrary dissipative strengths
and magnetic field. Then we will show that the time-dependence of physical quantities
can be studied by solving the continuous-time differential Lyapunov equation [58–60] and
that this equation can indeed be solvable. By combining these we can arrive at explicit
formulas for the time-dependence for an open quantum system described by the Lindblad
equation for the first time. We also remark that a similar reduction of matrix size has
been known for the XY spin chain Hamiltonian in the context of the Kitaev model [61,62].

As an example of applications of our formulas, we consider the time-dependence of
the magnetization and the spin current from the thermal equilibrium state in the high
temperature limit β → 0. First, by taking the limit t → ∞, we obtain the exact solutions
for the NESS. We will see that our formulas give a generalization of the formulas in a
previous study using MPA [35], in which only the case of opposite magnetizations at the
boundaries was treated. By the same formulas, we will also analyze behaviors for time-
dependent physical observables. We first observe that the spatio-temporal dependence of
the magnetization for the open XX chain using our formulas shows a light-cone structure.
Similar light-cone structures have appeared in quench dynamics or a dynamics starting
from the step initial condition [11,63,64]. Our results would be useful to discuss similarities
and differences with the dynamics of the closed XX spin chain and the validity of some
approximations in the derivation of the QMEs [32]. By carefully examining the behaviors
of physical quantities, we can study various other properties as well. For example we can
analytically show the emergence of the plateau regime and discuss their behaviors in detail
by performing an asymptotic analysis of integral representations of physical quantities.
Also, after the plateau regime, we observe a slow relaxation for the magnetization and
the spin current at a bulk site, corresponding to the Liouvillian gap. By examining our
formulas, we will not only establish the O(1/N3) scaling but also determine its coefficient.

The paper is organized as follows. In the following section 2, we shortly explain the
general theorems of the third quantization to review the previous studies [51, 55], and we
calculate the exact spectrum of the Lindbladian. In sections 3 and 4, we explain the main
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results of this paper. In section 3, we explain: (i) we can calculate the analytical steady
state solutions of the magnetization and spin current for open XX spin chain with left-
right asymmetric dissipation strength and bath magnetization, and (ii) the exact solutions
of the time-dependence of magnetization and spin current are obtained. In section 4, we
focus on several specific behaviors for the dynamics of the open XX spin chain with
boundary dissipations. In particular, we analytically discuss the light-cone structure, the
plateau regime where the magnetization does not change over a duration of time, and the
Liouvillian gap. The former two issues appear in a short time window, and the latter
one is related to a long time window. Each time window is determined by the specific
time for this system, and we introduce these in section 4. In section 5, we summarize this
paper, and in appendixes we give more detailed calculations for the physical observables
for steady state and the time-derivative of the magnetization on an arbitrary site.

2 Spectrum of the open XX spin chain with boundary dis-
sipation

2.1 Lindbladian in Liouvillian-Fock space

We consider the following Hamiltonian of XX spin chain,

H = J

N−1∑
k=1

(σx
kσ

x
k+1 + σy

kσ
y
k+1) −B

N∑
k=1

σz
k, (1)

where σx,y,z
k are the Pauli operators, J is the coupling constant between a site and nearest-

neighbor sites, and B is denoted as the magnetic field. The Lindblad equation [31] is
denoted as

d

dt
ρ(t) ≡ Lρ(t) = −i[H, ρ(t)] +

∑
µ

Lµρ(t)L†
µ − 1

2

{
L†
µLµ, ρ(t)

}
, (2)

where ρ(t) is the density operator and Lindblad dissipative operators are defined as

L1 =

√
εL

1 + µL

2
σ+
1 , L3 =

√
εR

1 + µR

2
σ+
N , (3)

L2 =

√
εL

1 − µL

2
σ−
1 , L4 =

√
εR

1 − µR

2
σ−
N , (4)

where σ± = (σx ± iσy)/2, εL/R are dissipative strength between the system and each
reservoir, and µL/R are the magnetization on each reservoir. We can explain the inter-
pretation of these parameters and the forms of the operators (3,4) when we derive the
Lindblad equation from the dynamics of the total system including the reservoirs [65,66].
The Lindblad operators L1, L2 (3,4) play the roles of entry and exclusion of the up-spin
between the left boundary and the left end, and L3, L4 (3,4) play the roles of entry and
exclusion for the up-spin between the right boundary and the right end. These parame-
ters εL/R, µL/R are related to the coupling strength in each boundary and each reservoir’s
chemical potential, respectively.

In the following, we will determine the spectrum of the Lindbladian L in (2), which is
a linear operator in the space of density operators. A summary will be given at the end
of this section.

We introduce the Majorana fermion operators wj , j = 1, 2, · · · , 2N satisfying the
anti-commutation relations {wj , wk} = 2δj,k. The XX spin chain is equivalent to the
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one-dimensional free Majorana fermion model using the inverse of the Jordan-Wigner
transformation σ → w. These operators wj are related to Pauli operators σm as the
following Jordan-Wigner transformation [51],

w2k−1 = σx
k

∏
n<k

σz
n, w2k = σy

k

∏
n<k

σz
n, 1 ≤ k ≤ N. (5)

The Hamiltonian in (1) and Lindblad dissipative operators in (3,4) are rewritten in terms
of the Majorana fermion operators wj as

H = −iJ
N−1∑
k=1

(w2kw2k+1 − w2k−1w2k+2) + iB
N∑
k=1

w2k−1w2k, (6)

and as

L1 =

√
εL

1 + µL

2

w1 + iw2

2
, L2 =

√
εL

1 − µL

2

w1 − iw2

2
, (7)

L3 =

√
εR

1 + µR

2

w2N−1 + iw2N

2
Ω, L4 =

√
εR

1 − µR

2

w2N−1 − iw2N

2
Ω, (8)

respectively. Here, Ω := (−1)N
∏2N

l=1wl is a Casimir operator which commutes with all
the elements of the Clifford algebra generated by Majorana operators wj , and satisfies
ΩΩ† = Ω†Ω = 1.

Throughout this paper, x = (x1, x2, · · · )T will designate a vector (column) of ap-
propriate scalar valued or operator valued symbols xk. Then, the Hamiltonian and the
Lindblad dissipative operators (6-8) can be expressed by a quadratic form and linear forms
respectively as

H =

2N∑
j,k=1

wjHj,kwk = w ·Hw, (9)

Lµ =
2N∑
j=1

lµ,jwj = lµ · w, (10)

where A · B is the inner product between the vectors A and B, and 2N × 2N matrix
H can be chosen to be an antisymmetric matrix HT = −H. From Lindblad dissipative
operators, the matrix M is defined as

Mjk =
∑
µ

lµ,jl
∗
µ,k, (11)

which is a Hermitian matrix, and MR and MI are real and imaginary part of the matrix
M, respectively.

