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Abstract1

We study the phase diagram and critical properties of quantum Ising chains2

with long-range ferromagnetic interactions decaying in a power-law fashion3

with exponent α, in regimes of direct interest for current trapped ion experi-4

ments. Using large-scale path integral Monte Carlo simulations, we investigate5

both the ground-state and the nonzero-temperature regimes. We identify the6

phase boundary of the ferromagnetic phase and obtain accurate estimates for7

the ferromagnetic-paramagnetic transition temperatures. We further deter-8

mine the critical exponents of the respective transitions. Our results are in9

agreement with existing predictions for interaction exponents α > 1 up to small10

deviations in some critical exponents. We also address the elusive regime α < 1,11

where we find that the universality class of both the ground-state and nonzero-12

temperature transition is consistent with the mean-field limit at α = 0. Our13

work not only contributes to the understanding of the equilibrium properties14

of long-range interacting quantum Ising models, but can also be important for15

addressing fundamental dynamical aspects, such as issues concerning the open16

question of thermalization in such models.17
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1 Introduction31

Systems featuring long-range interactions are central in condensed matter and statistical32

physics, due to both their widespread presence in nature and the wide range of charac-33

teristic physical phenomena they display, the latter often being at odds with well-known34

predictions and results concerning short-range models (see, e.g, [1] for a review). Within35

the last decade, the interest in quantum long-range interacting models has further surged36

due to the progress in manipulating and controlling these systems at an unprecedented37

level [2–6]. Specifically, these experimental platforms naturally realize long-range quan-38

tum Ising or Heisenberg models, with the possibility to engineer many-body interaction39

potentials decaying proportionally to d−α as a function of distance d, ranging from van-der-40

Waals-like (α = 6) and dipolar interactions (α = 3) in the context of Rydberg atoms [3,6],41

to Coulomb (α = 1) and infinite-range (α = 0) potentials for trapped ions [2, 5].42

Recent experiments in such long-range interacting models have mostly centered on43

the investigation of inherent dynamical phenomena, such as many-body localization [7],44

discrete time crystals [8, 9], prethermalization [10], Kibble-Zurek mechanism [11, 12], or45

dynamical quantum phase transitions [13, 14]. Despite of recent progress [15, 16] one key46

question has, however, remained open: especially in the limit of small interaction expo-47

nents, it is not known whether these long-range systems follow the fundamental principle48

of thermalization as expected for generic short-range models. In the first place, this obvi-49

ously requires a thorough understanding of the thermal properties of the system of interest,50

which have only been partially explored even in paradigmatic Hamiltonians such as the51

one-dimensional long-range quantum Ising model.52

In particular, the ground-state properties of the latter in the case of ferromagnetic53

interactions have been the focus of investigation via analytical and renormalization group54

(RG) techniques [17, 18], as well as linked-cluster expansions [19], tensor network ap-55

proaches and/or density matrix RG [20,21], Monte Carlo methods [22] and, very recently,56

Stochastic Series Expansion (SSE) Monte Carlo [23] investigation in the α > 1 region,57

demonstrating, e.g., that the critical behavior of the model belongs to the mean-field and58

short-range universality class (UC) for 1 < α < 5/3 and α ≥ 3, respectively. The antiferro-59

magnetic case has also been intensely studied via the use of several approaches [19,23–27],60

with notable results including, among others, the demonstration that the half-chain en-61

tanglement entropy displays area-law violations in the intermediate regime 1 < α < 2 [24].62

Considerable effort has also been dedicated to the theoretical investigation of the dynam-63

ical properties of this type of model [28–34].64

Oppositely with respect to the zero-temperature case, the finite-temperature regime65

is still poorly understood. Indeed, the latter has been predicted by general theoretical66

arguments [35] to belong to the universality class of the corresponding classical long-range67

Ising model, with quantum effects not changing this description at the qualitative level.68

