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Abstract

We present a formulation for investigating quench dynamics across quantum
phase transitions in the presence of decoherence. We formulate decoherent dy-
namics induced by continuous quantum non-demolition measurements of the
instantaneous Hamiltonian. We generalize the well-studied universal Kibble-
Zurek behavior for linear temporal drive across the critical point. We identify
a strong decoherence regime wherein the decoherence time is shorter than the
standard correlation time, which varies as the inverse gap above the ground-
state. In this regime, we find that the freeze-out time ¢ ~ 72v2/(1+2v2) for
when the system falls out of equilibrium and the associated freeze-out length
£~ 7v/(14+2v2) show power-law scaling with respect to the quench rate 1/7, where
the exponents depend on the correlation length exponent v and the dynami-
cal exponent z associated with the transition. The universal exponents differ
from those of standard Kibble-Zurek scaling. We explicitly demonstrate this
scaling behavior in the instance of a topological transition in a Chern insula-
tor system. We show that the freeze-out time scale can be probed from the
relaxation of the Hall conductivity. Furthermore, on introducing disorder to
break translational invariance, we demonstrate how quenching results in re-
gions of imbalanced excitation density characterized by an emergent length
scale which also shows universal scaling. We perform numerical simulations to
confirm our analytical predictions and corroborate the scaling arguments that
we postulate as universal to a host of systems.
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1 Introduction

Nonequilibrium properties associated with quenches across a continuous phase transition
are exhibited in a range of physical systems, from quantum magnets at the nanoscale
to the cosmos itself. Close to the critical point separating the two phases, the intrinsic
relaxation time, equivalently, the correlation time diverges. In this regime, no matter
how slow the tuning rate for the quench, the system is driven faster than it can respond,
and thus plunges out of equilibrium. Universal properties of the phase transition have
powerful implications for the nonequilibrium dynamics associated with the quench. A
paradigm example is Kibble-Zurek scaling [1-4], which states that both the time scale of
the out-of-equilibrium dynamics and the length scale of the post-quench nonequilibrium
region scale as power laws with the quench rate. The power law exponent depends only on
universal properties of the equilibrium phase transition and is independent of microscopic
details of the system.

The combined effects of quantum measurement and decoherence on quantum critical
quenches largely remains uncharted ground, despite the growing research interest in open
quantum systems and measurement-impacted quantum dynamics [5—14]. Unitary evolu-
tion combined with intermittent measurement can generate nontrivial quantum dynamics
by repeatedly collapsing the quantum state to the measured basis, following Born’s rule.
Such processes generally modify the quantum state drastically and create high-energy
excitations in the system. However, if the measurement observable commutes with the
system Hamiltonian, while the system becomes entangled with its environment, no such
high energy excitations are produced, a state of affairs known as a quantum non-demolition
measurement [15-21]. In particular, the quantum non-demolition measurement of the sys-
tem Hamiltonian itself has recently been proposed in Ref. [22,23] for trapped-ion systems,
as an indirect measurement realized by coupling the system with an environment through
the energy channel. The process also can be interpreted as the environmental monitoring
of the system energy, under which the system will decohere in the energy basis. It was
further demonstrated in Ref. [24-26] that repeatedly measuring local terms of the many-
body Hamiltonian during the quantum dynamics can stabilize different quantum phases
in the final steady state. One can even drive quantum phase transitions by varying the
measurement strength of different Hamiltonian terms. This provides us an opportunity
to consider the critical quench dynamics driven by quantum non-demolition measurement
of the system energy, and to investigate its effect on universal scaling behaviors.

In this work, we present a formulation for integrating the physics of quantum measure-
ment and decoherence with that of quantum critical quench dynamics. The formulation
provides a description of continuous measurement of the the system Hamiltonian, while
the Hamiltonian itself is dynamically driven across the quantum phase transition. Aver-
aging over energy measurement outcomes leads to decoherence in the energy basis. The
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decoherence time enters the dynamics as a time scale distinct from that set by the cor-
relation time. As the system is tuned through the critical point, both the decoherence
time 74, and the correlation time &, diverge, such that the quantum dynamics slows down
and the system is unable to equilibrate in the face of the parameter tuning. As a result,
the system is effectively frozen near the critical point and falls out of equilibrium after
the quantum quench. The freeze-out time is set by the choice of time scale between &,

and 7,,. that remains shorter at the moment. As the two time scales §; and 7, . diverge
with different exponents near the critical point, they lead to different scaling behaviors
of the freeze-out time (also known as the Kibbel-Zurek scaling in the coherent limit). In
the strong decoherence regime, we derive the critical quench scaling exponents for both
length and time scales, and demonstrate how they differ from the standard Kibble-Zurek
predictions.

We apply our formulation to topological transitions in Chern insulators and show
how these strong-decoherence scaling laws become manifest. Our choice of system stems
from the surge of interest in these materials, the plethora of experiments, the ability
to tune through these transitions, and the straightforward theoretical formulation that
enables adding the complexity of the decoherent aspects. Given that much of Kibble-Zurek
physics has focused on systems having spontaneous-symmetry breaking and local order, we
focus on an alternate set of observables for probing our predicted novel scaling behavior
in the case of topological order. In particular, we propose that the out-of-equilibrium
time scale can be obtained from the relaxation of Hall conductivity across the topological
transition. We also propose the extraction of the post-quench correlation length from the
autocorrelation function of excitation density in the presence of weak disorder.

While this work offers a framework for describing decoherent quantum critical quenches
and applies it to a specific example, we believe its scope is very broad. The formulation
itself can be applied to vast and diverse systems ranging from symmetry broken phase
in cosmology, solid state, and cold atomic gases to topological systems in the latter two
settings. Almost invariably, decoherence goes hand in hand with quenching, and in the
case of ultracold gases, it can even be engineered. In general, its effects can be murky.
But for universal regimes defined by critical points, not only are the effects much more
clear-cut, the interplay between the two distinct time scales allows demarcating a testable
strong decoherence regime showing entirely new scaling.

