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Abstract

We examine the space of allowed S-matrices on the Adler zeros’ plane using the recently res-
urrected (numerical) S-matrix bootstrap program for pion scattering. Two physical quantities,
an averaged total scattering cross-section, and an averaged entanglement power for the boundary
S-matrices, are studied. Emerging linearity in the leading Regge trajectory is correlated with a
reduction in both these quantities. We identify two potentially viable regions where the S-matrices
give decent agreement with low energy S- and P-wave scattering lengths and have leading Regge
trajectory compatible with experiments. We also study the line of minimum averaged total cross
section in the Adler zeros’ plane. The Lovelace-Shapiro model, which was a precursor to modern
string theory, is given by a straight line in the Adler zeros’ plane and, quite remarkably, we find
that this line intersects the space of allowed S-matrices near both these regions.
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1 Introduction

Before the advent of QCD, Chew’s S-matrix bootstrap program [1] was at the forefront of research

in the 1960s. One of the most studied questions was finding a bootstrap solution to pion scattering,

which was consistent with Lorentz invariance, crossing symmetry and which could produce the

phenomenologically observed Regge trajectories for the light mesons (Chew-Frautschi plot). String

theory originated in an attempt to find such a solution, leading to the Veneziano amplitude [2]

and its generalizations, particularly the so-called Lovelace-Shapiro model [3] for pion scattering.

Unitarity led to the Regge intercept of unity, while phenomenology demanded that the Regge inter-

cept be near half. String theory ideas took off in a different direction, leading to the identification

of consistent string theories as quantum theories of gravity,–see [4] for a very nice account of the

early history of string theory. This original attempt to connect with hadron physics was more or

less abandoned until the discovery of the AdS/CFT correspondence,–see [5] for a recent review of

holography inspired string hadron physics. The question of whether the bootstrap could give a

consistent picture of hadron physics thus lay unanswered until the current re-examination of this

question through the papers [6, 7].

In this work, we will closely follow the numerical methods initiated in [6, 7] to study the space

of allowed S-matrices, allowing for some interesting modifications. The ingredients we will borrow

from [6] are a) using a crossing symmetric basis which took into account the cut at s = 4 in the

complex s-plane b) imposing Adler zeros in the isospin-0 and isospin-2, spin-0 partial waves, and

crucially c) Imposing the ρ resonance at
√
s = (5.5 − 0.5i) in units where mπ = 1. Using these

ingredients and demanding partial wave unitarity, an exclusion region called the “lake” was found

in the space of Adler zeros. In [8], we supplemented these conditions by imposing the signs on

the D-wave scattering lengths dictated by unitarity and the Froissart-Gribov formula. In addition,

we set the same signs on the linear combinations of S-wave scattering lengths, which follow from

chiral perturbation theory (χPT ). Equivalently, these signs follow from demanding certain sign-

definiteness in the quantum part of relative entropy, as explained in [8]. A narrower allowed region

called the “river”,–see fig.(1)–was obtained.

With such a huge class of potentially interesting S-matrices, a natural question is which of these
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boundary S-matrices exhibit linear Regge trajectories (we will refer to this as linearity frequently)

and are compatible with the experimental S- and P-wave scattering lengths [9]. We will focus on

the leading Regge trajectory. Quite fascinatingly, we find that the regions along the river bank

which admit linearity are limited. In particular, one region is close to the Adler zero values, which

follow from two loop χPT . Another small region with linearity and decent S- and P-wave scattering

lengths lies in the lower boundary, far from the χPT values. More remarkably, both these regions

also coincide with where the Lovelace-Shapiro model passes through the allowed space of S-matrices.

In the Lovelace-Shapiro (LS) model, the slope and intercept can be adjusted to allow Adler zeros

in the isospin-0 and isospin-2, spin-0 partial waves. This gives a line of models that intersects the

river in distinct places. The zero-width LS model itself is not unitary in these interesting regions1

but we will see that the bootstrap approach potentially leads to a unitary, finite width version of

the LS model.

Once these observations are in place, one of the main questions arises: What is so unique about

the QCD point, or less ambitiously, the models exhibiting linearity? While the two-loop χPT point

lies within the river and hence, in the current formulation of the bootstrap, is challenging to study

directly2, we can ask what is so special about the kink type feature near this point. We find that if

we consider the averaged total scattering cross-section, σ̄, which is related to the imaginary part of

the AB → AB type amplitude in the forward limit via the optical theorem, for individual boundary

S-matrices, then this QCD kink is the region where the sharpest decrease in σ̄ happens. A related

observation we also report is that the isospin space entanglement entropy (more appropriately the

entanglement power to be described below) for the final state particles in the forward direction also

exhibits a similar reduction. These observations hint at a natural quantum information-theoretic

selection principle in the space of allowed S-matrices.

2 S-matrix bootstrap reloaded

Let us begin by briefly recalling the key numerical ideas used in [6]. For more details, we refer the

reader to Appendix A. We are interested in pion-pion scattering in 3 + 1 dimensions, where the

S-matrix is decomposed into the isospin channels. For numerical purposes, using the technology

developed in [7], a crossing symmetric basis is used, which encapsulates the s-channel cut at s = 4. A

corresponding partial wave expansion is done, and partial wave unitarity is checked. The low energy

Adler zeros are imposed on the isospin-0 and isospin-2, spin-0 partial wave coefficients. These are

at unphysical values of the Mandelstam variable s and are treated as parameters to vary. State of

the art two-loop χPT [11] places these zeros at s0 = 0.4195 , s2 = 2.008 which provides a comparison

point3. We will sometimes refer to this as the “QCD point” and the kink in the neighbourhood of

this, as the “QCD kink”. Note that the former is an abuse of terminology since the location of the

QCD Adler zeros, non-perturbatively, is of course not known. The ρ resonance at
√
s = 5.5− 0.5i is

imposed as a zero on the physical sheet. Using these, an exclusion region dubbed as the “lake” was

1See for example, [10].
2Since each point inside the river corresponds to infinitely many allowed S-Matrices, there is no unique S-Matrix which

describes two-loop χPT in our current formulation.
3The orange and red points in fig 1 are associated with uncertainties of 0.12 on the x-axis and 0.08 on the y-axis. We

have only represented the mean value for clarity
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obtained in [6]. On further imposing the experimental S and P-wave scattering lengths as inputs,

a smaller region dubbed the “peninsula” was also obtained. Borrowing a terminology from the

numerical conformal bootstrap, a “kink” was identified at (s0, s2) ≈ (0.36,2.04). Following [6], we

will truncate the crossing symmetric basis at Nmax and impose unitarity on Lmax partial waves on

an s-grid of 200 points.

