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Abstract

We theoretically investigate the stochastic decay of persistent currents in a toroidal ultra-
cold atomic superfluid caused by a perturbing barrier. Specifically, we perform detailed
three-dimensional simulations to model the experiment of Kumar et al. in [Phys. Rev. A
95 021602 (2017)], which observed a strong temperature dependence in the timescale of
superflow decay in an ultracold Bose gas. Our ab initio numerical approach exploits a
classical-field framework that includes thermal fluctuations due to interactions between
the superfluid and a thermal cloud, as well as the intrinsic quantum fluctuations of the
Bose gas. In the low-temperature regime our simulations provide a quantitative descrip-
tion of the experimental decay timescales. At higher temperatures, our simulations give
decay timescales that range over the same orders of magnitude observed in the experiment,
however, there are some quantitative discrepancies. In particular, we find a much larger
perturbing barrier strength is required to simulate a particular decay timescale (between
∼0.15µ and ∼0.5µ), as compared to the experiment. We rule out imprecise estimation of
simulation parameters, systematic errors in experimental barrier calibration, and shot-to-
shot atom number fluctuations as causes of the discrepancy. However, our model does not
account for technical noise on the trapping lasers, which may have enhanced the superflow
decay in the experiment. For the intermediate temperatures studied in the experiment,
we also observe some discrepancy in the sensitivity of the decay timescale to small changes
in the barrier height, which may be due to the breakdown of our model’s validity in this
regime.

Contents

1 Introduction 2

2 Details of the experiment 4

3 Theoretical model 5
3.1 Classical field methodology 5
3.2 SPGPE Theory 7
3.3 The winding number 8
3.4 Initial state generation 9

3.4.1 Phase imprinting 10
3.5 Perturbing barrier and experimental sequence 10

1

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.021602
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.021602


SciPost Physics Submission

4 Results and Analysis 12
4.1 Qualitative features 12
4.2 Quantitative comparison to experiment 14

5 Discussion 16
5.1 Limitations of the theoretical model 16

5.1.1 Validity in the low-temperature limit 16
5.1.2 Truncated Wigner Approximation 17
5.1.3 Static thermal reservoir 17
5.1.4 Parameter estimation 18

5.2 Uncharacterised experimental effects 18
5.2.1 Shot-to-shot number fluctuations 18
5.2.2 Barrier Calibration 19

5.3 Optical trap imperfections 20

6 Conclusions 20

A Numerical methods 21

B Fixing simulation parameters 23
B.1 Chemical potential 23
B.2 Energy cutoff 23
B.3 Grid size 23
B.4 Sensitivity of results to barrier width and temperature 24

C Multi-timescale fits of decay 26

D Contribution of energy-damping terms 27

References 31

1 Introduction

Ultracold atomic Bose gases are versatile, highly configurable systems, in part due to
their isolation from environmental effects, precise controllability with magnetic, optical,
and rf fields, and the accessible imaging of many atomic observables [1, 2]. This makes
these systems ideal platforms for experimentally investigating superfluidity and many-
body quantum phenomena [3–6]. In particular, atomic Bose-Einstein condensates (BECs)
confined to multiply-connected geometries such as a toroid are exceptionally well-suited
for investigating persistent currents of superfluid flow [2, 7, 8], which may provide insights
into the nature of supercurrents in superconducting materials. The first experimental
demonstrations of persistent flow in a toroidal BEC were performed more than a decade
ago [9, 10]. Since then, experiments with superfluid toroidal BECs have investigated
the creation and stability of persistent currents [11–15], atomic-gas analogs of quantum
phenomena in electronic devices [16, 17], quantum field dynamics in cosmic inflation [18],
and compact atom interferometry in optical waveguides [19]. There have also been many
recent theoretical works that have investigated superfluidity and persistent currents in one-
dimensional systems [20–25], protocols for atomic-gas superfluid circuits [26, 27], superflow
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in dipolar supersolids [28], and mechanisms for superflow decay, both within mean-field
theory [29–31] and beyond [32, 33].

Superfluid studies in toroidal atomic gases are particularly relevant to the emerg-
ing field of atomtronics, which broadly aims to develop circuit-based atomic gas de-
vices [34, 35]. Toroidal superfluids could be used realize the matter-wave equivalent of
a superconducting quantum-interference device (SQUID) [36]. However, a robust, well-
functioning atomtronic SQUID requires precision control over the superflow current at
the single-quantum level - as indeed does almost any atomtronic device based on super-
fluidity. Constructing theoretical models capable of quantitatively describing superfluid
experiments is therefore essential for the future development of increasingly sophisticated
atomtronic devices [37].

Here, we focus on one critical aspect of superflow: the lifetime of persistent current
states in the presence of a repulsive barrier. There have been several experiments where
a weak-link perturbing barrier was used in toroidal BECs to create persistent current
states and alter their stability [10–13, 38, 39]. However, the experimentally-measured
critical velocity of superflow significantly differs to the predictions of mean-field theory [10,
39]. Indeed, despite numerous theoretical investigations into the underlying mechanisms
of superflow decay in the presence of a perturbing barrier [26, 29–33, 40], a detailed
understanding of the nature and origin of superflow instability remains lacking.

Recently, an experiment by Kumar et al. studied the temperature dependence of
superflow decay in a toroidal atomic superfluid [15]. Their experiments found that the rate
of superflow decay was strongly dependent on temperature and quantitatively disagreed
with both quantum tunnelling through an energy barrier and thermal activation over
an energy barrier1. A subsequent theoretical analysis found that the experimental results
could also not be reproduced with a model of thermally-activated phase slips within mean-
field theory [31]. These findings, combined with the theoretical analysis [32] of a related
experiment by Ramanathan et al. [10], suggests that a more sophisticated theoretical
framework is needed to quantitatively model superflow decay in a toroidal BEC.

In this work, we perform detailed three-dimensional simulations to model the experi-
ment of Kumar et al. [15]. Our model is constructed within classical field (c-field) method-
ology, a well-developed framework for quantitatively describing the non-equilibrium dy-
namics of dilute Bose gases in the quantum degenerate regime [41]. In particular, our
model goes beyond mean-field theory and includes both the inherent fluctuations of the
quantum state and finite-temperature interactions with an incoherent thermal reservoir.
The latter is essential in order to describe the strong dependency of superflow decay on
temperature observed in the experiment. Notably our model does not contain any fitted
parameters, with all simulation parameters determined ab initio from the experimental
atom numbers and temperatures.

Our simulations are able to capture both qualitative and quantitative features of the
experiment, with quantum and thermal fluctuations leading to a stochastic decay of the su-
perflow. We calculate the timescale of the decay and compare this to experimental values.
The computed decay timescales range over the same orders of magnitude as the experi-
ment and we see quantitative agreement for the lowest temperature studied. However, at
higher temperatures the simulations require a larger perturbing barrier height than the
experiment to achieve the experimentally-observed decay timescales. This discrepancy is
largest for the highest temperature studied in the experiment, where the validity of our
model is well established. This suggests that there is some aspect of the experiment that
is not captured in our model. Although we have explored some possibilities for the noted

1The energy barrier used in these models assumed that a solitonic vortex was the lowest-energy excita-
tion capable of coupling quantized circulation states.
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Figure 1: Schematic of the key steps in the experimental procedure of Ref. [15]. (i) The
atomic cloud is first prepared in a toroidal trap at temperature T . (ii) The condensate is
then prepared in the l = 1 circulation state by stirring a barrier around the condensate.
(iii) To induce decay of the superflow, a barrier with strength weaker than the chemical
potential is raised over a period of 70ms, held constant for time thold, and then lowered
over 70ms. (iv) A measurement of the circulation is then made by releasing the atoms
from the toroidal trap and subsequently observing their interference with an auxiliary disk
of atoms in the center (pictured in red).

discrepancies in this work, the precise origin of this effect remains unclear.

2 Details of the experiment

Here we briefly describe the experimental procedure of Ref. [15]. The key steps are sum-
marised schematically in Fig. 1. In the experiment, ultracold 23Na atoms were confined
in a toroidal optical trapping potential with a mean radius of r0 = 22.4µm. Their ex-
periment considered Bose gases prepared at four different temperatures: T = 30, 40, 85
and 195 nK. For the lowest two temperatures, vertical trapping was provided by a blue-
detuned beam. For the higher temperatures, the vertical confinement was provided by a
red-detuned beam, with atoms residing in the region of greatest light intensity.

To prepare the atomic superfluid in the first quantized circulation state (l = 1), a weak-
link barrier slightly stronger than the chemical potential was raised adiabatically, stirred
around the condensate as depicted in Fig. 1(ii), and then adiabatically lowered. In total
the stirring procedure took ∼1s and prepared the desired circulation state with a fidelity
of roughly 96%. The barrier itself was generated by rapidly scanning a Gaussian beam
across the radial extent of the condensate, the time-average of which is approximately
constant over the condensate density.

To induce decay of the superflow from the l = 1 circulation state to a non-circulating
state (l = 0), the experiment introduced a stationary perturbing barrier with peak height
weaker than the BEC’s chemical potential. This barrier height was raised linearly over
a period of 70ms, held at its maximum height Vb for some variable time thold between
0.2 s and 4.6 s, and then lowered linearly over another 70ms period. In order to keep the
total time of the experiment constant at ∼7s, there was a variable time delay between the
stirring stage and raising the barrier.