While this picture has been essentially confirmed for the case α = 3 by SSE studies [36],69

the latter demonstrated, in the proximity of the ground-state critical point, the presence70

of considerable finite-size effects induced by strong quantum fluctuations, which all but71

prevent observation of the expected classical regime even at very large system sizes.72

In the light of the experimental realizations of these models discussed above, inves-73

tigating the thermal critical behavior of these Hamiltonians remains therefore of great74
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importance, in order to determine the role and strength of the quantum effects in per-75

turbing the predicted classical picture. Furthermore, (numerically) exact analysis of the76

finite-temperature regime is essential to determine non-universal details such as, e.g., the77

position of thermal critical points, which are influenced in a key way by quantum effects,78

and whose knowledge is crucial for laboratory realizations. Such a study is of especially79

great interest in the extremely long-ranged regime 0 < α < 1, which, to our knowledge,80

has not been the object of this kind of investigation, and (as mentioned above) is directly81

realizable in trapped-ions setups.82

In this work, we study both the ground-state and finite-temperature phase diagram83

of the long-range ferromagnetic quantum Ising model in one spatial dimension, by means84

of numerically exact, large-scale Path Integral Monte Carlo simulations. We perform85

our calculations for two representative values of α: namely, we choose α = 0.05 and86

α = 1.50, within the extremely long-range region α < 1 and intermediate region 1 <87

α < 2, respectively. We employ a wide variety of well-known finite-size scaling techniques88

to determine the position (i.e., the critical points) and critical exponents of both the89

ground-state and finite-temperature paramagnetic-ferromagnetic transitions displayed by90

the model, obtaining the phase diagram displayed in Fig. 1.91

We determine the critical points and critical exponents for the ground-state ferromagnetic-92

paramagnetic transition. Our results for critical point positions and correlation length93

critical exponents are in agreement with existing predictions in the literature where the94

latter are available (i.e., α = 1.50), while we encounter relatively small (∼ 7%) deviations95

with respect to our estimate for the magnetization critical exponent. We then obtain96

accurate results for the position of the critical points in the finite-temperature regime for97

several values of the interaction strength. Concomitantly, our estimated correlation length98

critical exponents at α = 1.50 essentially confirm the theoretical prediction of no quali-99

tative deviations from the classical universality class due to quantum fluctuations, while100

discrepancies (up to 10% in the strongly interacting region) appear in the susceptibility101

critical exponent.102

The structure of the paper is the following. Sec. 2 introduces the Hamiltonian, the103

numerical technique employed for its study, and the finite-size scaling approaches we em-104

ployed to analyze its critical behavior. Sec. 3 discusses our obtained results on the critical105

behavior of the model. Finally, in Sec. 4 we outline the conclusions of our work and offer106

an outlook for future direction of research.107

2 Model and methods108

2.1 Hamiltonian and known results109

The model analyzed in this work is described by the Hamiltonian110

H = − V

K(L)

∑
i<j

Szi S
z
j

rαij
− h

∑
i

Sxi , (1)

where V > 0 is the interaction strength, i, j run over the sites 1, . . . , L of a one-dimensional111

lattice with periodic boundary conditions, rij is the distance between sites i and j,112

Szi (Sxi ) is the component along z (x) of the spin-1/2 operator acting on site i, and113

K(L) ≡ (L− 1)−1
∑

i 6=j r
−α
ij is the Kać renormalization factor. The latter ensures the ex-114

istence of a proper thermodynamic limit in the regime α ≤ 1, while for α > 1 it amounts115

to a rescaling of the interaction strength, and does not change the universal features of the116

critical behavior of the model. We remark that the presence of this renormalization factor117
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Figure 1: Calculated phase diagram of the long-range transverse-field Ising model in
eq. (1), displaying the ground-state and finite-temperature phase boundary and critical
exponents obtained using finite-size scaling techniques. Panels (a) and (b) correspond to
α = 0.05 and α = 1.50, respectively. Here, T is the system temperature in units of the
Boltzmann constant, and V is the interaction strength in units of the transverse field (see
below). The displayed results for the effective thermal exponent and its product with the
magnetization and susceptibility critical exponent are those obtained via data collapse
(see below).