In [8], in addition to the conditions above, dispersion relations and χPT motivated inequalities

constrained the lake further leading to a “river” like allowed region. The D-wave inequalities

were found using the Froissart-Gribov representation which rely on subtractions–(for details refer

to [12]),– and are of the form,

a
(0)
2 + 2a

(2)
2 ≥ 0 , a

(0)
2 − a(2)2 ≥ 0 . (2.1)

The S-wave inequalities were motivated from 2-loop χPT and are:

a
(0)
0 + 2a

(2)
0 ≥ 0 , a

(0)
0 − a(2)0 ≥ 0 , a

(2)
0 ≤ 0 . (2.2)

where a
(I)
` ’s are the scattering lengths defined in eq.(A.7). The first two S-wave inequalities are

the analogs of the D-wave inequalities but do not have a dispersion relation proof4. In addition

to these inequalities, χPT results also suggest a
(2)
2 ≥ 0. The S-wave inequalities lead to stronger

constraints than the D-wave ones; this is because of the form of the ansatz used in the analysis

in [6]. In section 5, we will discuss S-matrix bootstrap without imposing the S-wave or D-wave

inequalities.

The river is indicated in fig.(1). We have indicated by A, B, C, D, four obviously interesting

points where there is some sharp change in behaviour, as will be elaborated below. The point A

is what we will refer to as the “QCD kink” and is given by (s0, s2) = (0.33,2.12)5. This is different

from the “kink” in [6] since, barring the signs on the scattering lengths explained above, we have

not incorporated anything from experiments. Note that the two-loop χPT value for the zeros is

quite close to the kink. It appears that the tree-level, one-loop, and two-loop zeros are slowly

moving towards the kink A.

The straight brown line in fig.(1) is the zero-width (non-unitary) Lovelace-Shapiro (LS) model

extended to allow for Adler zeros as described in detail in Appendix C. The LS model equation in

the plane of Adler zeros is given by s2 ≈ 2.37 − 0.79 s0 and intersects the river at several locations

as can be seen in fig.(1)6. These intersection points cause a remarkable change in the behaviour

of the river boundary. The two intersections (A and B) are on the upper boundary, and the third

intersection (C) is on the lower boundary. Apart from the intersection, there is also a tip like

structure on the lower boundary at D.

Next, we will check for the resonances along the river.

4Zvi Bern tells us that if there is a dimensional continuation of the dispersion relations that enables us to bypass
subtractions, then one should be able to impose the inequalities that follow from unsubtracted dispersion relations. If a
dimension can be found where the dispersion relation converges, one can use it without worrying about subtractions(See
[29]).

5B: (0.92,1.66), C:(2.43,0.46), D:(0.62,1.0) .
6LS line enters the disallowed region for some values of s0. This is allowed since LS is non-unitary.

4



0.25 0.30 0.35 0.40 0.45 0.50
1.8

2.0

2.2

2.4

2.6

X XX

A

0 1 2 3 4
0

1

2

3

4

s0

s
2

A

B

C

D

X

Figure 1: Pion river at Nmax = 16. The behaviour changes rapidly at points A,B,C and D. The red cross marks
the two-loop χPT . The brown straight line is the Lovelace-Shapiro model allowing for general Adler zeros. The
green regions(near regions A and C) exhibit linearity. The inset shows a zoomed version with the tree-level,
one-loop and two-loop χPT values indicated in black, orange and red respectively.

3 Linear Regge trajectory

We shall use the methods developed in Appendix B.1 to determine the location of resonances in

partial waves. As can be seen in eq.(B.8), resonances correspond to peaks in ∣f`∣2. Since we do

not have elastic unitarity, we will track peaks in the ratio ∣f`∣2/∣S`∣2. Curiously enough, there is

a small region around the kink near A (specifically, we have observed almost linear Regge for

s0 ∈ (0.34,0.44)) of fig.(1), where we observe discernible peaks for all spins (we have checked

up to ` = 8.). When we plot their locations vs. spin, `, they are approximately linear7 (with the

statistical coefficient of determination R2 ≥ 0.9). Furthermore, they are close to their corresponding

experimental values, as shown in fig.(2) and fig.(10), which is great. As shown in fig.(2.b) the slopes

for the even and odd peaks coincide only near A.

In fig.(1), there is also a region near C, which has approximate linearity of resonances. However,

the area where this linearity holds is small in comparison to A, and the individual peak values are

somewhat further away from experimental values, as can be seen in fig.(10). Nevertheless, we

do not have a definitive way to rule out the S-matrices in this region as unfeasible for describing

experiments. In region B, curiously, even/odd spins line up separately with different slopes (see

Appendix B.2). Finally, in region D, there is approximate linearity with a larger slope; however,

` = 8 peaks are missing. The bottom line is that there is interesting linearity of different kinds in

all four discernibly interesting regions in fig.(1).

One might wonder whether these peaks are simply numerical artifacts. To put these unsavoury

thoughts to rest, we shall show convergence with Nmax and Lmax in Appendix D. It is somewhat

7We measure linearity only for those S-matrices who show peaks for all `. If the peaks are missing for some `, the
corresponding S-matrix is deemed not linear
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challenging to demonstrate convergence with Nmax, since the river boundary changes slightly with

Nmax. Also, as can be seen in fig.(10), several discontinuous jumps in peak positions can alter the

best fit and R2 values significantly. The Lmax convergence is somewhat easier to demonstrate since

the river changes considerably less with Lmax.
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Figure 2: (a) Variation of best fit line with s0 on the upper boundary. For s0 = 0.35 the best fit
line including ` = 0 to ` = 6 is given by J = 0.38 + 0.51sR while the experimental one is J = 0.27 +
0.54sR (Experimental masses of mesons taken from [25]).(b) Variation of the slope α′ of even(black) and
odd(red) spins with s0 on the upper boundary in the neighbourhood of A. Except near s0 ≈ 0.35 the
even/odd spins separate.