To measure the circulation state, the BEC was released from the toroidal trap and
allowed to interact with a reference disk of atoms (l = 0) held at the center of the trap.
The winding number l was then extracted by observing the interference between the
toroidal BEC and disk atoms. The measurement works as follows: if the BEC is in an
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l = 1 persistent current state when it is released from the trap, then the ‘hole’ in the
atomic density at the center of the cloud remains even as the cloud falls and expands.
Consequently, the atomic cloud does not significantly overlap with the reference disk of
atoms, yielding no measureable interference. In contrast, if the superflow had decayed to
the l = 0 state, the hole in the atomic cloud fills during free expansion, resulting in an
interaction between the released atoms and the reference disk, and therefore a measureable
interference pattern. For a given set of parameters {T, Vb, thold}, the measurement was
repeated 16−18 times to calculate the mean winding number 〈l〉.

The decay timescale τ was computed by varying thold while keeping T and Vb fixed,
and then fitting 〈l〉 to an exponential model. Given the finite number of measurements
and the range of thold values considered in the experiment, there was only a finite range
of τ that could be distinguished from infinitely fast decay (τ = 0) or no decay (τ = ∞).
The largest value of τ distinguishable from τ =∞ corresponds to the case where, for the
largest value of thold, only one of the 18 measurements registers a decay event. Similarly,
the smallest value of τ distinguishable from τ = 0 corresponds to the case where, for the
smallest value of thold, all but one of the 18 measurements registers a decay event. This
sets limits on the possible values of 〈l〉, giving the range of τ values measurable by the
experiment as 70 ms . τ . 80 s.

3 Theoretical model

Decay of superflow due to the presence of a perturbing barrier is an inherently out-of-
equilibrium scenario, for which there are limited theoretical tools capable of capturing
both quantum and thermal effects. Our model of the experiment reported in Ref. [15] is
formulated within the c-field theoretic framework, which is inherently non-perturbative
and therefore well suited to studying a range of out-of-equilibrium phenomena, at both
zero and finite temperature [41]. In this section we describe both our c-field model and
our numerical simulation procedure.

3.1 Classical field methodology

The essential idea of c-field methods is that the macroscopically occupied modes of a
degenerate Bose gas can be well described by an equation of motion for a classically-
valued field ψ. Formally, c-field theories are constructed by dividing the full quantum
field theory into a low-energy band C, which contains all modes of high occupation, and
a high-energy band I which contains the remaining sparsely-occupied modes. This leads
to a decomposition of the field operator as:

ψ̂ = ψ̂C + ψ̂I , (1)

where ψ̂C and ψ̂I are field operators for the C and I regions, respectively. An energy
cutoff εcut defines the division of the field theory into C and I regions and a projector P
ensures the two regions remain separated dynamically, i.e. P{ψ̂} = ψ̂C. Classical field
theories treat ψ̂C as a classical field ψ, and thus neglect the discrete nature of the atoms
within the C region. In contrast, the I region is treated as a static thermal reservoir.
The dynamics of the c-field ψ can be determined via a phase-space correspondence that
maps the equations of motion for ψ̂C to equations of motion for ψ [41]. Formally, within
the phase-space framework, ψ is a stochastic sample of the C region’s approximate phase-
space distribution, with expectations of physical quantities given by ensemble averages of
moments of ψ. However, an individual sample of ψ can often be loosely interpreted as the
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outcome of a single experimental run where, for example, the density of the Bose gas is
|ψ|2 [42]. For further details regarding c-field methodology, and examples of applications
to non-equilibrium phenomena in Bose gases, see Ref. [41] and references therein.

Classical field methods have successfully modelled ultracold Bose gases at both zero
and finite temperature [41, 43]. For systems near zero temperature, the occupation of
the I region is negligible and thus the dominant beyond-mean-field effect is often inherent
quantum fluctuations of the Bose gas. Within this regime, zero-temperature truncated
Wigner (TW) [44–46] is the dominant c-field approach. For the closed-system dynamics
typical of many BEC experiments, ψ is governed by a Gross-Pitaevskii equation (GPE)
with initial conditions sampled from the Wigner distribution of the initial state. For
many T = 0 non-equilibrium phenomena it is sufficient to treat this initial condition as
a multimode coherent state that is sampled by seeding the initial mean-field condensate
wavefunction with on average half an atom of vacuum noise per mode [47]. Zero temper-
ature TW with this initial condition has successfully modelled BEC dynamics in regimes
where nonclassical particle correlations become important [48–57]. For finite-temperature
studies, the relevant c-field theory is the stochastic projected Gross-Pitaevskii equation
(SPGPE), which describes interactions between degenerate modes of the quantum field
with a static thermal reservoir [58]. The SPGPE and its sub-theories have been used
extensively to study Bose gases both in and out of equilibrium, such as in Refs. [59–61]
and Refs. [41, 62–77], respectfully. Notably, the SPGPE has been able to quantitatively,
describe experimental results, such as in Refs. [59, 78–81]. The SPGPE is typically applied
to systems with a large thermal fraction, usually at temperatures ranging from T∼Tc/2
(where Tc is the critical temperature of condensation) to just over T&Tc.

The experiment of Kumar et al. that we model in this work investigated superflow
decay in the presence of a relatively small thermal cloud; specifically, the experiment
studied atomic superfluids at temperatures between T = 30nK (∼0.05Tc) and T = 195nK
(∼0.4Tc) [15]. Unfortunately this is outside the typical regime of validity for both zero-
temperature TW, which assumes a negligible thermal cloud, and the SPGPE, which as-
sumes a larger proportion of thermal atoms. This is a low-temperature regime where
neither quantum or thermal fluctuations truly dominate over one another. To address this
regime, our model combines zero-temperature TW and SPGPE theory to include both
quantum and thermal fluctuations, following the approach outlined in the Supplemental
Materials of Ref. [57]. In our model, initial states are first sampled from the grand canoni-
cal ensemble of a Bose gas at thermal equilibrium using the SPGPE. Quantum fluctuations
are then included by adding half a quantum of vacuum noise to each mode of the sample,
as is done when sampling a coherent state in TW [47]. These initial states are then evolved
using the SPGPE, with parameters describing reservoir interactions estimated from the
atom number and temperature reported in the experiment. This model reduces to zero-
temperature TW at very low temperatures, and to SPGPE at higher temperatures, both
of which are expected to be quantitative models in their regimes of validity.

Additionally, a quantitative description of Ref. [15] requires the three-dimensional form
of the SPGPE. This is because the vertical confinement in the experiment, ωz, is not
sufficiently large that all excitations in the z dimension are suppressed. Specifically, the
trapping parameters of the experiment do not satisfy the condition ~ωz � µ, which is
required for an effective two-dimensional model to be a quantitatively correct description
of the Bose gas.
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3.2 SPGPE Theory

The simple-growth stochastic projected Gross-Pitaevskii equation can be written as:

i~dψ = P
{

(1− iγ)(L − µ)ψdt+ i~dξγ(r, t)
}
, (2)

where µ is the chemical potential of the reservoir, dξγ(x, t) is a complex Gaussian noise of
mean zero and correlation

E[dξ∗γ(r)dξγ(r′)] = 2γ
kBT

~
δ(3)(r− r′)dt , (3)

and

L = − ~2

2m
∇2 + Ut(r, z) + Ub(r, θ, z) + g|ψ(r, θ, z)|2 (4)

is the Gross-Pitaevskii mean-field operator in cylindrical coordinates. Here g = 4π~2as/m
is the atom-atom interaction strength where as ≈ 52a0 for 23Na, which was the atomic
species used in the experiment. The term Ut(r, z) corresponds to the toroidal trapping
potential, which is approximately harmonic:

Ut(r, θ, z) =
1

2
m
(
ω2
r (r − r0)2 + ω2

zz
2
)
, (5)

where r0 = 22.46µm is the mean radius of the ring in the experiment of Kumar et al. The
form of the SPGPE we use in this work, Eq. (2), neglects number-conserving scattering
interactions between the C and I regions, which are often referred to as the ‘scattering’ or
‘energy-damping’ terms [82]. These terms are commonly neglected in studies with SPGPE
under the assumption that they do not significantly contribute to system dynamics near
equilibrium [41]. We have confirmed that these terms have little quantitative effect on the
results of this work (see Appendix D).

The projector P restricts the c-field ψ to the low-energy subspace C defined by εcut.
This energy cutoff is typically chosen such that the highest-energy single-particle modes
contained within the C region have an occupation of roughly ncut∼1−10. We choose the
energy cutoff by inverting the Bose-Einstein distribution for a fixed ncut [83]:

εcut = ln

(
1 +

1

ncut

)
kBT + µ . (6)

In all our calculations, we fix ncut = 1, which gives an average occupation of n ≈ 1 for
single-particle modes near the cutoff (see Fig. 11 in Appendix B).

