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Abstract

Chaos is an important characterization of classical dynamical systems. How
is chaos linked to the long-time dynamics of collective modes across phases
and phase transitions? We address this by studying chaos across Ising and
Kosterlitz-Thouless transitions in classical XXZ model. We show that spatio-
temporal chaotic properties have crossovers across the transitions and distinct
temperature dependence in the high and low-temperature phases which show
normal and anomalous diffusions, respectively. Our results also provide new
insights into the dynamics of interacting quantum systems in the semiclassical
limit.
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1 Introduction

Chaotic systems are described by a growth rate, the maximum Lyapunov exponent λL (>
0), of perturbation to the initial condition. In recent years, a quantum Lyapunov exponent,
and a butterfly velocity vB for ballistic spread of local perturbation, computed from the
out-of-time-order commutator (OTOC) have emerged as important measures for chaos in
quantum many-body systems having some well-defined semiclassical limit [1–4]. In these
quantum systems where the Lyapunov exponent can be extracted, it has been perceived as
a rate for early-to-intermediate-time thermalization, namely the emergence of statistical
mechanical description during dynamical evolution of the system. However, it is still
controversial [5] whether chaos in isolated interacting classical systems is essential for
thermalization.

The recent interest in chaos in quantum many-body systems stems from the proof of a
remarkable upper bound, 2πkBT/~, for λL [6] and a relation, D ∼ v2

B/λL, between diffusion
coefficient D, a quantity related to transport, and λL and vB in certain strongly interacting
systems [7]. Such bounds, though phenomenologically conjectured, e.g., for transport
scattering rate [8, 9], are not concretely established for more conventional thermalization
or relaxation rates, i.e. those extracted from usual time-ordered correlation functions. As a
result, even setting aside the issue of actual role of chaos in thermalization, the temperature
(T ) dependence of λL, and other quantities related to chaos, can serve as a fundamental
characterization of phases and phase transition as various chaotic fixed points, e.g. certain
non-Fermi liquids and Fermi liquids [10–13]. The former are highly chaotic with λL ∼ T at
low temperature, whereas the weakly interacting Fermi liquids show λL ∼ T 2, essentially
dictated by quasiparticle decay rate. Motivated by these, here we ask whether many-body
chaos can be used to classify phases and finite-T phase transitions in classical systems
with intrinsic dynamics, e.g. systems of interacting classical Heisenberg spins on a lattice
with precession dynamics.

However, typically, chaos is a probe of the short- and intermediate-time behaviour.
On the other hand, the long-time dynamical properties of interacting many-body systems,
in symmetry broken and unbroken phases, and across phase transitions, are mostly char-
acterized by the properties of the collective low-energy excitations, hydrodynamic and
critical modes. How are the short-time chaotic properties of many-body systems related
to their long-time dynamics? To address these questions, we look into the connection of
chaos with transport, characterized in terms of usual dynamical spin-spin correlations in
the spin system.

Classical many-body chaos under Poisson-bracket spin dynamics has been studied in
some recent works for various spin models at high [14] and low temperatures [15], as well as
across a spin-glass transition in a zero-dimensional spin model [16]. Also, there have been
similar studies in other dynamical models like Burgers hydrodynamics [17], and in the clas-
sical limit of a relativistic field theory [18]. There are many earlier studies of maximum
Lyapunov exponent as well as full Lyapunov spectrum in spin models, molecular sys-
tems, and across classical phase transitions [19–30]. The conventional Lyapunov spectrum
analysis, though, in principle, can reveal the spatiotemporal structure of chaos [31–33],
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typically makes the direct information about the spatial structure somewhat obscure. In
this regard, a spatiotemporal correlation function like OTOC [14,34] provides much more
transparent way, e.g., to reveal spatial spread of a local perturbation. Thus, in contrast
to earlier works [19–30], using a classical version of OTOC [14], we establish the detailed
temperature dependence of both temporal (λL) and spatial (vB) characteristics of chaos
across two classic thermal phase transitions in two dimensions, under a microscopic spin
dynamics that is directly connected with the quantum dynamics in the semiclassical limit.
We show that the chaotic properties, in general, are rather impervious to the nature of
transport, namely whether the system exhibits diffusion or anomalous diffusion.

2 Model, dynamics and OTOC

We study the classical XXZ model on a square lattice described by the Hamiltonian

H = −J
2

∑
r,δ

(
SxrS

x
r+δ + SyrS

y
r+δ + ∆SzrS

z
r+δ

)
, (1)

where Sr = (Sxr , S
y
r , S

z
r ) are unit length spin vectors on lattice site r with total N sites

and J is the coupling between spins on the nearest neighbor bonds along δ = ±x̂,±ŷ
directions. The anisotropy ∆ ≥ 0 can be varied to change the nature of the finite-T phase
transition. For example, the system undergoes a transition at a non-zero temperature
TKT in the Kosterlitz-Thouless (KT) [35] universality class for ∆ < 1 (easy plane), and
an Ising transition for ∆ > 1 (easy axis), while the isotropic (∆ = 1) point does not have
any finite-T transition. The chaotic properties of the isotropic point have been studied by
Bilitewski et al. [36] in an independent work.

We study chaotic properties of the model in Eq.(1) using the classical OTOC [14],
along with more conventional dynamical spin correlation function 〈Sr(t) · Sr′(0)〉, for the
Poisson bracket dynamics

dSr

dt
= {Sr,H} = Sr × hr. (2)

The Poisson bracket of two functions f({Sr}) and g({Sr}) is defined as {f, g} =
∑

rijk ε
ijk

(∂f/∂Sir)(∂g/∂S
j
r)Skr , where εijk Levi-Civita tensor with i, j, k = x, y, z. Here hr =

J
∑

δ(S
x
r+δx̂ + Syr+δŷ + ∆Szr+δẑ) is the effective field on the spin at r. For ∆ 6= 1, apart

from total energy, the dynamics conserves Sztotal =
∑

r S
z
r . This hydrodynamic mode is

expected to lead to diffusive behaviour for dynamical spin correlation function at long
times.

To characterize the chaotic properties of the model of Eq.(1), we use a classical version
of OTOC, or the so-called cross correlator or decorrelator, introduced in ref. [14],

D(r, t) ≡ 1− 〈Sar(t) · Sbr(t)〉, (3)

where a and b denote two copies of the initial configuration (t = 0), with b slightly
perturbed from a at r = 0 such that Sbr(0) = Sar(0) + δS0δr,0. The small perturbation,
|δS0| ≈ ε, is chosen to be orthogonal to Sa0(0), i.e. δS0 · Sa0(0) = 0. More specifically,
following Ref. [14], we generate the initial configuration {Sbr(0)} for replica b by rotating
Sa0 slightly about a unit vector n̂ = (ẑ×Sa0)/|(ẑ×Sa0)| such that the perturbation at t = 0
becomes δS0 = ε(n̂×Sa0). The perturbation only preserves the normalization of the spin
Sb0 at r = 0 up to O(ε), i.e. S2

b0 ' 1+O(ε2). For the particular choice of perturbation, the
connection of D(r, t) with the quantum out-of-time-ordered commutator 〈[Sr(t), n̂·S0(0)]2〉
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in the semi-classical limit, where commutator is replaced by Poisson bracket, has been
discussed in Ref. [14]. We note that D(r 6= 0, 0) identically zero, and, since δS0 ⊥ Sa0,
D(0, 0) = 0 also as Sar(0) · Sbr(0) = 1 at any r. Thus, D(r, t) starts from zero for any
r due to the special choice of the initial orthogonal perturbation. The averaging 〈. . . 〉 is
over initial equilibrated spin configurations {Sar(0)} drawn from a thermal distribution
∝ e−H({Sar(0)})/T (Boltzmann constant kB = 1). Starting from the slightly different
initial conditions as discussed above, the two copies are time evolved independently via
spin-precession dynamics of Eq.(2). The classical OTOC D(r, t) measures the amount of
de-correlation at (r, t) between the configurations in the two replicas or the trajectories,
which are almost completely correlated at t = 0. The classical OTOC differs at O(ε2) for
r = 0, t = 0 from the more conventional measure of spatio-temporal divergence of two
trajectories [37], 〈(δSr(t))

2〉 = 〈(Sar(t)−Sbr(t))
2〉, which we denote as trajectory divergence

for brevity. Starting at 〈(δS0(0))2〉 ∼ O(ε2) at t = 0, the trajectory divergence is expected
to grow exponentially at r = 0 as ε2e2λLt over a Lyapunov time window t ∼ λ−1

L ln ε−2

in a chaotic system. We show that 〈(δSr(t))
2〉 and the classical OTOC of Eq.(3), both

have an early-time regime 0 ≤ t ≤ t0, where 〈(δS0(t))2〉 and D(0, t) initially change non-
exponentially to O(ε2), and then grows exponentially for t > t0. In fact, both 〈(δS0(t))2〉
and D(0, t) initially decrease before start increasing with a power-law time dependence till
t0. Nonetheless, t0 is found to be closely connected with the chaos time scale 1/λL, as we
discuss later.