In what follows, in Sec.2, we introduce the general formulation of quantum dynam-
ics with energy-basis decoherence, realized by quantum non-demolition measurement of
the system Hamiltonian. We derive the master equation that governs the decoherent
dynamics. Based on the master equation, having recapitulated standard Kibble-Zurek
scaling in quantum quenches, we analyze its behavior in the presence of decoherence.We
discuss the regimes of weak versus strong decoherence and associated scaling. In Sec. 3,
we demonstrate our treatment for quenches in Chern insulators tuned through topological
phase transitions. We present the corresponding non-interacting fermionic Hamiltonian
and describe the dynamics in terms of associated pseudo-spin degrees of freedom for each
momentum sector. We next derive our predicted scaling behavior in the relaxation of Hall
conductivity. We adapt numerical techniques to describe quenches and further corrobo-
rate our results. We introduce weak disorder to break translational invariance and extract
correlation lengths and related scaling behavior via post-quench correlation of emergent
regions having high excitation densities. In Sec. 4, we summarize our work, consider ram-
ifications, and make connections with possible experiments.
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2 Universal Scaling of Decoherent Critical Quench

We begin with the overarching set-up for describing the decoherent system at hand and
its dynamics. We then show how even in the simplest case of a two-level system, one
can extract a decoherence time that it intimately tied to the gap between states. Our
formulation immediately enables us to study the general scenario of quenching through
a quantum critical point. We therefore then proceed to derive the universal argument
for a competition between three timescales—the inverse quench rate, the intrinsic coherent
timescale of the system (the correlation time), and the decoherence time. Based on the
competition, we are able to identify strong and weak decoherence regimes and the different
associated scaling behavior of the critical quench.

2.1 Decoherent Quantum Dynamics

The decoherence of a quantum system in its energy eigenbasis can be effectively modeled
by an environment that monitors the energy of the quantum system through continu-
ous measurements [27,28]. Under this protocol, the dynamics of the quantum system
is non-unitary and can be formulated as a quantum channel [29]. The quantum chan-
nel formulation provides a unified description of the effect of both unitary evolution and
quantum measurement on the density matrix p of an open quantum system,

p(t + 5t) = ZK O KI() (1)

specified by a set of Kraus operators [30] K;(t) satisfying }; K]T(t) K,(t) = 1. Unitary
evolution corresponds to the presence of a single unitary Kraus operator K(t) = U(t) =
H(t)t (setting h = 1); in this case, one has the familiar behavior

p(t +8t) = p(t) —idt [H(t), p(t)] + O(5t?), (2)

where H(t) is the Hamiltonian of the quantum system that generates the coherent time-
evolution.

The environmental monitoring of the energy of a quantum system can be described by
a set of measurement operators K f (t), where the index j labels the possible measurement
outcomes. We consider an indirect (or ancilla) weak measurement [31] scheme, in which
the system couples to some ancilla qubits in the environment via the interaction term
Hin(t) = H(t) ® A. Here, H(t) is the Hamiltonian of the quantum system and A is
some Hermitian operator acting on the ancilla qubits. Suppose the ancilla qubits start
in a random initial state } gb> and evolve jointly with the quantum system under Hijy (%)
for a short period of time, after which they collapse to the measurement basis | J > via a
projective measurement. The effect on the quantum system is described by the following
Kraus operator

Ki(t)=(jl¢)—icH®) (i A|) (3)
—LEH)?(j|A%|¢)+0O(%) |

where € is proportional to the coupling time and can be viewed as a parameter controlling
the measurement strength. This procedure weakly measures the energy of the quantum
system because the observable being measured in a quantum measurement is determined
by the particular operator that couples the system to the environment [32,33], which
in this case is the system Hamiltonian H(t) itself. Such a measurement protocol will
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gradually decohere the system to disperse among different energy levels. Applying the
Kraus operator to the density matrix, we obtain

K () o) K1) = p6) — e [H(0),p(t)] (0] A] ¢)

— LE[HW), [H), p(0)]] (9] 42| 6) + O() . )

We assume that the ancilla state } ¢> and the ancilla operator A satisfy <¢ ‘ A ‘ ¢> =0,
such that the measurement process will not bias the energy of the system. Typically this
is true if ‘ q§> and A are random, as we have no prior knowledge of how the environment
will monitor the energy. We also ignore the memory effect of the environment, and assume
that the dynamics is Markovian. With this assumption, the density matrix evolves under
the environmental measurement as

p(t+6t) = p(t) — v 6t [H(t),[H(t), p(1)] + O(6t?) , ()

where a new parameter v = <qb ‘ A? } 1) > €2/(26t) is introduced to represent the quantum
non-demolition measurement strength (or the decoherence rate). To approach the limit
of continuous measurement, we should take the 6t — 0 limit keeping the ratio €2/t held
fixed so as to respect the quadratic time scaling [34-36] required by the quantum Zeno
effect.

Combining Eq. (2) with Eq. (5), and taking the continuum limit 6¢ — 0, we arrive at
the master equation for decoherent quantum dynamics

OO — i [a1(0), p(0)] ~ 7 [0, (1) (0] (0
This is the Lindblad equation (in double-commutator form) [37-39] for the Lindblad op-
erator being the Hamiltonian itself. It describes how an open quantum system evolves
under a time-dependent Hamiltonian as it continues to decohere among the instantaneous
energy eigenstates.

