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Abstract

We study baryonic matter with isospin asymmetry, including fully dynamically
its interplay with pion condensation. To this end, we employ the holographic
Witten-Sakai-Sugimoto model and the so-called homogeneous ansatz for the
gauge fields in the bulk to describe baryonic matter. Within the confined
geometry and restricting ourselves to the chiral limit, we map out the phase
structure in the presence of baryon and isospin chemical potentials, showing
that for sufficiently large chemical potentials condensed pions and isospin-
asymmetric baryonic matter coexist. We also present first results of the same
approach in the deconfined geometry and demonstrate that this case, albeit
technically more involved, is better suited for comparisons with and predic-
tions for real-world QCD. Our study lays the ground for future improved
holographic studies aiming towards a realistic description of charge neutral,
beta-equilibrated matter in compact stars, and also for more refined compar-
isons with lattice studies at nonzero isospin chemical potential.
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1 Introduction

1.1 Motivation

Dense nuclear matter in compact stars contains more neutrons than protons due to the
conditions of electric charge neutrality and equilibrium with respect to the weak nuclear
force. This isospin asymmetry is routinely taken into account in effective field theories
and phenomenological models of nuclear matter and applications thereof to the physics of
compact stars [1]. In recent years, the gauge-gravity duality [2–4] has been increasingly
applied to dense matter as well, providing a rigorous strong-coupling approach, albeit in
theories that differ more or less from Quantum Chromodynamics (QCD), the relevant
underlying theory. These studies either focus on a holographic version of quark matter, to
be combined with a field-theoretical description of nuclear matter if applied to compact
stars [5–8], or they employ isospin-symmetric nuclear matter for simplicity [9–15]. In this
paper we develop a more realistic approach by including an isospin asymmetry into the
holographic description of dense baryonic matter.

Besides the phenomenology of compact stars, our motivation can also be put into a
more general theoretical context. While under compact star conditions the isospin asym-
metry adjusts itself dynamically for a given baryon density and temperature, for a more
general treatment one may consider the isospin chemical potential µI as an independent
thermodynamic variable. At the fundamental level, µI introduces an imbalance between
u and d quarks, and one may investigate the QCD phase structure in the space spanned
by µI , baryon chemical potential µB, and temperature T . For µB = 0, brute force lat-
tice calculations can be employed because µI on its own does not induce a so-called sign
problem [16–20]. As suggested by chiral perturbation theory [21–27], lattice QCD con-
firms that Bose-Einstein condensation of charged pions sets in when µI becomes larger
than (half of) the pion mass. As µI is increased further, eventually a deconfined regime
is reached, where perturbative methods become applicable [22,28,29]. It was conjectured
that the zero-temperature transition from the pion-condensed phase to the deconfined
phase at ultra-high isospin density is smooth, in particular without the appearance of
baryonic degrees of freedom [21]. Our holographic approach allows us to investigate the
phase structure of the model for arbitrary µI , µB, and T . In particular we allow for
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pion condensation and baryonic matter and their coexistence, and we determine the pre-
ferred phase fully dynamically – in fact, we shall find that baryons do appear even at
infinitesimally small µB if µI is sufficiently large.

1.2 Model

The gauge-gravity duality provides a window into the strongly coupled regime of QCD-
like theories with a large number of colors Nc, where the relevant observables can be
studied by means of classical gravity computations. The holographic dual of QCD is
currently not known. Perhaps closest to real-world QCD is the Witten-Sakai-Sugimoto
model [30–32]; for a review see Ref. [33]. At weak ’t Hooft coupling λ and low energies,
i.e., below the Kaluza-Klein scale MKK induced by a compactified extra dimension, it is
dual to large-Nc QCD. However, the gravitational description is applicable only in the
opposite regime, where λ becomes large and the curvature of the background is small.
Nevertheless, if interpreted with some care, the model proves to be very useful to capture
non-perturbative QCD-like effects, which are otherwise very difficult to obtain from field-
theoretical approaches. The model has been employed to compute spectrum and couplings
of mesons [31,32], properties of glueballs [34,35], and static properties of nucleons [36,37].
It was soon realized that it can also be employed to study thermodynamic phases and
the phase transitions between them [10, 38, 39]. The physics of the gluons is captured by
a gravitational background generated by Nc D4-branes, which give rise to two different
geometries, interpreted as confined and deconfined phases and separated by the critical
temperature Tc = MKK/(2π) [30]. Flavor degrees of freedom are included via Nf D8-
and D8-branes, accounting for left- and right-handed fermions, and spontaneous breaking
of chiral symmetry is geometrically realized by a configuration where branes and anti-
branes connect in the bulk [31, 32]. The scale associated with chiral symmetry breaking
is set by the asymptotic separation of the flavor branes L and can be decoupled from the
deconfinement scale.