4 Selecting the QCD point

One of the main lessons that the conformal bootstrap has taught us is that physical theories like

the 2d, 3d Ising models, and the Wilson-Fisher fixed points in fractional dimensions lie at the kinks

in allowed spaces of theories [13]. Multiple correlators further constrain these allowed regions down

to islands (which we do not consider here). In the same spirit, it is indeed quite striking that the

QCD values appear to lie at a kink in the space of allowed S-matrices on the Alder-zeros plane.

But what is so unique about the QCD point? More generally, what is so special about the models

which describe linearity in the resonances? To examine these questions, we will use two different

observables: (a) Averaged total scattering cross-section for π0π0 and π+π− and (b) Entanglement

entropy in isospin space using entanglement power.
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Figure 3: (a) Region A: Plot of R2 vs s0 of even(Black) and odd(red) trajectories for upper boundary near
Region A. We have good linearity when R2 (coefficient of determination) is closer to 1. (b) Region B: Plot of
R2 vs s0 of even(Black) and odd(Red) trajectories for upper boundary near Region C

4.1 Averaged total scattering cross section

Let us consider the total scattering cross section for the process AB → anything which arises from

the optical theorem. Specifically we compute the averaged total cross section given by

σ̄(s0, s2) =
1

2scut
∫

scut

4
ds

√
s − 4

s
Im (MAB→AB(s, t = 0)) , (4.1)

with scut denoting the cut-off s up to which the average is considered. Since we are going to consider

σ̄(s0, s2) along the river boundaries, we can just write σ̄(s0). We will consider π0π0 and π+π− total

scattering cross-sections.

What we find is that σ̄ dramatically decreases near A–see fig.(14). ∂s0 σ̄ at the point A is

the minimum amongst all boundary S-matrices. The location of the ∂s0 σ̄ minimum does not alter

significantly with scut while the σ̄π
0π0

minimum shifts to s0 ≈ 0.60 with higher scut. Furthermore,

other reactions like π+π0 → π+π0 lead to the same conclusion for ∂s0 σ̄. This dramatic drop in the

total cross-section is reminiscent of “operator decoupling” in the conformal bootstrap which causes

the kink there [13]. It is tempting to conjecture that a similar phenomena is at play here and may

in fact pave the road for a non-perturbative understanding of the pion scattering problem in QCD.

It is also worth noting that the lower boundary intersection point C also shows a similar sharp

drop, although smaller than A. The fact that Regge behaviour, intersection of the LS line, and this

drop in ∂s0 σ̄ occur around the same region seems quite remarkable.

4.2 Entanglement Power

In our previous work, [8], following [14] we had considered a quantity called Entanglement Power

(E) and had initiated its investigation in the context of pion scattering. Starting from an arbitrary
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Figure 4: (a) Variation of Ē and σ̄ with s0 for scut = 375 for upper boundary. (b) Variation of Ē and σ̄
with s0 for the lower boundary for scut = 375. Blue line is for σ̄π

0π0
, black for σ̄π

+π− and red for Ē . The
green bar indicates linear Regge trajectory with R2 > 0.93.

initial state, we define the final state in a specific manner (details given in Appendix E) through

the S-matrix. It has the following form,

E = 1 − ∫
dΩ1

4π

dΩ2

4π
tr1[ρ̄21], dΩi ∶= sin θidθidφi. (4.2)

Here ρ̄1 is the reduced density matrix obtained after averaging over the isospins of the incoming

states and tracing out one of the final state particles. For a d-dimensional spin-space, E is bounded

from above by 1 − 1/d = 2/3 [15]–this provides a nontrivial check for our calculations. E near

threshold s ≈ 4 has a complicated form as shown in Appendix E, but it can be checked that E ≤ 2/3
and occurs for a

(2)
0 = 0. Near threshold, we also find E ≳ 0.14. For higher values of s, the lower

bound can decrease (we have not found an absolute lower bound). In order to define an analogue

of the averaged scattering cross section, we shall consider an averaged entanglement power,

Ē = 1

scut
∫

scut

4
Eds (4.3)

Figures (4.a) and (4.b) show variation of E with s0. scut = 375 is chosen in order to include the

contribution of all experimentally known resonances. The figures suggest that there is a correlation

between the sharp decrease in σ̄ with decrease in Ē . The joint decrease in σ̄ and Ē selects out

regions A,B,C,D as special.

4.3 Selection rules

Our findings suggest the following selection criteria which pick out S-matrices describing linear

Regge trajectories:
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1. σ̄ exhibits a minimum,–see fig.(4.a), (4.b), as well as the discussion in Appendix E. Mandelstam

[16] pointed out that linear Regge trajectory with associated narrow widths, can also be

expected to be correlated with low scattering cross sections. Our findings render support to

this expectation.

2. Ē exhibits a minimum. While one may have expected that a minimum in the total cross-section

will be correlated with reduction in entanglement, fig.(4) makes it clear that the relation is

more subtle. While there is a local minimum in Ē where σ̄ is minimized, the global minimum

occurs elsewhere. This is not entirely unexpected since E involves an averaging in isospin

space as well, while the total scattering cross-section involves averaging over s only. It is clear

however, that onset of linear Regge behaviour happens when both σ̄ and Ē are minimized.

3. The sharpest decrease in σ̄ occurs near A which remarkably is the location of the QCD point,

as witnessed in fig. (14). On the upper boundary near s0 ≈ 0.9, all three quantities show a

minimum; however the even and odd spin resonances lie on straight lines with different slopes.

This indicates that the minimization of σ̄, Ē criteria are not sharp enough to distinguish when

the even, odd slopes are the same. The minimum in ∂s0 σ̄ is a better indicator of this feature.

Applying these criteria select out S-matrices in regions A, C as special. They also have S and

P-wave scattering lengths compatible with experiments8.