A fundamental concept of the third quantization [51] is the Fock structure on 4N -
dimensional Liouville space of operators K, called the operator space. This space is created
as the Hilbert space of density operators with the definition of an inner product ⟨A|B⟩ =
4−N tr

(
A†B

)
where A,B are operators. We use Dirac bra-ket notation for the operator

space K. This means replacing the relation between operators and states over physical
Hilbert space with the one between maps and operators over the operator space. Then,
symbols with a hat shall designate linear maps over the operator space K, and we note
the difference between an operator X over the physical Hilbert space and a map X̂ over
operator space K. By this transformation, the Lindblad equation (2) is rewritten as

d

dt
|ρ(t)⟩ = L̂ |ρ(t)⟩ . (12)
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The Lindblad map L̂, which may be related to the Lindbradian L in (2) by a similarity
transformation, is written in terms of the self-adjoint Hermitian Majorana fermion maps
âµ,r [51] satisfying {âµ,r, âν,s} = δµ,νδr,s, and this map takes a quadratic form with the
identity map term 1l as

L̂ = â ·Aâ−A01̂l, (13)

where a matrix A is called the structure matrix

A =

(
−2iH + iMI iM

−iMT −2iH− iMI

)
, (14)

and the coefficient of identity term A0 is equal to the trace of the matrix M. It is
known that eigenvalues and eigenvectors of the Lindblad map L̂ (or Lindbradian L) can
be constructed from those of the structure matrix A [54].

The Lindblad map conserves its parity. The operator space K can be decomposed

into a direct sum K = K+ ⊕ K− which are defined as K± =
1±exp(iπ

∑
k( 1

2
−iâ1,kâ2,k)

2 K.
Then, the parity of the Lindblad map in the operator space K corresponds to that of
total number of the Majorana operator wj in physical Hilbert space H. In this paper,
we consider only the product of an even number of the Majorana fermion operator wj ,
which is enough to calculate usual physical observables, for example magnetization, spin
current, energy, and so on. Thus, we can restrict our attention to the subspace K+. If the
structure matrix A is written as the Jordan canonical form, the Lindblad map L̂ becomes
the almost-diagonal map. Moreover, we obtain the exact solution of the time-dependence
of physical observables whose dynamics are described by the Lindblad equation.

2.2 Exact Spectrum of Lindbladian

As shown in [54], the structure matrix A is unitary equivalent to a following block-
triangular matrix,

Ã = UAU† =

(
−XT 2iMI

0 X

)
, (15)

where X = −2iH + MR is a real matrix, and the matrix U is trivially the 4N × 4N
permutation matrix which corresponds to the cyclic permutation of Pauli operators (σx →
σy, σy → σz, σz → σx). Also, as shown in [54], if the matrix X is diagonalizable, the
structure matrix is diagonalizable. Thus, we consider only the eigensystem of a 2N × 2N
matrix X. Moreover it has been known, in the specific cases of the open XX spin chain
whose specific dissipative strengths satisfy the condition 4J2 = εLεR [56] and the open XY
spin chain without magnetic field [57], that the matrix X can be decomposed into N ×N
matrices. In this paper, we show that, for the open XX spin chain with general magnetic
field and dissipative parameters, the matrix X can be decomposed into N ×N matrices.

Lemma 1. Using a unitary matrix S, the matrix X is unitarily equivalent to a block-
diagonal matrix

X̃ = SXS† =

(
iΞ 0
0 −iΞ†

)
, (16)

where Ξ is an N ×N matrix.
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We can show this lemma easily. First, the matrix X is rewritten by using the Kronecker
product

X = i


B J
J B

. . . J
J B

⊗ σy +


εL
4

0
. . .

0
εR
4

⊗ 1l2. (17)

Then, we introduce the following permutation,

κ :→
{

1, 2, · · · , N, N + 1, · · · , 2N − 1, 2N
1, 3, · · · , 2N − 1, 2, 4, · · · , 2N

}
. (18)

The 2N × 2N permutation matrices which correspond to the above permutation and the
cyclic permutation of Pauli operators are defined to be Πκ and Ǔ, and the unitary matrix
S is denoted as S = ǓΠκ. The matrix X is decomposed into the form of a block matrix
as

X̃ = SXS† =

(
iΞ 0
0 −iΞ†

)
, (19)

where the matrix Ξ is non-Hermitian matrix

Ξ =


B − i εL4 J

J B
. . .

B J
J B − i εR4

 . (20)

Also, we can decompose the characteristic polynomial of the matrix X into two charac-
teristic polynomials of the matrix Ξ, since the matrix X̃ is block-diagonalizable.

Corollary 1. The characteristic polynomial of the matrix X is decomposed into two
characteristic polynomials of the matrix Ξ

pX(λ) = pΞ(−iλ)p∗Ξ(−iλ∗), (21)

where pX(λ) := det(X− λ1l2N ), and pΞ(λ) := det(Ξ− λ1lN ).

Therefore, all the eigenvalues of the Lindblad map L̂ (or Lindbradian L) for the open
XX spin chain are constructed by the eigenvalues of the N ×N matrix Ξ. Moreover, the
matrix Ξ is a tri-diagonal matrix and we can obtain the eigenvalues and eigenvectors of the
matrix Ξ [29,67–69]. Consider the eigenvalue problem Ξq = λq where the k-th(1 ≤ k ≤ N)

eigenvector q(k) = (q
(k)
1 , q

(k)
2 , · · · , q(k)N )T. In the following we will set q

(k)
1 = 1, since the

value of q
(k)
1 can be an arbitrary non-zero number. Then, we obtain the eigenvalue and

the component of the eigenvector [67,68]

λ(k) = B + 2J cos θk, (22)

and

q
(k)
j =

1

sin θk
[sin jθk + il sin(j − 1)θk] , (23)
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where the parameter θk is determined by the following condition,

{2 cos θk + i (l + r)} sinNθk − (1 + lr) sin(N − 1)θk = 0, (24)

where we defined l = εL
4J and r = εR

4J .
Distribution of the solutions to (24), and hence that of the eigenvalues of the matrix Ξ,

depend strongly on boundary dissipative strength εL/R. When εL = εR = 0, the solution
of (24) is simply given by θk = πk/(N + 1), 0 ≤ k ≤ N and the corresponding eigenvalues
(22) are distributed on the real axis from B−2J to B+2J . On the other hand, when εL/R
are non-zero, the solutions to (24) and hence the corresponding eigenvalues (22) become
complex. In particular when εL/R are larger than 4J , while most eigenvalues are still close
to the real axis, there appear special eigenvalues which have larger imaginary part than
the other ones, as shown in an example in Fig. 1.

Figure 1: Eigenvalue distribution of matrix Ξ. Other parameters are set to N = 30,
J = 1.0, B = 0.0, and µL = −µR = 1.0.

Behaviors of eigenvalues in the limit N → ∞ may be discussed as follows. First using
the knowledge of the recurrence relation for the matrix Ξ, we obtain the characteristic
equation of the matrix Ξ as

βN+1 − αN+1 + i (l + r) (βN − αN ) − lr(βN−1 − αN−1) = 0, (25)

where α+β = λ−B
J and αβ = 1. Therefore, if we can solve the equation (25), we obtain the

eigenvalue λ = B + J(β + β−1). As discussed in [29], the solutions of the above equation
when N → ∞ depend on the magnitude of β. When |β| > 1, terms containing αN become
small since |α| < 1 and the equation (25) becomes

β2 + i (l + r)β − lr = 0. (26)

This can be solved easily and the solutions are given by β = −il,−ir. Hence these solutions
exist only when εL/R > 4J . In a similar manner, when |β| < 1, the solutions of equation
(25) are given by β = il−1, ir−1. Lastly, when |β| = 1, the solution of equation (25) is
in the form β = eiθ, θ ∈ R. We call the eigenvalues without imaginary part Im(λ) = 0
normal eigenvalue expressed as λ = B + 2J cos θ and the eigenvalues with imaginary part
Im(λ) ̸= 0 special eigenvalue expressed as

λ = B − iJ
(
l − l−1

)
, B − iJ

(
r − r−1

)
. (27)
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For a large but finite N , there appear eigenvalues close to the real axis and the ones
with larger imaginary part. The former is expected to become normal eigenvalues and
the latter special eigenvalues as N → ∞. They will be called the normal and special
eigenvalues respectively even when N is large but not infinite.