We will start our study within the confined geometry and maximal brane separation
(on antipodal points of the compactified extra dimension with radius M−1KK). This is the
simplest version of the model and allows us to explain our setup in a transparent way and to
evaluate the different phases numerically without difficulties. We also extend this approach
to the deconfined geometry, where the flavor brane configuration has to be calculated
dynamically. It has been argued that this setup, in particular its “decompactified limit”,
is better suited to capture features of real-world QCD, at least with respect to the chiral
phase transition [9,11,39]. In our context, the calculation in the deconfined geometry turns
out to be numerically challenging, and we shall only present some selected results, leaving
a more systematic evaluation for the future. In both scenarios we shall work with two
flavors, Nf = 2, and employ the probe brane limit, Nf � Nc, where the backreaction of
the flavor branes onto the background geometry is neglected (see Refs. [40–42] and [13,43]
for attempts to incorporate these effects in the Witten-Sakai-Sugimoto model and within
the so-called holographic V-QCD model, respectively).

1.3 Method and approximations

The main focus of our study is baryonic matter. Baryons are intrinsically heavy objects
in the ’t Hooft limit since their masses grow linearly with Nc. In holography, they are
realized as solitonic D-branes wrapping compact directions [44] or equivalently as instan-
ton configurations of the gauge fields in the bulk [45]. Generalizing these single-baryon
configurations to many-baryon systems is extremely complicated, and various approxi-
mations have been employed in the literature. In the Witten-Sakai-Sugimoto model, a
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superposition of pointlike baryons has been considered as a model for homogeneous nu-
clear matter [12, 46]. Improvements of this approach are based on the single-instanton
solution – which for two flavors and in the flat-space limit is given by the well-known
Belavin-Polyakov-Schwarz-Tyupkin (BPST) instanton [47] – to construct an instanton
gas [9, 10], further refined by using the two-instanton solution to incorporate two-body
interactions [11]. In this framework also crystalline phases of holographic nuclear matter
were studied [48, 49]. Here we are only interested in homogeneous phases and will start
from an ansatz for the non-abelian gauge fields on the flavor branes that is homogeneous
in the spatial directions of the field theory. This approach is somewhat complementary
to the instanton approach and is expected to be valid at large baryon densities. It was
pioneered in Ref. [50] and improved in different ways in Refs. [9,51] (it has also been used
in Ref. [13] in the V-QCD setup). Our calculation can be viewed as a generalization of
the homogeneous ansatz for baryonic matter of Ref. [9] to nonzero µI .

One can also view our calculation as a generalization of purely mesonic studies within
the Witten-Sakai-Sugimoto model at nonzero µI by adding baryons. In the absence of
baryons, pion condensation can be included by choosing the boundary conditions for the
gauge fields on the flavor branes appropriately [52, 53]. Previous studies in this context
have been performed in the chiral limit, i.e., in the absence of current quark masses and
thus at zero pion mass. Therefore, pion condensation sets in as soon as µI is nonzero
(the configuration is destabilized by rho meson condensation at large µI [52]). Including
current quark masses is not straightforward in the Witten-Sakai-Sugimoto model. For
small masses this can be done in an effective way [54–59], and a consistent evaluation
of the phase diagram for nonzero pion mass is possible [12, 60]. Nevertheless, this effect
would complicate our calculation significantly and thus we shall restrict ourselves to the
chiral limit in this paper. As a consequence, we will find that in the energetically preferred
phases baryonic matter is always accompanied by pion condensation. We also construct
the configuration for isospin polarized baryons without pion condensation, anticipating
that this phase will be preferred in certain regions of the phase diagram once a nonzero
pion mass is included.