The main motivations for studying the spatio-temporal OTOC [Eq.(3)] in the model
of Eq.(1) are twofold. One, as stated in the introduction, is to dynamically characterize
the thermodynamic phase diagram of a spin model with well-known two-dimensional (2d)
phase transitions. The XXZ model allows to tune the relative contribution of various
hydrodynamic, low-energy and critical modes in the dynamics by changing temperature
and anisotropy, and thus to probe the potential role of these collective modes on chaos.
The second motivation comes from the fact that the spin precession dynamics [Eq.(2)] can
be obtained as a classical large-S (spin) limit of the Heisenberg equation of motion for the
quantum XXZ model. Hence, chaotic properties of such classical model can give useful
insights even about the quantum model. The results from the classical dynamics could be
particularly relevant near finite-temperature continuous phase transitions, where quantum
effects for the dynamics are generally believed to be irrelevant [38] due to divergent length
and time scales.

In quantum systems, truly chaotic behaviour, namely the exponential growth of OTOC
[34], can only be observed certain large-N models, e.g. Sachdev-Ye-Kitaev (SYK) and re-
lated models dual to black holes [1, 3, 4, 7, 10, 11, 39], other large-N theories [40–42], and
weakly interacting systems with semiclassical quasiparticle dynamics [43, 44]. In these
models the exponential growth can be observed over a parametrically long time window
between t ∼ λ−1

L and λ−1
L lnN or λ−1

L ln(1/~) for large N or the semiclassical (~ → 0)
limits, respectively. The large-N models are either infinite range or have a large local
Hilbert space. In contrast, short-range quantum models with finite local Hilbert space,
and without any semiclassical limit, typically do not show any exponential growth regime
in OTOC [34, 45, 46], either simply due to the absence of chaotic growth or else due to
very short, and thus unresolvable, temporal window of the growth. It is an outstanding
unresolved question whether such quantum system can show chaos. However, as shown
in Ref. [47], the semiclassical limit, though sufficient, may not be a necessary condition
to observe the exponential growth. In particular, even for a short-range quantum model
with finite local Hilbert space and without any obvious semiclassical limit, the exponen-
tial growth may be ascertained through a suitably defined spatially integrated OTOC if
vB/λL` � 1, where ` is a microscopic length scale. Based on our calculations in the
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classical limit, we identify a possible temperature regime in the XXZ model where such
a condition could be satisfied, and thus the exponential growth may be observed even in
the quantum limit. Moreover, as remarked earlier, since quantum effects typically become
unimportant near finite-temperature continuous phase transitions, one may naively con-
jecture that even short-range quantum models with finite local Hilbert space may show
chaos due to effective coarse graining of degrees of freedom near the transitions. How-
ever, chaos is only short and intermediate-time property and maybe unaffected by such
critical coarse-graining at long time scale. Nevertheless, the exploration of this possibility
will require the simulation of real-time dynamics of the quantum XXZ model across the
2d transitions and is beyond the scope of this paper. Here we only study the chaotic
properties across the phase transition in the large-S limit of the XXZ model.

In the context of the interrelation between chaos and the dynamics of collective mode,
we particularly focus on the dependence of chaos on the nature of transport in the pres-
ences of conserved quantities. Interesting interplay between operator spreading charac-
terized via OTOC and diffusion due to conserved modes have been explored in quantum
systems [48, 49], albeit in the toy models of random unitary circuits [50, 51]. However,
these toy models are non chaotic from the perspective of exponential growth of OTOC,
though they can be classified as quantum chaotic based on other diagnostics, like entan-
glement growth [52]. For the chaotic quantum systems of strongly interacting diffusive
metal [7, 39] built from solvable large-N SYK model, the OTOC exhibits exponential
growth with a ballistic light cone, i.e. D(r, t) ∼ exp [λL(t− r/vB)], with v2

B/λL exactly
equal to the energy diffusion constant. Moreover, in weakly-interacting diffusive metal,
D(r, t) ∼ exp [λLt(1− (r/vBt)

2)] with charge diffusion constant D = v2
B/4λL. Similar

relation between spin diffusion constant and v2
B/λL has been deduced numerically in the

interacting classical spin-liquid regime of a frustrated spin system [15]. We find the func-
tional form, D(r, t) ∼ exp [λLt(1− (r/vBt)

ν)], with ν varying between 1 to 2 from low
to high temperature, to be a good description for the OTOC close to the ballistic chaos
front [34] for both easy-plane and easy-axis anisotropies. The relation D = v2

B/4λL is
violated either qualitatively or quantitatively even at high temperatures. Moreover, we
find the evidence of anomalous diffusion at low and intermediate temperatures.

As mentioned in the introduction, there are many earlier studies [19, 20, 24, 25, 29]
on Lyapunov exponent across phase transitions in classical lattice spin models. In the
context of OTOC and spatio-temporal evolution of chaos across phase transitions, more
recent results on OTOC in O(N) models [18,41,42] are directly relevant for our work. As
discussed later in detail, the temperature dependence and finite-size scaling of the butterfly
speed vB close to the transitions could be related with dynamical critical exponent z [53].
Ref. [18] performed numerical simulation of high-temperature classical dynamics of 2+1d
relativistic quantum field theory with O(1) order parameter. Unlike the large-S classical
limit in the quantum XXZ model, taking the classical limit of the 2+1d O(1) field theory
is somewhat more involved [18,54]. The high-temperature dynamics in 2+1d O(1) model
is relevant across finite-temperature 2d Ising phase transition in the model. However,
the dynamics, which, e.g., is relevant for 2d transverse field Ising model [55], does not
conserve the order parameter, unlike the XXZ dynamics in the easy-axis case considered
here. The non-conserved order parameter dynamics in the O(1) model falls in the Model
C category among the dynamical universality classes [38] and has z = 2 [18,56,57] for 2d
Ising transition. In contrast, the dynamics in Eq.(2) conserves the Ising order parameter,
i.e. the z component of spin for ∆ > 1, and expected to be in the Model B or D dynamical
universality class with z = 4−η with anomalous exponent η = 0.25 for 2d Ising transition
[35]. Refs. [41, 42] obtained temperature dependence of λL and vB in the ordered and
disordered phases, and in the quantum critical regime of 2+1d O(N) model in the large N
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approximation. The dynamics of the model for N = 2 is more appropriate for 2d quantum
rotors and planar antiferromagnets [55] and the finite-temperature transition is expected
to have a dynamical exponent z ≈ 2 [35, 56]. The large-N approximation, unlike our
direct numerical Monte Carlo and spin dynamics simulation in the XXZ model, cannot
appropriately describe KT transition in the 2d O(2) model. In contrast, the dynamics
[Eq.(2)] in the ferromagnetic XXZ model for the easy-plane case ∆ < 1 is described by
the Model E dynamics [35, 58, 59], where the Poisson bracket terms between planar spin
components, i.e. the order parameter, and conserved z component of spin are important.
In this case, one expects a dynamical exponent z = 1 in 2d [58, 59]. We discuss these
points further in the context of our results for vB(T ).

3 Overview of the dynamical phase diagram of classical XXZ
model: Chaos and dynamical correlations

(KT) (Ising)(Isotropic)

Figure 1: Phase diagram: Schematic phase diagram showing dynamical transitions
and/or crossovers in terms of chaos and transport across KT and Ising transitions for
easy-plane (∆ < 1) and easy-axis (∆ > 1) anisotropies.