If H is time-independent, then it is easy to see that the off-diagonal elements of p(t)
expressed in the eigenbasis of H all collapse to zero provided they are between states of
different energy, i.e. ppmn(t) — 0 if E,, # E,. For time-dependent H (t), however, as we
shall see, the dynamics is nontrivial.

2.2 Decoherence Time and Excitation Gap

To gain more intuition regarding the decoherent quantum dynamics described by Eq. (6),
we consider a quantum system close to its ground state. As a toy model, we focus on the
low-energy subspace spanned by the ground state (energy Ep) and the first-excited state
(energy E1), in which H and p can be represented as

Ey O P00 ,001]
H= , = . 7
[ 0 E1] p [Plo P11 Q
Within this two-level subspace, Eq. (6) implies
ap, .
7821 =1(E) — Ey)por — (B} — E0)2P01v (8)

which indicates that the off-diagonal density matrix element (7.e. the quantum coherence
between the ground state and the excited state) decays exponentially in time as |py;|
exp(—t/7,..). Here, the decoherence time is given by

1
— 9
7-dec ’}/AQ ’ ( )
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where A = E; — Ey denotes the excitation gap. This demonstrates that Eq. (6) indeed

describes the energy level decoherence in which the decoherence time 7,4, is set by the
gap A (or more generally, the level spacing).

2.3 Kibble-Zurek Scaling under Decoherent Quench

With the general formulation of the decoherent quantum dynamics now in place, captured
by the master equation in Eq. Eq. (6), we can now investigate quenches in the presence of
decoherence. Specifically, we analyze the effect of introducing decoherence to the universal
behavior exhibited by quantum systems dynamically tuned between two phases through
a continuous quantum phase transition. Quantum quenches, in general, form a fertile and
currently active field of study (see e.g., Ref. [40]), encompassing condensed matter physics
AMO, cosmology, and quantum information. Quenches near quantum and thermal critical
points exhibit Kibble-Zurek behavior [1-4], which reflects the universal non-equilibrium
power-law scaling of several quantities, such as quench-induced density of defect. Note
that here we focus on quantum quenches, as opposed to thermal. The source of the non-
equilibrium behavior is that the intrinsic relaxational timescale of the system diverges as a
universal power-law close to the critical point, and thus, not matter how slow the quench
rate, the system cannot relax fast enough in a certain window. The size € of the local
equilibrium domain after the quench scales with the quench rate 1/7 as

g ~ 7_1//(1+1/z) ’ (10)

where v and z are the correlation length exponent and dynamic critical exponent asso-
ciated with the quantum critical point. We will show that the same scaling holds under
decoherence as long as the decoherence rate y scales together with the quench rate as
v ~ 7v#/(4v2) - However, in the strong decoherence limit (v = o0), we find a new com-
bined scaling

£ (yr) /02 (11)

which is unique to the decoherent dynamics.

These trends in scaling behavior can be derived from an analysis of the dynamic
equation Eq.(6). Here, we generalize the standard approach for Kibble-Zurek physics
in absence of dissipation to include and pinpoint its effects. We assume the quantum
critical point can be describe by a critical Hamiltonian Hitical. Quenching through the
critical point corresponds to tuning the relevant perturbation Hper, (which drives the phase
transition) through zero, which can be formally described by

H(t) = Hcritical + 5<t)Hpert 5 (12)

where §(t) = a(t) — ae measures the deviation of the driving parameter o away from its
critical point .. In the vicinity of the critical point, we focus on the most general quench
case where the deviation is tuned linearly with time 0(¢) = t/7, which introduces the
quench rate 1/7 (or equivalently the quench time scale 7). However, the linear tuning of
the driving parameter does not tune the excitation gap linearly. Near the quantum critical
point, low-energy collective properties of the system, such as the correlation length £ or
the excitation gap A, scale with the deviation § according to power laws set by universal
relations

E~v oV~ (/)7 AT~ (/) (13)

The many-body excitation gap A will be the only relevant energy scale that enters Eq. (6)
in the replacement of H(t) near the critical point.
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(a) vy < ¥, (quantum) (b) y > v, (classical)
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Figure 1: The divergent correlation time &, and decoherence time 7, . near the critical
point under (a) weak decoherence (quantum regime) and (b) strong decoherence (clas-
sical regime). The first intersection point marks the freeze-out time ¢ when the system
loses/restores adiabaticity. Thus, during the quench process, the freeze-out time in (a) is
determined by & and in (b) by 7, .

Following the form of Eq. (8), we ignore all the level-specific details, which are sec-
ondary to universal behavior, and put forth a heuristic dynamic equation for the purpose
of scaling analysis, viz.

dp

o~ (18-987)

Crt\vz t\ 2vz
T T
We can eliminate the 7-dependence in Eq. (14) by rescaling ¢ and + jointly as follows:

v, (15)

implying that the quantum quench dynamics is universal if the time ¢ and the decoherence
rate vy scale accordingly. In the large v regime, Eq. (14) is dominated by the decoherence
dynamics (i.e. the y-term only), viz.

(14)

vz/(14vz) " vz/(14vz)

t— T Y =T

5 £\ 2vz
Opp~—vA"p~ —y (;) p - (16)
It is then possible to simultaneously eliminate both the - and the 7-dependences in
Eq. (16) by the following rescaling of time:

75_)(,}/—17_21/z)1/(1+21/z)t/ 7 (17>

which gives a different, but consistent, scaling of time in the strong decoherence limit as
compared to Eq. (15), which holds for all decoherence rates.