The dimensionless damping strength γ in Eq. (2) gives the rate of reservoir interactions,
and characterises the speed at which the c-field approaches thermal equilibrium with
the thermal reservoir. It can be a priori determined from the chemical potential of the
reservoir µ, the reservoir temperature T , and the energy cutoff εcut [62]:

γ =
8a2

s

λ2
dB

∞∑
j=1

eβµ(j+1)

e2βεcutj
Φ[eβ(µ−2εcut), 1, j] , (7)

where β = 1/(kBT ), λdB =
√

2π~2/(mkBT ) is the thermal de Broglie wavelength, and
Φ[z, x, a] is the Lerch transcendent. If γ = 0 and the projector is neglected, then Eq. (2)
becomes the Gross-Pitaevskii equation (GPE).

We numerically implement Eq. (2) in a basis of approximate single-particle modes of
the toroidal trap, extending the approach outlined for the projected GPE in Ref. [84]. A
notable benefit of this approach is that the energy cutoff can be consistently defined in this
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l=0 l=1

Figure 2: A visualisation of exemplary phase profiles in the z = 0 plane in a toroidal
geometry, for quantized circulation states with winding number l = 0 (left) and l = 1
(right). For the l = 1 circulation state, the phase increases by 2π as it winds around
the central hole. The phase is only well defined in the region where there is significant
superfluid density, and thus the center of the torus is omitted in this image.

single-particle basis, which diagonalises the Hamiltonian at high energies. Furthermore,
only a relatively small number of single-particle modes are required in order to represent
the C region, compared to the much larger number of points required to represent the
c-field on a three-dimensional cartesian grid. This enables the detailed finite-temperature
3D simulations performed in this work which, given the long decay timescales observed
in the experiment, are impracticable using grid-based methods. Details of our simulation
implementation are given in Appendix A. A description of the simulation parameters, and
a justification of the parameter values chosen, is found in Appendix B. Unless otherwise
stated, SPGPE simulation results reported in this work are averages over an ensemble of
96 trajectories. All reported observables are accompanied by a 95% confidence interval,
estimated as twice the standard error of the ensemble averages.

3.3 The winding number

It is well known that the circulation C around some closed loop D in a superfluid is
quantized in integer multiples of 2π~/m [85]:

C =

∮
D
~v · ~dl =

2π~
m

l , (8)

where ~v = (vr, vθ, vz)
ᵀ is the superfluid velocity field in cylindrical coordinates and the

winding number l is an integer. The quantization of circulation is due to the relationship
between velocity and the phase of the superfluid order parameter, as the phase must
change by an integer multiple of 2π after ‘winding’ around the loop D.

For circulation around the annulus of a toroidal superfluid, the winding number is a
topological quantity. This is because the torus is a multiply-connected topological space,
which allows winding of the superfluid phase without the existence of vortices. In Fig. 2,
we show exemplary phase profiles for the zero circulation state (l = 0), and the l = 1
circulation state with 2π phase winding.

In our numerical calculations, we compute l in each stochastic trajectory of the SPGPE
and take the ensemble average to get the average winding number 〈l〉. For convenience
of calculation, we choose a loop around the trap minimum, which gives the following
expression for the winding number (in cylindrical coordinates):

〈l〉 =
mr0

2π~
E
[∫ 2π

0
dθ vθ(r = r0, θ, z = 0)

]
, (9)
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where E[∗] denotes an ensemble average over stochastic trajectories. In any given tra-
jectory, we calculate the angular velocity field vθ by dividing the particle current by the
density:

vθ(r, θ, z) =
jθ(r, θ, z)

n(r, θ, z)
=

~
mr

Im{ψ(r, θ, z)∗∂θψ(r, θ, z)}
|ψ(r, θ, z)|2

. (10)

3.4 Initial state generation

The initial conditions for our simulations of Eq. (2) are stochastic samples of the C region’s
quantum state at thermal equilibrium in the grand canonical ensemble. It is common for
finite-temperature studies in the c-field framework to neglect quantum fluctuations in the
initial state, on the assumption that they are dominated by thermal fluctuations in the
high-temperature regime where SPGPE is typically applied. However, this assumption
is not appropriate for the regime studied in Kumar et al., where neither quantum and
thermal fluctuations dominate over the other. To include both quantum and thermal
effects, we add half an atom of vacuum noise per mode to initial samples of the grand
canonical ensemble. This approach is similar to that used in Ref. [86] and the Supplemental
Material of Ref. [57], and is akin to sampling the Wigner distribution of an incoherent
mixture of coherent states that reproduce the statistics of the grand canonical ensemble.
Specifically,

ψ(t = t0) = φtherm +
1√
2
P{η} (11)

where φtherm is the complex amplitude of a multimode coherent state |φtherm〉, sampled
such that ρ̂ = E[|φtherm〉 〈φtherm|] is the density matrix for a thermal equilibrium state in
grand canonical ensemble2, and η is a complex Gaussian noise satisfying the correlation

E[η(r)∗η(r′)] = δ(3)(r− r′) . (12)

Each sample φtherm is given by evolving the simple-growth SPGPE to equilibrium. Phys-
ically, the SPGPE describes the exchange of particles and energy between the c-field ψ
and a static thermal reservoir of chemical potential µ and temperature T . Consequently,
it eventually evolves any initial state to thermal equilibrium in the grand canonical en-
semble [41]. The value of the number-damping strength γ does not have any impact on
the equilibrium properties in SPGPE theory, and thus may be chosen to give rapid con-
vergence to equilibrium. In our simulations φtherm, is sampled by evolving Eq. (2) with
γ0 = 1.0 for 100 trapping periods. Crucially, this sampling method provides the state of
an interacting thermal Bose gas at equilibrium within the c-field approximation.

The combination of the noise η and the stochastic noise in the thermal state sampling
of φtherm gives an initial simulation state that includes both quantum and thermal fluc-
tuations in the grand canonical ensemble. Projecting the noise η via the projector P{∗}
ensures that the c-field remains within the low-energy subspace C. In practice, the pro-
jector is implicitly included when adding the noise in the single-particle basis (analagous
to the projection of the noise term in the SPGPE, which is described in Appendix A).

A consequence of including quantum fluctuations in our initial state is that there will
be formal corrections in the calculation of observables from the c-field ψ, due to the non-
commutativity of the quantum field operators ψ̂C with their conjugate ψ̂†C [41]. However,
due to the large atom numbers studied in this work (on the order of 105), these corrections
are small and can thus be neglected.

2Explicitly, |φtherm〉 = exp
[√

N(âφtherm − â
†
φtherm

)
]
|vac〉, where âφtherm =

∫
drφtherm(r)ψ̂C(r) and N =∫

dr |φtherm(r)|2. Here φtherm(r) is the position-space representation of φtherm.
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Figure 3: Schematic of the simulation protocol, characterised by peak barrier height
maxr,θ[Ub(r, θ, t)] = χ(t)Vb as a function of simulation time. In each simulation, the initial
state is first generated (shaded blue) by evolving the SPGPE to equilibrium for t < t0. At
t = t0, the initial state sample is seeded with quantum fluctuations and imprinted with a
2π phase winding. After some time t1− t0, the barrier is linearly ramped up over a period
of time tramp until it reaches its maximum height (χ = 1) at t = t2. The barrier is held
at that maximum height for time thold and then linearly ramped down over the period
t3 < t < t4.

3.4.1 Phase imprinting

In the experiment, an l = 1 circulation state is prepared by ‘stirring’ the perturbing
barrier around the superfluid (see the Supplemental Material of Ref. [15]). Assuming this
procedure perfectly prepares the metastable l = 1 circulation state, we may model this by
instantaneously imprinting a 2π phase winding on our initial state:

ψ(0)→ ψ(0)eilθ (13)

with l = 1. Modes with energy above the cutoff εcut are incoherent, and so are unaffected
by this transformation, and thus the thermal reservoir is treated as non-rotating.

3.5 Perturbing barrier and experimental sequence

In the experiment, the perturbing barrier is created by dithering a Gaussian beam in the
radial direction such that its time average is [31]:

Ub(r, θ, t) = χ(t)
Vb
2

[
erf

(√
2

w
(r − r0 + ld/2)

)
− erf

(√
2

w
(r − r0 − ld/2)

)]
e−

2r2(θ−θ0)
2

w2 ,

(14)
where w = 6µm is the 1/e2 half-width of the Gaussian beam and ld = 21.8µm is the width
of the dither. The bracketed term ensures that the barrier vanishes at the edge of the
torus. In our simulations, we choose the barrier to be centered at θ0 = −π

2 . The time-
dependent element 0 ≤ χ(t) ≤ 1 describes the raising and lowering (‘ramping up/down’)
of the barrier.
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Figure 4: Single trajectory of the SPGPE for a simulation of the experimental sequence
at T = 85nK with the barrier held at its maximum strength Vb = 0.82µ for thold = 600ms.
Slices of the density normalised to 1 and phase in the x − y plane are shown in (a) and
(b), respectively, at different times. The winding number as a function of time is shown
in (c), with the initial state generation period t < 0 (shaded blue) and barrier ramping
periods (shaded red) shown. At time t = 1ms (i), the superfluid is in the metastable l = 1
circulation state, with a 2π winding of the phase profile. The barrier is raised in strength
over the period 100ms < t < 170ms. At t = 170ms (ii), the barrier reaches its maximum
strength and the density in the region of the barrier is visibly depleted. The superflow
decays stochastically from l = 1 to l = 0 during the period where the barrier is held at
its maximum 170ms < t < 770ms. After the decay event occurs (iii), the density remains
depleted in the region of the barrier, however the 2π phase winding vanishes. The barrier
is then ramped down over the period 770ms < t < 840ms, at the end of which (iv) the
density in the region of the barrier is restored.