Our main results are summarized schematically in a phase diagram in Fig.1. Before
describing the results in detail, we give an overview of our main results below.
1. We show that λL(T ) has a crossover across both KT and Ising transitions, clearly
distinguishing low- and high-temperature phases. In particular, we find λL ∼ T 0.5 and
λL ∼ T 2.5−3 above and below the transitions.
2. The spatio-temporal evolution of the OTOC exhibits ballistic spreading of perturbation
in the form of a linear light-cone throughout the temperature range for both easy-plane
and easy-axis anisotropies, as shown in Figs.2(a),(b), above and below TKT, for ∆ < 1.
Unlike typical quantum systems [34, 42, 50], we do not find any signature of broadening
of the ballistic propagation front of OTOC, even close to the phase transitions. However,
we find that there is a delay t0 in the onset of the light-cone. The time scale t0 increases
with decreasing temperature and seems to diverge for T → 0, like 1/λL.
3. We find the butterfly speed vB has a non-monotonic temperature dependence, showing
a minimum at the transitions. This is the only sharp signature of the phase transition
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detectable via many-body chaos.
4. Contrary to λL(T ), sharp signatures of the phase transitions is seen in τ(T ), the time
scale extracted from the temporal decay, Cxy(t) = (1/N)

∑
r (〈Sxr (t)Sxr (0) + Syr (t)Syr (0)) ∼

exp (−t/τ), above the transition for the auto-correlation function of the planar components
of spins. This implies that the chaos time-scales 1/λL, t0 are unrelated to the relaxation
time τ .
5. We show clear evidence of anomalous diffusion below and close to the transitions –
(a) sub-diffusive power-law decay Cxy(t) ∼ 1/tα (α < 1) for the easy-plane case below
TKT, and (b) sub-diffusive to super-diffusive (α > 1) crossover across Ising transition Tc
for out-of-plane correlation Czz(t) = (1/N)

∑
r〈Szr (t)Szr (0)〉 ∼ 1/tα. On the contrary, for

both ∆ > 1 and ∆ < 1, Czz(t) always exhibits diffusive behaviour at high temperatures
with α ≈ d/2 = 1, as expected for two dimensions (d = 2). We also corroborate the
high-temperature diffusive behaviour by computing the dynamical correlation function
Szz(q, t) = 〈Szq(t)Sz−q(0)〉, where Szq(t) is Fourier transform of z-component of spins at
time t. However, we find that the actual diffusion coefficient D extracted from Szz(q, t)
is, in general, either quantitatively or qualitatively different from D̃ = v2

B/4λL. We find
spin diffusion constant D ' D̃ only at infinite temperature for the easy-plane case in the
XXZ model.

The above results indicate that there is no qualitative difference between KT and Ising
transitions in terms of many-body chaos, at least for the range of anisotropies and tem-
perature we access within our simulations. However, the dynamical spin-spin correlations
show qualitatively very different behaviors in the KT and Ising ordered phases, within the
time scale over which the perturbation spreads throughout the entire system for the sys-
tem sizes studied. In particular, we find that temporal decay of the spin auto-correlations
in the KT phase shows a sub-diffusive power-law decay, as expected from gapless spin
waves, whereas the decay crosses over from sub- to super-diffusive in the Ising ordered
phase. These imply that, relation between chaos and transport is much more intricate for
phases with anomalous diffusion, unlike that in the high-temperature phase well above the
transitions, where the diffusive behavior of spin correlation can be linked with the ballistic
spread of chaos [14,15].

4 Results

We study the model Eq.(1) with J = 1 and periodic boundary condition for two values
of anisotropy, ∆ = 0.3 (easy plane) and 1.2 (easy axis), for square lattices with N = L2

sites, with L = 32, 64, 128. We generate 104 initial equilibrated configurations at each
T via Metropolis Monte Carlo (MC) simulations, and time evolve the configurations via
Eq.(2) using fourth-order Runge-Kutta method with time step ∆t = 0.005. As already
mentioned, we look into two types of correlation functions – (1) The dynamical spin
correlation functions, Cxy(t), Czz(t), S

zz(q, t), and (2) The classical OTOC of Eq.(3).

4.1 Thermodynamics

We first characterize the thermodynamic phases from MC simulations. In particular,
we estimate the KT and Ising transition temperatures TKT ' 0.74 for ∆ = 0.3 and
Tc ' 0.96 for ∆ = 1.2, respectively [see Appendix A]. We mainly focus close to the
phase transitions and carry out the calculations below and above the transitions for a
range of temperatures 0.5 . T . 2.0, in the KT and Ising-ordered phases as well in
the paramagnetic phase. In the easy-plane case (∆ = 0.3), one expects the dynamics
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in the low-temperature phase to be controlled by gapless spin waves [58, 60] which lead
to algebraic spatial correlation 〈Sr(0) · S0(0)〉 ∼ r−η, where the exponent η = T/(2πρs)
and ρs the spin stiffness (see Appendix A). The KT transition occurs due to vortex-
antivortex unbinding, resulting into a vortex plasma phase for T & TKT [35,61,62], where
the dynamics is expected to be dictated by the motion of free vortices. We obtain TKT

from the universal Nelson-Kosterlitz jump criterion [63] (Fig.9, Appendix A). The statics
and dynamics are qualitatively different for easy-axis anisotropy ∆ = 1.2. We obtain the
two-dimensional (2d) Ising transition temperature Tc from divergence of specific heat and
vanishing of the order parameter mz = (1/N)

∑
r〈Szr 〉 (Appendix A). The spin waves of the

Ising-ordered phase have a gap ∆0 = 4(∆− 1) (Appendix A), and the spatial correlation
decays exponentially with distance for all temperatures except at Tc. Below we investigate
how these well-known static and dynamic properties of the model influence transport and
chaos in the two cases.

4.2 Many-body chaos
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Figure 2: Spatio-temporal evolution of classical OTOC in 2d XXZ model:(a)
and (b) show the growth and spread of initial perturbation at the origin for ∆ = 0.3 at
temperature T = 2.0 (> TKT) and T = 0.5 (< TKT), respectively. The color denotes the
value of classical OTOC, D(x, t), along a one dimensional (1d) cut in the x direction for
a perturbation strength ε = 10−4. The solid lines are the light cones obtained from the
generalized Lyapunov exponent for λL(x, t) = 0. The horizontal dashed lines denote the
delay time t0 for the onset of exponential growth. (c) The time evolution of D(x, t) at
x = 0, 1, 4, 8, 10. The dashed line is the exponential fit to obtain λL from D(0, t). The
dashed-dotted line denotes the delay time t0. (d) Zoomed-in view of D(x, t) at early times.
D(0, t) initially becomes negative.
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We demonstrate the growth and the spread of initial perturbation at r = 0 via D(r =
xx̂, t) for a 1d cut along x direction at T = 2.0 > TKT and T = 0.5 < TKT in Fig.2 (a) and
(b), respectively, for ∆ = 0.3. It is evident that, both below and above TKT, the chaos
has a ballistic spread like a light cone. As evident from Fig.2(a) for T = 2, and as we
have observed even for T close to TKT (not shown), the chaos front across the light cone
remains sharply defined and we do not see any evidence for broadening of the front, unlike
the diffusive broadening seen for quantum systems with short-range interactions and finite
local Hilbert space [34, 42, 50]. We observe the same phenomena for easy-axis anisotropy
∆ = 1.2 as shown in Fig.10, Appendix B.

To get a better look at the spatio-temporal evolution of the perturbation, we plot
D(x, t) as a function of t for a few x in Fig.2(c). Due to the choice of the orthogonal
perturbation, D(0, t) starts from zero and initially becomes negative [Fig.2(d)] over an
early-time regime, followed by a power-law growth (linearly with t, not demonstrated) till
t0, before it starts growing exponentially from a value D(0, t0) ' ε2. As evident from
Fig.2(c), the exponential growth ensues at a later time for x 6= 0.