Underlying the different scaling behaviors is the competition between two distinct time
scales: the correlation time ¢, and the decoherence time 7, . (defined in Eq. (9)),

1 t\ —vz 1 1 t\ —2vz
~ (L ~ . 18
S A (7‘) » Tdec vA2 (7’) (18)
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As we quench through a quantum critical point, the many-body excitation gap A closes
and reopens. As the critical point is approached, namely A — 0, both the correlation
time &, and the decoherence time 74, diverge, as shown in Fig. 1. The system effectively
freezes due to the critical slowing down and falls out of equilibrium. The freeze-out time ¢
is set by the smaller time scale min(&;, 7,..). These time scales correspond to two different

mechanisms to maintain adiabaticity: beyond the correlation time §;, the system can
respond to the parameter tuning by unitary evolution, while beyond the decoherence time
Tyeer the system can follow the energy level by the quantum Zeno effect (the effect that
frequent measurements can slow down the quantum evolution).

The competition between &, and 7, . is dependent upon the decoherence rate v, as can
be seen from Eq. (18). When the decoherence rate v is small, the system is in the coherent
quantum regime, where ¢, is the shorter time scale, and the freeze-out time ¢ is set by
t ~&,(t) ~ (t/7)7"*. The solution then conforms to standard Kibble-Zurek behavior and

reads B
f ~ TZ/Z/(1+I/Z) AN (Z/T)iu ~ TV/(lJer) 7 (19)

which is consistent with Eq. (15) and Eq. (10). When the decoherence rate +y is large, the
system is in the decoherent classical regime, where 7, is the shorter time scale, and the
freeze-out time 7 is set by ¢ ~ 7, (£) ~ v~ 1(f/7)72*. The solution then reads

7~ (771T2uz)1/(1+2uz) 7 EN (Z?/T)iy ~ (,.)/7_)1//(1+2uz)’ (20)

which is consistent with Eq. (17) and Eq.(11). The crossover between the two regimes
occurs at a decoherence rate v, = 77%/(1172) when all the time scales meet ¢ ~ §t ™ Tgees
as indicated by Eq. (15).

In conclusion, our analysis shows that, depending on the ratio v/vy. = v/77 z/(14vz)
the quench dynamics can cross over from the quantum limit (v/7. < 1) to the classical
limit (/7. > 1). A combined scaling behavior Eq. (20) emerges in the strong decoherence
classical regime, which is different from (but consistent with) the Kibble-Zurek behavior
of Eq. (19).

3 Decoherent Quench through Topological Transitions

In order to demonstrate our arguments and explore new terrains in decoherent dynamics,
we now apply the general framework developed above to investigate quantum quenches
in topological insulators. We focus mainly on quenches across the topological transition
separating a Chern insulator from a trivial insulator. Most of our results can be easily gen-
eralized to topological insulators in other dimensions and they demonstrate the principles
behind a diverse range of systems, both topological and non-topological.

In what follows, we first introduce the model Hamiltonian parametrized by a pseudo-
magnetic field in momentum space. We then formulate the related density matrix in
terms of the pseudo-spin vector. By applying the master equation for decoherent quantum
dynamics developed in the previous section, we obtain the effective dynamical equation
for the pseudo-spin, based on which we analyze the universal scaling behavior for the
topological transition.
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3.1 Model Hamiltonian and Band Topology

Consider a two-band Hamiltonian of spinless fermions in (241) dimensions having a time-
dependent band structure

Ht) = 3 Y dhylt) oy 21)
k

where ¢y, is the fermion annihilation operator in momentum space, o = (04, 0y, 0.) rep-
resents the pseudo-spin operators as Pauli matrices, and h,(t) is the time-dependent
pseudo-magnetic field defined for each momentum k = (k;,ky). As opposed to actual
spins in magnetic fields, the pseudo-spin describes orbital degrees of freedom of spinless
fermions. The (instantaneous) band dispersions are given by %|h,|. Tthe two bands are
separated by a gap so long as |hg| # 0 throughout the Brillouin zone. We assume that
the number of fermions is such that they can fully fill a single band, and that the fermion
number does not change with the ensuing quantum dynamics.
Depending on the winding number of fzk =h, / |h| in momentum space

1 . Oh, Oh
w = A’k hy, - —F x —k

= 22
4 FOk. Ok, 22)

the band structure can be classified as trivial (if w = 0) or topological (if w # 0). Our
quench consists of tuning the band structure between the trivial and the topological phases.
Such quenches have been studied extensively in the literature [41-59], but the effect of
decoherence is still largely not understood. Our goal is thus to examine the interplay
between critical quench dynamics and quantum decoherence in topological insulators.

To analyze the critical behavior, we invoke the linearized band structure near the Dirac
point,

hy(t) = (k. k. t/T) (23)

which describes the low-energy Dirac Hamiltonian with linearly tuned mass term. We
assume that the mass term m = t/7 is tuned linearly across the phase transition.

3.2 Quench Protocol and Density Matrix

For the quench protocol, we start with the ground state of an initial Hamiltonian H(¢)
(ty < 0), where the bottom band is filled and the upper band is empty. We then tune the
band structure through a topological transition, where the band gap closes and reopens.
We define our time origin such that the critical point is always reached at ¢t = 0. The
time evolution of the system is governed by the dynamical equation Eq. (6). True to a
free fermion system, the quantum dynamics takes place at each momentum point inde-
pendently. Since the initial state is a product state over momentum states, the density
matrix of the system continues to take the product form throughout the evolution

p(t) =] ek10) () (O], (24)
k

where pg(t) is the single-particle density matrix at momentum k,

1

pp(t) =5 (14 (1) o) . (25)

The pseudo-spin vector n, (t) = Trp(t) c}; o ¢, is introduced in momentum space to pa-
rameterize the density matrix. The “purity” of the density matrix is given by Tr(p?) =
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Figure 2: Comparison of the effects of (a) the damping term A in the LLG equation
and (b) the decoherence term v in Eq. (26).The contribution to the rate of change of the
pseudo-vector is denoted by the green arrow. The dynamics in (a) preserves the norm of
the pseudo-vector but it does not in (b).