Since the matrix Ξ is a complex symmetric matrix, we can diagonalize it by using a
complex orthogonal matrix Q as

Ξ = QDQT, (28)

where

D = diag[λ(1), · · · , λ(N)], Q =
[
Q(1), · · · , Q(N)

]
. (29)

Denoting the normalization factor of the k−th eigenvector by Nk ≡ q(k) ·q(k), we set Q(k) =
q(k)

Nk
. Then, by Lemma 1 and the diagonalization above, the matrix X is digonalizable as

follows,

X = S†
(

Q 0

0 Q

)(
iD 0
0 −iD†

)(
QT 0
0 Q†

)
S. (30)

Also, the matrix X can be rewritten in a Jordan canonical form,

X = P∆P−1, (31)

where P is a non-singular matrix, and ∆ is a Jordan canonical form. Let any Jordan cell
size be bigger than 1, and the component of the matrix P be the generalized eigenvectors
of the matrix X. Thus, if and only if the matrix X is diagonalizable, we can consider that
these representation are the same. Then, by using (30,31), we obtain the non-singular
matrix P and its inverse matrix P−1 as the follows,

P = S†
(

Q 0

0 Q

)
, P−1 =

(
QT 0
0 Q†

)
S. (32)

To summarize the results of this section, we have determined the exact formula of the
eigenvalues of the Lindbradian L in (2). More precisely, we wrote the Lindblad map L̂ in
(12) acting on the operator space in the form (13) with (15) and (16), and have obtained
the eigenvalues and the corresponding eigenvectors of the matrix Ξ as in (22) and (23)
with (24).

3 Exact solutions for time-dependence of physical observ-
ables

In this section we calculate the exact formulas of time-dependent physical observables by
using the exact formula of the eigenvalues and the corresponding eigenvector of the matrix
Ξ in the previous section. In this paper we focus on the time-dependent magnetization
and spin current. The results will be summarized as (45,46) below,

3.1 Exact formulas for magnetization and current

The physical observables X(t) at time t is defined in Schrödinger picture as X(t) =
tr(Xρ(t)) [51, 53, 54]. Since the Lindbladian in Hilbert space is difficult to study analyt-
ically, we consider the Heisenberg picture in Liouville-Fock space [70, 71]. As presented
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below in (36,37), the time-dependent magnetization and spin current are written in terms
of quadratic physical observables [51,54] defined as

Cj,k(t) = tr(wjwkρ(t)). (33)

Then, since the diagonal terms in Cj,k(t) are time-invariant Cj,j(t) = tr(ρ(t)) = tr(ρ(0)),

we define the correlation matrix C̃(t) =
{
C̃j,k(t)

}
1≤j,k≤N

by

C̃j,k(t) = tr(wjwkρ(t)) − δj,k = 2 ⟨1| â1,j(t)â1,k(t) |ρ0⟩ − δj,k, (34)

where the super-Heisenberg picture is defined by âk(t) := e−tL̂âke
tL̂. Using the Lindbla-

dian map L̂ (13), we can obtain the equation of motion for Majorana map as follows,

dâ(t)

dt
= 2Aâ(t). (35)

In terms of C̃j,k(t), the magnetization mz
k(t) on site k and the spin current jk,k+1(t)

between sites k and k + 1 can be written by using (5) as follows,

mz
k(t) = ⟨σz

k⟩ (t) = −iC̃2k−1,2k(t), (36)

jk,k+1(t) =
⟨
2J(σx

kσ
y
k+1 − σy

kσ
x
k+1)

⟩
(t) = −2JiC̃2k−1,2k+1(t) − 2JiC̃2k,2k+2(t).(37)

The time-dependent correlation matrix C̃(t) satisfies the following differential equation
[70,71],

dC̃(t)

dt
= −2

{
XTC̃(t) + C̃(t)X

}
− 4iMI . (38)

Since the components of the matrix C̃(t) correspond to the physical observables as (36,37),
obtaining the exact solution C̃(t) (34) is equivalent to obtaining the exact formulas of the
time-dependent the physical observables. In some papers [70–73], this equation (38) has

been solved numerically or only its steady state (dC̃(t)
dt = 0) has been examined, since

exact eigenvalues and eigenvectors for the open XX spin chain have not been obtained.
By using the exact spectrum of the matrix Ξ (20) and the solvability of this equation
(38) [58–60] which had been known in a different field, such as the control theory [74, 75]
and stability analysis [76], we can solve this equation and obtain the time-dependence of
the physical observables analytically for the first time.

As shown in [58–60], the time-dependence of the correlation matrix is

C̃(t) = e−2tXT
C̃(0)e−2tX +

∫ t

0
e−2sXT

(−4iMI)e−2sX ds . (39)

For the above formula (39), we can calculate the exact solution for the time-dependence
of the correlation matrix C̃(t), if the eigenvalues and the (general) eigenvectors of the
matrix X can be exactly calculated and the correlation matrix in the initial time C̃(0) can
be determined analytically. For the open XX spin chain, we can obtain the eigenvalues
and the (general) eigenvectors of the matrix X can be exactly calculated. Thus, when we
choose the correlation matrix in the initial time C̃(0) whose components can be determined
analytically, we can obtain the exact solution for the time-dependence of the physical
observables, and discuss their behaviors.

In this paper, we introduce the time-dependence from one of the simplest initial states
satisfying the condition about the correlation matrix in the initial time C̃(0). We choose
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the thermal equilibrium state in the high-temperature limit (β → 0) as the initial state.
Then, the correlation matrix C̃(t) in (34) at the time t = 0 becomes zero C̃j,k(0) = 0.
Thus, the time-dependence of the correlation matrix takes the following form,

C̃(t) =

∫ t

0
e−2sXT

(−4iMI)e−2sX ds . (40)

For the open XX spin chain, since the matrix X is diagonalizable X = P∆P−1, the
correlation matrix is calculated as

C̃(t) = P−T

((∫ t

0
e−2s(βi+βj) ds

)
i,j=1,··· ,2N

⊙
(
PT(−4iMI)P

))
P−1, (41)

where βj is an eigenvalue of the matrix X, and we define the Hadamard product as
(A ⊙ B)i,j = Ai,jBi,j . Moreover, since the eigenvalues of X are calculated from the
eigenvalues of the matrix Ξ from the Corollary 1 and the imaginary parts of the eigenvalues
of the matrix Ξ are negative, the real parts of the eigenvalues of the matrix X are positive
Re{βj} > 0. Thus, the integral in (41) can be calculated as∫ t

0
e−2s(βi+βj) ds =

1 − e−2t(βi+βj)

2(βi + βj)
. (42)

Therefore, we obtain

C̃(t) = P−T

(1 − e−2t(βi+βj)

2(βi + βj)

)
i,j=1,··· ,2N

⊙
(
PT(−4iMI)P

)P−1. (43)

The magnetization mz
k(t) takes the following form,

mz
k(t) =

2N∑
n,m=1

e−2t(βm+βn) − 1

2(βm + βn)
P−T
2k−1,m

[
PT(4MI)P

]
m,n

P−1
n,2k.