Within our holographic approach and the given approximations it is unavoidable that
large-Nc properties of isospin-asymmetric baryonic matter will be manifest and compar-
isons to Nc = 3 QCD have to be taken with care. Most importantly, the baryonic spectrum
becomes continuous in isospin space for Nc → ∞. Within the Witten-Sakai-Sugimoto
model, this spectrum was calculated and it was shown that quantization in the bulk
gives a discrete spectrum where neutron and proton states can be identified [36] (the
neutron/proton mass difference can be calculated as well [61]). Our homogeneous ansatz
does not include this quantization, and thus in particular there are baryons with zero
isospin number, from which isospin symmetric matter can be created. This is different
from ordinary symmetric nuclear matter, which is made of an equal number of neutrons
and protons. In that case, isospin asymmetry can be created by rearranging the Fermi
surfaces of neutrons and protons and as a result the symmetry energy is more than an
order of magnitude smaller than the nucleon mass. We shall see that our approach yields
a much larger symmetry energy since creating isospin polarized baryonic matter requires
populating heavier states. Possibly to be explored in combination with our current ap-
proach in the future, one could attempt to construct a holographic many-body system of
neutrons and protons explicitly. A simple version of such a construction was discussed in
a setup similar to the Witten-Sakai-Sugimoto model, assuming that protons and neutrons
at large Nc consist of Nc/3 copies of uud and ddu, which indeed leads to a symmetry
energy comparable to ordinary nuclear matter [62,63].
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1.4 Outline of the paper

Our paper is organized as follows. In Sec. 2 we develop our formalism within the confined
geometry with antipodal brane separation. This includes the setup in Sec. 2.1, a brief
discussion of the single-baryon spectrum in Sec. 2.2, our ansatz for the gauge fields and
their boundary conditions in Secs. 2.3 and 2.4, the free energy density and candidate phases
in Secs. 2.5 and 2.6, and the low-density approximation, for which analytical results can
be obtained, in Sec. 2.7. The numerical results of the confined geometry are presented and
discussed in Sec. 3. Section 4 is devoted to the deconfined geometry, with the derivations in
Secs. 4.1-4.3 similar to but technically more involved than for the confined case. Numerical
results for the phase diagram and the onset of baryonic matter are discussed in Sec. 4.4.
We summarize and give an outlook in Sec. 5.

2 Confined geometry

2.1 Setup

We start with the simplest version of the Witten-Sakai-Sugimoto model as constructed in
the original works [30,31]. The background geometry is sourced by Nc D4-branes. One of
their transverse directions, say X4, is compactified on a circle with radius M−1KK, and the
chosen periodicity conditions break supersymmetry. At the lowest order in Nf/Nc, adding
Nf pairs of D8-D8-branes on this fixed background corresponds to including Nf flavors of
left- and right-handed fundamental quarks. They are located at the antipodes of the X4

circle, such that their asymptotic separation is L = π/MKK. In this section we consider
the confined geometry, where the subspace spanned by the holographic coordinate U and
X4 is cigar-shaped with its tip at U = UKK, where UKK = 2λMKK`

2
s/9, with λ the ’t Hooft

coupling and `s the string length. In the confined geometry and with antipodal separation
at U = ∞, the flavor branes are forced to join in the bulk at U = UKK, which is a
realization of spontaneous chiral symmetry breaking in the IR according to the symmetry
breaking pattern U(Nf )L × U(Nf )R → U(Nf )L+R.

The metric on the flavor branes is given by

ds2 =

(
U

R

)3/2 (
dX2

0 + dX2
)

+

(
R

U

)3/2 [ dU2

f(U)
+ U2dΩ2

4

]
, (1)

where dΩ2
4 is the metric of a unit 4-sphere, R is the background curvature, related to the

model parameters by R3 = λ`2s/(2MKK), and

f(U) = 1−
U3
KK

U3
. (2)

We work in Euclidean spacetime (X0,X) with Euclidean time X0 ∈ [0, 1/T ]. In this
section, the temperature T plays no role since the thermodynamic potential will turn out
to be independent of T . This is different in the deconfined geometry, see Sec. 4, where
nontrivial temperature effects become important.