[Tk 3 (14 |n|?), such that the system is pure if and only if |n,|? = 1 for all k, i.e. when
the pseudo-spin vector lies on the unit sphere. Due to the non-unitary decoherent dy-
namics, the density matrix in general becomes mixed under the time-evolution such that
the pseudo-spin vectors shrink toward the origin, i.e. m,, — 0. In this limit, the density
matrix for each k is proportional to the identity, corresponding to ‘infinite temperature’.

3.3 Dynamics of Pseudo-Spin Vectors

To describe the pseudo-spin dynamics, we substitute the Hamiltonian H(¢) from Eq. (21)
and the density matrix p(¢) from Eq. (24) into the master equation Eq. (6). In terms of
the pseudo-magnetic field h,(t) and the pseudo-spin n,(t), the dynamic equation reads

on
a—::hkxnk+7hkx(hkxnk) : (26)

Note that Eq. (26) is different from the Landau-Lifshitz-Gilbert (LLG) equation,

ZL:hxn—i—)\nx(hxn) , (27)
used to describe the damping of spin precession in a magnetic field. The LLG equation is
nonlinear in n and preserves the norm of m. In contrast, Eq. (26) is linear in n,, with the
norm of n,, generally decreasing under evolution, which reflects the non-unitary nature of
the decoherent dynamics. Their differences are clearly demonstrated in Fig. 2. Under the
decoherent dynamics, the pseudo-spin n,, tends to be projected onto the direction of the
pseudo-magnetic field hy, which precisely describes the decoherence of off-diagonal density
matrix elements in the diagonal basis set by the Hamiltonian hg - . Similar decoherence
term was also studied in Ref. [60].

As the system equilibrates to the ground state, the pseudo-spin n, anti-aligns with

10
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the pseudo-magnetic field hy, i.e. n, — —h,, so as to minimize the energy

E=Tr(Hp)=3> hy-mn, . (28)
k

When the pseudo-magnetic field h,, flips between topological and trivial configurations,
there are two mechanisms to maintain the pseudo-spin in alignment with the field. In the
weak deoherence regime (7 < v.), as the pseudo-spin precesses about the pseudo-magnetic
field it is also driven by the damping towards its new equilibrium position, as shown in
Fig.3(a). In the strong decoherence regime (y > 7.), the pseudo-spin is driven by the
quantum Zeno effect to follow the field, as shown in Fig. 3(b), since it is constantly being
measured by the environment along the field direction. The crossover decoherence rate .
scales as v, ~ 71/2 with the quench rate 1/7.

In the vicinity the Dirac point at K = 0, where the band gap closes, the pseudo-
magnetic field vanishes as the system is driven through criticality. In this case, the pseudo-
magnetic field ceases to provide the alignment impetus to the pseudo-spin. Therefore,
both alignment mechanisms fail in this region, and the system falls out of equilibrium as
the pseudo-spin loses track of the pseudo-magnetic field. The above argument can be
confirmed by the numerical simulation of the pseudo-spin dynamics Eq. (26) using the
linearized model Eq. (23),

8 ny 0 —t/’i‘ k'y ni
o 12| = t/T 0 —kz| |n2 (29)
ns —ky k‘x 0 ns
k2 + (t/7)? —kaky —kgt/T] [
- | —kiky k24 (t/7)% —kyt/T| |n2
—kyt/T —kyt/T K2+ k; ns

A typical result (at v = 7. ~ T/ 2) is shown in Fig. 4. As hj, flips across the critical point,
nj, is expected to follow the sign change if the dynamics were the adiabatic. However, due
to the gap closing at the Dirac point k = 0, the system can not maintain adiabaticity in
the vicinity of the Dirac point, no matter how slow the driving parameter is tuned. As
a result, a portion of the pseudo-spins fails to flip after the quench, which leads to an

Figure 3: Pseudo-spin dynamics under (a) weak decoherence v = 0.17'/2 and (b) strong

decoherence v = 107/2. The rainbow colors (from blue to red) trace the time evolution.

11
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Figure 4: Evolution of pseudo-spin vectors in momentum space at (a) t = —571/2, (b)

t=—7Y2(c)t =0, (d) t =72, (e) t = 57/2. The black arrow indicates the in-plane
component (nf,ny ) and the background color indicates the nj, component.

emergent nonequilibrium region in the momentum space within the momentum range k
in Fig. 4(e).

3.4 Universal Scaling for Topological Transition

To understand how the nonequilibrium momentum range k scales with the quench rate
1/7, we perform a scaling analysis of the dynamic equation Eq. (29). It is straightforward
to check that rescaling variables t — 71/2¢ k — 771/2k' and v — 7'/24/ eliminates
the 7-dependence in the equation entirely. This implies that the quench dynamics is
universal if the time ¢, the momentum k and the decoherent rate  scale with the quench
time 7 accordingly. Therefore, we conclude that the freeze-out time ¢, the nonequilibrium
momentum range k and the local equilibrium domain size ¢ scale as

t~rt2 kY2 e g2 (30)

which is consistent with the Kibble-Zurek scaling given in Eq. (19), with v =1 and z =1
for the topological transition of Dirac fermions. The scales k and € are dual to each other:
the system falls out of equilibrium within k£ in momentum space, which translates to the
non-adiabaticity beyond ¢ in the real space.