5 Diving into the allowed region

Inspired by our observations in the previous section, we consider a method to investigate the

possibility of using the selection rules (as described in 4.3) within the river. We are required to

extremize some quantity to determine a unique S-matrix for any point in the allowed space. The

averaged total cross section is the best candidate for this minimization as it is linear in the ansatz

parameters.

Therefore we minimize the π0 +π0 → π0 +π0 averaged total cross section for each allowed point

s0, s2; namely we use eq.(4.1) with scut = 375. Now, for each s0, we determine the s2 which has the

minimum σ̄. This generates a curve of minimum s2 points. Plotting vs s0, we get the minimum

curve given in figure 5. Remarkably, this curve passes very close to both A and C. We also repeated

the analysis after removing the S and D wave inequalities (which produced the river) and observed

no change to the minimum curve. Furthermore, all the S-matrices along the curve show Regge

behaviour for even spins. This validates our observation motivated by [16] that minimizing σ̄

will lead to Regge behaviour. Furthermore, in fig.(7), we plot the entanglement power along this

curve and observe local minimum near A and C. Convergence properties with Nmax and Lmax are

provided in appendix D.

We can also perform hypothesis testing following [8] with χPT by calculating averaged relative

8We refer to the experimental values quoted in [9], namely a
(0)
0 = 0.2220 ± 0.0215tot, a

(2)
0 = −0.0432 ± 0.0148tot. Note

that there are more stringent values quoted in [9] which were used in [6] but these need inputs from analyticity and χPT

which we will not use. For the P-wave we will use the older result quoted in [6], a
(1)
1 = 0.038 ± 0.002.
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entropy, SR(ρboot∣∣ρχPT ),

SR (ρboot∣∣ρχPT ) = ∫
scut

4
ds∫

1

−1
dxPbootg (x) ln

⎛
⎝
Pbootg (x)
PχPTg (x)

⎞
⎠

and

Pg(x) =
g(x) ∣M(s, x)∣2

∫ 1
−1 dxg(x) ∣M(s, x)∣2

, g(x) = 1

2
√

2σ
e−
(x−y)2

4σ .

(5.1)

where in calculating Pbootg and PχPTg corresponding to ρboot comes from bootstrap and ρχPT ,

M(s, x) comes from bootstrap and χPT respectively. y is chosen to be 0.01 and σ is chosen

to be 10−6 . Hypothesis testing results do not depend on y. As shown in 7, we take a maximum

scut of 20 since the validity of χPT decreases at higher s. Very interestingly, we observe that the

S-matrices near region A show the minimum deviation from χPT . Thus hypothesis testing(w.r.t

χPT ) favours region A of the minimum curve.
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Figure 7: (a) Variation of E for the S-matrices on the minimum line. (b) Variation of averaged Relative

Entropy (SR (ρ1∣ρ2)) of the S-matrices as a function of s0. A global minimum is obtained near region A.

6 Future directions

The minimization of entanglement power being correlated with interesting physical theories has

been alluded to before in [14] and in a semi-classical context of black hole physics in [17]. Here we

find a remarkable correlation between the minimization of total scattering cross-section, entangle-

ment power, and emerging linear Regge behaviour. The minimization of entanglement is consistent

with emerging classicality–see, for instance, [18]. One may expect that for effective field theory

description to be valid, such a reduction in entanglement must happen. For a minimization in

entanglement, one may also expect that interaction will be reduced, a fact corroborated by the

total scattering cross-sections’ behaviour. This chain of arguments supports our findings in this
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paper, and it will be very worthwhile to investigate further9.

We found two potentially interesting regions (A and C in fig.(1)), which satisfy linearity in

resonances and exhibit the experimental S and P-wave scattering lengths. Which of these regions

then describes the real world? We do not have a definitive answer to this fascinating question10,

and we leave it to future work to settle this. Our hypothesis testing using quantum relative entropy

does suggest that these S-matrices are “close” to one another in the manner discussed in [8]. One

parting comment is that the absolute value for the interaction range ∣b(2)0 ∣ for the C region is an

order of magnitude bigger than A, which itself is in the ball-park that is predicted by χPT . May

be, only experiments will settle this issue in the future.

From a practical point of view, to investigate the physics considered in this paper further, it

would be desirable to have better and faster numerical approaches, perhaps building on the recent

proposals in [20, 21, 28]; for instance, using the current methods, the decay widths appear to be

quite sensitive to Nmax. Furthermore, it may also be beneficial to consider a better starting point

inspired by the narrow resonance approximation. The current ansatz being employed may be too

restrictive to study higher energies–for instance, there is little hope for exploring the Froissart

bound using present numerics. A more ambitious program of trying to connect with string theory

(even a less ambitious question of probing daughter trajectories) will need such a development. It

may also be a fruitful exercise to correlate the observations in this paper in the large N limit using

the AdS/CFT correspondence.

Acknowledgments

We thank Andrea Guerrieri and Balt van Rees for correspondence on the bootstrap numerics

and, Parthiv Haldar and Prithish Sinha for collaboration in [8]. Encouraging comments from

Sougato Bose, Giancarlo D’Ambrosio, Rohini Godbole, Rajesh Gopakumar, David Gross, Anupam

Mazumdar, Joao Penedones as well as discussions with Abhijit Gadde, Sachin Jain, Shiraz Minwalla

and Sandip Trivedi are gratefully acknowledged. Special thanks are due to Parthiv Haldar and

Apratim Kaviraj for comments on the draft. We thank Urbasi Sinha’s lab in RRI for providing

us access to a workstation during the course of this work. We are especially grateful to ICTS,

Bangalore (Rajesh Gopakumar, Samriddhi S. Ray and Hemanta Kumar) for enabling us access to

the ICTS computing clusters (Mario and Tetris, our virtual brothers) which enabled us to perform

the enormously time consuming SDPB simulations (we really hope easier methods are available

soon!). Special thanks to Hemanta Kumar who performed a heroic source installation of SDPB on

the clusters and who very promptly answered all our laymen queries for using the clusters.