The action on the flavor branes has a Dirac-Born-Infeld (DBI) and a Chern-Simons
(CS) part,

S = SDBI + SCS . (3)

Here, the DBI action is

SDBI = 2T8V4

∫
d4X

∫ ∞
UKK

dUe−φ STr
√

det(g + 2πα′F) , (4)
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with the D8-brane tension T8 = 1/
[
(2π)8`9s

]
, the volume of the 4-sphere V4 = 8π2/3, the

dilaton given by eφ = gs(U/R)3/4 with the string coupling gs = λ/(2πNcMKK`s), and
α′ = `2s. Moreover, g is the metric given by Eq. (1) and F is the field strength of the
world-volume gauge field A,

Fµν = ∂µAν − ∂νAµ + i[Aµ,Aν ] , (5)

with µ, ν ∈ {0, 1, 2, 3, U}. The factor 2 in Eq. (4) accounts for the two halves of the
flavor branes. Since we are interested in the non-abelian case Nf = 2, a prescription for
computing the square root is required in general. We have indicated this in the notation by
including the symmetrized trace “STr” in Eq. (4). We shall comment on this prescription
in more detail in Sec. 4 and continue here with the Yang-Mills (YM) approximation, where
we can compute the determinant in Eq. (4) as if the gauge fields were abelian, expand
the result up to order F2, and then take the ordinary trace. To this order, the result is
identical with the symmetrized trace prescription.

We decompose the U(2) gauge fields into U(1) and SU(2) parts,

Aµ = Âµ +Aµ , Aµ = Aaµσa , (6)

with the Pauli matrices σa, a = 1, 2, 3, normalized such that Tr[σaσb] = 2δab and [σa, σb] =
2iεabcσc, and analogously for the field strengths,

Fµν = F̂µν + Fµν , Fµν = F aµνσa , (7)

where
F̂µν = ∂µÂν − ∂νÂµ , F aµν = ∂µA

a
ν − ∂νAaµ − 2εabcA

b
µA

c
ν . (8)

The CS action can be written in terms of abelian and non-abelian components as [36,53]

SCS = −i Nc

12π2

∫
d4X

∫ ∞
UKK

dU

{
3

2
Âµ

(
F aνρF

a
σλ +

1

3
F̂νρF̂σλ

)

+ 2 ∂µ

[
Âν

(
F aρσA

a
λ +

1

4
εabcA

a
ρA

b
σA

c
λ

)]}
εµνρσλ . (9)

Following the conventions of Ref. [9] we shall from now on work with dimensionless quan-
tities, generally denoted by lower case symbols. The relevant definitions (including quan-
tities that will be introduced in the subsequent sections) are collected in table 11. In this
table we have abbreviated

λ0 ≡
λ

4π
. (10)

In particular, in these conventions the dimensionless location of the tip of the cigar-shaped
u-x4 subspace is

uKK =
4

9
. (11)

1The dimensionless chemical potentials µB and µI , which we will refer to as baryon and isospin chemical
potentials, are strictly speaking chemical potentials on the quark level, i.e., in addition to the factors given
in table 1 they require a factor Nc to be translated to the actual chemical potentials on the baryon level.
This is different for the corresponding densities nB and nI where the baryonic quantities are obtained
by the factors in table 1 without additional factors. This slight inconsistency is retained in order to be
consistent with conventions in the previous literature and to keep the notation and terminology as simple
as possible. We also note that in Ref. [9], whose notation we otherwise follow closely, the dimensionless
baryon density was denoted by nI , where I stands for instanton, whereas in the present work the subscript
I is reserved for isospin.
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u, uKK, uT â0, a0, µB, µI nB, nI x4, ` âi, ai, x
−1
i , t Ω

z, â−1u , a−1u h, x−10

1

R(MKKR)2
1

λ0MKK

6π2

Nfλ
2
0M

3
KK

MKK
1

MKK

6π2

NfNcλ30M
4
KK

Table 1: Factors that relate the dimensionless quantities in the first row to their dimen-
sionful counterparts, for instance u = U/[R(MKKR)2], x4 = X4MKK etc.