is directly related to how interactions with α < 3 are engineered in trapped ions experi-118

ments. The latter exploit coupling between the ions and collective modes of the ion chain119

(phonons), mediated via a single laser shined over the full sample. Increasing the number120

of ions while keeping the lattice spacing constant naturally leads to a reduced coupling121

strength, that translates into the fact that the energy of the full system is still extensive122

- as reflected by Kać normalization. In the following, periodic boundary conditions are123

taken into account following the minimum-image convention, and h = 1 will be taken as124

unit of energy.125

For very small interaction strength V , the ground state of the system in the thermo-126

dynamic limit is a paramagnet, characterized by a vanishing value of the magnetization127

along the z direction |mz| ≡ L−1|
∑

i S
z
i |. On the contrary, for V � 1 the system is in a128

ferromagnetic phase, displaying a finite |mz|. The existence of a finite-V phase transition129

connecting these two states can be proven via analytical arguments (see, e.g., [17]); its130

UC depends strongly on the value of the decay parameter α. Indeed, the α = 0 case, also131

referred to as Lipkin-Meshkov-Glick model [37], can be described in an exact fashion at the132

mean-field level [38], and the paramagnetic-ferromagnetic transition has been proven to be133

of the mean-field type in the 1 < α < 5/3 region. In contrast, in the regime α ≥ 3, the crit-134

ical point belongs to the short-range UC (i.e., the one of the ferromagnetic-paramagnetic135

transition in the nearest-neighbor limit α→∞).136

In the finite-temperature regime, generic scaling arguments [35] predict that the model137

should display the same critical behavior as its classical (i.e., h = 0) counterpart, due to138

the finiteness of the system size in the imaginary time dimension (see below). The critical139

behavior of the classical model has been studied via both analytical (see, e.g., [39]), RG140

(see, e.g., [40]) and numerical techniques (see, e.g., [41]) in the α > 1 regime. Here, the141
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system displays a second-order ferromagnetic-paramagnetic thermal phase transition for142

1 < α < 2, with the region 1 < α < 3/2 belonging to the mean-field regime, while in the143

point α = 2 the model undergoes a finite-temperature transition of the BKT type, and144

the short-range regime is reached (i.e., no finite-temperature transition takes place) for145

α > 2.146

2.2 Numerical techniques and finite-size scaling147

We perform our investigation of the Hamiltonian in eq. (1) via Path Integral Monte Carlo148

(PIMC) [42], a numerically exact technique for the study of unfrustrated systems of bosons149

and quantum spins. In this approach, one maps the features of a quantum model of150

interest to those of an equivalent, higher-dimensional classical one, which is then studied151

via Metropolis Monte Carlo simulations. The quantum-to-classical mapping described152

above maps the partition function of the extended transverse-field Ising model in eq. (1)153

into the one of an anisotropic extended Ising model on a rectangular lattice, via a procedure154

known as Suzuki-Trotter breakup. Here, in addition to the original spatial dimension, one155

also considers a discretized and periodic one, known as imaginary time, which extends156

in the interval [0, β], where β = 1/T is the inverse system temperature in units of the157

Boltzmann constant. The number of sites M along this direction (also known as slices) is158

a free parameter which affects the accuracy of the mapping: indeed, the latter is exact up159

to O(β/M) corrections, which vanish in the limit M →∞.160

In the spatial direction, the extended Ising model resulting from the mapping displays161

the same ferromagnetic long-range interactions present in the spin-spin term of the model162

in eq. (1), while spin-spin couplings are nearest-neighbor in the imaginary time direc-163

tion. Our PIMC algorithm combines conventional Wolff cluster updates [43] in imaginary164

time with efficient long-range cluster updates [41] in the spatial direction. The choice of165

these two state-of-the-art techniques allow to accurately analyze large system sizes (up166

to L = 8192 sites) at low enough temperatures (down to β = 1024) to reach the ground167

state regime. The Suzuki-Trotter corrections mentioned above are kept into account by168

performing simulations with increasing number of slices (up to M = 65536), until a value169