Lyapunov exponent: To quantify spatio-temporal profile of chaos, we define a gen-
eralized Lyapunov exponent

λL(x, t) =
1

2t
ln

[
D(x, t)

ε2

]
. (4)

Using the above, we obtain a light cone from the locus of λL(x, t) = 0, i.e. where the
generalized Lyapunov exponent crosses zero or D(x, t) = ε2, as plotted in Figs.2(a),(b).
At low temperature T = 0.5 [Fig.2(b)], the tip of the light cone at x = 0 gets rounded, and,
more importantly, shifts to a later time t0, compared to that at T = 2.0 [Fig.2(a)] (also
see Fig.3(c)). This clearly suggests a temperature-dependent delay t0 in the onset of the
light cone. We also find similar time scale from 〈(δSx(t))2〉 as shown in Fig.12, Appendix
B. As mentioned in Sec.2, the quantity 〈(δSx(t))2〉 starts from ε2 at x = 0, t = 0. But, it
initially decreases with time at x = 0, just like D(0, t) in Figs.2(c),(d).

We extract the Lyapunov exponent λL(T ) as a function of temperature by fitting
D(0, t) ∼ ε2e2λLt in the exponential growth regime, e.g. in Fig.2(c). The results are shown
in Figs. 3(a),(b) across the KT and Ising transitions, respectively, for different system
sizes. A smooth crossover around the transitions can be clearly seen indicating a change
of temperature dependence of λL. We find λL ∼ T 2.86 for T ≤ TKT in the KT phase
for ∆ = 0.3 and λL ∼ T 2.45 in the Ising ordered case for ∆ = 1.2. For the latter, the
spin-wave spectrum has a gap ∆0 ' 0.8 (Appendix A), and we expect [41,42] an activated
T dependence, λL ∼ e−∆0/T , possibly with a power-law pre-factor, at low temperatures
T � ∆0. However, for relatively high temperature T & 0.5, studied here, we presumably
capture only the power-law pre-factor ∼ T 2.45 in Fig.3(b). In both the easy-axis and easy-
plane cases, λL(T ) is consistent with a

√
T dependence above the transitions, albeit over

a limited range of temperature. At very high temperature T & 2, λL eventually saturates
to the infinite temperature value ∼ 1 [Fig.3(a),(b)], which we calculate separately by
doing spin-dynamics simulations starting with completely random initial configurations
{Sar(0)}. The

√
T dependence for the Lyapunov exponent has also been seen for the

classical spin liquid phase of a frustrated spin system [15]. The results in Figs. 3(a),(b)
indicate no significant effect of L and critical slowing down on λL, unlike that observed
across liquid-gas critical point [30]. However, the results imply that the individual phases
can still be distinguished in terms of λL(T ) [10–13]. Thus many-body chaos indeed could
be an additional tool to characterize dynamics in phases in classical systems and may
give new insights not contained within traditional static and dynamical properties. The
crossover in chaos across KT transition has been studied earlier [19, 20, 22], either for
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Figure 3: Temperature dependence of the Lyapunov exponent and the butterfly
speed: (a) and (b) show the temperature dependence of λL across the KT and Ising
transitions for ∆ = 0.3 and ∆ = 1.2, respectively. Results are shown for three different
system size, L = 128 (circle), 64 (square) and 32 (triangle). Power law fits have been
obtained for T < TKT(Tc) and T > TKT(Tc) (dashed lines). The dashed-dotted line
represents the value of λL at infinite temperature. (c) Ballistic light cones (λL(x, t) = 0)
at different temperature across the KT transition. The butterfly speed, vB, and the delay
time, t0, are found from a linear fit to the light cones. (d) Temperature dependence of
butterfly speed for easy-plane and easy-axis anisotropies across KT and Ising transitions,
respectively, for L = 128 (square) and 64 (open circle). The dashed-dotted line denotes
the value of vB at infinite temperature. Minima are observed at the transitions (vertical
dotted line).

smaller system sizes or with a different dynamics. Similar crossover in λL(T ) has been
reported for the Ising transition with various different types of dynamics [18,23,24,29].

Butterfly speed: We next show the temperature dependence of the the butterfly
speed vB(T ) in Fig.3(d). The light cones, i.e. the locus of λL(x, t) = 0, at a few temper-
atures, e.g., as shown in Fig.3(c), are fitted using t = x/vB + t0 with vB and t0 as fitting
parameters (see Figs.11(a),(b), Appendix B for more details). The speed vB exhibits a
non-monotonic temperature dependence, having a broad minimum around the KT and
Ising transition temperatures. A non-monotonic behavior in vB(T ) has been observed in
Ref. [18] for the finite-temperature 2d Ising transition in the classical limit of O(1) model.
However, in contrast to our results, there vB(T ) shows a maximum at the transition for
O(1) model. This implies that chaotic properties are dependent on the details of the
dynamics even close to critical points. As discussed in the Appendix.D, one can obtain
dynamical scaling laws for OTOC across finite temperature transitions with diverging
length and time scales, as in the case of quantum phase transition [53]. Based on these
scaling laws, or even just simple scaling argument [41], vB ∼ ξ/ξz = ξ1−z, with dynamical
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Figure 4: Comparison of chaos and relaxation time scales: The T dependence of
the delay time t0, Lyapunov time λ−1

L and the relaxation time τ , extracted from spin auto-
correlation function Cxy(t) above the transitions, are shown for (a) easy-plane (∆ = 0.3)
and (b) easy-axis (∆ = 1.2) anisotropies. Vertical dotted lines denote the transitions.

exponent z ≥ 1. Similarly, for ξ � L, i.e. close to the transitions, vB ∼ L1−z, giving the
finite-size scaling of vB. As mentioned earlier, z = 1 for the easy-plane case [58, 59], thus
the weak system size dependence of vB(T ) (∼ L0) in the KT phase (T ≤ TKT) for ∆ = 0.3
in Fig.3(d) is consistent with the scaling law. However, the same features in vB(T ) are
seen around Tc for the easy-axis case ∆ = 1.2 [Fig.3(d)] where one expects z = 4−η [35,38]
and much stronger dependence of vB on |T −Tc| and L. This discrepancy could be due to
the fact that the easy-axis anisotropy ∆ = 1.2 studied here is not large enough to access
true critical regime expected over a narrow range of T around Tc. Also, dynamics for
such a large z ≈ 4 becomes extremely slow and thus it may be difficult to capture the
asymptotic critical dynamics within our simulations times. We note that Ref. [18] also
finds very weak temperature and system-size dependence for vB(T ) close to Tc in 2d O(1)
model, where z = 2 and stronger variations with |T − Tc| and L are expected for vB(T ).
We keep more detailed analysis of the scaling laws for OTOC and vB for future studies.

At high temperature we find that the quantity D̃ = v2
B/4λL to be temperature indepen-

dent, as discussed later [Fig.8], suggesting vB ∼ T 0.25, similar to that found in a classical
spin liquid phase [15]. The vB(T ) in Fig. 3(d) suggests faster spread of chaos at low tem-
peratures. This could be due to well-defined spin-wave excitations in the low-temperature
KT and Ising-ordered phases. In this regime vB increases at lower temperature whereas
λL → 0 as T → 0, implying a large vB/λL` (` ' 1, the lattice spacing). This feature
may persist even for quantum XXZ model with small S and thus one maybe able to ob-
serve [47] the exponential growth in the quantum limit for such a regime dominated by
weakly interacting spin waves.