(44)

Substituting imaginary part of dissipative matrix M, non-singular matrix P and that
inverse matrix P−1 (32) to (44), the magnetization in (36) takes the following spectral
decomposition form,

mz
k(t) =

N∑
m,n=1

Re

[
1 − e−2it(λ(m)−λ(n)∗)

2i(λ(m) − λ(n)∗)
Q

(m)
k

{
εLµLQ

(m)
1 Q

(n)∗
1 + εRµRQ

(m)
N Q

(n)∗
N

}
Q

(n)∗
k

]
.(45)

Similarly, spin current between sites k and k + 1 jk,k+1(t) in (37), and takes the following
spectral decomposition form,

jk,k+1(t) = 4J

N∑
m,n=1

Im

[
1 − e−2it(λ(m)−λ(n)∗)

2i(λ(m) − λ(n)∗)
Q

(m)
k

{
εLµLQ

(m)
1 Q

(n)∗
1 + εRµRQ

(m)
N Q

(n)∗
N

}
Q

(n)∗
k+1

]
.

(46)

In (45,46), the eigenvalues λ(m) = −iβm and the matrix elements Q
(m)
k which is the k-th

component of the eigenvector corresponding to the eigenvalue λ(m) are defined by using
(22-24,29) and the definition of the normalization factor Nm as

λ(m) = B + 2J cos θm, Q
(m)
k =

1

sin θm

[
sin kθm + i

εL
4J

sin((k − 1)θm)
]

√√√√ N∑
k=1

(
1

sin θm

[
sin kθm + i

εL
4J

sin((k − 1)θm)
])2

, (47)

11
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where θm satisfies the following equation,{
2 cos θm + i

( εL
4J

+
εR
4J

)}
sinNθm −

(
1 +

εL
4J

εR
4J

)
sin(N − 1)θm = 0. (48)

The exact formulas (45,46) with (47,48) for time-dependent magnetization in (36) and
spin current in (37) are the main results in this paper.

3.2 Physical observables in steady state

Before going to discussions of dynamical behaviors, in this subsection, we consider briefly
the physical observables in steady state which is realized in the long time limit. Taking
the limit t → ∞ in (45,46), magnetization and spin current in steady state are expressed
as

mz
k =

N∑
m,n=1

Re

Q
(m)
k

{
εLµLQ

(m)
1 Q

(n)∗
1 + εRµRQ

(m)
N Q

(n)∗
N

}
Q

(n)∗
k

2i(λ(m) − λ(n)∗)

 , (49)

jk,k+1 = 4J

N∑
m,n=1

Im

Q
(m)
k

{
εLµLQ

(m)
1 Q

(n)∗
1 + εRµRQ

(m)
N Q

(n)∗
N

}
Q

(n)∗
k+1

2i(λ(m) − λ(n)∗)

 , (50)

where λ(m) and Q
(m)
k are given by (47,48). After some calculations, we arrive at the

following simple formulas for the magnetization and the spin current for steady state (The
detailed calculations are written in Appendix A.) in terms of model parameters (recall l, r
defined below (24)),

mz
k = µL − j

4J
D

(L)
k = µR +

j

4J
D

(R)
k , j =

εLεR (µL − µR)

4J
(
1 + εL

4J
εR
4J

) (
εL
4J + εR

4J

) , (51)

where D
(L)
k and D

(R)
k are defined as

D
(L)
1 =

4J

εL
, D

(L)
k =

εL
4J

+
4J

εL
, (2 ≤ k ≤ N − 1) , D

(L)
N =

εL
4J

+
4J

εL
+

εR
4J

, (52)

D
(R)
1 =

εR
4J

+
4J

εR
+

εL
4J

, D
(R)
k =

εR
4J

+
4J

εR
, (2 ≤ k ≤ N − 1) , D

(R)
N =

4J

εR
, (53)

Our formulas for the magnetization and the spin current are valid for all parametric
values of µL/R, εL/R, and agree with the results in [34–36] obtained by MPA for the case
of the antisymmetric magnetization on reservoirs (µL = −µR). For Fig.2, we confirm that
our formula (51-53) for magnetization and spin current for steady state coincide with the
ones obtained by MPA [34–36] (when µL = −µR). Our formulas (51-53) are the most
general solution for the magnetization and the spin current in steady state for the open
XX spin chain with boundary dissipation in the sense that they are valid for all parametric
values of µL/R, εL/R. It is also interesting to consider whether our results for the general
parameters case can also be realized in terms of MPA.

4 The dynamics of physical observables

Analytical studies of open quantum systems with Lindblad dynamics for large systems
have been challenging, because explicit diagonalization of a Lindbladian is in general
difficult, and most studies so far are numerical. For the open XX spin chain with boundary
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Figure 2: Magnetization (red dots and blue line) and spin current for steady state (magenta
dots and cyan lines). The red and magenta dots are obtained by our formula (51-53), and
the blue and cyan lines are obtained in [34–36], respectively. The parameters are set to
N = 30, J = 1.0, B = 0.0, εL/R = 5 and µL = −µR = 1.

dissipation, the solutions in steady state are obtained by using MPA [34–36], but the
dynamics have been much less understood analytically. Since we could diagonalize the
Lindbladian in section 2 and obtained the analytical formulas for the time-dependence of
magnetization (45) and spin current (46) in section 3, we can study their behaviors in
detail.

4.1 Behaviors of time-dependent physical observables

We first evaluate our formulas (45,46) numerically and observe several behaviors for the
time-dependence of the magnetization and the spin current for the open XX chain. We will
examine them analytically in subsequent discussions. In Fig.3, spatio-temporal behaviors
of the magnetization are displayed. We observe a clear and interesting light-cone structure.
In Fig.4, the time-dependence of the magnetization and the spin current are plotted for
several fixed sites with label k. Behaviors of the physical quantities depend on the position
of a site k in the system. At the beginning, at sites near a boundary, the magnetization
and the spin current show a rather clear plateau regime as in Figs.4(a) and 4(c). It appears
as soon as the time evolution starts and the magnetization almost does not change during
it. It also appears at a bulk site but becomes shorter and obscure near the center of the
chain. See Figs.4(b) and 4(d). After the plateau regime, the physical quantities show a
few steps of small plateaus with oscillations and then decay to the stationary values.

About shorter time behaviors, a basic mechanism of the appearance of the plateau
regime at a given site may be understood from the wave fronts of the light-cone structures
in Fig.3. From the initial time, effects of the boundary dissipations propagate along the
bulk part of the system, creating the light-cones. The slope of the light cones is expected
to be given by 1/4J , which is numerically checked, and may be interpreted as the fastest
group velocity within all the group velocities for this system as will be discussed in section
4.2.1. According to this picture, the plateau regime becomes shorter and shorter as a
site deviates from a boundary and vanishes at the site at the center of the chain. These
behaviors are seen in the short time region (0 ≤ 4Jt ≲ O(N1)).

Approach to stationary values of the physical observables after a very long time (t ≫ 1)

13
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Figure 3: Spatio-temporal dependence of the local magnetization by (45). The parameters
are set to N = 30, εL/R = 5.0, J = 1.0, B = 0.0, µL = −µR = 1.0. The black lines are
Jt = k/4 and Jt = (N − k + 1)/4 which represent the initial and final time of the plateau
regime. The points at the intersection of the green and black lines are the initial and final
time of the plateau regime at the site 5. We show details of the analysis of the plateau
regime later in this section.

is expected to be described by the Liouvillian gap, which is the spectral gap ∆ of the
Liouvillian [51, 54]. The finite-size scaling for the Liouvillian gap had been numerically
estimated [51–53, 77], and we examine it analytically by using the exact formula of the
eigenvalues of the matrix Ξ (20) for our system. In the time region after the plateau regime
and before the Liouvillian gap dominates the decay of physical quantities, (O(N1) ≲ 4Jt ≲
O(N3), physical quantities show rather complicated behaviors.