To quantify the nonequilibrium region in the momentum space, we define the excitation
density

Pexc(k) = lim (14 Ry (t) -n, (1) (31)

t—o00

and the thermal entropy density

. 1+sn,(t 1+sn,(t
Sen (k) = —tlggoz |2 (1)l 10%2( |2 kl )|> ) (32)
s=+

in the late time limit. The excitation density pext(k) measures the probability that the
fermion at momentum k is found to be excited in the upper band after quench. The
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thermal entropy density Sy, (k) reflects the distribution of thermal entropy in momentum
space after the quench. Our results are shown in Fig.5 for different decoherernce rates
~. Separated by a crossover decoherence rate 7. ~ 71/2, the weak decoherence (v < 7e)
and the strong decoherence (v > ~.) regimes clearly exhibit different behaviors. In the
coherent limit (y — 0), the nonequilibrium momentum range k ~ 7712 is simply set by
the quench rate 1/7. As decoherence sets in, k will continue to shrink with v, because
decoherence helps drive the system back to equilibrium. In the strong decoherence regime,
a new set of scaling emerges,

I~ 7—1/37_2/3 ’ ]_C ~ (77_)—1/3 ’ f_N (,}/7_)1/3 , (33)

which describes how the momentum range k shrinks with the decoherence rate v (see the
dashed curves in Fig.5). These scaling behaviors are consistent with the general result in
Eq. (20) with » = 1 and z = 1. They may also be obtained by a scaling analysis of the
dynamical equation Eq.(29). In the limit v — oo, Eq.(29) is dominated by its second
term, which allows us to simultaneously remove both v and 7 dependences by rescaling
t — A~ Y372/3¢ and k — (’77’)_1/3]6/, which in turn leads to the scaling as claimed above.

3.5 Numerical Demonstration of Temporal Scaling

To test the above universal scaling behaviors, we propose to monitor the topological re-
sponse of the fermion system as it is tuned between the topological and trivial phases. The
topological response that typically characterizes Chern insulators is the Hall conductivity,
which can be measured in transport experiments.

To define the instantaneous Hall conductivity for nonequilibrium systems, we consider

0 0.5 1 0 0.5 1
B ] Dexc B S

y 712

10-2 |__ s |
0.0 05 1.0 15 2.000 05 1.0 15 2.0

kTl kT2

Figure 5: (a) Excitation density and (b) thermal entropy distribution in momentum space
for different decoherence rates . The line v, demarcates the weak versus strong decoher-
ence regimes in both plots. The dashed black lines indicate emergent new scaling in the
strong decoherence limit.
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perturbing the system by a weak electric field E(t) cranked up over a short time scale T,

(t—t,)/T <
E(t):{Ee 0 for t <t (34)

0 for t >t
We assume that the probe time scale T' is much smaller than the quench time 7, i.e. T < T,
so that H(t) remains almost unchanged during this period, and can be approximated by
H(ty). In response to the perturbation, the current can be calculated from the current-
current correlation function II(t,, ), using —0,A(t) = E(t), viz.
tO
Iito)) = [atTiey A

-, (35)

=-F T/dt’ (ty, to + 1) /T

I1(t,,t) is given by standard linear response theory as
Mt t) = =i Tr ([T(tg), J(®)] plto)) - (36)
where J(t,) = 0,H(t,) and at a later time, we have
J(t) = UM (t = tg) I (tg) U(t — o) (37)

with U(t —t,) ~ e " (t)(t=t)  The Hall conductivity oy (t,) can be read off from Eq. (35),

0
oulty) = 1T [ at' /T ([Jult) , Iyt +1)] plto)) - (38)

—00
Employing H (t,) and p(t,) from Eq. (21) and Eq. (24), we obtain the instantaneous Hall
conductivity oy(t,) in terms of the pseudo-spin vector n,(t,) and pseudo-magnetic field

hy (o),

1 n, - (Op hy X O h
O'H:/d2k k ( k2z k ky k) ‘ (39)
2 hi +T-2
As a special case, when the system equilibrates to the ground state, i.e. n, = —izk,
Eq. (39) then reduces to oy = —27w in the static limit 7" — oo, where w € Z is the band

winding number defined in Eq. (22), as expected in the quantum Hall effect. However,
away from equilibrium, the Hall conductivity does not need to be quantized.

From Eq. (39), we calculate the behavior of the Hall conductivity as the system is
quenched from a topological band structure (w = —1) to a trivial band structure (w = 0).
The result is shown in Fig. 6. The Hall conductivity deviates from the original quantized
value and relaxes to a new quantized value after the quench. It is worth mentioning that
several prior studies [42,47] have stressed that the Chern number of the fermion state,
which is defined only for pure states under coherent evolution, and is given by

dm Oky  Oky
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Figure 6: Hall conductivity across the quench (from topological to trivial phase) with
the decoherence rate (a) v = 0, (b) v = 7%/2, (c) v = 1072, The arrows indicates the
time scale t,, at which the Hall conductivity relax to halfway between the initial and final
quantized values.

remains unchanged across the quantum quench, simply because the continuous time evo-
lution of ny, is a smooth deformation that can not change the topological index. While
this is a correct statement, its meaning may be misinterpreted. The conservation of Chern
number does not imply that the system remains in the original phase, because the Chern
number is not a physical observable and can not be used to characterize the topological
property of a system. Topological properties must be characterized by physical responses,
such as the Hall conductivity, which does switch between different quantized values across
the quench (as shown in Fig.6(a)), even if the Chern number remains the same under
coherent evolution.

To further understand the relaxation of Hall conductivity and its associated universal
scaling near the critical point, we evoke the linearized model Eq. (23), for which the Hall
conductivity becomes'

1 n; (t)
7ult) =3 /dzk K2+ (t/kT)2 + T

(41)

After the quence, in the long time limit, the denominator is dominated by the (¢/7)? term,
and the numerator nj, becomes concentrated about the Dirac point within the momentum
range k, as shown in Fig. 4(e). So the integral scales as oy (t) ~ k?/(t/7)* ~ (t/t)~2, where
the time scale ¢ ~ k7 is introduced according to Eq. (30) and Eq. (33) in both weak and
strong decoherence regimes. Thus we conclude that the Hall conductivity relaxes to the
new equilibrium with a power-law tail behaving as (¢/t)~2.