9For instance, it may be an interesting exercise to consider the massless limit as in [19] and calculate the observables
in this paper.

10While fig. (10) suggests that A matches better with experiments, we cannot definitively rule out C just yet–see the
discussion in appendix D.

12



A S-matrix bootstrap review

Here we briefly review the S-matrix bootstrap describing 2 → 2 scattering of pions as considered

in [6, 8], which built on [7]. Let the initial state and final state be ∣p1, a;p2, b⟩ and ∣q1, c; q2, d⟩
respectively, where a, b, c and d are O(3) group indices. The S-matrix can be defined as

⟨q1, a; q2, b∣S∣p1, a;p2, b⟩ = 1 + i δ4(p1 + p2 − q1 − q2)Mc d
a b(s, t, u) , (A.1)

where s, t, u are the usual Mandelstam variables. Mc d
a b(s, t, u) has O(3) symmetry and hence can

be expanded as

Mc d
a b (s, t, u) = A(s∣t, u)δa bδc d + A(t∣u, s) δa c δb d + A(u∣s, t) δa d δb c,

= (3A(s∣t, u) + A(t∣u, s) + A(u∣s, t))P0 + (A(t∣u, s) − A(u∣s, t))P1

+ (A(t∣u, s) + A(u∣s, t))P2 .

(A.2)

PI are the 3 projectors of the O(3) group channels defined as

Psing = P0 =
1

3
δabδ

cd , Panti = P1 =
1

2
(δcaδdb − δdaδcb) , Psym = P2 =

1

2
(δcaδdb + δdaδcb −

2

3
δabδ

cd) . (A.3)

Crossing symmetry constraints A(s∣t, u) to follow A(s∣t, u) = A(s∣u, t). Next, the partial wave

expansion is given by

M(s, t, u) = 16 i π

√
s√

s − 4
∑

I=0,1,2

PI∑
`=0

(2` + 1) (1 − S(I)` (s))P`(x =
u − t
u + t) . (A.4)

We use the following crossing symmetric ansatz for A(s∣t, u)

A(s∣t, u) =
∞

∑
n≤m

anm (ηmt ηnu + ηnt ηmu ) +
∞

∑
n,m

bnm (ηmt + ηmu ) ηns , (A.5)

where ηs =
(

√

4− 4
3
−

√

4−s)

(

√

4− 4
3
+

√

4−s)
, and similarly for ηt , ηu. Following [6], we truncate to Nmax and impose

unitarity for Lmax partial waves through ∣S(I)` (s)∣
2
≤ 1 for a grid of s-values. We can also define

f
(I)
` (s) =

√
s

s − 4

S
(I)
` (s) − 1

2i
, (A.6)

to satisfy the equivalent unitarity condition of Im(f (I)` (s)) ≥ 2
√

s−4
s ∣f (I)` (s)∣

2
. In terms of T

(I)
` (s),

the scattering lengths (a(I)` )’s and effective ranges (b(I)` )’s can be defined as,

Re [f (I)` (k)] = k2`[a(I)` + b(I)` k2 +O(k2)] , k =
√
s − 4

2
. (A.7)

To get unique S-matrices, we extremize a linear combination of above parameters (anm and bnm),

under the constraint of unitarity, using SDPB [22], similar to [6]. To specialize for pions, we include

the ρ-resonance. Resonances will be further described in Appendix B. The ρ-resonance is imposed
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as,

S1
1 (m2

ρ) = 0 , mρ = 5.5 + i 0.5 . (A.8)

The sign of the imaginary part is such that it corresponds to a zero in the physical sheet. For

bootstrap, we shall consider the Adler zeros in singlet and symmetric channel using,

S
(0)
0 (s0) = 1 and S

(2)
0 (s2) = 1 . (A.9)

Tree-level χPT predicts s0 = 0.5 , s2 = 2, one-loop has zeroes at s0 = 0.437 , s2 = 2.003, while the

two-loop values [11] are s0 = 0.4195 , s2 = 2.008. The location of the zero in the (s0, s2) plane

appears to move towards the “kink” at A located at s0 ≈ 0.34 , s2 ≈ 2.1.

To proceed, we first determine which of these pairs of Adler zeros are allowed by unitarity and

the ρ-resonance. This is checked by imposing T
(0)
0 (s0) = 0 for some s0 ∈ (0,4) and checking the

sign of Max(T (2)0 (s2)) and Min (T (2)0 (s2)). If the maxima is positive and minima is negative, the

point (s0, s2) in the Adler zero plane is allowed. Repeating this for different s′0s and s′2s we get the

pion lake in [6].

0 1 2 3 4
0

1

2

3

4

s0

s
2

A

B

C

D

X

Figure 8: Experimental “Peninsula” inside the river (indicated by grey dashed line). This serves as an indicator
as to the points where we can expect experimental scattering lengths. Green indicates R2 > 0.9.

Now since the disallowed region of pion lake is very small, one method of increasing the disal-

lowed region is to impose more experimental constraints. The scattering lengths a
(0)
0 , a

(2)
0 and a

(1)
1

can be constrained to be within the experimental values [6,9] 0.2220±0.0215,−0.0432±0.0148,0.038±
0.002 respectively. Imposing these values, in addition to the ρ-resonance and unitarity, gives us the

pion Peninsula, as shown in fig.8. Note that the experimental values we use here are the weaker

ones quoted in [9] which do not use any analyticity or χPT inputs. As a result, the peninsula we

plot below is somewhat larger than the one in [6].

14



B Detecting resonances

In this section, we will outline our strategy to locate the resonances. Recent discussions include

[23, 24] in the context of 2d-bootstrap. However, our approach will be a more approximate one,

mimicking what happens in an experiment, following the discussions in [25, 26]. Resonances occur

as poles of the S-matrix, with non-zero imaginary part (since the wave function must decay with

time). The complex pole is at s = sr = m2
A − imAΓtotal, where Γ is the decay width and this pole

must be in the second sheet as we will review below.