M = M∗ is found such that the corresponding values of the observables of interest were170

determined to be identical, within statistical error, to those obtained for M = 2M∗. The171

same protocol (with β in the place of M) is adopted to ensure the T → 0 limit is reached172

in the investigation of the ground state regime.173

The PIMC algorithm gives us direct access to observables commuting with the Szi174

operators, including the integer powers of |mz|. This allows us to compute quantities such175

as the Binder cumulant176

U =
1

2

[
3− 〈m

4
z〉

〈m2
z〉2

]
, (2)

where 〈. . .〉 stands for statistical averaging, which is expected to converge to 1 (0) in a177

ferromagnetic (paramagnetic) phase [44]. We also compute the “classical” susceptibility178

χ = βL
(
〈m2

z〉 − 〈|mz|〉2
)
, (3)

which, in proximity of a finite-temperature critical point of a quantum model, approxi-179

mates well the exact functional form of the magnetic susceptibility [36].180

In order to extract reliable information on the critical behavior of the model in the181

thermodynamic limit, we exploit the well known finite-size scaling (FSS) theory [44]. In182

this framework, scaling relations of various quantities in terms of the correlation length183

ξ, which diverges when approaching a critical point, are exploited to obtain finite-size184

information by noting that in a finite system ξ will saturate to a value O(L), where L is the185
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system size. Features such as the position of the critical point or the critical exponents, on186

which the original scaling relations depended, can then be directly extracted via numerical187

fits as a function of L. In the following section, when discussing the fitting procedures188

to obtain such quantities, we will offer detailed formulae regarding FSS predictions for189

observables such as U and χ.190

3 Results191

We investigate the critical properties of the model in eq. (1) in the ground-state and192

finite-temperature regime for α = 0.05 and α = 1.50.193

3.1 Ground-state critical behavior194

The first step in our analysis is the determination of the paramagnetic-ferromagnetic crit-195

ical point Vc in the ground-state regime, which we accomplish by fitting to our numerical196

data for the Binder cumulant U its expected FSS behavior. The Binder cumulant curves197

U(V ) for system sizes L and, e.g., 2L are expected to cross at size-dependent points198

V = VU (L), which will follow (to the leading order) the FSS scaling [23,45]199

VU (L) = Vc

(
1 + aL−ω−θt

)
, (4)

where Vc is the critical point, and the effective thermal exponent θt is linked to the corre-200

lation length critical exponent ν.201

In the ground-state regime ν−1 = θt outside of the mean-field region; conversely, when202

the latter is entered, corrections to the leading scaling behavior can be taken into account203

[23] via the generalized expression ν−1 = (duc(σ)/d) θt, where d is the dimensionality and204

duc(σ) = 3σ/2 is the upper critical dimension for the value of σ of intererest.205

Comparison of eq. (4) with the predicted leading-order FSS behavior for the value of206

the Binder cumulant at the VU (L)s,207

U(L, VU (L)) = b+ cL−ω, (5)

allows us to obtain estimates for Vc and θt, by fitting our computed results for the crossing208

features [see Fig. 2(a)] with the functional forms above.209

Fig. 2(b-c) display examples of the FSS fitting procedures mentioned above; the ob-210

tained values of the critical point and of the effective thermal exponent θt are listed in211

Table 1.212

α Vc (BC) Vc (DC) θt (BC) θt (DC) 2βθt (DC)

0.05 1.9997(4) 1.9999 0.50(7) 0.688 0.68
1.50 2.1972(7) 2.1981 0.39(6) 0.64 0.715

Table 1: Values of Vc, θt, and βm (see text) associated to the ground state paramagnetic-
ferromagnetic transition, computed via FSS analysis of the Binder cumulant crossings
(BC) and via data collapse of the squared magnetization m2

z (DC).

