
24.1 Motivation

The pion beta and radiative electronic decays1
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Abstract7

As the lightest meson, pion offers unique opportunities for measuring parameters and8

testing limits of the Standard Model (SM). The PiBeta experiment, carried out at PSI,9

focused on SM tests accessible through the pion beta, π+ → π0e+νe(γ), and electronic10

radiative, π+→ e+νeγ, decay channels. We review the PiBeta experiment, and update the11

pion beta decay branching ratio Bexp
πβ
= 1.038(6)tot×10−8, along with the corresponding12

derived value of the Cabibbo-Kobayashi-Maskawa matrix element Vud = 0.9738(28).13

24.1 Motivation14

The unitary Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix embodies some of the15

central parameters of the three-generation Standard Model. Departure from CKM matrix uni-16

tarity would signal the existence of “beyond Standard Model” (BSM) physics, i.e., processes17

and particles not included in the SM. The most sensitive test of the CKM matrix unitarity is via18

|Vu|2, the squared norm of the first row, which, given the smallness of |Vub|2 ' 10−5, simplifies19

as:20

|Vu|2 ≡ |Vud|2 + |Vus|2 + |Vub|2 ' |Vud|2 + |Vus|2 , with |Vu|2 = 1+∆CKM . (24.1)

Since |Vud|2 ≈ 0.95 dominates |Vu|2, the uncertainty ∆Vud is critically important in evaluating21

∆CKM. In spite of notable improvements in measurement and theoretical precision since the22

1980s, a shortfall of ∆CKM ∼ −3σ has persisted for much of the past three decades. The dis-23

covery potential inherent in precision tests of CKM unitarity has motivated a worldwide effort.24

A summary of the present status of CKM unitarity tests is given in [1]. The most precise eval-25

uations of Vud have relied on the 0+→ 0+ superallowed Fermi (SAF) nuclear beta decays (for26

the most recent compilation see [2]). Despite the impressive experimental precision achieved27

in determining SAF f t values, uncertainties related to the complex structure of participating28

nuclei remain, motivating the quest for Vud evaluation in beta decays of simpler systems: neu-29

trons and pions. Of the two, the pion beta semileptonic decay π+→ π0e+νe(γ)1, or πe3(γ), is30

the theoretically cleanest [3]. Given the small accessible phase space, πe3 decay is very rare:31

Bπβ ' 10−8. Neutron beta decay is not suppressed, but requires two measurements for an in-32

dependent determination of Vud: the lifetime, τn, and the axial-vector coupling, gA = GA/GV ,33

(for further details and current status see [1,4–6]).34

The international PiBeta collaboration [7], led by the University of Virginia group, was35

formed in the 1990s with the goal of measuring the pion beta decay branching ratio to a36

1A γ in parentheses denotes an undetected, usually soft photon. For brevity, in further text the (γ) will be
dropped and implied; a detected photon in radiative processes will be explicitly denoted with a γ.
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24.2 The PiBeta apparatus

precision of 0.5 % at the Paul Scherrer Institute. Achieving this goal also requires accurate37

identification and detection of background and normalization decays: pion radiative electronic38

π+→ e+νeγ, or πe2γ, pion electronic π+→ e+νe, or πe2, radiative muon µ+→ e+νeν̄µγ, and39

ordinary muon µ+→ e+νeν̄µ decay. Each of these processes illuminates interesting aspects of40

SM/BSM physics. Muon decays will not be discussed here, while the electronic, πe2 decay is41

discussed in more detail in [8].42

Unlike its muonic equivalent πµ2γ, the radiative electronic decay, πe2γ, is not completely43

dominated by purely electromagnetic (QED) “inner” bremsstrahlung (IB). It also receives44

strong “structure-dependent” (SD) QCD contributions, parameterized in terms of FV and FA,45

the vector and the axial-vector form factors, respectively. Direct determination of FA,V is46

possible through a precise measurement of the differential branching ratio, or decay rate47

d2Γπe2γ/dEe dEγ, over a suitably large portion of the decay phase space [9, 10]. Precise val-48

ues of FA and FV provide information on nonperturbative QCD, such as the pion polarizabil-49

ities, and generally enter certain low energy (chiral) constants, LECs (for more details see,50

e.g., [11,12]). On the other hand, a kinematically broad sample of πe2γ decays makes it pos-51

sible to set limits on values of form factors other than FA,V , that, if nonzero, would indicate52

presence of BSM particles or processes. PiBeta has pursued both of these research paths, as53

discussed below.54

24.2 The PiBeta apparatus55

The PiBeta apparatus, schematically shown in Figure 24.1, detected π+ decays at rest in a56

solid cylindrical active target (AT), placed at the center of a pure CsI, 240-element spher-57

ical electromagnetic shower calorimeter. Prior to stopping, pions passed through a pair of58

scintillation detectors (BC and AD) separated by a ∼3.5 m flight path. The segmented target59

was surrounded by two MWPC tracking detectors, and a fast 20-element hodoscope, shown60

schematically in Figure 24.2. The apparatus acquired data during a “π-stop” gate spanning61