The simulation protocol closely follows the experimental sequence and is shown in
Figure 3. After the initial state is prepared as described in Sec. 3.4, the barrier is ramped
up in strength over some time tramp, held at its maximum value (χ = 1) for thold, and
then ramped down over tramp. The ramp is linear, e.g. during the ramp-up sequence
χ(t) = (t− t1)/tramp. Following the experiment, our simulations use tramp = 70ms.
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Figure 5: Average winding number as a function of time, for different temperatures and
barrier heights, which are scaled by the chemical potential, κ = Vb/µ. Shaded bars
give a 95% confidence interval based on the standard error. The period of time t < 0
corresponds to initial state generation, with quantum fluctuations and 2π phase winding
imprinted at t = 0. Vertical red shaded regions denote ramping-up/down of the perturbing
barrier. For a given temperature, increasing the barrier height decreases the stability of
the l = 1 circulation state, leading to faster decay of 〈l〉. Dashed lines are fits of the form
〈l〉 = c0 exp ((t− t2)/τ), fitted to simulation data in the time period between the shaded
red regions, where t2 = 0.17s is the time taken for the barrier to reach its maximum height.

4 Results and Analysis

4.1 Qualitative features

To ensure the validity of our numerical procedure, we compare qualitative features of our
simulations to the experiment of Ref. [15], as well as to the theoretical work of Mathey et
al. [32], who attempted to model the related experiment of Ramanathan et al. [10].

As noted by Mathey et al., zero-temperature mean-field theory (the GPE) predicts
there is either no decay over the lifetime of the experiment or rapid decay (in less than
10ms), depending on whether the value of Vb is above some critical value or not. This
suggests the dynamics of the superflow is driven by Hamiltonian dynamics well captured
by mean field theory, for very small and very large barrier heights. This behaviour is to be
contrasted with the superflow decay observed both in the experiment of Kumar et al. [15]
and the finite-temperature simulations conducted by Mathey et al. [32], where stochastic
decay events were observed at both short and long time scales, specifically across the
entire time period where the barrier was held at its maximum. We observe qualitatively
similar stochastic decay events in our simulations. As an example, the results from a single
trajectory of the SPGPE are shown in Fig. 4, in which a decay event occurs roughly 110ms
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Figure 6: Average winding number as a function of time after the barrier reaches its
maximum height (t− t2) for T = 85nK. The normalised barrier height κ ≡ Vb/µ = 0.762
for the simulation result (blue) is chosen to give close agreement with the experimental
data for κ = 0.56 (red open circles). The discrepancy in the barrier heights is quantified
in Section 4.2 and discussed further in Sec. 5. Shaded region and errors bars give a 95%
confidence interval in the simulation and experimental data, respectively.

after the barrier reaches its maximum height.
In Fig. 5 we present the results of SPGPE simulations for the four different tem-

peratures T = 30, 40, 85, 195nK studied in the experiment3. For reference, the critical
temperature is Tc = 370nK for T = 40, 85nK and Tc = 470nK for T = 30, 195nK, as
given in the Supplemental Material of Ref. [15]. For each of the four temperatures, sim-
ulations are run for several different maximum barrier heights within a range of no more
than ∼0.05µ. In any given trajectory, the transition of the winding number from l = 1
to l = 0 occurs stochastically, with the average value decaying slowly over a range of
timescales ∼100ms−10s. In Fig. 6, we show that the decay of the average winding number
for T = 85nK is similar to the experimental results of Kumar et al., albeit for different
values of barrier strength Vb (this will be discussed further in the following section).

In both the experiment of Kumar et al. and the simulations by Mathey et al., the decay
of the superflow while the barrier is at maximum strength appear well-fitted by decaying
exponential trends. In Fig. 5 we can see that the results of SPGPE simulations for the
lower temperatures studied do not seem to be well-suited to an exponential fit. While
an exponential decay is not necessarily expected in the presence of nonlinearities, this
behaviour may also be an artefact of ensemble averaging over a relatively small number
of stochastic trajectories (96), or it might be suggestive of approximations made in the
derivation of the SPGPE breaking down at low temperatures and long simulation times.
The latter is discussed in more detail in Sec. 5.1. However, fitting these non-exponential
trends to a simple exponential is still useful in estimating the timescale of the decay. In
Appendix C we show that the trends are better captured by a two-timescale fit. However,
it is not clear whether these ‘timescales’ are physically motivated, and thus is difficult
to compare them to the experimental results. Furthermore, the dominant timescales
calculated within this approach are not significantly different to the single-timescale model,
and thus there is no apparent advantage in using a two-timescale model in this study.

3Note that each temperature is associated with different experimental parameters (specifically, the trap-
ping frequencies and atom number change with temperature), and thus results for different temperatures
should not be näıvely compared with each other.
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Blue-detuned trap Red-detuned trap

Figure 7: Comparison of the superflow lifetime τ between simulations (closed circles) and
experiment (open circles) as a function of normalised barrier height Vb/µ, for the four
different temperatures studied in the experiment. Error bars on the experimental data
give a 95% confidence interval. The grey shaded areas denote the timescales that sit
outside the estimated range of values detectable by the experiment. The simulation and
experimental data show strong quantitative agreement for T = 30nK, however there is
an increasing discrepancy at higher temperatures. Specifically, the simulations suggest a
larger barrier height is required to model a given decay time, and that this ‘offset’ increases
with temperature.

4.2 Quantitative comparison to experiment

As described in the section above, the timescale of superflow decay τ can be quantified by
fitting the average winding number to the trend

〈l〉 = c0 exp

(
−(t− t2)

τ

)
(15)

where c0 and τ are positive-valued fitting parameters4. The fit is over the window of
time t2 ≤ t ≤ t3 (see Fig 3), which is the period where the barrier is held at its maximum
height. Simulations are performed for a range of barrier heights at each temperature, some
of which for thold = 2.5s and the remainder for thold = 1s (depending on whether there
was sufficient decay to reasonably fit). The simulation time ultimately places bounds on
the range of timescales τ accessible in the simulations.

The comparison of the computed timescale τ to that measured in the experiment is
shown in Fig. 7, for each of the four temperatures. We can see that the timescale changes
by four orders of magnitude over a small range of normalised barrier heights (Vb/µ), with
roughly exponential trends (linear trends in log-linear space). In particular, the simulation
results for T = 30nK closely agree with the experiment. For higher temperatures, there is

4For all the fits performed in this section, c0 ≈ 1. To ensure the best possible fit we do not fix c0 = 1,
although in practice this has a negligble effect on our results.
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Figure 8: The sensitivity of the decay timescale τ to small changes in barrier height, char-
acterised by the fit parameter α, as a function of temperature. (Left) Comparison between
the value calculated from the simulations αsim (blue filled circles) and experimental data
αexp (red open circles). While the experimental results show the sensitivity monotonically
increasing with temperature, the simulation trend qualitatively differs. (Right) The rela-
tive discrepancy between the simulation and the experimental values, ∆α = αsim − αexp.
The dashed horizontal line illustrates ∆α = 0. The discrepancy is greatest for T = 85nK
and least for the highest temperature T = 195nK. Error bars give a 95% confidence inter-
val.
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Figure 9: The normalised barrier height for which the decay timescale is predicted to
be τ = 1s, κt, as a function of temperature. (Left) Comparison between the experimen-
tal (red open circles) and simulation values (blue filled circles). The experimental trend
is monotonically decreasing in temperature, which is not qualitatively reflected in the
simulation trend. (Right) The relative discrepancy between the simulation and the exper-
imental values, where ∆κt = κsim

t − κexp
t . The dashed horizontal line illustrates ∆κt = 0.

The error between the experimental and simulation values increases monotonically with
temperature. Error bars give a 95% confidence interval.

greater discrepancy between the experiment and simulation results, although the trends
remain qualitatively similar. For instance, there is a discrepancy in the sensitivity of τ
to changes in the barrier height (i.e. the slope of the trends in Fig. 7); this discrepancy
is largest for the intermediate temperature T = 40nK and T = 85nK. More significantly,
the trends in Fig. 7 suggest that our model requires a larger barrier height to reproduce
superflow decay with a given timescale τ . This ‘offset’ in the barrier height is largest for
the highest temperature, T = 195nK.