In order to gain more insight into the ground-state critical behavior of the model, we213

perform a data collapse analysis by directly exploiting the FSS predictions for the behavior214

of the squared magnetization close to a critical point [23,44],215

m2
z ∼ L−2βmθt · f

[
L+θt (Vc − V )

]
V & Vc, (6)
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Figure 2: Binder cumulant scaling in the ground state regime (in all panels, α = 1.50).
Panel (a): Binder cumulant curves as a function of V for different system sizes. Solid
lines are a guide to the eye. Inset: magnification of the curve crossing region. Panel
(b): computed crossing positions VU (L) between the Binder cumulant curves at system
sizes L and 2L. The continuous line is a numerical fit to the expected FSS behavior in
eq. (4). Panel (c): computed values of the Binder cumulant at the crossing points VU (L)
between system sizes L and 2L. The continuous line is a numerical fit to the predicted
FSS behavior in eq. (5).

where βm is the magnetization critical exponent, up to corrections of higher order in 1/L.216

This scaling law implies that the rescaled magnetization curves ymL ≡ m2
z(L)L+2βmθt for217

different system sizes should coincide if plotted as a function of xVL ≡ (Vc − V )Lθt . We218

perform a high-order polynomial fit of ymL as a function of xVL in a window around the219

critical point xVL = 0 for a wide range of candidate values of Vc, θt and βm, choosing220

as our final estimates for these quantities the values which resulted in the fit with the221

lowest chi-square value. While it is hard to assign a rigorous errorbar to the results of a222

data collapse analysis, we estimate the order of magnitude of the error on our results by223

performing the same fits in a considerably larger (i.e, containing of the order of double224

the number of points) window around the critical point, and taking the difference between225

the optimal values of Vc, θt, and βm for the two windows as the order of their numerical226

uncertainty.227

Our collapsed data is displayed in Fig. 3(a-b); the obtained estimates for Vc, θt and228

βm are listed in Table 1. We note that the data collapse behavior takes place over a fairly229

wide range of values of the rescaled order parameter xVL , despite relatively narrow fitting230

windows for the scaling behavior in eq. (6) (the intervals between dashed lines in Fig. 3).231

This highlights the faithfulness of the data collapse scaling description of our numerical232

data, which translates to highly reliable estimates of the critical properties of the system.233

Examination of our results points out i) the remarkable agreement of the critical point234

estimates obtained via the Binder cumulant FSS and the data collapse, and ii) conversely,235

the incompatibility between the two estimates for the effective thermal exponent θt. Due236

to the arguments mentioned above, we believe the data collapse estimates for the critical237

features to be more reliable in this regard.238

For α = 1.50, we find agreement for θt and deviations of the order of 7% for 2βθt from239

the independent SSE predictions in Ref. [23] which, in our notation, are θt ' 2βmθt '240
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0.667. We also find good agreement with the estimate Vc ' 0.42 (in our notation) given in241

[23] for the position of the ground-state critical point, by performing a data collapse where242

the rescaled interaction xVL is replaced by
(
xVL
)∗ ≡ L+θt (Vc − V/K(L)) (the rescaling is243

required since the Kać correction factor is not employed in [23]). The resulting data244

collapse [see Fig. 3(c)] yields optimal values θt ' 0.64, 2βθt ' 0.76, and Vc ' 0.42. For245

α = 0.05, our estimates for θt and 2βθt are compatible (up to deviations of the order246

of 3% in θt) with the ones corresponding to the α = 0 mean-field critical behavior, i.e.,247