In the following, we analytically discuss these behaviors by using our formulas (45,46).
We first discuss the two short-time behaviors (0 ≤ 4Jt ≲ O(N1)). The one is the light-
cone structures in Fig.3 using the analogy to that in closed systems. The other is the
plateau regime. Second, we analytically estimate the finite-size scaling for the Liouvillian
gap.

4.2 The short time behaviors (0 ∼ 4Jt ∼ O(N1))

4.2.1 Light-cone structure

For quench dynamics of various quantum many-body systems, it has been discovered that
frontiers of local observables show a light-cone structure whose slope should be bounded
above by the Lieb-Robinson velocity [11,63,78,79]. In particular, for the quench dynamics
in the closed XX spin chain, the light-cone appears from the free magnon propagation.
Its propagating velocity is calculated as the group velocity |v| = |dε(k) / dk| from the
dispersion relation ε = ε(k) = J cos k of the one particle excitation [64, 79], where k
is a momentum and ε is an eigenenergy, and the slope of the light-cone is given by its
maximum, taken at k = π/2.

The slope of the light-cones in Fig.3 for our open XX spin chain may be determined
by using an analogy to the quench dynamics in the closed XX spin chain discussed above.
More precisely we may conjecture that eigenvalue λ(m) of Ξ (20,22) would play a similar
role as eigenenergy ε(k) and that the propagation speed of the m-th mode is given by the

14



SciPost Physics Submission

Figure 4: Time-dependence of the magnetization ((a) and (b)) given by (45) and the
current ((c) and (d)) given by (46) respectively. Different colors in each figure correspond
to different values of dissipative strength εL, i.e., the red, blue, green and black curves
correspond to εL = 1.0, 2.0, 5.0, 10.0, εR = 1.0 cases, respectively. (a) and (c): The time-
dependence of the magnetization and the spin current near the left boundary (k = 1). (b)
and (d): The time-dependence of the magnetization and the spin current at a bulk site
(k = 10). The inset in (b) is for a longer time scale. The magenta vertical lines describe
start and finish time of the plateau regime which is expected from the light-cone structures.
The light color dashed lines are the magnetization and spin current in the steady state.
The light color dash-dotted lines in (a) show the plateau heights calculated by (59). Other
parameters in these pictures are set to N = 30, J = 1.0, B = 0.0, µL = −µR = 1.0.

formula,

|v| =

∣∣∣∣∣d(2λ(m))

dθm

∣∣∣∣∣ = |4J sin θm|, (54)

where θm is determined as (24). This is plausible because the dependence of physical
quantities such as the magnetization on the eigenvalue λ(m) of Ξ (20,22), given in (45,46),
for our case of Lindblad dynamics is similar to the one on ε for the case of quench dynamics.
The factor 2 in front of λm in (54) may be attributed to the same factor in (35), which
could be absorbed in the definition of the Majorana fermion operator by changing the
inner product which the operator space K is orthonormal with respect to [51, 54]. From
discussions about distributions of θk around (22), the velocity approaches, at θm ≈ π/2,
the maximum value |v|max = 4J , and the fastest propagation of all effects of each boundary
dissipation has this velocity. Thus the slope of the sharp front in Fig.3 is supposed to be
a quarter with the dimensionless time unit Jt in Fig.3, and this is numerically indeed
confirmed. Moreover, by carefully examining our formula (45), we will derive the slope of
the light-cone in the next subsection.
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4.2.2 The emergence of the plateau regime

For understanding behaviors of the plateau regime, during which the magnetization does
not change, we calculate the time derivative of magnetization for the site k from (45) as

µk(t) :=
∂mk

∂t
= εLµL

∣∣∣∣∣
N∑

n=1

e−2itλ(n)
Q

(n)
1 Q

(n)
k

∣∣∣∣∣
2

+ εRµR

∣∣∣∣∣
N∑

n=1

e−2itλ(n)
Q

(n)
N Q

(n)
k

∣∣∣∣∣
2

, (55)

where label n represents the mode number. The first and the second terms in (55) will be
called the left and right dissipation contributions, respectively. For large system N ≫ 1,
after some calculations (see Appendix. B for details), we obtain

N∑
n=1

e−2itλ(n)
Q

(n)
j Q

(n)
k ≈ f(j, k; t) :=

∮
C

dz

2πi
e2Jt(z−z−1)

{
ik−j

zk−j−1
+

ij+k(z + l)zj+k−2

lz − 1

}
,

(56)

the parameter l is defined below (24) and the contour C is such that it encloses the origin
counter clockwise with radius less than 1/l. The function f(j, k; t) may also be written as
a series in terms of the Bessel functions (see (90)), but the contour integral expression is
more convenient for our discussions below. For large N , (55) is approximated in terms of
f(j, k; t) as

µk(t) ≈ εLµL |f(1, k; t)|2 + εRµR |f(N, k; t)|2 . (57)

Now let us focus on f(1, k; t). As we show in Appendix B, it is close to zero except near
t ∼ k/(4J). By the same reasoning, the function f(N, k; t) is close to zero except near
x ∼ (N − k)/(4J). This confirms the slope 1/4J of the light cone, mentioned at the end
of section 4.2.1.

From the above analysis we see that, between t = k
4J and t = N−k+1

4J , the time
derivative of the magnetization µk(t) is almost equal to zero, i.e., the magnetization does
not change. Then the duration of time between t = k

4J and t = N−k+1
4J may be identified as

the plateau region. Its duration time τp =
∣∣N−2k−1

4J

∣∣ decreases to zero as the site becomes
closer to the center of the system. This prediction of the plateau regions agree well with
the figures of physical quantities (see Fig. 4).

While the clear plateau is seen near the boundaries (see for instance Fig .4(a)), ad-
ditional smaller changes are observed on top of the plateau in the bulk (see for instance
Fig 4(b)). This may be explained by the fact that the period of oscillatory behaviors of
f(1, k; t) become small when k is large, see (99).

The height of the plateau regime can also be calculated by using the time-derivative
of the magnetization µk(t) (57). Since the height of the plateau regime depends on either
the left or right contribution to the time derivative of the magnetization µk(t) (57), we
only consider the left half of the system. In this case, the height of the plateau regime
Hp(J, εL, µL; k) at the site k in the small dissipative case (εL < 4J) is estimated as

Hp(J, εL, µL; k)

≈ 4µL

1 − l−2
+ 2µL

∞∑
p,q,m,n=0

(−l)p+1 (−1)n+m (58)

×
(
Jk+n+p−q−1(T

(k)
i ) + Jk+n+p−q+1(T

(k)
i )

)(
Jk+m−p−q−1(T

(k)
i ) + Jk+m−p−q+1(T

(k)
i )

)
,

where T
(k)
i = 4Jτ

(k)
i ≈ k + 1 and τ

(k)
i is an initial time for the plateau regime at the site

k. For obtaining this formula, we use the integral form of the Bessel function. Of course,
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other cases, such as εL ≥ 4J , can be derived by using a similar procedure. The formula
is almost exact numerically (see Fig. 4(a)), with a small error due to finite-size effects. A
physical interpretation of the formula for the height is not very clear for the moment.