To quantify these disparities, we fit the trends in Fig. 7 to the following exponential
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function:

τ = a exp

(
−αVb

µ

)
. (16)

The dimensionless fit parameter α captures the sensitivity of the decay timescale to changes
in the barrier height. As shown in Fig. 8, the values of α for the simulation results are
larger than the experimental results for all temperatures. Furthermore, the trends are
qualitatively different; the experimentally-estimated values of α increase monotonically
with temperature, which is not reflected in the simulation results. The quantitative dis-
crepancy is greatest for T = 40nK, with simulations overestimating α by an order of
magnitude. Agreement is strongest for the highest temperature studied T = 195nK, with
the simulation value lying within 100% of the experimental value. This may be in part
due to the exponential function being a poor fit to the simulation data for the lower
temperatures (c.f. Fig. 5).

To quantify the discrepancy in the magnitude of the barrier height at which superflow
decay begins to occur (i.e. the ‘offset’ seen in Fig. 7), we introduce the quantity κt, which is
the normalised barrier height for which the model predicts a one second superflow lifetime.
This quantity is estimated by inverting Eq. (16) to get κt = Vb/µ for τ = 1s. In Fig. 9
we can see that the discrepancy between the value obtained from the simulations and
experimental data ∆κt increases monotonically with temperature, with strong agreement
for the lowest temperature T = 30nK.

5 Discussion

At each temperature studied, save perhaps for the lowest temperature T = 30nK, we have
observed significant discrepancy between the predictions of our model and the experimen-
tal results of Ref. [15]. For the two intermediate temperatures studied, T = 40, 85nK, the
observed discrepancies could feasibly be due to the inadequacy of our model in the lower
temperature limit (see Sec. 5.1.1). However, for the lowest and highest temperatures stud-
ied, we expect our model to give quantitative agreement with the experimental results,
as the validity of zero-temperature TW and SPGPE theory has been well-demonstrated
at low and high temperatures, respectively. This suggests that the large discrepancy ob-
served between the results of our simulations and the experimental data for the largest
temperature, T = 195nK, is likely due to additional experimental features not captured
by our model.

In this section we will detail possible sources for the discrepancy, including assumptions
and limitations of our theoretical model as well as technical effects within the experiment.

5.1 Limitations of the theoretical model

5.1.1 Validity in the low-temperature limit

As SPGPE theory is formulated in the high-temperature regime (∼Tc/2 − 1.1Tc) where
there is a significant thermal fraction of the gas, it is not a priori valid in the low-
temperature regime of the experiment. Specifically, within the derivation of the SPGPE,
reservoir interactions are expanded in powers of (µ−L)/kBT , and truncated at low order,
the validity of which is well satisfied by the requirement kBT � µ. The truncation may
be valid for much lower temperatures if the system is not far from particle equilibrium
with the reservoir. Since the experiment does not operate in the high-temperature regime
(for all temperatures except T = 195nK, kBT < µ) it is possible this truncation discards
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important reservoir interactions for the two intermediate temperatures T = 40, 85nK
studied in this work. In particular, omission of these higher-order reservoir interactions
may be the source of the discrepancy in the sensitivity of the decay timescale on barrier
height, as shown in Fig. 8. In addition, it may also account for the non-exponential
nature of the trends for the lowest temperatures (T = 30, 40nK) in Fig. 5. Extensions of
the SPGPE which include the higher-order terms will likely be challenging to implement
numerically, however may be a useful avenue of future work.

5.1.2 Truncated Wigner Approximation

The SPGPE is derived by mapping a high-temperature master equation for the C region’s
quantum state to a partial differential equation (PDE) for the state’s Wigner function. In
general, this PDE suffers from the same computational intractability as the original master
equation. However, by making the truncated Wigner approximation, which neglects third-
and higher-order derivatives in this PDE, the resulting equation of motion for the Wigner
function takes the form of a Fokker-Planck equation that can be efficiently simulated via
the SPGPE. The validity of our SPGPE simulations therefore depends in part upon the
validity of the truncated Wigner approximation.

Although the truncated Wigner approximation is an uncontrolled approximation5, its
validity has been verified in the classical field regime where the particle occupation per
mode is high [41, 88, 89]. This condition is easily fulfilled in our work by the inclusion
of a projector and our choice of energy cutoff. Nevertheless, the truncated Wigner ap-
proximation is only valid for a finite simulation time, since the (unquantifiable) error in
the truncation will compound with time [48]. The simulations performed in this work
have been over a long timescale, relative to typical cold-atom experiments, and thus it is
feasible that the truncated Wigner approximation may begin to appreciably breakdown
for the longest simulations (thold=2.5s). This effect is stronger in the low-temperature
regime where the density of the atomic cloud is higher and there is more scattering, which
may account for the qualitative trends in Fig. 5 for T = 30nK, which deviate significantly
from exponential trends after about t≈2s.

5.1.3 Static thermal reservoir

Our SPGPE model assumes that the thermal reservoir (high-energy modes above εcut)
is static and unaffected by the dynamics of the C region. The typical justification for
this is that the sparsely-populated high-energy modes equilibrate rapidly compared to
the macroscopically-occupied modes of the C region. While there are many systems
for which the dynamics of the thermal cloud are an essential aspect of the physics (for
example, collective modes of the condensate and thermal cloud [90]), there is currently
no formulated extension of SPGPE theory that includes the dynamics of the I region.
To study these effects, an alternative theoretical framework must be used, such as the
coupled condensate-thermal theory of Zaremba, Nikuni, and Griffin [91]. However, it is
incorrect to say the SPGPE does not treat the thermal cloud dynamically. The majority
of thermal atoms are contained within the degenerate modes of the C region; it is only the
high-energy sparsely-populated thermal modes that make up the thermal reservoir. In this
sense, the majority of the thermal cloud is treated on the same footing as the condensate

5It has been argued that the truncated Wigner approximation is a controlled approximation since,
in principle, it is possible to calculate higher-order corrections to scattering processes neglected by the
truncated Wigner approximation [87]. In practice, this is unachievable for large multimode calculations,
such as those undertaken in this work. Consequently, for all practical purposes, the truncated Wigner
approximation is best considered an uncontrolled approximation.
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in SPGPE theory. Given the small thermal fractions considered in this work, most of
which are contained within the C region, it is unlikely that neglecting non-equilibrium
dynamics of the I region significantly affects the simulated decay timescales.

Despite these small thermal fractions, the atoms in the I region cannot simply be
neglected. This is the approach adopted when using the projected GPE (PGPE), a c-
field theory that only describes the portion of the thermal cloud within the C region
[92, 93]. A key attraction to this approach is its computational simplicity relative to
the simple-growth SPGPE; its lack of dissipative and dynamical noise terms make it less
challenging to numerically integrate than the SPGPE. In situations where the thermal
cloud is small and the system is near equilibrium, the finite-temperature PGPE has been
able to quantitatively describe experiments both in and out of equilibrium [94, 95]. Within
the context of this work, the PGPE captures the qualitative nature of the stochastic decay
observed in the experiment of Kumar et al. [15]. However, quantitatively it provides
a poorer description of the experiment than our SPGPE model, due to the lower rate
of dissipation relative to the simple-growth SPGPE (see Fig. 18 in Appendix D). This,
alongside the strong temperature-dependence of the experimentally-observed superflow
decay, suggests that it is important to retain dissipation due to scattering processes with
atoms in the I region. Indeed, increasing this dissipation via increasing γ could potentially
improve the agreement between our model and the experiment, although there is no a
priori justification for increasing γ in this way.

5.1.4 Parameter estimation

In this work, the SPGPE parameters that describe reservoir interactions are estimated self-
consistently using the experimentally-measured atom numbers and temperatures. Never-
theless, to account for possible uncharacterised errors in these measurements, we investi-
gated the sensitivity of our simulation results to changes in several parameters, including
barrier width and temperature. Changes to these parameters do not strongly change our
results, suggesting that the imprecise experimental calibration of these parameters can-
not account for the discrepancy between our simulations and experimental data. We also
varied the energy cutoff, which is not an experimental parameter, and confirmed that our
results were not strongly cutoff dependent. Appendix B explains how we estimated our
parameter values and fully details the effect of parameter variations on our simulation
results.

5.2 Uncharacterised experimental effects

5.2.1 Shot-to-shot number fluctuations

Shot-to-shot fluctuations in the total atom number is one example of a common technical
effect in experiments with ultracold atomic gases, the magnitude of which can certainly be
temperature dependant. In fact, fluctuations in atom number were proposed as a possible
cause of the discrepancy between experimental results in a related experiment (see the
Supplemental Material of Ref. [39]). The simulations performed in this work include some
fluctuations in the atom number, as the initial thermal state is sampled from the grand
canonical ensemble. However, these fluctuations are no more than 3% for T = 195nK, and
less than 1% for T = 30nK. We can increase the magnitude of shot-to-shot atom number
fluctuations in our simulations by sampling the chemical potential µ from a Gaussian
distribution with mean µ̄ and width chosen to give a certain variance in the total atom
number. As an example, we study the inclusion of atom number fluctuations for a fixed
barrier height Vb/µ̄ = 0.78 and T = 40nK, in Fig. 10. We find that the average winding
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Figure 10: The effect of shot-to-shot fluctuations in the total atom number, for a barrier
height of Vb = 0.78µ and a temperature of T = 40nK. When the chemical potential is
kept constant from shot-to-shot, µ = µ̄, there are fluctuations in the atom number on the
order of 0.1%, due to sampling the initial state from the grand canonical ensemble. Larger
shot-to-shot atom number fluctuations are modelled by randomly sampling the chemical
potential µ from a Gaussian distribution with mean µ̄. As the fluctuations increase in
magnitude, the average winding number begins to decay earlier in time. However, the
overall timescale for decay is not significantly affected.

number is not significantly affected for shot-to-shot atom number fluctuations of magnitude
5−20%, which is the size observed in typical ultracold atom experiments, suggesting that
such fluctuations cannot account for the noted discrepancies.