θt = 2βmθt = 2/3 [38].248

3.2 Finite-temperature critical behavior249

Once the boundary of the ground-state ferromagnetic phase is determined, we investigate250

whether or not ferromagnetic order survives for T > 0, and more in general the details251

of the critical behavior of the model in this regime. To this end, we perform finite-252

temperature calculations for fixed values of V belonging to the ferromagnetic phase in253

the ground state regime. We apply the FSS framework to quantities such as the Binder254

cumulant and the susceptibility, computed as a function of T , to estimate features of the255

temperature-driven critical behavior.256

Indeed, our results for the Binder cumulant as a function of β at fixed V and different257

system sizes immediately confirm the presence of a finite-temperature phase transition,258

as pointed out by the appearance of the crossing behavior discussed above [see Fig. 4(a)]259

at size-dependent points βU (L, V ). We determine the V -dependent critical temperatures260

βc(V ) and the associated θt(V ) via fitting of the FSS relations in eqs. (4)-(5) to our261

computed crossing features, with the thermal critical points βc and β taking the role262

of Vc and V , respectively. If the hypothesis of essentially classical critical behavior for263

the finite-temperature quantum model holds (as we argue below) one may link [46] θt to264
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Figure 4: Binder cumulant scaling in the finite-temperature regime (in all panels, α = 1.50
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behavior in eq. (4). Panel (c): computed values of the Binder cumulant at the crossing
points βU (L, V ) between system sizes L and 2L. The continuous line is a numerical fit to
the predicted FSS behavior in eq. (5).

the correlation length critical exponent ν via the relation ν−1 =
(
dclassuc (σ)/d

)
θt, where265

dclassuc (σ) = 2σ is the classical upper critical dimension.266

Examples of this analysis are displayed in Fig. 4(b-c): the obtained critical parameters267

are listed in Table 2. We remark here that our application of this approach encountered268

in some cases strong difficulties due to significant finite-size effects in proximity of the269

βc(V,L). In particular, the relatively large numerical uncertainties on the values of the270

Binder cumulant in this region led to the necessity to perform conservative estimates of271

the finite-size crossing points. In turn, this prevented us in some cases from obtaining272

meaningful (i.e., with small enough errorbars) estimates for θt.273

In order to obtain an independent estimation of our quantities of interest, we investigate274

the finite-temperature behavior of the magnetic susceptibility for the same values of V275

selected in our Binder cumulant analysis. At finite system size and fixed interaction276

strength, χ is expected to display peaks at size-dependent temperatures βχ(L, V ); the277

FSS framework predicts for the latter [23,44] the leading scaling behavior278

βχ(L, V ) = βc + fL−θt (7)

as a function of the system size.279

Our numerical data confirm the expected behavior of χ [see Fig. 5(a)]. Fitting the FSS280

functional form in eq. (7) to the computed peak positions [see Fig. 5(b) for an example]281

allows us to directly estimate the critical temperatures and effective thermal exponents as282

a function of the interaction strength (see Table 2 for a list of results).283

While also requiring conservative estimates (and therefore large errorbars) for the peak284

positions, due to strong finite-size effects, we found the susceptibility-based approach to285

be much less sensitive to this issue than the Binder cumulant FSS discussed above. In286

particular, we encountered problematic results only for V = 2.5, for both values of α287
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for different system sizes. Solid lines are a guide to the eye. Panel (b): finite-size peak
positions βχ(L). The continuous line is a numerical fit to the expected FSS behavior in
eq. (7).

considered in this work, where our estimates were strongly dependent on the set of system288

sizes considered in the fitting procedure (the reported results correspond to the fits with289

all sizes considered).290

We finally analyze the critical properties of the model by performing a data collapse291

analysis for the behavior of the magnetic susceptibility close to the finite-temperature292

critical points [23,41,44],293

χ ∼ L+γθt · f
[
L+θt (βc − β)

]
β ∼ βc, (8)

where γ is the susceptibility critical exponent, up to corrections of higher order in 1/L. The294

analysis follows the same protocol outlined in our discussion of the ground-state regime,295

with the rescaled dependent and independent variables here being yχL ≡ χ(L)L−γθt and296

xβL ≡ (βc − β)Lθt , respectively.297

Fig. 6 displays our collapsed data for all the values of α and V investigated in this298

work; the corresponding optimal (in the sense discussed above) results for βc, θt and γ are299

displayed in Table 2. As in the ground-state regime, we observe that the parameter range300

in which the data collapse scaling ansatz is respected noticeably exceeds our fitting window301