Subsequently, the partial waves can inherit these poles after projection for isospins I = 0,1,2 and

angular momentum `. Let us call partial wave on physical sheet as S
(I)
` (s) and on the second sheet

as R
(I)
` (s). Now, we know that the threshold due to Π(−s) is actually responsible for square-root

branch cut starting at s = 4. It is a single square root type branch cut in the elastic region which

connects two sheets (more complicated for multiple branch cut systems). Now we write down the

elastic-unitarity condition as

lim
ε→0+

S
(I)
` (s + iε)S(I)` (s − iε) = 1 . (B.1)

Since, in the elastic range of the branch-cut we must have that limε→0+ R
(I)
` (s + iε) = S(I)` (s − iε) ,

hence,

lim
ε→0+

S
(I)
` (s + iε)R(I)` (s + iε) = 1 . (B.2)

This is a product of two analytic functions. Now, if we map both the sheets or part of both the

sheets into one, connected through the elastic region branch-cut, the product of these analytic

function will remain 1 as we extend to the whole domain containing this elastic region. If there was

a pole at s ≈ m2
A − imAΓtotal in the second sheet and m2

A is smaller than the inelastic threshold,

then, eq.(B.2) will imply a a zero at s ≈ m2
A − imAΓtotal in the physical sheet. Therefore, from

Schwartz reflection principle,

S
(I)
` (m2

A + imAΓtotal) = (S(I)` (m2
A − imAΓtotal))∗ = 0 (B.3)

This is precisely the resonance condition being used on the physical sheet.

B.1 Breit-Wigner form

Here we will briefly summarize the Breit-Wigner form for resonances. Assuming a well separated

resonance at s =m2
` − im`Γ for the `th partial wave, we will have the form

f`(s) =
g`(s)

s − (m2
` − im`Γ) , g`(s) ∈ R . (B.4)

Now, assuming that Γ ≪m`, i.e. a small enough decay rate, we can analytically continue this form

from below the branch cut in the second sheet onto the branch cut. Next,when s is real and s > 4,

we can impose unitarity, or even stronger, elastic unitarity. Thus we have that

∣S`(s)∣2 = 1 Ô⇒ g`(s) = −m`Γ

√
s

s − 4
. (B.5)
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This gives us that

S`(s) =
(s −m2

`) − im`Γ

(s −m2
`) + im`Γ

. (B.6)

This form has the required zero in the first sheet, if we continue extending further. Note that this

is a consequence of strict elastic unitarity.

Next, we see that in eq.(B.6), when we scan the real axis (which is what we have access to

experimentally), our partial wave will behave as

S`(s)
s→m2

`ÐÐÐ→ −1 + 2(s −m
2
`

m`Γ
)
2

− 2i(s −m
2
`

m`Γ
) . (B.7)

So we have that near the real part of the resonance, the amplitude will tend to −1, or equivalently,

the phase tends to π. It is the latter which is of use to us since in cases when elastic unitarity is not

valid, we can instead define the resonance through a sudden change in phase! Another alternate

definition can be motivated by looking at the form of f`(s) found from eq.(B.6) which leads to

∣f`(s)∣2 = 2
s

s − 4

m`Γ

(s −m2
`)2 +m2

`Γ
2
. (B.8)

Hence, we see that f`(s) and more generally ∣f`(s)/S`(s)∣2 has a peak at s = m2
` and this can

be used as a much more general definition of a resonance. Using this strategy we find fig.(10). For

a further check of validity, see appendix D. We have observed that unlike the peak locations, the

widths are not in good agreement with experiments and are sensitive to Nmax and we will refrain

from presenting them.

B.2 Linearity of even and odd trajectories

Here we give plots where linearity emerges for odd and even spins in fig.(9). Only in region A and

to a lesser extend in region C do the odd and even spins line up together.
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Figure 9: (a) Region A: Red lines give best fit odd trajectories and blue lines describe best fit even trajectories
(equations mentioned in the inset). Both even and odd lines are close together. (b) Region B: Even and odd
lines somewhat separated (c) Region C: Even and odd lines closer than region B but farther than region A and
(d) Region D: ` = 8 missing. Some daughter resonances can be observed in all regions.
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C Lovelace-Shapiro model in the plane of Adler zeros
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Figure 10: (a) Position of peaks vs s0 near the kink A and (b) Position of peaks vs s0 near the kink C. These
peaks were calculated for Nmax = 16 and Lmax = 19. The bands of a particular color indicate the experimental
range of resonances associated with that spin. Uncertainties taken from [25] and re-scaled in units of ρ mass.

Here, we will briefly discuss the Lovelace-Shapiro (LS) model. We start with the form of the

amplitude in the LS model as [3, 10,27]

A(0)(s, t, u) = 3

2
(A(s, t)+A(s, u))−1

2
A(t, u) , A(1)(s, t, u) = A(s, t)−A(s, u) , A(2)(s, t, u) = A(t, u) ,

(C.1)

with

A(s, t) = C4
Γ(1 − α(s))Γ(1 − α(t))

Γ(1 − α(s) − α(t)) . (C.2)

Here, C4 is a normalization constant and α(s) is the normalized, linear Regge trajectory of the

ρ−meson (or equivalently the ρ resonance) such that

α(s) = α0 + α′s , α(m2
ρ) = 1 . (C.3)

Now it is usual to demand that the Regge trajectory is fixed by demanding an Adler zero

when one of the external momenta goes to 0. This can be easily implemented using the poles of

the Gamma function. In other words, we simply demand a pole of the Gamma function in the

denominator wherever we want a zero of the amplitude. Now, when one of the external momenta

goes to 0 (lets choose p1 → 0 w.l.o.g), we have that s = (p1+p2)2 = p22 =m2
π , t = (p1−p3)2 = p23 =m2

π.

Hence, we have an Adler zero at s = t =m2
π and therefore, the Gamma function in the denominator

must have a pole there. We choose the first pole of the Gamma function for this purpose, 2α(m2
π) =

1. This, along with the normalization of α(m2
ρ) = 1 is enough to fix the trajectory as

α0 =
m2
ρ − 2m2

π

2(m2
ρ −m2

π)
, α′ = 1

2(m2
ρ −m2

π)
(C.4)
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It can be shown that the above is equivalent to demanding that s2 = 2(m2
π) in our Adler zero

language. This is so as s2 will be the zero of A
(2)
0 (s) such that

A
(2)
0 (s) = 1

2
∫

1

−1
dxP0(x)A(2) (s, t(x), u(x)) , (C.5)

with t(x) = −1
2(s−4m2

π)(1−x) , u(x) = −1
2(s−4m2

π)(1+x) being the Mandelstam variables in terms

of the scattering angle cos(θ) = x.