The delay time t0 extracted from the light cones [Fig.3(c)] is shown as a function of
temperatures in Figs.4(a) and (b). The existence of the delay time and the linear form
of the light cone for t > t0 are further corroborated by plotting λL(x, t) as a function of
x/(t − t0) in Figs.5(a),(b). The λL(x, t) for different t collapses on a single curve near
the light cone λL(x, t) = 0. We also find that, sans the region deep inside the light cone,
D(x, t) can be fitted with a ballistic form ε2 exp[λLt{1 − (x/vB(t − t0))ν}] for t > t0
for both easy-plane and easy-axis cases, as discussed in the Appendix.C. The exponent
ν changes from 2 to 1 going from high to low temperatures across the transitions,
as shown in Figs.14(b),(c) in Appendix.C. Surprisingly, as shown in Fig.4(a) and (b),
t0, which characterizes early-time regime prior to exponential growth, roughly follows the
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temperature dependence of λ−1
L , especially at high temperature. Naively, one would expect

t0 ∼ 1/J ∼ 1, a microscopic time scale. But, t0 tends to diverge for T → 0 [Figs.4(a),(b)].
Thus interaction effects, that lead to chaotic growth, presumably influence the pre-chaotic
non-exponential growth regime of D(x, t) too.
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Figure 5: Scaling collapse of generalized Lyapunov exponent: λL(x, t) for different
t collapses into a single curve near the light cone (λL(x, t) = 0) when plotted as function
of x/(t− t0). t0 has been extracted from the linear fits to the light cones, e.g. in Fig.11(b),
Appendix B. (a) ∆ = 0.3, T = 0.72 and (b) ∆ = 1.2, , T = 0.96. The collapse corroborates
the existence of linear light cone with a onset time t0.

We have also separately computed 〈(δSix(t))2〉 = 〈(Siax(t)− Sibx(t))2〉/2 for i = x, y, z.
All the components give the same λL(t) and vB(T ) and exhibit qualitatively same be-
haviour, unlike the planar and out-of-plane auto-correlation functions Cxy(t) and Czz(t)
that we discuss below.

4.3 Dynamical spin-spin correlations, diffusion and anomalous diffusion
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Figure 6: Spin auto-correlation function and anomalous diffusion: (a) Spin-spin
auto-correlation function across KT transition for ∆ = 0.3 and L = 128. At long times
(t & 10) the auto-correlation exhibits a power-law decay, C̃(t) ∼ 1/tα, as indicated by
the black dashed line for T = 2.0 and 0.50. (b) The temperature dependence of α across
the transitions. For the easy-plane anisotropy, α changes from high temperature diffusive
(α ≈ 1) to low temperature sub-diffusive behavior (α < 1). For T < TKT, α is compared
with the exponent η = T/2πρs, expected from non-interacting gapless spin waves. α has
been extracted from C̃xy(t) below TKT and from Czz(t) above TKT. For the easy-axis case
(c), α has diffusive → sub-diffusive → super-diffusive (α > 1) crossovers from high to low
temperature across Tc. In this case, α is extracted from C̃zz(t). The vertical dotted lines
mark the transitions.
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To understand the possible connection of growth and spread of chaos to transport
and dynamical correlations, we first look into Cxy(t) and Czz(t) at various temperatures,
as shown in Fig.6(a) for ∆ = 0.3. For T > TKT, Czz(t) ∼ 1/tα, i.e. Czz(t) exhibits
a power-law decay at long times (t & 10). The exponent α ≈ 1 [Fig.6(b)], consistent
with the expected diffusive behaviour for Czz(t). Above the KT transition, Cxy(t) decays
exponentially with a time scale τ [see Fig.15 (a), Appendix E]. The evidence of critical
slowing down can be observed in τ(T ), as shown in Fig.4(a). Since Cxy(t) approaches
a finite value Cxy(t → ∞) = C∞xy (see Appendix E) in the long time limit below the

transitions, we plot C̃xy(t) = Cxy(t)− C∞xy in Fig.6(a) for T < TKT. C∞xy 6= 0 for T < TKT

due to strong finite-size effect [64]. C̃xy(t) shows a sub-diffusive power law decay at long
times with α < 1, as shown in Fig.6(b). However, we could extract α only close to TKT

due to large error in estimating C∞xy for T . 0.5. Qualitatively, the sub-diffusive behaviour
of Cxy(t) is expected from non-interacting gapsless spin waves in the KT phase giving rise
to a temporal spin correlation Cxy(t) ∼ t−η [60], implying α ' η = T/(2πρs). However,
our results for α close to TKT does not quantitatively match the non-interacting spin-
wave results for η(T ) plotted in Fig.6(b). This could be due to coupling between planar
and out-of-plane components via spin-wave interactions or finite time (. 100) accessed
in our simulations. The asymptotic power law may set in at very long times, as well
known for Heisenberg chain [65]. To verify whether a relatively steady power-law regime is
reached for C̃xy(t), we also look into a time-dependent exponent or local logarithmic slope

α(t) = d ln(C̃xy(t))/d ln(t) [Fig.16(a), Appendix E]. α(t) has a clear drift towards a larger
value. This implies that, below TKT, long-time asymptote for Cxy(t) is not reached for the
time scales over which the chaos spreads ballistically through our finite-sized systems. We
note that the transient subdiffusive regime [20 . t . 80, Fig.16(a), Appendix E], though
partially overlaps with the non-exponential growth regime t < t0 ∼ 5− 35 [Fig.4(a)], but
extends far beyond the latter and continues deep inside the light cone. Thus the sub-
diffusive regime persists over the time window of the ballistic spread of chaos over the
system sizes considered here. We could not extract any power-law exponent for Czz(t)
below TKT since it becomes small and oscillatory at low temperatures (not shown).

We did similar calculations of Cxy(t) and Czz(t) for the easy-axis case (∆ = 1.2). As in
the easy-plane case, Czz(t) [Fig.15(b), Appendix E] shows a diffusive power law with α ' 1
at high temperatures (T � Tc), as shown in Fig.6(b). However, α decreases approaching
the transition indicating a sub-diffusive behaviour. In this regime, the local slope α(t) only
shows slight drift with t as shown in Fig.16(b), Appendix E. Below Tc, again we obtain
C̃zz(t) = Czz(t)− C∞zz [Fig.15(b), Appendix E] by subtracting the t→∞ value of Czz(t).
In the Ising case, C∞zz 6= 0 below Tc because of the symmetry breaking. We find a surprising
crossover from sub to super-diffusive scaling of C̃zz(t), with α(T ) increasing rather sharply
from α � 1 to a value greater than one below Tc, as shown in Fig.6(c). The analysis of
α(t) [Fig.16(b), Appendix E] indicates a steady exponent corroborating the super-diffusive
power law. The latter may again be an intermediate-time behavior, but it happens over
the same times scale over which the chaos spreads in the system. We do not have any good
understanding of the anomalous sub and super-diffusive behaviour across the transition
and in the Ising ordered phase. For the latter, the phenomena may be arising from some
additional conserved mode emerging in the ordered phase and nonlinear coupling between
the hydrodynamic modes as happens in one dimensional XXZ model [66]. The planar
correlation Cxy(t) decays exponentially with the decay time τ(T ) [Fig.4(b)] for T > Tc.
However, in contrast to the easy-plane case [Fig.4(a)], τ(T ) sharply decreases approaching
the Ising transition. We note that the planar components are not the critical modes for
∆ > 1 and hence the associated relaxation time does not necessarily need to show critical
slowing down. Cxy(t) has strongly oscillatory behaviour for T < Tc (not shown).
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Figure 7: Dynamical structure factor: (a) Momentum dependence of Szz(qx, t) at
different times t = 10 to 50. The behaviour is expected to be a Gaussian in q with
standard deviation, σq = 1/

√
2Dt that decreases with time. (b) Exponential decay of

Szz(qx, t) in time for different momenta qx(k) = 2πk/L, k = 1, 2, . . . , 7 near q = 0 along
x direction. We fit the data with e−κ(qx)t (e.g. the dashed line) to extract κ(qx) (c)
Quadratic dependence of κ with qx near q = 0. The fit with κ = Dqax gives D = 1.22 and
a = 2.13. For the all the panels, we have taken T = 2.00 and ∆ = 0.3.