(and vastly so, in most cases), highlighting the accuracy of this approach in describing the302

critical behavior of the model. Furthermore, this protocol does not require the estimation303

of size-dependent features, sush as the curve crossings for the Binder cumulant, or the peak304

position for the susceptibility, allowing us to obtain much more reliable and systematics-305

free results. We also note that high degree of accuracy with which the scaling law in eq. (7)306

can be applied to describe the behavior of the ”classical” susceptibility in eq. 3 is a strong307

indication of the goodness of the latter as an approximation for the complete functional308

form of the magnetic susceptibility.309

A direct analysis of the results for the critical exponents listed in Table 2 shows that310

our estimates obtained via FSS of the Binder cumulant crossings, where meaningful in the311

sense discussed above, are consistent within errorbar with the ones obtained via suscepti-312

bility data collapse. Concomitantly, in some points we observe differences (which remain313
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Figure 6: Data collapse of the rescaled magnetic susceptibility yχL as a function of the

rescaled order parameter xβL for the values of α and V studied in this work. The black

dashed lines enclose the interval of xβL within which the data collapse scaling fit has been
performed.

consistently small, except for the point α = 1.50, V = 5.00) between the latter and the314

results of the susceptibility peak position FSS for the values of V in which the latter have315

converged with respect to the system sizes employed in the fitting procedure. In the points316

where this did not happen, the θt result from the susceptibility peak position fit decreased,317

shifting towards the data-collapse results, when smaller sizes were discarded.318

According to the arguments mentioned in Sec. 2, the universality class of the T > 0319

ferromagnetic-paramagnetic transition should be the same of the corresponding transition320

in the classical counterpart of model eq. (1). For α = 1.50, the classical Hamiltonian is321

in the mean-field regime, and RG predictions, confirmed by classical Monte Carlo cal-322

culations [41], yield the estimates θt = γθt = 1/2. Direct comparison with our most323

representative and reliable results in Table 2 (i.e., the one obtained via data collapse of324

the magnetic susceptibility) shows that our estimates for θt are in essential agreement with325

the classical prediction (with deviations outside of the estimated order of magnitude of the326
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βc θt γθt
V U χ χdc U χ χdc χdc

α = 0.05 V = 2.5 2.2007(4) 2.23(1) 2.20 / 0.72(4)∗ 0.51 0.505
V = 3.0 1.6120(7) 1.61(1) 1.612 / 0.54(3) 0.485 0.515
V = 3.5 1.299(1) 1.303(3) 1.303 / 0.54(2) 0.49 0.523
V = 5.0 0.8474(2)∗ 0.844(2) 0.8491 0.5(1) 0.47(2) 0.50 0.524

α = 1.50 V = 2.5 3.21(1) 3.351(9) 3.229 0.49(7) 0.75(1)∗ 0.50 0.516
V = 3.0 2.109(1)∗ 2.12(1) 2.115 0.50(2) 0.48(3) 0.52 0.538
V = 3.5 1.647(6) 1.646(5) 1.650 0.5(2) 0.46(2) 0.52 0.545
V = 5.0 1.039(1) 1.035(1) 1.041 0.44(7) 0.41(1) 0.530 0.550

Table 2: Summary of the computed estimates for βc, θt, and γθt (see text) for the
finite-temperature transitions at our investigated values of α and V . Our results are
categorized according to the methodology employed to derive them: namely, FSS of the
Binder cumulant crossings (U), FSS of the magnetic susceptibility peak position (χ), and
data collapse of the susceptibility (χdc). Estimates marked with an asterisk (∗) did not
converge with respect to the choice of minimum size to be included in the fitting procedure.