4.3 Long time behaviors (4Jt ∼ O(N3)) and Liouvillian gap

For systems described by the Lindblad equation, asymptotic long time behaviors of phys-
ical observables are in general expected to be characterized by the Liouvillian gap [77].
See for instance [51–53, 80]. The double of the Liouvillian gap, denoted by ∆, is for our
system defined as

∆ = −2 max Im[λ(n)], (59)

where λ(n) is the eigenvalue of the matrix Ξ which is defined as (22,24). The relaxation
time τ of the system is determined as the inverse of ∆. The slow convergence at late
times, observed in Fig.4(b), is expected to have this relaxation time. In Fig.5, we show
more precise semi-logarithmic plots of the difference of the magnetization at time t to its
steady state value. We observe indeed that its asymptotic behaviors at a site k becomes
an exponential decay. In our numerical results, the inverse of the relaxation times 1/τ
which are obtained by fitting to the data for the time-dependence of the magnetization
from t = 500 to t = 1000 using our formula (45) are 1.717 × 10−3(εL = 2.0, εR = 1.0),
2.035 × 10−3(εL = 5.0, εR = 1.0), and 1.675 × 10−3(εL = 2.0, εR = 1.0), which should be
compared to twice the Liouvillian gaps 2∆ = 1.721 × 10−3(εL = 2.0, εR = 1.0), 2.041 ×
10−3(εL = 10.0, εR = 1.0), and 1.678 × 10−3(εL = 10.0, εR = 1.0) computed using (59).
We see that the relaxation time τ for these exponential decay agree well with the inverse
of the double of the Liouvillian gap τ ≈ 1/2∆.

Figure 5: Asymptotic behavior of the magnetization after long time: The time-dependence
of the magnetization at the site k = 15 when N = 30, J = 1.0, B = 0.0, µL = µR = 1.0.
The cyan, yellow and gray lines represent the fittings to exponential decays. The values
of their slopes are given in the text. The inserted figure exhibits the time-dependence of
the magnetization at the site 1 and the exponential functions fitted to data.

In previous studies, the Liouvillian gaps for open quantum systems have not been much
discussed analytically. They have been mostly calculated numerically or by using the
analogy from closed infinite systems. For example the Liouvillian gap for open transverse
Ising spin chain and XY spin chain has been estimated by the asymptotic result using
analogy from closed infinite systems [51, 52, 81]. For our case of the open XX spin chain,
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we can estimate the magnitude of the Liouvillian gap ∆ by using the exact spectrum
of the Lindbladian for a finite-size system obtained in section 2.2. The Liouvillian gap
corresponds to n = 1 case of the eigenvalue λ(n), defined as (22,24). Let us write the angle
θ1 in (24) as θ1 = π

N+1 + x+iy
N2 . Substituting this into (24) and keeping the leading order

terms in 1/N , we see that x and y are given by

x =
l2 + 2l2r2 + r2

(l + r)2 + (lr − 1)2
π, y =

(l + r)(lr + 1)

(l + r)2 + (lr − 1)2
π. (60)

Recalling the definitions of l, r which were given below (24), the Liouvillian gap can be
expressed in terms of model parameters as follows,

∆ = 4Jπ2

(
εL
4J + εR

4J

) (
εL
4J

εR
4J + 1

)(
εL
4J + εR

4J

)2
+
(
εL
4J

εR
4J − 1

)2 1

N3
. (61)

The O(N−3) behaviors have been observed numerically in [48, 51, 52, 81] but we have
confirmed it and have also determined the coefficient exactly. Our formula shows great
agreement with numerical diagonalization, including the coefficient.

5 Conclusion

We have applied the general procedure of the third quantization to the open XX spin chain.
We find that the structure matrix of the open XX spin chain is diagonalizable analytically.
Moreover, we find that although the structure matrix is ordinarily decomposed into 2N ×
2N matrix, the structure matrix for the open XX spin chain is decomposed into N×N non-
Hermitian matrix, and the eigenvalues and eigenvectors of this non-Hermitian matrix are
calculated analytically. The eigenvalue distribution of this non-Hermitian matrix changes
dramatically with the increment of boundary dissipative strength. If a dissipative strength
is larger than four times the coupling constant between sites on the system, we could
find the emergence of a special eigenvalue which has a larger imaginary part than the
others. Since the open XX spin chain is diagonalizable, we can exactly calculate time-
evolution from a general initial condition including the thermal equilibrium state. We
obtain the linear differential equation for the correlation matrix which is constructed from
the expectation value of the product of two Majorana operators. The several components
of the correlation matrix correspond to magnetization on the site k and spin current
between the site k and k + 1.

The exact solutions of time-dependent magnetization on arbitrary site k and spin
current between arbitrary sites k and k + 1 are the main results of this study. These
formulas also include the solutions for NESS which is defined as t → ∞. Our analytical
formulas for magnetization and spin current in steady state generalize the ones obtained
by the MPA solutions for the special case of antisymmetric magnetization on reservoirs
[34–36]. Evaluating the exact solutions of time-dependent magnetization on arbitrary site
k and spin current between arbitrary sites k and k+1 numerically, we observe some specific
behaviors. Using our formulas, we can examine these analytically. As the spatio-temporal
regions where the magnetization is large are displayed, we observe clear and interesting
light-cone structures. We have shown that the wave fronts of the light-cones for our open
XX spin chain can be determined by using an analogy to the quench dynamics in the closed
XX spin chain. Between the lightcones from the left and from the right, there appears the
plateau regime, during which the magnetization does not change. Its duration is called
the plateau time. Various properties of the plateau regime, such as the plateau time,
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have been clarified by performing the asymptotic analysis of integral formulas for the time
derivative of magnetization. After the plateau regime, physical quantities approach their
stationary values, with the relaxation time characterized by the Liouvillian gap. We could
not only establish its O(N−3) behavior, which had been observed, but also determine its
coefficient exactly from our formulas.

It is important that one can obtain the exact formula for the time-dependence of
physical observables analytically. Applying this fact, higher-order physical observables
will be calculated analytically. Moreover, since the Lindbladian map takes the Jordan
canonical form in an arbitrary quadratic fermion chain, XY spin chain, XX spin chain
with homogeneous bulk dissipation and long-range interaction systems can be analyzed.
Recently, the analysis of non-Hermitian systems has been applied to open quantum systems
by using the post-selection [82, 83], and many interesting properties for open quantum
systems, such as phase transitions [84] and topological natures [85] have been studied.
However, it has been known the dynamics which is described by the non-Hermitian systems
is different from the Lindblad dynamics [82, 83]. We hope that our exact results will be
useful for future studies of systems described by the Lindblad equation. Our studies
in this paper are fully based on exact calculations for microscopic models. It would be
also interesting to study similar dynamical behaviors of open quantum systems by using
macroscopic or hydrodynamical methods. Some studies in such a direction have recently
been performed, see for instance [86–88].
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A Physical observables for steady state