5.2.2 Barrier Calibration

As shown in Fig. 9, the discrepancy between the experimental data and our simulations
in κt (the estimated value of κ = Vb/µ that gives τ = 1s) increases with the temperature
of the Bose gas. This could be caused by a temperature-dependent systematic effect in
the barrier calibration, which is certainly possible as the experimental calibration of the
normalised barrier strength Vb/µ did not differentiate between condensate and thermal
atoms. The magnitude of this error may be estimated by computing the contribution of
the thermal atoms to the chemical potential µ within a semiclassical approximation. This
calculation is included in the Supplemental Material of Ref. [15], where the systematic
shift in the barrier calibration was found to be approximately 3% for T = 85nK and 8%
for T = 195nK. Not only is this smaller than the statistical error in the experimental
calibration, but it is far smaller than the discrepancy in the range of barrier heights for
which decay occurs between the experimental data and the simulation results, which is
roughly 35% and 50% for T = 85nK and T = 195nK, respectively (see Fig. 9). Therefore,
an unaccounted shift in the barrier calibration due to the presence of a thermal cloud
cannot account for the discrepancies between the experimental results and the predictions
of our model.
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5.3 Optical trap imperfections

In general, technical noise on the trap lasers causes heating of an optically trapped super-
fluid, which may lead to enhanced dissipation of superflow. Furthermore, in this experi-
ment the superflow decay rate is particularly sensitive to small changes in barrier height.
This could amplify the effect of slight violations of the trap’s azimuthal symmetry in the
experiment [96]. This breaks the symmetry of the ideal ring considered in the simulations,
allowing more pathways for vortex escape, thus enhancing the rate of superflow decay.
This may have contributed to the observation of superflow decay in the experiment at
lower barrier heights than predicted by our model.

The experiments performed at higher temperatures used different optical trapping
beams to the experiments performed at lower temperatures. As described in Sec. 2, the
low temperature T = 30, 40nK BECs were confined in a blue-detuned dipole trap, whereas
the higher temperature T = 85, 195nK BECs were confined in a red-detuned dipole trap.
The red-detuned beams used in the experiment suffered from etaloning in the vacuum cell,
which resulted in fringes in the trapping potential [96, 97]. The differences between the
blue-detuned and red-detuned traps could account for the perceived temperature depen-
dence of superflow decay in the experiment not modelled in our simulations.

6 Conclusions

In this work, we have performed detailed three-dimensional classical-field simulations to
model the experiment of Kumar et al. [15]. Our model, which combines zero-temperature
TW methodology and SPGPE theory, describes the role of quantum and thermal fluctu-
ations in the spontaneous decay of persistent currents of a superfluid BEC trapped in a
toroidal geometry. We have demonstrated that our model is able to capture the essential
non-equilibrium dynamics that lead to superflow decay in the presence of a perturbing
barrier, in good qualitative agreement with the experimental results of Kumar et al. and
a previous theoretical analysis of a related experiment [32]. Specifically, the predictions
of our model are in quantitative agreement with the experiment at low temperature, and
provide a qualitative description of the experiment at higher temperatures. Furthermore,
our simulations predict the same range of decay timescales as observed in the experiment,
across all temperatures studied. Notably, this is achieved with simulation parameters
estimated solely from the experimental temperature and atom number.

For the lowest temperature Bose gas studied in the experiment, the decay timescales
predicted by our model quantitatively agree with the experimental data. For the other
temperatures studied, however, we have found discrepancies between the quantitative
predictions of our model and the experimental data, which become most significant at the
highest temperature. As discussed in Section 5.2, this is likely not solely due to limitations
of the theoretical model, as there were several technical effects in the experiment that may
have lead to enhanced superflow decay.

In general, obtaining quantitative agreement with experimentally measured decay rates
is very difficult to achieve due to the many sources of dissipation in a real superfluid.
In particular, modelling the experiment of Ref. [15] was a challenging task, as a three-
dimensional model was required that included the effects of both quantum and thermal
fluctuations. Moreover, we have pushed the SPGPE model beyond its safe regime of
applicability for studying the dynamics of a Bose gas in the low-temperature regime of the
experiment, and noted a range of technical effects that could lead to enhanced dissipation of
the superflow. Despite this, we have observed some level of quantitative agreement without
fitted parameters for low temperatures, providing further evidence on the adequacy of a
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c-field description of highly non-equilibrium dynamics in Bose gases. Nevertheless, our
work suggests a need for further theory beyond SPGPE, alongside further experimental
characterisation of superflow decay at higher temperatures.
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A Numerical methods

Within classical-field methodology, the numerical implementation of a well-defined energy
cutoff is crucial in order to make quantitative physical predictions [41]. This can be
achieved by projecting the equation of motion for the classical field onto a basis where the
many-body Hamiltonian is approximately diagonal. At the high energies where the cutoff
is typically imposed, this is satisfied by the eigenbasis of the single-particle Hamiltonian
H0. This corresponds to the decomposition of the classical field as:

ψ(r, θ, z) =
∑
n∈C

ψαnΓΦαnΓ(r, θ, z) , (17)

where ΦαnΓ(r, θ, z) are the single-particle modes of H0.
In the context of toroidal confinement, the eigenstates of the potential in Eq. (5) are

not analytically known. However, recent work by Prikhodko et al. [84] has demonstrated
that an approximate single-particle basis may be used:

ΦαnΓ(r, θ, z) =
1√
2πr

ϕ(ωr)
α (r − r0)einθϕ

(ωz)
Γ (z) , (18)

where ϕα are the normalised Hermite-Gauss functions (in physical units):

ϕ(ω)
α (x) =

1√
2αα!

(
Mω

π~

)1/4

exp

(
−Mωx2

2~

)
Hα

(√
Mω

~
x

)
(19)

using the physicists’ Hermite polynomials Hn(x). As described in Ref. [84], this basis is
approximately orthonormal provided it is truncated such that the highest-energy mode
vanishes as r → 0.

In this limit, this basis diagonalises the single-particle Hamiltonian with the energy

21



SciPost Physics Submission

spectrum

E(r)
α = ~ωr(α+

1

2
) , (20)
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) , (21)
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)
. (22)

This allows us to define the low-energy region C by only including modes with energies
below the cutoff:

C =

{
(α, n,Γ) : ~ωr

(
α+

1

2

)
+ ~ωz

(
Γ +

1

2

)
+

~2

2mr2
0

(
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4

)
≤ εcut

}
. (23)

Numerically, the projector is implemented by setting the occupations of single-particle
modes with energies above εcut to zero.

Casting the projected GPE (Eq. (2) with γ = 0) onto this single-particle basis is
detailed explicitly in Ref. [84], so we will not describe it here. Implementing the number-
damping reservoir interaction terms in this basis is straightforward extension of their
method. For the deterministic terms only the constant prefactors need to be adjusted.
The number-damping noise term can be directly sampled on the single-particle basis via:

P{dξγ(r)} =

√
2γkBT

~
∑

α,n,Γ∈C
ΦαnΓ(r, θ, z)dWαnΓ , (24)

where dWαnΓ is a complex Weiner noise satisfying

E[dW ∗α′n′Γ′dWαnΓ] = δα′αδn′nδΓ′Γdt . (25)

Similarly, the quantum fluctuations seeded in the initial states (Section 3.4) can also be
directly sampled on the single-particle basis:

1√
2
P{η(r)} =

1√
2

∑
α,n,Γ∈C

ΦαnΓ(r, θ, z)ηαnΓ (26)

where ηαnΓ is a complex Gaussian noise satisfying

E[η∗α′n′Γ′ηαnΓ] = δα′αδn′nδΓ′Γ . (27)

We numerically integrate the SPGPE using the open source XMDS2 software package [98],
exploiting an adaptive fourth-fifth order Runge-Kutta algorithm. The use of a high-order
adaptive Runge-Kutta algorithm is appropriate due to the additive nature of the noise
term in the simple-growth SPGPE, as first noted in Appendix B of Ref. [62]. In all the
simulations reported in this work, the relative error tolerance of the algorithm is set at
10−5.

Transformations between the single-particle basis and spatial grids (where the non-
linear |ψ|2ψ term is diagonal) are implemented using in-built Hermite-Gauss and Fourier
transforms in XMDS. Due to the presence of the 1/

√
r in the single-particle basis - Eq. (18)

- Hermite-Gauss quadrature methods are inexact for computing spatial integrals with a
finite number of grid points. To minimise this as a source of numerical error, we include
an additional 16 points on the spatial quadrature grids.
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T (nK) kBT/~ωr ωz/2π (Hz) µ/~ωr εcut/~ωr γ nr × nθ × nz
30 2.42175 974 12.28 13.9586 3.4322× 10−6 12× 150× 4
40 3.229 518 10.66 12.8982 4.6116× 10−6 12× 150× 6
85 6.86162 520 10.3 15.0561 1.0282× 10−5 14× 150× 7
195 15.7414 985 11.66 22.5711 2.5289× 10−5 21× 150× 6

Table 1: Fixed parameters for the simulations performed in this work. Here nr, nθ, nz are
the number of single-particle modes in the r, θ, z dimensions, respectively.