Finally, to probe further the high-temperature diffusive phase and the relation between
D̃ = v2

B/4λL, which superficially looks like a diffusion constant from dimensional ground,
and the actual spin diffusion coefficient D, we compute the dynamical structure factor (or
its Fourier transform)

Szz(q, t) =
1

N

∑
r,r′

eiq·(r−r
′)〈Szr (t)Szr′(0)〉. (5)

For computing the above from spin dynamics simulation, we rewrite Szz(q, t) = 〈Szq(t)Sz−q(0)〉.
Here Szq(t) is Fourier transform of z-component of spins at time t. We obtain Szq(t) from
a configuration {Szr (t)} at time t, and average over configurations to obtain Szz(q, t) in
Eq.(5). If the system exhibits normal diffusion, for large wavelength q → 0 we expect
Szz(q, t) to decay exponentially in time, i.e., e−κ(q)t where the decay rate κ(q) = Dq2.
We choose momenta q = qx along x direction, close to q = 0 and fit Szz(q, t) with the
exponential form to get κ(q) for a given q. Fig.7(a) shows Szz(q, t) as a function of q
for several values of t in the easy-plane (∆ = 0.3) case at T = 2.0. The Gaussian form,
Szz(q, t) ∼ e−Dq

2t is evident, implying diffusive behaviour. The exponential decay of
Szz(q, t) as a function of t for small momenta is shown in Fig.7(b) for the same parameter
values. We extract the diffusion constant D for a range of temperatures where κ(q) could
be fitted via Dqa with a ≈ 2. As we show in Fig.8(b) by plotting a(T ), κ(q) follows the
quadratic dependence in the high temperature regime, for both easy-plane and easy-axis
cases, where the auto-correlation exponent α ' 1 [Figs.6(b),(c)]. An example of near-
quadratic dependence of κ(q) is shown for ∆ = 0.3 and T = 2.0 in Fig.7(c). At lower
temperatures, we find κ(q) to deviate from the diffusive form and Szz(q, t) to exhibit os-
cillatory behaviour as a function of both q and t (not shown). The oscillatory behaviour is
expected [58] below the transition and even slightly above it, due to spin-waves. The low-
temperature behaviour of dynamical structure factor in the anomalous diffusive regimes
(α 6= 1) of Fig.6(b) will be analyzed in detail in a future work [67].

The diffusion constant D calculated for both easy-plane and easy-axis anisotropies in
the high-temperature diffusive regime (α ' 1) is plotted in Fig.8, and compared with D̃,
extracted from Fig.3. In the easy-axis case, both D and D̃ are independent of temperature
at high temperatures (1 . T/Tc . 2) and closely approach their infinite-temperature
values, however, D � D̃. In the easy-plane case, D varies substantially with temperature
even at high temperature and slowly approaches its infinite-temperature value D∞. This

14



SciPost Physics Submission

0

0.5

1

1.5

2

2.5

3

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

(b)

0

0.5

1

1.5

2

2.5

3

3.5

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

(a)

Figure 8: Temperature dependence of diffusion constant: The diffusion coefficient
is extracted from the fit κ(q) = Dqa over a range at high temperatures. We plot in (a)
D (solid squares), and in (b) the exponent a (solid circles), as a function of temperature.
In (a), we show the comparison of diffusion constant D(T ) calculated from dynamical
structure factor with D̃ = v2

B/4λL (open squares) extracted from Fig.3 for ∆ = 0.3 and
∆ = 1.2. Horizontal dashed-dot lines represent the asymptotic infinite temperature values
of D∞ at these two anisotropies. D∞ ' D̃∞ (≈ 0.8, not shown) for easy-plane case whereas
D∞ ≈ 0.42 and D̃∞ ≈ 1.14 (not shown) for easy-axis case. (b) shows that the deviation
of the exponent a from the diffusive value ∼ 2 starts exactly where the auto-correlation
exponent α (open circles) deviates away from ∼ 1 (Fig.6). Note that for simplicity of
notation, we refer to D as diffusion constant even when a deviates substantially from the
diffusive value 2.

behaviour is unlike that of D̃, which varies little with temperature and coincides with
its infinite-temperature value D̃∞. Moreover, we find D̃∞ ' D∞ for the easy-plane case.
Nevertheless, our results suggest that D̃ is quite distinct from the actual diffusion constant
D in general, unlike that in a correlated classical spin-liquid state [15] or in quantum
systems like strongly or weakly interacting diffusive metals [7,39,43,44]. For the strongly
interacting metals, D̃ is related to the energy diffusion constant implying that the chaos
or scarambling directly controls the thermal diffusion [7,39]. To this end, our results raise
interesting questions about actual physical process governing D̃ in the semiclassical limit
of 2d XXZ model. For example, it would be interesting to compute the energy diffusion
constant for the spin model in future and see whether it corresponds more closely to D̃,
rather than the spin diffusion constant that we calculate here.

5 Conclusion

We have studied here the OTOC, and the dynamical spin correlations in the semiclassical
limit of the 2d XXZ model. In particular, we have tuned the anisotropy in the model
to study the dynamical properties across KT and 2d Ising transitions via simulation of
spin precession dynamics as a function of temperature. Thus we obtain a dynamical
phase diagram in terms of chaos and spatio-temporal spin correlations for the classical 2d
XXZ model. We have computed temperature dependence of the Lyapunov exponent and
butterfly speed, which show crossover across the transitions and no effect of critical slowing
down. Only relatively sharp signature of the transitions is exhibited by a non-monotonic
temperature dependence of butterfly speed having a minimum at the transition.

Overall, we find chaotic growth and spread, and the dynamical correlations above
the transitions at high temperature in the easy-plane and easy-axes cases very simi-
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lar. However, the dynamical spin-spin correlations are very different at intermediate
times in the low-temperature KT and Ising ordered phases, and close to the transi-
tions, although chaos still spreads ballistically in these regimes. This leads us back
to the question on the connection of chaos and transport. A simple, albeit heuristic,
way [68] to obtain ballistic light-cone for chaos from diffusive transport is to take the
separable ansatz D(x, t) ≈ ε2eλLtCzz(x, t) for the OTOC and plug in the diffusive form
Czz(x, t) ∼ e−x

2/4Dt/td/2. This leads to a velocity-dependent generalized Lyapunov ex-
ponent [14, 34, 36] λL(x, t) = λL

(
1− (x/vBt)

2
)
, and naturally gives rise to the relation

D ∼ D̃ = v2
B/4λL. However, we find D̃ to be very different from D, except for the easy-

plane case at infinite temperature. More importantly, the simple ansatz clearly fails in the
phases exhibiting anomalous diffusion, like the KT and Ising ordered phases in the XXZ
model. Our observation of the anomalous diffusion over a large range of temperature and
anisotropy in the semiclassical limit of 2d XXZ model is intriguing and it would be good
to get a proper understanding of these phenomena and their possible connections to chaos.

We reveal an early-time pre-exponential regime in the form of a temperature-dependent
overall delay t0(T ) in the onset of the light cone. The time scale t0 is presumably connected
with chaos time scale and originates from the same many-body interactions that give rise
to chaotic growth. This result suggests the possibility of extracting new dynamical regime
with a suitable choice of the correlation function. Such a regime may even exist for non-
chaotic systems, e.g. integrable or fully quantum ones, where there is no exponential
growth inside the light cone [34].

In the absence of any good analytical understanding of many-body chaos in classical
systems, our results call for the development of a theoretical framework [69] to compute
the classical OTOC along the line of that done for quantum systems, in a suitable large-N
limit [16], or in some perturbative regime [36, 69], like at low temperatures with weakly
interacting spin waves. Such a theory may give rise to new insights into the dynamics
of interacting classical systems as well as quantum systems in the semiclassical limit. It
would be desirable to obtain hydrodynamic description of the OTOC in such classical
spin systems with Hamiltonian dynamics or some related tractable toy models, e.g. with
random classical Liouvillian dynamics, along the line of those developed for quantum
systems [43,48–51].
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A Thermodynamic Properties

0

1

2

3

4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.4

0.8

1.2

1.6

2

0 0.4 0.8 1.2 1.6 2

0

1

0 20

0.8

0 2

64

128

32

(a) (b)

64

32

128

Figure 9: Kosterlitz-Thouless (KT) and Ising transitions: (a) The temperature
dependence of spin stiffness ρs for ∆ = 0.3. The KT transition temperature TKT is
obtained from the intersection between ρs(T ) and 2T/π. We estimate TKT from the
largest system size (L = 128). Inset shows C∞xy, the t→∞ value of Cxy(t), as a function
of temperature. (b) The specific heat cV as function of T for ∆ = 1.2. The Ising transition
temperature Tc is estimated from the divergence of cV , as well as from the magnetization
mz (inset). The vertical dotted lines denote the transition temperatures.