In the main part of the paper, we find formulas for magnetization and spin current for
steady state as follows,

mz
k =

N∑
m,n=1

Re

[
1

2i(λ(m) − λ(n)∗)
Q

(m)
k

{
εLµLQ

(m)
1 Q

(n)∗
1 + εRµRQ

(m)
N Q

(n)∗
N

}
Q

(n)∗
k

]
, (62)

jk,k+1 = 4J

N∑
m,n=1

Im

[
1

2i(λ(m) − λ(n)∗)
Q

(m)
k

{
εLµLQ

(m)
1 Q

(n)∗
1 + εRµRQ

(m)
N Q

(n)∗
N

}
Q

(n)∗
k+1

]
,

(63)

where eigenvectorβj = iλ(j) and the component of eigenvector Q
(j)
k is obtained (22,23),

and the parameter θj satisfies the conditional equation (24). Then, separating left and
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right boundary contributions,

mz
k,L = εLµL

N∑
m,n=1

Re

[
1

2i(λ(m) − λ(n)∗)
Q

(m)
k Q

(m)
1 Q

(n)∗
1 Q

(n)∗
k

]
, (64)

mz
k,R = εRµR

N∑
m,n=1

Re

[
1

2i(λ(m) − λ(n)∗)
Q

(m)
k Q

(m)
N Q

(n)∗
N Q

(n)∗
k

]
, (65)

jk,k+1,L = 4JεLµL

N∑
m,n=1

Im

[
1

2i(λ(m) − λ(n)∗)
Q

(m)
k Q

(m)
1 Q

(n)∗
1 Q

(n)∗
k+1

]
, (66)

jk,k+1,R = 4JεRµR

N∑
m,n=1

Im

[
1

2i(λ(m) − λ(n)∗)
Q

(m)
k Q

(m)
N Q

(n)∗
N Q

(n)∗
k+1

]
. (67)

Defining [Rp]m,n ≡ Q
(p)
m Q

(p)
n , and using eigenvalues and eigenvectors (22,23), magneti-

zation on site k is obtained as

mz
k,L =


lµL

l + r
Re

∑
q

UN−k

(
λ̃∗
q

2

)
+ irUN−k−1

(
λ̃∗
q

2

)
UN−1

(
λ̃∗
q

2

) [
R∗

q

]
1,k

 , (k = 1 ∼ N − 1),

lµL

(l + r)(1 + lr)
, (k = N),

(68)

mz
k,R =



rµR

(l + r)(1 + lr)
, (k = 1),

rµR

l + r
Re

∑
q

Uk−1

(
λ̃∗
q

2

)
+ ilUk−2

(
λ̃∗
q

2

)
UN−1

(
λ̃∗
q

2

) [
R∗

q

]
N,k

 , (k = 2 ∼ N),
(69)

and spin current between sites k and k + 1 is obtained as

jzk,k+1,L =
4JlµL

l + r
Im

∑
q

UN−k

(
λ̃∗
q

2

)
+ irUN−k−1

(
λ̃∗
q

2

)
UN−1

(
λ̃∗
q

2

) [
R∗

q

]
1,k+1

 , (70)

jzk,k+1,R =



− 4JlrµR

(l + r)(1 + lr)
, (k = 1),

4JrµR

l + r
Im

∑
q

Uk−1

(
λ̃∗
q

2

)
+ ilUk−2

(
λ̃∗
q

2

)
UN−1

(
λ̃∗
q

2

) [
R∗

q

]
N,k+1

 , (k = 2 ∼ N),
(71)

where the parameters l, r are defined below (24) and Uk(x) is Chebyshev polynomial of
the second kind for order k. Calculating these formulas, we derive the following Lemma.

Lemma 2. For the Hermitian conjugate of normalized matrix Ξ̃ ≡ (Ξ − B1l)/J , the
component of (k −m)-th power of the normalized matrix Ξ̃ is obtained as

[(
Ξ̃†
)k−m

]
1,k

=


il, (m = 0),

1, (m = 1),

0, (m = 2 ∼ k).

(72)
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This lemma can be proved easily. Since the normalized matrix Ξ̃† has non-zero term at
only secondary-diagonal part, the (1, k)-component of (k−m)-th power of the normalized
matrix Ξ̃ is [(

Ξ̃†
)k−m

]
1,k

= Ξ̃†
1,m+1Ξ̃

†
m+1,m+2Ξ̃

†
m+2,m+3 · · · Ξ̃

†
k−1,k. (73)

For all m(0 ≤ m ≤ k), the component Ξ̃†
j,j+1 is equal to 1, so the component

[(
Ξ̃†
)k−m

]
1,k

is equal to Ξ̃†
1,m+1. Therefore, the component

[(
Ξ̃†
)k−m

]
1,k

is classified by Ξ̃†
1,m+1.

By this lemma, magnetization and spin current for steady state is simplified. By
using the recurrence relation for Chebyshev polynomial of the second kind Un+1(x) =
2xUn(x) − Un−1(x), the numerators in (68-71) is calculated as

UN−k + irUN−k−1

=

{
ir

1 + rl

(
λ̃∗
q

)k
+

1 + r(r + l)

1 + rl

(
λ̃∗
q

)k−1
+ O(

(
λ̃∗
q

)k−2
)

}
UN−1, (74)

(Uk−1 + ilUk−2) (UN−1 − ilUN−2)

=

(
− il

1 + rl

(
λ̃∗
q

)k
+

1

1 + rl

(
λ̃∗
q

)k−1
+ O(

(
λ̃∗
q

)k−2
)

)
UN−1. (75)

Substituting (74,75) to (68-71),

mz
k,L =


lµL

l + r
Re

[
ir

1 + rl

(
Ξ̃†
)k

+
1 + r(r + l)

1 + rl

(
Ξ̃†
)k−1

+ O(
(
Ξ̃†
)k−2

)

]
1,k

,

(k = 1 ∼ N − 1),
lµL

(l + r)(1 + lr)
, (k = N),

(76)

mz
k,R =



rµR

(l + r)(1 + lr)
, (k = 1),

rµR

l + r
Re

[
− il

1 + rl

(
Ξ̃†
)k

+
1

1 + rl

(
Ξ̃†
)k−1

+ O(
(
Ξ̃†
)k−2

)

]
1,k

,

(k = 2 ∼ N),

(77)

jzk,k+1,L =
4JlµL

l + r
Im

[
ir

1 + rl

(
Ξ̃†
)k

+
1 + r(r + l)

1 + rl

(
Ξ̃†
)k−1

+ O(
(
Ξ̃†
)k−2

)

]
1,k+1

,(78)

jzk,k+1,R =


− 4JlrµR

(l + r)(1 + lr)
, (k = 1),

4JrµR

l + r
Im

[
− il

1 + rl

(
Ξ̃†
)k

+
1

1 + rl

(
Ξ̃†
)k−1

+ O(
(
Ξ̃†
)k−2

)

]
1,k+1

,

(k = 2 ∼ N).