B Fixing simulation parameters

The estimated simulation parameters for each of the four temperatures studied in this
work are given in Table 1.

B.1 Chemical potential

In our simulations we choose the value of the chemical potential µ such that the initial
thermal states have an average atom number as close as possible to the experimentally
reported value, for each temperature. Although this can be determined through a semi-
classical calculation (see Appendix A of Ref. [63]), we find it convenient to simply vary
µ until we achieve the desired atom number. Specifically, we first estimate the chemical
potential by assuming a purely Thomas-Fermi density:

µ = ~
√
ωrωz

√
2Nas
πr0

. (28)

We then calculate the atom number at thermal equilibrium for a range of µ around this
initial estimate, and fit the resulting trend to determine the value of µ that will give an
atom number closest to the experimental value. Once the chemical potential has been set,
the energy cutoff εcut and number-damping strength γ can be estimated using Eqs. (6)
and (7) in the main text.

B.2 Energy cutoff

As described in Sec. 3.2, the energy cutoff in Eq. (6) is chosen to give an average occupation
of n ≈ 1 for the single-particle modes near the energy cutoff, as is typically done in
SPGPE analyses. We check this is satisfied, for simulations of the experimental sequence
at T = 40nK and T = 195nK, by computing the occupation of each single-particle mode
|ψαnΓ|2 and plotting it as a function of its energy. This is shown in Fig. 11, where it is
clear that the modes near the cutoff have an average occupation on the order of n ≈ 1.

As a more comprehensive check of the energy cutoff, in Fig. 12 we assess the quan-
titative impact of changing the cutoff value slightly around its estimated value, for the
temperature T = 85nK and a barrier height of Vb = 0.77µ. Although the precise value
of 〈l〉 changes slightly as εcut is varied, the decay timescale is not significantly affected.
Specifically, increasing the energy cutoff by 20.0% leads to τ reducing to roughly 45% of
its value at the estimated cutoff. Given that changing the barrier height by ∼0.1µ changes
τ by several orders of magnitude, this variation with εcut is acceptably small.

B.3 Grid size

The size of the single-particle grid used in the simulations is set by the energy cutoff.
Although it is straightforward to estimate the number of radial and axial modes required
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Figure 11: Mean occupation of single-particle modes of the C region as a function of mode
energy. The occupation is shown at a time part-way through the simulation to ensure some
decay events have occurred, for system parameters: (left) T = 40nK and Vb/µ = 0.78, and
(right) T = 195nK and Vb/µ = 0.67. In both cases, the high-energy modes near the cutoff
are on the order of n ≈ 1.

to satisfy the condition set by Eq. (23), some care must be taken in choosing the correct
number of grid points for the angular grid.

The highest energy angular mode allowed below the energy cutoff can be calculated
by assuming all energy is in the angular direction, which gives:

|n|max =

√
2mr2

0εcut

~2
+

1

4
, (29)

rounded to the nearest integer. Näıvely, this would suggest that 2|n|max grid points should
be used with n ∈ [−|n|max, |n|max]. However, the angular component of the single-particle
basis are plane waves and are therefore subject to Nyquist aliasing. Formally, aliasing
of modes within the C region can be avoided by using nθ ≥ 4|n|max angular grid points.
However, this is typically a large number (nθ ∼ 300−400), which results in restrictive
computational requirements for the long-timescale three-dimensional simulations needed
for our investigation.

In practice, we choose the grid size such that only a small number of angular modes
are subject to aliasing, and only those modes that have a relatively small occupation. We
find it is sufficient to use nθ = 150 in all our simulations. This is confirmed in Fig. 13,
which shows that the aliased modes for simulations at T = 40, 195nK have an average
occupation on the order of 1, and never greater than 10. This is significantly smaller than
the occupation of modes of small n, which each contain 103 − 105 atoms. We have also
checked for a full simulation of the experimental procedure at T = 40nK that doubling
the number of angular modes does not quantitatively change the results of the simulation.

B.4 Sensitivity of results to barrier width and temperature

We investigate the sensitivity of our results to simulation parameters that are taken di-
rectly from the experiment, specifically temperature T and barrier width w. As shown
in Fig. 14, the decay of the average winding number predicted by simulations does not
change significantly as the barrier width w is increased by up to 30%. For much larger val-
ues of w, the simulations predict that stochastic superflow decay no longer occurs within
thold = 1s. This may be due to the barrier width becoming so large that the dynamics
of the superfluid around the barrier maximum are suppressed. However, given that the
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Figure 12: Variation of average winding number and decay timescale as the energy cutoff
εcut is adjusted, for the temperature T = 85nK and Vb/µ = 0.77. Here the value of the
cutoff εcut is given in units of ~ωr. (a) The average winding number as a function of time
for different values of εcut, where time periods corresponding to the ramping up and down
of the barrier are shown in shaded red. Exponential fits to the data are given by the
dashed curves. (b) The average winding number at fixed points in time, as a function of
energy cutoff. (c) The decay timescale τ , calculated by fitting the trends in (a) to Eq. (15),
as a function of εcut. In (b) and (c) the black vertical line gives the precise cutoff value
estimated from Eq. (6). The average winding number is obtained by averaging over an
ensemble of 48 SPGPE trajectories, with error bars giving a 95% confidence interval (two
standard deviations).

width of the atomic density depletion due to the perturbing barrier can be measured with
a precision of order 0.1µm, it is unlikely that our estimate of w deviates beyond 10% of
its true value.

To investigate the sensitivity of the results on temperature, we consider the experimen-
tal data at the hottest temperature, and run simulations across a range of barrier heights
at a temperature of T = 225nK which is the reported experimental value plus its standard
deviation (T +σT ). The comparison of these results to the results for T = 195nK is shown
in Fig. 15. As one may expect, increasing the temperature reduces the decay timescale at
lower barrier heights, improving agreement with the experimental data slightly at those
barrier heights. However, for larger barrier heights, we find that increasing the temper-
ature by this amount has very little effect, and thus there is little to no improvement
in agreement for the larger barrier heights simulated. Therefore, the precise choice of
the simulated temperature within the experimentally quoted confidence interval can be
dismissed as a possible origin for the discrepancy observed with the experimental data.
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Figure 13: Maximum average occupation of the angular single-particle modes with a given
n index, in simulations of the full experimental sequence for temperatures T = 40nK and
T = 195nK, with respective barrier heights Vb = 0.78µ and Vb = 0.67µ. For a grid with
nθ = 150 points, modes in the red hatched region are formally subject to aliasing. The
aliased modes have a maximum occupation on the order of 1, and are never occupied by
10 or more atoms.
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Figure 14: Average winding number as a function of time, for the temperature T = 195nK,
and different values of the barrier width w, given in microns. The barrier width used for
the main results of this paper is w = 6µm. Increasing the barrier height slightly (roughly
10 − 20%) does not significantly affect the rate of decay, at least not enough to account
for the discrepancy with the experiment. More dramatic increases of the barrier width
(∼100%) result in the suppression of the decay altogether. Shaded regions give a 95%
confidence interval for the winding number, which is computed as the ensemble average
over 48 trajectories.

C Multi-timescale fits of decay

We investigate the effect on our results of fitting the average winding number as a function
of time with a multi-parameter exponential model, as opposed to the single timescale model
Eq. (15) used in the main body of the work. In Fig. 16 we fit results at each of the four
temperatures with models of the form

〈l〉 =
∑
i

cie
−(t−t2)/τi (30)
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Figure 15: Decay timescale as a function of normalised barrier height, for the experimental
results for T = 195nK, and simulation results for T = 195nK (red diamonds) and T =
225nK (blue squares). The temperature T = 225nK is the quoted experimental value plus
its standard deviation, referring to the upper limit of a 68% confidence interval on the
temperature of the experiment. There is a slight quantitative difference between the two
simulation trends, with the higher temperature associated with a gentler slope. However,
this shift is not sufficient to explain the discrepancy with the experimental data. Error
bars shown here represent a 95% confidence interval, with simulation data obtained from
an ensemble average over 48 SPGPE trajectories.

where {ci, τi} are free parameters of the fit. In general, a two-timescale fit of the form:

〈l〉 = c1 exp (−(t− t2)/τ1) + c2 exp (−(t− t2)/τ2) (31)

appears to be sufficient to describe the trends for all temperatures. This is with the
exception of some T = 30nK trends, which clearly have some non-exponential qualities
that are not captured by any of these fitting models.