Now, we observe that

A(2)(s, t(x), u(x)) = Γ(1 − α(t(x)))Γ(1 − α(u(x)))
Γ(1 − α(t(x)) − α(u(x))) . (C.6)

So, we can see that the numerator is a complex function of x. However, the denominator is actually

independent of x as 1 − α(t(x)) − α(u(x)) = 1 − 2α (4m2
π−s
2 ) .

Therefore, the denominator can be taken out of the integral in eq.(C.5) directly. This leads to

the partial wave A
(2)
0 (s) inheriting the pole structure of Γ (1 − 2α (4m2

π−s
2 )) in the denominator.

Equivalently, we must have that A
(2)
0 (s2) = 0 should imply that 1 − 2α (4m2

π−s2
2 ) = 0. This leads to

s2 = 2m2
π.

Now, we want to generalize this Regge trajectory such that we do not demand a specific Adler

zero. Instead, we consider the Adler zeros to be free parameters which can take values between

(0,4) (back in units of m2
π = 1). This is equivalent to the procedure where under the normalization

α(m2
ρ) = 1, we scan the (α0, α

′) parameter space. While scanning, we calculate the Adler zeroes

(s0, s2) numerically for each such value of (α0, α
′). Upon doing this, we will obtain a curve in the

(s0, s2) plane. Then, we see that all feasible Adler zeroes can be theoretically parametrized using

α0. Therefore, the set of points (s0(α0), s2(α0)) will form a curve in the Adler zero space. What

we actually end up observing is that only for a small range of values of the parameter, do the Adler

zeros actually exist. Furthermore, when they do exist, they surprisingly form a straight line in the

Adler zero space with the approximate formula of s2 = 2.37168 − 0.787739 s0. Note that this is

remarkably close to the large ρ-mass straight line approximation to the lake [6] which is given by

s2 = 2.4 − 0.8s0 and will pass through the free theory point (s0, s2) = (0.5,2).
While scanning the parameter space of (α0, α

′), we first of all observe that the Adler zeroes

s0, s2 do not exist for the majority of the space. For instance, s2 lies in its expected region of

(0,4) only for a tiny range of α0 ∈ (0.46,0.5) which is further decreased when considering both the

Adler zeroes simultaneously. Overall, in the total LS line, α0 varies approximately in the range of

(0.465,0.486) while the corresponding range of α′ (which is fixed from the normalization of α(m2
ρ) =

1) is approximately α′ ∈ (0.0177,0.0170)–which in units where mρ = 1 becomes α′ ∈ (0.535,0.514).
Lastly, in the neighborhood of the kink, α0 ∈ (0.48385,0.48395) and α′ ≈ 0.516. Furthermore, we

have checked using the arguments in [10] that the models of interest here are not unitary.
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Figure 11: (a) This is the river (black dashed) with all resonances imposed at the mean value of the experimental
ranges. The values of resonances determined from the S-matrices of this river serve as our benchmark for the
method in appendix B. (b) Behaviour near kink for different Nmax. The LS line (black) passes very close to the
QCD kink. Also note the transition from the tree-level (black cross) to the 1-loop (orange cross) and finally to
the 2-loop (red cross) χPT values.

D Numerics: Checks

Determination of Peaks

As described in Appendix B.1, we shall look to find the peaks of ∣f`(s)∣2 to determine the location of

the resonances. However the Breit-Wigner form depends on whether elastic unitarity is satisfied or

not. Since we cannot (at least not yet) impose elastic unitarity, we check the peaks of ∣f`(s)∣2/∣S`∣2

instead.

As an exercise, we also constructed another river (fig 11) by imposing resonances upto ` = 6 at

masses [25],

mσ = 3.5 − 2 i, mρ = 5.5 − 0.5 i, mf2 = 9 − 0.7 i, mρ3 = 12 − 0.6 i

mf4 = 15 − 0.8 i, mρ5 = 17 − 1.8 i, mf6 = 18 − 1.1 i
(D.1)

Apart from σ, all other resonances gave favourable results as a function of s0 in the sense that the

location of the peak did not vary more than a few percent. However, we observed a large variation

of the σ peak with s0. Nevertheless, since the variation was within the (large) experimental error,

we should not dismiss our sigma values of fig.(10).

Convergence with Lmax,Nmax

To demonstrate convergence with Lmax, we shall fix the point s0 = 0.35 where we are imposing the

Adler zero, and also the maximisation point s2 = 2.89. We shall work with Nmax = 16. As can

be seen in fig.(12), we can see good convergence with Lmax. For convergence with Nmax, we see
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Figure 12: (a) This shows convergence of peaks for Lmax ∈ [15,25] at Nmax = 16 and fixed (s0, s2) =
(0.35,2.89) (b) This shows convergence of peaks for Nmax ∈ [14,20] at Lmax = 25 and fixed (s0, s2) =
(0.35,2.89)

in fig.(12), the convergence is not as great as `. There may be several reasons for this. For larger

values of Nmax, Lmax = 25 may not be sufficient. Variation of river with Nmax is also larger than

Lmax and it may change the peak profile. Such numerical explorations are beyond our capabilities

at this point. But since the general area of peak variation remains small we can conclude that the

peaks do exist and are not numerical artefacts.

The averaged minimum values of section 5 also vary with Nmax and Lmax as given in fig 13.

We choose to calculate the minimum values for Nmax = 14 and Lmax = 19 as the values obtained

and the S-matrix behaviour(regge, E and SR(ρ1∣∣ρ2)) are very similar to Nmax = 16 and Lmax = 25.