A.1 Spin stiffness and KT transition

To obtain the Kosterlitz-Thouless (KT) transition temperature TKT for ∆ = 0.3, we
calculate the spin stiffness ρs, which measures the rigidity of the spin configuration to small
twist or rotation of the spins along some direction. For the KT transition the relevant spin

stiffness is obtained by twisting the planar components (Sxr , S
y
r ) = (S

‖
r cosφr, S

‖
r sinφr) of

the spins. The spin stiffness for the model of Eq.1 in the main text can be obtained as

ρs(T ) =
J

2N

∑
r,δ

〈
S
‖
rS
‖
r+δ cos (φr − φr+δ)

〉
− J2

2NT

∑
δ

〈(∑
r

S
‖
rS
‖
r+δ sin (φr − φr+δ)

)2〉
,

(6)

We calculate ρs(T ) via MC simulations and apply the Nelson-Kosterlitz universal jump
criterion [63] ρs(TKT)/TKT = 2/π to obtain TKT, as shown in Fig. 9(a).

A.2 Two dimensional (2d) Ising transition

To estimate the 2d Ising transition temperature Tc for ∆ = 1.2, we calculate the magne-
tization and the specific heat per site

cV =
1

NT 2

(〈
H2
〉
− 〈H〉2

)
(7a)

mz =
1

N

∑
r

〈Szr 〉. (7b)

Tc is obtained from the divergence of cV shown in Fig. 9(b), as well as, from mz(T ) which
continuously goes to zero at Tc [Fig. 9(b)(inset)].
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A.3 Spin-wave dispersion

Easy-plane anisotropy

In this case, the spin-wave dispersion is obtained by expanding the dynamical equations
[Eq.2, main text] around the T = 0 ground state, which corresponds to all spins aligned
along a direction (say x̂) in the xy-plane. In this case, Sxr ' 1� Syr , S

z
r , and Eq.2 (main

text) gets reduced to

dSyr
dt

= J
∑
δ

(Szr −∆Szr+δ)

dSzr
dt

= J
∑
δ

(Syr+δ − S
y
r )

Using Fourier transformation Sir(t)→ Siq(ω), it is straightforward to obtain the spin-wave
dispersion for q → 0 for the square lattice

ω(q) = 2J
√

1−∆q. (8)

Hence the spin waves are gapless in the easy-plane case.

Easy-axis anisotropy

In this case, the all the spins can be taken to be aligned along ẑ direction, and Szr '
1 � Sxr , S

y
r . Following the same method as the easy-plane case, we obtain the spin-wave

dispersion

ω(q) = ∆0 + Jq2, (9)

with a spin-wave gap ∆0 = 4J(∆− 1).
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Figure 10: OTOC and ballistic light cone for easy-axis anistropy: D(x, t) at (a)
T = 1.60 (T > Tc) and (b) T = 0.74 (T < Tc), for ∆ = 1.2. The solid lines are the light
cones from extracted from λL(x, t) = 0, and the horizontal dashed lines denote the delay
time t0.
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Figure 11: Extraction of the butterfly speed and the delay time: (a) shows the
time dependence of D(x, t)/ε2 at different sites (x = 0, 2, 4, . . . ) along a 1d cut in the
x-direction at T = 0.72 for easy-plane anisotropy. Due to the choice of our orthogonal
perturbation, δS0 = ε(n̂ × S0), D(x, t) starts from 0 and increases to reach D0 = ε2 in
time tD0 . Initially D(x, t) becomes negative, before rising sharply to D0. (b) shows the
light cones tD0 obtained from the locus of λL(x, t) = 0 or D(x, t) = D0. The light cones
are fitted with tD0 = t0 + x/vB to extract vB(T ) and t0(T ). We get similar behaviour for
easy-axis case.

B Classical OTOC

We show the OTOC D(x, t) for a cut along x direction for ∆ = 1.2 at two temperatures,
T = 1.6 > Tc and T = 0.74 < Tc in Fig.10(a),(b). The results are qualitatively similar
to the easy-plane anisotropy ∆ = 0.3 [Fig.2(a),(b)] in the main text, namely the chaos
spreads ballistically, as indicated by the light cones λL(x, t) = 0, and the light cones start
at a finite time t0, which increases with decreasing temperature.

We extract the light cones, e.g. in Fig.3(c) (main text), by finding the locus tD0(x) of
λL(x, t) = 0 or D(x, t) = D0 = ε2, as shown in Fig.11(b) for ∆ = 0.3. The delay time t0
and the butterfly speed vB are calculated by fitting the light cones in Fig.11(b) with the
linear form tD0 = x/vB + t0. The results for t0 and vB have been shown in the main text
in Figs.4(a),(b) and Fig.3(d), respectively.

B.1 Trajectory divergence and decorrelation

In all our calculations and results shown in the main text, we consider the decorrelation
function [Eq.(3)] or the classical OTOC, which essentially measures how uncorrelated two
spin configurations a and b are. As discussed earlier, the copy b differs from a initially
only at a single site (r = 0), namely Sbr(0) = Sar(0) + ε(n̂ × Sa0)δr,0. One can also
consider the trajectory divergence, which is defined 〈(δSr(t))

2〉 = 〈(Sbr(t)−Sar(t))
2〉. The

decorrelation function and trajectory divergence differ at O(ε2) initially at r = 0, i.e.

〈(δSr(0))2〉 = 2D(r, 0) + ε2δr,0. (10)

This initial-time difference eventually relaxes in the intermediate time regime where chaos
sets in and we get the same exponential growth and ballistic spread characterized by λL

and vB, respectively, from both of these quantities.
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Figure 12: Trajectory divergence: We plot the time evolution of conventional trajectory
divergence, 〈(δSx(t))2〉 at different sites x = 0, 2, 4, . . . , 20 for (a) T = 2.00 and (b) T =
0.50 for easy-plane anisotropy ∆ = 0.3. In the insets, we show zoomed-in view of the early
time evolution of the same quantity.

To compare the decorrelation function and the trajectory divergence, we plot 〈(δSx(t))2〉
in Fig.12 as a function of t for a few x, for T = 2.00, 0.50 and ∆ = 0.3. 〈(δSx(t))2〉 exhibits
behaviour very similar to D(x, t) [Fig.2(c),(d)]. By definition, 〈(δS0(t))2〉 starts from ε2

and decreases over an early-time regime, followed by a power-law growth till t0, before it
starts growing exponentially from a value D(0, t0) ' ε2. The exponential growth occurs
at a later time for x 6= 0. As shown in Fig. 13(a),(b) for T = 2 and ∆ = 0.3, both the
decorrelation function and trajectory divergence give same values of λL and vB.

C Velocity-dependent Lyapunov exponent

As shown in Fig.5(a),(b), the generalized Lyapunov exponent λL(x, t) [Eq.(4)] at different
t can be collapsed into a single curve as a function of a velocity v = x/(t − t0) for t > t0
over a relatively large range around v = vB for both outside (v > vB) and inside (v < vB)
the light cone. However, this range shrinks progressively with decreasing temperature.
Over this range, the velocity-dependent Lyapunov exponent λL(v) can be fitted well with
a ballistic form,

λL(v) = λL

[
1−

(
v

vB

)ν]
, (11)

as shown, for example, in Fig.14(a) for easy-plane anisotropy ∆ = 0.3 at T = 0.96. The
deviation from the scaling for v & 1.5vB in the inset of Fig.14(a) and in Fig.5 is due to
the numerical precision. The extracted values of the exponent ν are plotted as a function
of T for ∆ = 0.3 in Fig.14(b). Here to obtain ν we have used a linear approximation
λL(v) ' λLν(1−v/vB) to the non-linear fitting form in Eq.(11) for v ∼ vB and fitted with
ν as the fitting parameter for fixed values of λL and vB obtained from Fig.3. The resulting
linear fit and the non-linear function are compared with the data for ∆ = 0.3, T = 0.96
in Fig.14(a). We find ν ≈ 1.9 at high temperature, but ν decreases towards ∼ 1 with
decreasing temperature T & 0.6. We could not get a reliable goodness of fit at lower
temperature since the fitting range shrinks substantially for both v > vB and v < vB for
T . 0.6.
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Figure 13: Decorrelation and trajectory difference: Comparison of decorrelation
function D(x, t) and trajectory difference (〈δSx(t))2〉 in calculation of (a) Lyapunov expo-
nent and (b) butterfly velocity at temperature T = 2.0 for easy plane anistropy (∆ = 0.3).
From the exponential growth regime (shaded) in (a) we get same λL ' 0.62 and from
inverse of the slope in (b) we found same vB from these two quantities.