We can estimate the time scale ¢ from the Hall conductivity data. One possibility is to
consider the time ¢, at which the Hall conductivity relaxes to halfway between the initial
and final value, i.e. oy(t,) = 5 (see Fig.6). Because f is the only time scale governing
the critical quench, the halfway time ¢, is expected to scale in the same way as t. If we
fix the decoherence rate v by controlling the temperature and the environmental coupling
and perform the quench experiment with different quench rates 1/7, we should expect the

The Hall conductivity should be regularized by an additional factor of % in the case of the linearized
model. We ignore the regularization here, as it does not affect any scaling analysis.
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Figure 7: The Hall conductivity oy is calculated under different quench rate 1/7, from

which the halfway time ¢}, is extracted. This timescale, ¢, , exhibits two different scaling
behaviors, consistent with Eq. (42).

following scaling behavior of ¢:
; 723 for T <« A2, (42)
/2 for > 72

This behavior is verified in Fig.7 by our numerical simulations. It provides a testable
prediction for the scaling behavior of the decoherent critical quench. Observation of the
crossover from the % to the % power laws will then serve as an indicator of decoherence in
quantum quench dynamics.

3.6 Numerical Demonstration of Spatial Scaling

To demonstrate the universal scaling of the length scale ¢ after the quench, we break
space-translational symmetry by weak disorder, and investigate the disorder-induced in-
homogeneous spatial distribution of the excitation density in the final state. For this
purpose, we study the spinless Bernevig-Hughes-Zhang (BHZ) model [61] with bond dis-
order. Following a similar quench protocol to that described above, we can elicit the
decoherence-driven crossover of scaling behaviors in real space.

Our purpose of introducing disorder is merely to provide some randomness to seed
the spatial inhomogeneity after the critical quench. However, introducing disorder at a
quantum critical point can sometimes alter the universal properties, as the disorder can
be relevant, which then drives the system to a strong disorder fixed point that is distinct
from the clean limit [62]. To avoid the disorder from affecting the universality, we add
irrelevant disorder, such as bond disorder (i.e. random modulation of bond strengths)?.
We consider the following lattice model, with static randomness in the hopping amplitude

2 Although mass disorder is marginally irrelevant for (24+1)D Dirac fermions, given the finite system size
in our numerics, mass disorder would still have a considerable effect. For this reason, we do not consider
it.
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and the time-dependent on-site potential:

H(t) = Z Z {tr cj“+éu (0% —io")c, + h.c.}

7 pef{z,y} (43)
+ (m(t) — 2) Zci ofe,

where ¢, = (crl, CTQ)T, cro. annihilates a fermion at site r in orbital «, and éu is a unit
vector in the p € (x,y) direction. The mass term m(t) = ¢/7 is linear in time. The hopping
term t, = 1+ §t, fluctuates with dt,., independently drawn from uniform distribution over
[—0t, +dt]. The disorder strength §t is irrelevant to the critical behavior and fixed at
6t = 0.1 in our simulation.

The quench dynamics is described by the master equation of Eq.(6). Although a
Gaussian state does not remain Gaussian under this evolution in general, we make the ap-
proximation to project the density matrix to the single particle subspace Py = Tr (cb cl p).

Then, given the quadratic Hamiltonian H =", H _, C,]; ¢, , one can derive the equation

%7; = M P [H P (44)

Our quench protocol starts with the disordered spinless BHZ Hamiltonian H () given in
Eq. (43) having m(t,) = —0.5 and a random profile of §t,. We use 30 x 30 site square
lattice in which the chemical potential is chosen to yield a half-filled band. The initial
density matrix in its first quantization form can be expressed as the projection operator
onto the states below the Fermi level, viz.

Plty) =D | nalte) )} ¥nlty) |O(=E,(ty)) (45)

where ‘ Yn(ty) ) is the instantancous eigenstate of H(t;) with the eigenenergy Ey (%), and
©(z) is a step function guaranteeing that only negative energy states are included in the
sum. The time of evolution of the density matrix P follows Eq. (44) until ¢; such that
m(t;) = 0.5. The spatial distribution of any physical observable O can be computed as
O(r) =Y, (r.a } OP(t) ‘ r,a ) for each random realization. We average the disorder
over 50 different random realizations.

Following the recent study of Kibble-Zurek behavior in disordered Chern insulators
[63], we utilize the spatial excitation density as a physical observable and extract the
correlation length scale from the spatial autocorrelation function. The operator for the

excitation density is the projector onto the positive energy bands of the final Hamiltonian
H(t,), viz.

Pex,f = Z ‘ wn(tf) ><wn<tf) ‘ G(En(tf))7 (46)

and the spatial excitation density is given by

fex(r) = Z (r,o | PextP(ty) |7, 0) . (47)

o

The time evolution of the spatial excitation density in a specific random realization is
shown in Fig. 8. Initially, the spatial excitation pattern is determined by the bond disorder.
In the earliest stage of the evolution, the system evolves adiabatically, and the spatial
excitation pattern remains almost unchanged until the freeze-out time t/7 = —0.2. After
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t/T = —0.2, the evolution becomes diabatic and the spatial excitation pattern reshapes
significantly. After passing the second freeze-out time t/7 = +0.2, the evolution is again
quasi-adiabatic and the pattern of the spatial excitation density again remains mostly
unchanged.
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Figure 8: Time evolution of the excitation density distribution fex(7) across the critical
quench.