Position of the minimum (as given in fig 5) barely changes with both Nmax and Lmax.
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Figure 13: Variation of Average minimimum for s0 = 0.3 and s2 = 1.5 with Nmax and Lmax
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E Details for E and σ̄

E.1 Entanglement Power

We shall briefly describe the derivation of Entanglement Power for S-matrices following [15], [14]

and [8]. Since we shall be dealing with isospin indices only, we can write,

∣kn̂, a1;−kn̂, a2⟩ ≡ ∣a1⟩⊗ ∣a2⟩ , (E.1)

where n̂ is a unit 3-vector and a1,a2 are isospin indices. The initial state is defined as,

∣ψi⟩ ∶= R̂(Ω1)⊗ R̂(Ω2) ∣pẑ, a1;−pẑ, a2⟩ (E.2)

where R̂(Ωi) is rotation in the isospin space of the ith particle. In terms of usual spherical polar

coordinates (θi, φi), the rotation operator R̂(Ωi) is [8]

R̂(Ωi) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

eiφi cos2 ( θi2 ) − e
iφi sin(θi)
√

2
eiφi sin2 ( θi

2
)

sin(θi)
√

2
cos (θi) − sin(θi)

√

2

e−iφi sin2 ( θi
2
) e−iφi sin(θi)

√

2
e−iφi cos2 ( θi2 )

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (E.3)

The final state is defined using the S-matrix as,

∣ψf ⟩ ∶=
1

w(p)2 ∑c1,c2
b1,b2

∣pn̂, c1;−pn̂, c2⟩ ⟨pn̂, c1;−pn̂, c2 ∣S ∣pẑ, b1;−pẑ, b2⟩ ⟨pẑ, b1;−pẑ, b2 ∣ψi⟩

= 1

w(p)(2π)
4δ(4)(0) ∑

c1,c2
b1,b2

∣pn̂, c1;−pn̂, c2⟩Sc1c2b1b2
(s, cos θ) ⟨b1 ∣ R̂(Ω1) ∣a1⟩ ⟨b2 ∣ R̂(Ω2) ∣a2⟩ (E.4)

where we have used the notation,

⟨pn̂, c1;−pn̂, c2 ∣S ∣pẑ, b1;−pẑ, b2⟩ = (2π)4δ(4)(0)Sc1c2b1b2
(s, cos θ) , (E.5)

and the inner product,

⟨kn̂, b1;−kn̂, b2 ∣ψi⟩ = w(k) ⟨b1 ∣ R̂(Ω1) ∣a1⟩ ⟨b2 ∣ R̂(Ω2) ∣a2⟩ , (E.6)

Using this final state, we can define the total density matrix ρψf = N̄ ∣ψf ⟩ ⟨ψf ∣. Evaluating in the

isospin basis, we get,

(ρψf )
b1b2

c1c2
(s, cos θ) = ∑x1,x2∑y1,y2Mb1b2

x1x2(s, cos θ) [My1y2
c1c2 (s, cos θ)]∗ R̂(1)b1a1R̂(2)b2a2 (R̂(1)c1a1R̂(2)c2a2)

∗

∑z1z2∑x1,x2∑y1,y2M
z1z2
x1x2(s, cos θ) [My1y2

z1z2 (s, cos θ)]∗ R̂(1)z1a1R̂(2)z2a2 (R̂(1)y1a1R̂(2)y2a2)∗
(E.7)

where, R̂(1)ab = ⟨a ∣ R̂(Ω1) ∣ b⟩ and we assume that the scattering is strictly in non-forward direction.

The reduced density matrix is defined using, ρ̄1 = tr 2 ρψf . which is used in eq.(4.2) in the main

text, and where dΩi = sin θidθidφi. The general expression in terms of the amplitudes is quite
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hideous but near threshold, we find the following somewhat simpler expression for E :

E = 1 − 1

16π2
∫

2π

0
dφ1∫

2π

0
dφ2

EN(φ1, φ2)
ED(φ1, φ2)

, (E.8)

where with χ1 = cos(φ1 − φ2), χ2 = cos(φ1 + φ2)

EN(φ1, φ2) = 54(a(2)0 )4 (1 + 6χ2
1 + χ4

1) + 48 (a(2)0 )2(a(0)0 − a(2)0 ) (a(0)0 + 2a
(2)
0 ) (3χ2

1 + 1)χ2
2

+ 16 (a(0)0 − a(2)0 )2 [(a(0)0 )2 + 2a
(0)
0 a

(2)
0 + 3(a(2)0 )2]χ4

2

(E.9)

and

ED(φ1, φ2) = 3[3(a(2)0 )2(1 + χ2
1) + 2(a(0)0 − a(2)2 )(a(0)0 + a(2)2 )χ2

2]2 . (E.10)

The φ1, φ2 integrals cannot be carried out analytically even for this case. Nevertheless, using the

NMaximize and NMinimize commands in Mathematica, one can with some effort show that

0.14 ≲ Es≈4 ≲ 0.67 . (E.11)

The upper limit can be analytically derived to be 2/3. In general, for d-dimensional “spin”-space

the upper bound [15] for our distribution defined through eq.(4.2) 11 is 1−1/d and our result follows

since d = 3. This is a non-trivial check on our calculations since it is unobvious from the complicated

form of eq.(E.8) how this arises. In our numerical exploration we have not found any violation to

the upper limit although we do not have a direct proof for any s.

E.2 Drop in σ̄

In fig.(14), we show the behaviour of σ̄π
0π0

as a function of s0 for different choices of scut. While

the actual location of the global minimum near A appears to shift to the right, the sharpest drop

occurs at the same point near A as is clear from the plot of ∂s0 σ̄. The situation is similar near C.

11In [15], a stronger upper bound of 1/2 exists for uniform distribution. Our averaging is not using a uniform distribution
and our upper bound simply follows from the known [15] upper bound on the linear entropy 1 − tr1ρ

2 ≤ 1 − 1/d .
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Figure 14: (a) Variation of σ̄π
0π0

with s0 on the upper boundary and (b) Variation of ∂s0 σ̄ with s0 on the
upper boundary for different scut. (c) Variation of σ̄ with s0 on the lower boundary and (d) Variation of ∂s0 σ̄
with s0 on the upper boundary for different scut.
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