To assess the goodness of the fits we obtain the errorbars [Fig.14(a)] in D(x, t) at each
(x, t) in terms of standard error in the mean (SEM), obtained by dividing 104 trajectories
generated with different initial conditions at temperature T into multiple groups. Based on
these errorbars on D(x, t) and χ2 fitting of the data for λL(v) with the linear approximation
to Eq.(11) mentioned above, we obtain the error in ν, and estimate the goodness of fit
using [70]

P = 1− 1

Γ(Ndata/2)

∫ ∞
χ2/2

yNdata/2−1e−ydy, (12)

where Ndata is number of data points over the fitting range. A healthy fit is defined as
0.01 . P . Pmax, where Pmax is slightly less that 1 [70]. The errors in the estimate of
ν and P values are indicated in Fig.14(b) for the easy-plane case ∆ = 0.3. We have not
carried out detail error analysis for easy-axis anisotropy ∆ = 1.2, but ν in this case is
shown as a function T in Fig.14(c).

To verify the possibility of the broadening of the chaos front around v ≈ vB, we have
also tried to fit λL(v) for v ≥ vB with λL(v) = λL(1 − (v/vB))1+p [34, 42] with p as the
fitting parameter. We find p ' 0, consistent with the absence of broadening [34] and the
fact that the λL(v) is more or less linear for v > vB [Figs.5,14(a)], over the range of v
where the scaling collapse works.

D Dynamical scaling law for OTOC

One can obtain dynamical scaling laws for OTOC and the butterfly speed vB across
finite-temperature phase transitions with diverging length scale, as in the case of quantum
critical point (QCP) [53]. To this end we consider

F(r, t) = 1−D(r, t) = 〈Sar(t) · Sbr(t)〉. (13)

We can write a scaling form for F(r, t) by applying scaling transformation F(r, t) =
b−∆F Φ(L/b, ξ/b, r/b, b−zt), where z is the dynamical exponent, Φ a universal scaling func-
tion, and ξ is the correlation length that diverges for T → Tc for Ising transition in
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Figure 14: Velocity-dependent Lyapunov exponent: (a) Scaling collapsed of gen-
eralized Lyapunov exponent (zoomed in part inside the circle shown in the inset) with
v = x/(t− t0) (t > t0) at temperature T = 0.96 for ∆ = 0.3 (easy plane). Error bars are
smaller than the data point symbols. We fit the region near zero crossing v ∼ 1.27− 1.33
with λL(v) = λLν(1− v/vB) (red) for known λL and vB and ν as fitting parameter. Non-
linear function λL(v) = λL(1−(v/vB)ν) for same values of the parameters is shown in blue.
Goodness-of-fit indicator P -value is indicated. (b) Temperature dependence of ν extracted
in the way mentioned in (a) for various temperature across the KT transition. P -values
corresponding to each of the points are mentioned. (c) ν as a function of temperature for
the easy-axis case across the Ising transition.

the easy-axis case and for T ≤ TKT at the KT transition and KT phase for easy-plane
anisotropy. Since, F(r, 0) = 1 for any L, r and ξ, ∆F = 0. Choosing b = ξ, we obtain

F(r, t) = Φ(L/ξ, r/ξ, ξ−zt). (14)

We consider two sets of parameters (L1, ξ1, r1) and (L2, ξ2, r2) such that L1/ξ1 = L2/ξ2,
r1/ξ1 = r2/ξ2. At the scrambling time t = t∗, F(r, t) = 1 − ε2, hence the scrambling
times for the two sets of parameters are related by ξ−z1 t∗1 = ξ−z2 t∗2. Thus the butterfly
velocities [vB(L, ξ) = r/t∗] satisfy vB(L1, ξ1)ξz−1

1 = vB(L2, ξ2)ξz−1
2 . Based on this we can

write down the scaling form for vB

vB(L, ξ) = φB(ξ/L)ξ1−z (15)

where φB is a scaling function. For ξ/L� 1, vB ∼ ξ1−z. On the other hand, for finite L
and ξ →∞, φB(x) ∼ x−(1−z), implying vB ∼ L1−z. These scaling forms are valid only for
z > 1, since vB needs to be bounded due to causality.

E Spin auto-correlation functions

We calculate the spin auto-correlation functions Cii(t) = (1/N)
∑

r〈Sir(t)Sir(0)〉 from
the spin dynamics simulations starting with thermal initial conditions at different tem-
peratures, as discussed in the main text. We mainly look into the planar correlation
Cxy ≡ Cxx + Cyy and out-of-plane correlation Czz. More specifically, we compute

C̃ii(t) = Cii(t)− C∞ii , (16)

where C∞ii = Cii(t→∞) = (1/N)
∑

r〈Sir(0)〉2, as 〈Sir(t→∞)Sir(0)〉 = 〈Sir(t→∞)〉〈Sir(0)〉 =
〈Sir(0)〉2 for thermal initial conditions. As shown in Fig.9(a)(inset), in the easy-plane case,

C∞xy 6= 0 below TKT since 〈Sx/yi (0)〉 6= 0 for strong finite-size effect [64]. In the easy-axis
case, C∞zz 6= 0 below Tc due to spontaneous symmetry breaking [Fig.9(b)(inset)].
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Figure 15: Spin-spin auto-correlation function: (a) Exponential decay of C̃xy(t)
(∼ e−t/τ ) for easy-plane and easy-axis anisotropies at temperature above the transitions.
For ∆ = 0.3, the relaxation time (τ) decreases with increasing temperature, whereas it
increases for ∆ = 1.2 (see Figs.4(a),(b) in the main text). (b) Power law behaviour of
C̃zz(t) (∼ t−α) at long times for ∆ = 1.2 across the Ising transition. α is found by
calculating the slope of the linear regime (t & 5) in the semi-log plot, e.g. shown by the
dashed line for T = 0.78. Similar plot for the easy-plane case is shown in Fig.6(a) of the
main text.
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Figure 16: Power-law exponent: Time evolution of the local logarithmic slope
α(t) = d ln(C(t))/d ln t for (a) ∆ = 0.3 and T = 0.72, 0.68, 0.64, 0.60 and 0.55,
where C = C̃xy, and (b) ∆ = 1.2, across the Ising transition with C = C̃zz for
T = 2.00, 1.26, 1.10, 1.00, 0.96, 0.90, 0.82, 0.78 and 0.74. Different temperature regimes
are marked with different colors. The direction of the arrows indicates the decrement of
temperature.
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In Fig.15(a), we show that Cxy(t) decays exponentially with a relaxation time τ(T )
for T > TKT and ∆ = 0.3. Similar exponential decay is observed for the easy-axis case
∆ = 1.2. However, the relaxation time τ(T ) increases approaching the transition for
∆ = 0.3, whereas it decreases for ∆ = 1.2, as shown in Figs.4(a),(b) in the main text.
We show [Fig.15(b)] that C̃zz(t) exhibits a power-law decay for t & 5 across the Ising
transition. The exponent α changes from a diffusive value ' 1 at high temperature to
sub-diffusive values (< 1) close to Tc, and finally to super-diffusive values (> 1) at low
temperature [Fig.6(c)]. To verify whether C̃xy(t) and Czz(t) have attained a steady power-
law behaviour within our finite simulation time (. 100), we obtain a time-dependent
exponent α(t) = d ln(C̃(t))/d ln t (C = Cxy, Czz) for T < TKT in the easy-plane case
[Fig.16(a)] and across Tc for the easy-axis case [Fig.16(b)]. These suggest that a steady
power-law exponent is achieve for ∆ = 1.2 except at the lowest temperature studied,
whereas the exponent shows perceptible drift towards a larger value for ∆ = 0.3.
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