To extract the length scale from the spatial excitation density fex(r), we compute the
auto-correlation function A(r),

Zéfex 5fex |7. 7"|T/Z 5fex s (48)

where fox = V713" fex(r) is the average excitation density and & fex(r) = fox(7) — fex -
We collect the auto-correlation A(r) for each random realization separately, which typically
exhibits an exponentially decaying behavior in . We define the correlation length £ as the
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length scale when A(§) — 0. For each quench rate 1/7, we compute the disorder-averaged
correlation length &. From the scaling behavior mentioned above, we expect the following
scaling behavior of &:

B 1/3 2
N{T for 7 < 7, (49)

V2 for 7> 42,

This behavior is supported by our numerical simulations, as shown in Fig. 9. Thus we have
demonstrated that the scaling of the freeze-out length scale € can be extracted from the
excitation density profiles after the quench, which provides another experimental scheme
to test the proposed scaling behavior.
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Figure 9: The correlation length scale &, in each trial is defined by the spatial decay of
auto-correlation function A(,) defined inEq. (48). The disorder averaged &, is obtained
from 50 trials. The critical exponents in the strong and weak decoherence limits are
consistent with Eq. (49).

4 Summary and Outlook

In conclusion, we have offered a framework for studying the quantum critical quench
dynamics in the presence of decoherence in the energy basis, corresponding to the system
energy being continuously monitored by its environment. In the strong decoherence limit,
we have found a cross-over to a scaling regime (Eq. Eq.(20)) that differs from that on
the standard Kibble-Zurek form and is governed by the freeze-out time & ~ 72v2/(1+2v2)
and the freeze-out length & ~ 72¥/(142v2) " Thig scaling behavior would be universal and
manifest in a slew of observables, such as defect densities. We have applied our formulation
to the case of quenching through a topological phase transition in a Chern insulating
system and shown scaling in the relaxation of the Hall conductivity and in post-quench
autocorrelations of post-quench spatial domains of excitation densities.
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Immediate further work would involve analyses of scaling behavior in other measurable
quantities, such as residual energies and entanglement entropy. While this work has been
confined to global quenches, it can also provide a starting point for local quenches across
topological transitions. In this case, we expect a highly interesting interplay between
propagation of boundary modes and decoherence. As another direction of study, while
the topological system in consideration here is two-dimensional, the analysis for such
free fermionic models is very easily extendable to other dimensions. In three-dimensions,
scaling analyses can be applied and contrasted for observables that target the bulk versus
the surface. In one-dimension, the Kitaev chain would offer a beautiful prototype for
studying much sought-after Majorana fermion physics and the crucial role of decoherence
in topological qubits.

Our results apply to decoherent quench dynamics through generic quantum phase
transitions, and is not limited to the topological transition examined in this work. For
example, our analysis could be applied to symmetry breaking transitions in spin models of
different dimensions, where the post-quench magnetic domain size will follow the scaling
behavior of £. In superconductors and Bose-Einstein condensates, our analyses would
apply to the generation and dynamics of vortices, now with the twist of having decoherence
present. In the presence of more complex order parameters, Kibble-Zurek physics has
probed more exotic defects; here too, dissipation effects would give rise to new dynamics
and possibly even stabilization of some of these defects.

The discussion of critical quench dynamics in open systems has also been emphasized
within other scenarios [64—69]. Specifically, Ref. [67] studied a critical quench as the system
weakly couples to a thermal bath. Ref. [69] studied a critical quench in the presence of
dissipation due to the system-environment interaction. The coherent unitary dynamics
will compete with dissipative dynamics to determine the time scale when the system falls
out of equilibrium. The scaling behavior will cross over from the weak dissipation to the
strong dissipation regimes in the vicinity of a crossover temperature T, [67] or a crossover

dissipation rate u. [69] which scale with the quench rate 1/7 as
T B (50)

In these cases, the system-environment coupling term generally does not commute with the
system Hamiltonian, which allows the system to exchange both energy and quantum in-
formation with its environment (in the static limit). However, in this work, we considered
a different class of system-environment interaction, where the interaction term commutes
with the system Hamiltonian, such that the system only exchanges quantum information
with the environment, with energy preserved (again in the static limit). In particular,
we focused on decoherence in the energy eigenbasis, which can be realized by a quantum
non-demolition measurement of the system Hamiltonian. In this case, the coherent dy-
namics will compete with the decoherent dynamics. Because the correlation time and the
decoherence time scale differently with the excitation gap as the system approaches the
critical point, their competition leads to the crossover from weak to strong decoherences
regimes at a crossover decoherence rate (quantum non-demolition measurement strength)
v, that scales as v, ~ 7v2/(1472) which resembles the case of dissipation in Eq. (50).
Finally, turning to experiments, the range of systems in which quantum Kibble-Zurek
physics has been explored provides a very fertile arena for studying the effect of deco-
herence, both in terms of it being integral to physics systems as well as in accessing
the new strong decoherence regime predicted in this work. Controlled tuning and state-
of-the-art probes are enabling access to rich non-equilibrium regimes. Critical quantum
quench dynamics and associated Kibble-Zurek behavior have been actively studied in su-
perconductors [70-72] and a variety of ultracold atomic [73-77] and ionic systems [78-80)].
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Kibble-Zurek scaling has been recently applied to identify universality classes of quantum
critical points in experiments [81-83]. While any of these systems could perhaps form can-
didates for probing decoherence effects, the specific instance of Chern insulators studied
here could potentially be realized in cold atom systems [47,48, 84] and Moire superlat-
tice systems [85-91]. With regards to settings where decoherence is naturally present,
perhaps the most germane situations involve qubits, and quantum simulators and an-
nealers [92-96]; with the increasing focus on quantum information and computation, and
the need to harness speed and efficient switching of quantum states, understanding the
interplay between quantum quenching and decoherence is now crucial.
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