Taking the two parameters τ1, τ2 to represent slow and fast timescales, respectively
(we enforce τ1 > τ2), we compare the results of our simulation to the experiment in
Fig. 17. This approach does not lead to clear trends, and is challenging to interpret in
a meaningful way. In fact, the confidence intervals on many of the two-timescale fitted
data points are very large, further demonstrating that a two-timescale fit does not deepen
the analysis of the results significantly over the use of a one-timescale fit. Further, there
is not a clear physical explanation for why there would be two timescales that would
govern the superflow decay mechanism, and thus the addition of additional timescales is
entirely ad hoc. Finally, the values for the two-timescale fits do not significantly differ from
the one-timescale fits, with values spanning the same range of magnitudes as the single-
parameter timescales in Fig. 7. Overall, this analysis shows that there is no advantage in
using multiple timescale fits over single timescale fits for comparing our simulations to the
experiment.

D Contribution of energy-damping terms

In our study, we have neglected number-conserving reservoir interaction terms in the
SPGPE often referred to as the scattering or energy-damping terms. These terms are
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Figure 16: Multi-parameter fits of the average winding number (solid black line) during
the period where the barrier is held at its maximum (t2 is the time the barrier first
reaches maximum height). Fitting functions are shown at the top of the figure, with
fitting parameters {ci, τi}. The subfigures refer to four different temperatures and barrier
heights: (a) T = 30nK, Vb = 0.7µ; (b) T = 40nK, Vb = 0.74µ; (c) T = 85nK, Vb = 0.76µ;
and (d) T = 195nK, Vb = 0.77µ. The grey shaded region gives a 95% confidence interval
of the average winding number 〈l〉. In general, the two-timescale fit (red solid line) is
sufficient, with the exception of the highly-nonexponential trend in (a).

numerically challenging to implement and are often neglected in SPGPE theory under
the justification that they are expected to be dominated by the non-number-conserving
γ process [41]. Below we quantitatively confirm that their neglect is justified for the
simulations performed in this work.

When energy-damping terms are included, the SPGPE is

i~dΨ = P
{

(L − µ)Ψdt+ iγ(µ− L)Ψdt+ i~dξγ(x, t) (32)

+ Vε(x, t)Ψdt− ~ΨdUε(x, t)
}
, (33)

The energy-damping terms (33) consist of a deterministic evolution term and a noise term,
both of which are non-local. The deterministic term describes particle scattering via an
effective potential:

Vε(x, t) = −~
∫
d3yε(x− y)∇ · j(y, t) , (34)

which is a convolution between the particle current,

j(x, t) =
i~
2m

[Ψ∇Ψ∗ −Ψ∗∇Ψ] , (35)

and the epsilon function

ε(x) =
M

(2π)3

∫
d3k

eik·x

|k|
. (36)
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Figure 17: Slow-decay timescale τ1 (red triangles) and fast-decay timescale τ2 (blue in-
verted triangles) as a function of normalised barrier height κ = Vb/µ. Error bars give
95% confidence interval. Data points with standard deviation in τ greater than 102s are
excluded from this figure.

The energy-damping noise is real-valued, multiplicative, and non-local in space:

E[dU(x, t)dU(y, t)] =
2kBT

~
ε(x− y)dt . (37)

The strength of the energy-damping terms is captured by the ‘energy-damping strength’

M =
16πa2

s

e(εcut−µ)/kBT − 1
, (38)

which has units of length squared.
To investigate the role of the energy-damping terms, we use an effective two-dimensional

form of the SPGPE which assumes that the dynamics in the z dimension are ‘frozen’. Ex-
plicitly, we assume that the c-field can be factorised as Ψ(x, y, z, t) = ψ(x, y, t)φ0(z), where

φ0(z) =

(
1

πσ2
⊥

)1/4

e
− z2

2σ2⊥ . (39)

By integrating out the z dependence, we arrive at an effective two-dimensional SPGPE
that takes the same form as Eq. (32) with the reduced chemical potential, interaction
strength, and epsilon functions [83]:

µ2D = µ− mω2
zσ

2
z

4
− ~2

4mσ2
z

, (40)

g2D =
g√

2πσz
, (41)

ε2D(x) =
M

(2π)3

∫
d2k e

|k|2σ2
4 K0

(
|k|2σ2

4

)
eik·x . (42)
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Figure 18: Final value of the average angular momentum per particle (which is equivalent
to the final winding number) for the temperature T = 195nK and a barrier hold time of
thold = 2.5s. There are several data-sets corresponding to T = 0 GPE simulations (black
squares), and various subtheories of the SPGPE. Note that M is given in units of l20,
where l0 =

√
~/mωr ≈ 1.3µm is the the radial lengthscale set by the trap. Each data set

is fitted to a sigmoidal function: 〈Lz〉/〈N〉 = [exp ((Vb/µ− α)/β) + 1]−1, where α, β are
the fitting parameters. Error bars give a 95% confidence interval in the data. Notably,
the absence of energy-damping (γ 6= 0,M = 0) does not deviate significantly from the full
SPGPE result (γ 6= 0,M 6= 0).

Here K0(x) is the zeroth order modified Bessel function. Given the experiment is well
within the Thomas-Fermi regime, and ωz is not so large as to ‘freeze’ interactions in the
transverse dimension, we use Thomas-Fermi radius to estimate the transverse lengthscale
for dimensional reduction σ⊥ =

√
2µ/mω2

z .
An efficient numerical implementation of the energy damping terms for a harmonic trap

is detailed in [68]. This algorithm can be adapted for the single-particle basis described in
Appendix A. Briefly, the matrix elements for the energy-damping terms are constructed in
k-space where they are local. For a harmonic trap, the transformation to k-space can be
achieved using the property that the single-particle modes are eigenfunctions of the Fourier
transform. For the toroidal trap, we use a family of Hankel transforms to construct the
k-space energy-damping matrix elements in cylindrical coordinates (r, θ, z)→ (kr, kθ, kz).

The final value of the angular momentum per particle after the simulation sequence
for thold = 2.5s as a function of barrier height is shown in Fig. 18 for T = 195nK6. To
clarify the roles of the various interactions in the SPGPE, we have omitted the inclusion of
quantum fluctuations in the initial state, and included a T = 0 comparison7. We find little
quantitative difference when the energy-damping terms are included from the SPGPE as
opposed to when they are excluded (M = 0). This justifies our neglect of the contribution
of the energy-damping terms in the main results of this work.

6The parameters for the two-dimensional simulations of the T = 195nK experiment are µ2D = 6.66~ωr,
εcut = 17.6~ωr, σ⊥ = 1.23l0, γ = 2.49 × 10−5, M = 2.23 × 10−4l20, and a single-particle grid size of
nr × nθ = 18× 200. Here l0 =

√
~/mωr ≈ 1.3µm is the the radial lengthscale set by the trap.

7For the T = 0 comparison, the initial state of the simulation is the interacting ground state of the
GPE, found by evolving the simple-growth SPGPE for 100 trapping periods with no noise term. This is
then evolved with the PGPE.
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Law, R. Carretero-González, P. G. Kevrekidis, M. J. Davis and B. P. Anderson,
Characteristics of two-dimensional quantum turbulence in a compressible superfluid,
Phys. Rev. Lett. 111, 235301 (2013), doi:10.1103/PhysRevLett.111.235301.

[66] M. T. Reeves, T. P. Billam, B. P. Anderson and A. S. Bradley, Inverse energy cascade
in forced two-dimensional quantum turbulence, Phys. Rev. Lett. 110, 104501 (2013),
doi:10.1103/PhysRevLett.110.104501.

[67] C.-F. Liu, Y.-M. Yu, S.-C. Gou and W.-M. Liu, Vortex chain in anisotropic spin-
orbit-coupled spin-1 bose-einstein condensates, Phys. Rev. A 87, 063630 (2013),
doi:10.1103/PhysRevA.87.063630.

[68] S. J. Rooney, P. B. Blakie and A. S. Bradley, Numerical method for the
stochastic projected gross-pitaevskii equation, Physical Review E 89(1) (2014),
doi:10.1103/physreve.89.013302.

[69] E. B. Linscott and P. B. Blakie, Thermally activated local collapse of a flattened dipo-
lar condensate, Phys. Rev. A 90, 053605 (2014), doi:10.1103/PhysRevA.90.053605.

[70] R. G. McDonald and A. S. Bradley, Reservoir interactions during bose-einstein con-
densation: Modified critical scaling in the kibble-zurek mechanism of defect formation,
Phys. Rev. A 92, 033616 (2015), doi:10.1103/PhysRevA.92.033616.

35

https://doi.org/10.1103/PhysRevLett.125.100402
https://doi.org/10.1088/0953-4075/35/6/310
https://doi.org/10.1103/PhysRevA.85.031604
https://doi.org/10.1103/PhysRevA.87.063611
https://doi.org/10.1088/1361-6455/aa6888
https://doi.org/10.1103/physreva.77.033616
https://doi.org/10.1103/physreva.81.023630
https://doi.org/10.1103/PhysRevA.84.023637
https://doi.org/10.1103/PhysRevLett.111.235301
https://doi.org/10.1103/PhysRevLett.110.104501
https://doi.org/10.1103/PhysRevA.87.063630
https://doi.org/10.1103/physreve.89.013302
https://doi.org/10.1103/PhysRevA.90.053605
https://doi.org/10.1103/PhysRevA.92.033616


SciPost Physics Submission
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