t ' −50 to 200 ns relative to a pion stop time (t = 0) in the target, with a break of ∼10 ns at62
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Figure 24.1: Schematic cross section of the PiBeta apparatus, with its main compo-
nents labeled. For details concerning the detector performance see [13].
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24.3 The pion beta decay: π+→ π0e+νe(γ)
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Figure 24.2: Axial (beam) view of the
central detector region used in PiBeta
Runs 1–3, and first half of Run 4. Outward
from center: (i) the 9-element segmented
active target AT, (ii) cylindrical MWPC1
and MWPC2 trackers, (iii) thin cylindri-
cal carbon-fiber shield around MWPC2,
and (iv) the 20-element plastic hodoscope
(PH) array with approximate outer diam-
eter of ∅30 cm. Pion stopping rates in the
inner five (fiducial) target elements were
roughly matched; AT outer ring elements
served for decay particle tracking. The BC,
AD, AT and PH detectors were made of fast
plastic scintillator.

t = 0 because of high rates of hadronic reactions by beam pions in AD and AT. The calorime-63

ter modules were sized such that, on average, a crystal impacted centrally by a 70 MeV e+ or64

γ would contain over 90% of the resulting shower energy. The location and energy of each65

distinct shower in an event were extracted for trigger purposes from continuous analog sig-66

nal sums of overlapping clusters of 7–9 modules. A dozen trigger configurations, combining67

calorimeter and beam detector hit patterns of interest, were used to acquire the studied and68

normalization decay events, as well as all relevant background processes. Further details of69

the design and performance of the apparatus are given in [13]. For a discussion of the PiBeta70

technique in a broader context, see [14].71

24.3 The pion beta decay: π+→ π0e+νe(γ)72

PiBeta measurements were carried out in four run periods, using 114 MeV/c beam in the πE173

beamline at PSI. Over 6.4× 104 πe3 events were acquired in high-rate Runs 1-3 (1999-2001),74

with ∼ 106π+stop/s in the target. Run 4 (2004), with 104 – 105π+stop/s in the target, focused75

on the radiative decay πe2γ. The πe3 decay signal, two energetic, nearly back to back neutral76

showers in the calorimeter, initiated by the two photons from π0→ γγ decay, is robust and re-77

quired minimal background subtractions. Figure 24.3 illustrates the quality of the PiBeta πe378

event sample. The θγ1γ2 distribution, uniquely shaped by the decay kinematics and the shower79

opening angle θγ1γ2
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Figure 24.3: Left: measured photon-photon opening angle in π0 → γγ, compared
to a realistic Monte Carlo simulation. Right: decay time distribution for πe3 events.
Events within ∼10 ns of the π+ stop in AT were not recorded due to high prompt
hadronic background.
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response of the calorimeter, is not reproduced in other processes. The decay time distribution80

is purely exponential, and agrees well with the known pion lifetime of 26.033(5) ns [1]. The81

π+→ e+νe(γ) electronic decay events were used for branching ratio normalization. While the82

two decays shared many of the same systematics, such as the spatial and temporal distributions83

of the parent pions, and very similar acceptances, the πe2 signal had a significant background84

from the “Michel” µ+→ e+νν̄(γ) decays. Details of the analysis and results for the πe3 branch-85

ing ratio are discussed in [15]. Two values of Bπβ = Γ (π+ → π0e+ν(γ))/Γ (π+ → µ+ν(γ))86

were evaluated and reported: one normalized to the accepted 2004 experimental average of87

Rπ-exp
e/µ = Γ (π→ eν̄(γ))/Γ (π→ µν̄(γ)) = 1.230(4)×10−4 (“exp-norm”), and the second to the88

established theoretical value Rπ-th
e/µ = 1.2352(5)× 10−4 (“theo-norm”):89

Bexp-norm
πβ

= 1.036(4)stat(4)syst(3)πe2
× 10−8 , (24.2)

Btheo-norm
πβ = 1.040(4)stat(4)syst × 10−8 , (24.3)

where the statistical (stat), systematic (syst) andπe2 normalization uncertainties are separated90

out. Since 2004, theπe2 branching ratio has become better known, Rπ-exp
e/µ = 1.2327(23)×10−4

91

[1,16]. This leads to an update of the PiBeta πe3 branching ratio result92

Bexp-norm
πβ

= 1.038(4)stat(4)syst(2)πe2
× 10−8 = 1.038(6)tot × 10−8 . (24.4)

We note that the extraordinary sensitivity of pion beta decay afforded by the SM, with relative93

uncertainty (excluding the free parameter Vud) of ∼ 2× 10−4 dominated by the radiative cor-94

rections [17], cannot be tested experimentally at the current precision of ∆Bπβ/Bπβ ' 0.006.95