(79)

Applying lemma to the above formulas, the magnetization and spin current in NESS
can be expressed in terms of model parameters as follows,

mz
k = µL − j

4J
D

(L)
k = µR +

j

4J
D

(R)
k , j =

εLεR (µL − µR)

4J
(
1 + εL

4J
εR
4J

) (
εL
4J + εR

4J

) . (80)

The sequences DL/R are defined as

D
(L)
k =

{
4J

εL
,
εL
4J

+
4J

εL
, · · · , εL

4J
+

4J

εL
,
εL
4J

+
4J

εL
+

εR
4J

}
, (81)

D
(R)
k =

{
εR
4J

+
4J

εR
+

εL
4J

,
εR
4J

+
4J

εR
, · · · , εR

4J
+

4J

εR
,

4J

εR

}
. (82)
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B Calculation of time derivative of magnetization

In this appendix, we study large N behavior of
∑N

n=1 e
−2itλ(n)

Q
(n)
j Q

(n)
k which appears in

the expression of µk(t) in (55) and derive the integral formula (56). We also study some
of its properties. First we divide the sum over n into two parts corresponding to normal
eigenstates and special eigenstates as

N∑
n=1

e−2tβnQ
(n)
j Q

(n)
k =

∑
n∈{no}

e−2tβnQ
(n)
j Q

(n)
k +

∑
n∈{sp}

e−2tβnQ
(n)
j Q

(n)
k , (83)

where βn = iλ(n) and {no} = {1, 2, · · · , N} \ {sp}. For large N , the normalization factor
Nn for normal eigenstate, defined below (29), can be calculated using the component of
the l-th eigenvector corresponding to a normal eigenvalue (23) as

N 2
n ≈ N

2 sin2 θn

(
1 + 2il cos θn − l2

)
, (84)

where the parameter l is defined below (24).
Using βn = 2iJ cos n

N+1π + O(N−2) and (47), the summation can be calculated as∑
n∈{no}

e−2tβnQ
(n)
j Q

(n)
k

≈ 2

π

∫ π

0

e−4iJt cosx

1 + 2il cosx− l2
(sin jx + il sin (j − 1)x) (sin kx + il sin (k − 1)x) dx

=

∮
C

dz

2πi
e2Jt(z−z−1)

{
ik−j

zk−j−1
+

ij+k(z + l)zj+k−2

lz − 1

}
, (85)

where in the last expression the contour C is the unit circle around the origin.
As for the contributions from the special eigenvalues, one can see that the normalization

behaves as

N 2
sp ≈


(
1 + l−2

)−1
(l > 1) ,

(l − r)2 (−ir)2N+2

(1 + r2)3
(r > 1) .

(86)

The leading term for the part of the special eigenstates is calculated as

e−2tλspQ
(sp)
j Q

(sp)
k ≈

{
−e−2J(l−l−1)t (1 + l2

)
(−il)−j−k (l > 1) ,

−e−2J(r−r−1)t (1 + r2
)

(−ir)−2N−2+j+k (r > 1) .
(87)

The two contributions, (85) and (87), can be combined into a single contour integral
formula (56) by taking the contour C as described. By setting j = k in (87) we find

|Q(sp)
j |2 ≈ (1 + l2)l−2j when l > 1, implying that a special eigenstate is a mode localized

at the boundary and has a decay correlation length 1/(2 log l) (the same argument can
be applied for r > 1 as well). As we will show below the special eigenstates do not give
particular contributions for quantities studied in this paper.

Expanding the integrand in powers of l (when l < 1, or in powers of 1/l when |l| > 1)
and using the integral form of the Bessel function of nth order

Jn(z) =
in

π

∫ π

0
e−iz cos θ cosnθ dθ , (88)
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an alternative formulas for f(j, k; t) in terms of Bessel functions are found. They are
summarized as follows and are useful for numerical evaluations:

fno(j, k; t) =



(−1)k+1Jj−k(4Jt) − Jj+k−2(4Jt)

+

∞∑
n=0

(−l)n (Jj+k+n−2(4Jt) + Jj+k+n(4Jt)) , (εL < 4J),

Zj,k(4Jt) + (−1)j+k+1, (εL = 4J),

(−1)kJj−k(4Jt) − Jj+k(4Jt)

+
∞∑
p=0

(−l)−p (Jj+k−p−2(4Jt) + Jj+k−n(4Jt)) , (εL > 4J),

(89)

fsp(j, k; t) ≡ e−2J(l−l−1)t (1 + l2
)
l−j−kI (l)

+(−1)N+1e−2J(r−r−1)t (1 + r2
)
r−2N−2+j+kI (r) , (90)

where the function I(x) takes the value 1 if x > 1 and 0 if x ≤ 1 and the function Zj,k(4Jt)
is defined as,

Zj,k(4Jt) =


(−1)kJj−k−2(4Jt) − Jj+k−1(4Jt) + 2

∞∑
n=0

(−1)nJj+k+n(4Jt), (j > k),

−J2k−1 + 2

∞∑
n=0

{
(−1)kJ2n+2(4Jt) + (−1)nJ2k+n(4Jt)

}
, (j = k).

(91)

Next we will see that j = 1 case of (56), i.e.,

f(1, k; t) =

∮
C

dz

2πi
e2Jt(z−z−1) i

k+1(zk + zk−2)

lz − 1
, (92)

is close to zero except near t ∼ k/(4J). For large t, we may use the saddle point analysis
with t = αk. Let us first write

f(1, k; t) =

∮
C

dz

2π
g(z)ekf(z) (93)

with

f(z) = 2Jα(z − 1/z) + log z +
iπ

2
, g(z) =

1 + z−2

lz − 1
. (94)

It is easy to check that the two roots of f ′(z) = 0 are given by

z = − 1

4Jα
±
√

1

16J2α2
− 1 =: z±. (95)

When 0 < α < 1/4J , the saddle point is at z = z+ and we find

f(1, k; t) ∼ (2π)−1/2(1 − 16J2α2)−1/4 1 + z−2
+

2π(lz+ − 1)
(iz+)k+1ek

√
1−16J2α2

, (96)

and hence

|f(1, k; t)| ∼ (2π)−1/2(1 − 16J2α2)−1/4

∣∣∣∣∣ 1 + z−2
+

2π(lz+ − 1)
zk+1
+

∣∣∣∣∣ek√1−16J2α2
(97)
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On the other hand, when α > 1/4J , two saddle points are at the unit circle (z± = e±iθ)
and we find

f(1, k; t) ∼ 2(2πk)−1/2(16J2α2 − 1)−1/4

1 − 2l cos θ + l2
ik Im

[
(1 + e−2iθ)(1 + le−iθ)eik

√
16J2α2−1+i(k+1)θ+iπ/4

]
(98)

and hence

|f(1, k; t)| ∼
(2πk)−1/2(16J2α2 − 1)−1/4

√
1 − l/2Jα + l2

(1 + l/2Jα + l2)
| sin[k(

√
16J2α2 − 1 + θ) + ϕ]|

(99)

where

tanϕ =
1 − l/4Jα− l

√
1 − 1/16J2α2

1 − l/4Jα + l
√

1 − 1/16J2α2
(100)

and in the last equality we used cos θ = −1/4Jα. These asymptotic behaviors indicate
that the function f(1, k; t) becomes quickly small when t < k/(4J) and shows oscillatory
decay when t > k/(4J). The expressions above diverge when α → 1/4J but this may
be remedied by noting that the saddle point becomes degenerate and one has to use a
different asymptotics.

For small t and fixed k, we may also discuss as follows. First expand (92) in powers of
t. When |l| < 1, we get

f(1, k; t) =
∑
n,p=0

(−1)n+p+k−1(2Jt)2n+p+k−1

n!(n + p + k − 1)!
lp +

∑
n,p=0

(−1)n+p+k+1(2Jt)2n+p+k+1

n!(n + p + k + 1)!
lp

(101)
The leading terms for small t are when n = p = 0 and

f(1, k; t) ≈ (−2Jt)k−1

(k − 1)!
+

(−2Jt)k+1

(k + 1)!
(102)

By the Stirling formula, these terms are small when t < k/(4J). We can find a similar
expansion also when |l| > 1 and come to the same conclusion that it is small when
t < k/(4J).
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[76] S. Mondié, A. V. Egorov and M. A. Gomez, Stability conditions for time delay
systems in terms of the lyapunov matrix, IFAC-PapersOnLine 51(14), 136 (2018),
doi:10.1016/j.ifacol.2018.07.212.
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