error only appearing for V = 5.0). Compatibility between our estimate and the theoretical327

predictions, even for V = 5.0, is confirmed by the results obtained via FSS of the Binder328

cumulant, while the susceptibility FSS estimates, where converged, show appreciable de-329

viations only for V = 5.0. Conversely, our estimates for γθt show relatively consistent330

deviations (up to the order of 10%), which increase with the interaction strength.331

These differences with the predicted results may be in principle due to several causes,332

including i) the “classical” approximation employed for the study of the susceptibility in333

our analysis, or ii) genuine quantum effects which introduce deviations with respect to334

the predicted classical behavior. However, we find it unlikely that either (i) and/or (ii)335

may be the dominant physical mechanism underlying the observed deviations, since both336

effects are essentially quantum in nature, and are expected to become weaker for larger337

values of V , where in contrast our results are more at odds with the classically predicted338

values. Indeed, for higher interaction strengths quantum effects are expected to weaken,339

due to both the larger value of V (in comparison to the transverse field h) and the higher340

temperature at which the critical region is located. This consideration leads us to the341

conclusion that despite these deviations (which may be caused by finite-size effects, or342

by higher-order corrections) the critical behavior of the model in this regime follows the343

classical UC.344

As in the ground-state case, we find essential compatibility with the (classical) mean-345

field exponents at α = 0; in particular, we match the predicted values [38] θt = γθt = 1/2346

up to relatively small deviations (of up to 2.5%) for the latter quantity, which also become347

larger in the strongly interacting regime, and are therefore likely not due to genuine348

quantum effects as argued above.349

4 Conclusions and outlook350

We study the ground-state and finite-temperature phase diagram and critical behavior of351

the long-range quantum Ising model in one spatial dimension, for values of the interaction352

exponent parameter of direct interest for current experiments in trapped ion setups. We353

perform numerically exact, large-scale PIMC simulations within both the extremely long-354

range region and intermediate long-range regime, respectively, employing a wide variety of355
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finite-size scaling techniques to determine the location (i.e., the critical points) and critical356

exponents of both the ground-state and finite-temperature phase transitions displayed by357

the model.358

We determine transition points and critical exponents for the ground-state ferromagnetic-359

paramagnetic transition. We find essential agreement with existing predictions for these360

quantities, where available (up to small deviations for the value of the magnetization361

critical exponent), and compatibility of our extremely-long-range results with the fully-362

connected universal properties. We then accurately estimate the position of the critical363

points in the finite-temperature regime for several values of the interaction strength. Here,364

our estimated critical exponents in the intermediate-long-range region essentially confirm365

the theoretical prediction of classical universality. In particular, in the intermediate long-366

range regime our estimated correlation length critical exponent is fully consistent with367

the classical predictions, while the susceptibility one displays deviations at most up to the368

order of 10%. Similarly, in the extremely long-range region we find compatibility with the369

(classical) mean-field universality class up to deviations of the order of 2.5% in the value370

of the correlation length critical exponent.371

Beyond exploring the equilibrium phase diagram and the nature of critical points, our372

work is also directly relevant for another open question appearing in the context of quan-373

tum Hamiltonians with long-ranged interactions. This concerns quantum thermalization374

and equilibration during coherent quantum dynamics without coupling to an environment,375

which appears all but settled. In the infinitely-connected limit of α = 0 it is already well376

known that thermalization does not occur [47]. Furthermore, numerical works close to this377

infinitely-connected limit have already observed indications that thermalization could be378

prevented at least on the achievable time scales [48]. In order to settle this fundamental379

question, the understanding of the thermal equilibrium phases and properties, to which380

this work contributes, represents a first key step. While thermalization corresponds to381

ensemble equivalence of the thermal ensemble with the diagonal ensemble, capturing the382

long-time steady states during dynamics [49], it is also not known to which extent such383

long-range models exhibit ensemble equivalence on a general level. This concerns for in-384

stance the equivalence of the thermal and microcanonical ensemble, which is of central385

importance from the statistical physics point of view.386
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