The same observation applies to the derived value of Vud , now updated to96

Vπβud = 0.9738(28) , (24.5)

which, while in excellent agreement with the PDG average Vud = 0.97370(14) [1], is 20 times97

less precise.98

24.4 Pion radiative electronic decay: π+→ e+νeγ99

In addition to the fundamental physics motivations introduced in Section 24.1 (weak pionic100

form factors, inputs to LECs, limits on BSM contributions), pion radiative electronic decay101

generates background events for the pion beta (πe3) signal, in large enough numbers to re-102

quire a correction (the reverse also holds). For all these reasons, the PiBeta collaboration has103

extensively studied the πe2γ decay.104

Prior to the early 2000s, data on the πe2γ decay were scarce, and contained significant105

ambiguities. The doubly differential decay rate d2Γπe2γ/dEe dEγ is separated into structure106

dependent terms: SD+ ∝ (FA + FV )2, SD− ∝ (FA − FV )2, the purely-QED IB, and several107

interference terms of the linear amplitudes, of which the most important are S+int and S−int, the108

IB ·(FA+FV ) and IB ·(FA−FV ) terms, respectively. For simplicity in the analysis, dimensionless109

energy variables are routinely used and are limited to unity: x , y = 2Eγ,e/mπ ∈ (0,1). Since110

(FA+ FV )2/(FA− FV )2 ' 8, SD+ is the dominant QCD term in the decay. Further, its study is111

made more accessible by the fact that SD+ peaks for y ∈ (0.9,1), and large x , where the IB112

term nearly vanishes. SD−, on the other hand, peaks near the diagonal, x + y = 1, where IB113

is greatest, and dwarfs SD− by several orders of magnitude. Consequently, pre-2000 studies114

used the conserved vector current (CVC) theoretical value for FV (derived from the π0 meson115

lifetime), and reported the ratio γ ≡ FA/FV extracted from measurements. Early measure-116

ments, along with the inconsistencies and hints of BSM phenomena through a nonzero value117

for FT , the tensor form factor, are discussed in detail in [14].118
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togram) values of πe2γ variable λ for eight (x , y)
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region of peak relative SD− contribution.
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Against this backdrop, the PiBeta collaboration collected and analyzed over 4× 104 πe2γ119

events in Runs 1–3, and published the results in [13]. The precision in γ was improved by a120

factor of four over prior world average, but a significant deficit of events was observed in a121

region of high x and low y . The high beam rate, and trigger configuration during Runs 1–3,122

challenged the πe2γ decay systematics in this kinematic regime.123

Given the above, in 2004 the PiBeta collaboration carried out Run 4 at much lower beam124

rate (∼ 105πstop/s), focused on low-threshold πe2γ events. This made possible a precise cali-125

bration of subtle calorimeter gain differences in the low- and high-threshold triggers, the key to126

resolving previously observed inconsistencies. Results of the combined Run 1–4 data set anal-127

ysis, with over 6.5 × 104 πe2γ events, were published in [18]. Kinematic coverage is shown128

in Figure 24.4, while Figure 24.5 illustrates the low level of accidental background present in129

the e+-γ time difference data. Data in Figure 24.4 are presented in terms of λ= y sin2(θeγ/2),130

where θeγ is the reconstructed e+-γ opening angle. (Unlike y , λ retains the constant 0–1 value131

range regardless of x .) Agreement with the simulation based on best-fit values for FA and FV132

is excellent in all regions.133

Contours of the best-fit values for FA and FV are shown in Figure 24.6. The thin shape of134

the resulting ellipse reflects the ∼ 1% precision of the measurement of FA + FV (SD+ term),135

and the much lower sensitivity to FA − FV , i.e., SD−. The narrow linear dependence of FA136

on FV reported in [18] enables future updates of the best-fit value of FA based on improved137

evaluations of FCVC
V .138

Figure 24.6 also plots a, the slope parameter of FV with respect to the momentum transfer139

to the lepton pair q2
eν, a first such result, made possible by the broad combined kinematic140

coverage of PiBeta Runs 1–4. The slope is in qualitative agreement with the χPT calculation141

of Mateu and Portoles [19].142
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Analysis of the integral πe2γ decay rate yielded the primary result: branching ratio for the143

kinematic region Eγ > 10 MeV and θeγ > 40◦ of Bexp = 73.86(54)×10−8. At < 1%, this result144

marked a ∼20-fold precision improvement over previous measurements [1]. The excellent fit145

of the πe2γ differential decay rates has led to the arguably most important result of this work,146

the limit on a possible admixture of the tensor interaction −5.2×10−4 < FT < 4.0×10−4 with147

90% confidence [18]. To date, this limit provides the strongest constraint on a possible BSM148

tensor coupling [20].149

24.5 Conclusions and path forward150

The PiBeta research program has produced an order of magnitude improvement in the pre-151

cision of the πe3 and πe2γ branching ratios, and related SM observables, low energy QCD152

parameters (LECs), and a leading limit on BSM tensor coupling.153

PEN, the successor experiment to PiBeta, has focused on πe2 decay [8], and expanded the154

πe2γ kinematic coverage (Figure 24.4), fully enclosing the region of peak SD−/total relative155

yield2. This is a modest improvement. A new, dedicated experiment would be needed to156

achieve greater sensitivity.157

The scientific case is mounting for a new generation of experiment to fully exploit the158

precision of the SM description of pion decays, and realize the potential to settle the decades-159

old question of CKM unitarity in a process free from complex nuclear structure corrections.160
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