2.2 Single baryon with nonzero isospin

Before we introduce our ansatz for baryonic matter it is useful to discuss the case of a
single baryon. The simplest way to include baryonic degrees of freedom is to consider D4-
branes wrapping the 4-sphere [31]. Due to the presence of the Ramond-Ramond 4-form
flux going through this S4 these come with Nc fundamental strings attached, realizing
the expected baryon number charge. The other endpoint of these strings is attached to
the D8-branes, and by minimizing the energy the baryon vertex gets pulled towards the
D8-branes [64]. As a result, these solitonic objects can be seen directly from the point
of view of the worldvolume gauge theory as non-abelian instantons [45]. The resulting
configurations have been used to extract the spectrum, static properties and form factors
of holographic baryons [36,37]. In particular, in Ref. [36], by quantization of the collective
coordinates the baryon spectrum including neutron and proton states was studied. Our
many-baryon system will not include this quantization for simplicity, and thus it is useful
also in the single-baryon case to only use the semi-classical approximation as a reference
for our main results.

For the energy of a single baryon we use the YM approximation of the DBI action
and solve the equations of motion (EOMs) in a large-λ approximation. This localizes
the baryon at the tip of the connected flavor branes, and as a consequence, curvature
effects can be neglected, thus yielding the BPST instanton solution with (dimensionless)
instanton width ρ and winding number 1, corresponding to baryon number NB = 1.
Including a baryon chemical potential µB and an isospin chemical potential µI in the
boundary conditions of the temporal components of the gauge fields, the on-shell action
yields the dimensionless free energy

φ =
uKK

3

(
1 +

ρ2β

6u2KK

+
81uKK

20ρ2λ20

)
− µB , (12)

from which the dimensionful free energy is obtained by multiplying with λ0NcMKK, and
where we have abbreviated

β ≡ 1− 8λ20
3uKK

µ2I . (13)

Since the results of this subsection are already contained in Ref. [36] (or can easily be
extracted from it), we have skipped all details of the derivation of Eq. (12). In appendix
A we do present the detailed derivation for the case of the deconfined geometry, which
works analogously and leads to a very similar, but temperature-dependent, result, see Eq.
(130).

We see in Eq. (12) that the baryon chemical potential enters in a trivial way. One can
read this term as −µBNB with baryon number NB = 1, which is fixed by construction
in this calculation. On the other hand, the isospin chemical potential enters in a more
complicated way. To interpret the isospin content we first determine the instanton width
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by minimizing φ,

ρ2 =
9
√

3u
3/2
KK√

10λ0β1/2
. (14)

At this minimum, the isospin number is

NI = − ∂φ

∂µI
=

8Ncλ0µI√
30u

1/2
KKβ

1/2
. (15)

This result can now be used to compute the dimensionless baryon energy e = φ+ µINI +
µBNB as a function of NI ,

e =
uKK

3
+

3u
1/2
KK

2λ0

√
N2
I

6
+

2

15
. (16)

This result coincides exactly with the first two terms of the mass formula obtained in
Ref. [36] by quantizing the instanton configuration, see Eq. (5.26) in that paper, with the
quantum number l + 1 replaced by the continuous isospin number NINc. The additional
terms in that equation come from the zero-point energy and the excitations associated
with the instanton width and location.

Even though our homogeneous ansatz for isospin-asymmetric baryonic matter will not
be based on the instanton solution, Eq. (16) is a very useful reference. It shows, firstly,
that the spectrum in the given approximation is continuous in the isospin number and that
the lightest state has NI = 0. Therefore, an isospin asymmetry is created continuously
even in the single-baryon case, and in the many-baryon case we can expect the system to
continuously populate states with nonzero isospin number, in contrast to ordinary nuclear
matter, where an isospin asymmetry is achieved by rearranging the population of proton
and neutron states.

Secondly, it is instructive to introduce the symmetry energy at this point, which we
will then later compute for our holographic baryonic matter. The symmetry energy S is
defined as the quadratic term in the expansion of the energy per baryon in the isospin
parameter δ ≡ NI/NB,

E

NB
=

E

NB

∣∣∣∣
δ=0

+ Sδ2 , (17)

or, equivalently,

S = λ0NcMKK
nB
2

∂µI
∂nI

∣∣∣∣
nI=0

, (18)

with baryon and isospin densities nB and nI . Using the definition (17) and Eq. (16)
together with E = λ0NcMKK e and NB = 1 to read off

S

MKK
=

√
15

8
√

2
u
1/2
KKNc ' 0.2282Nc . (19)

Not surprisingly, the symmetry energy of the single-baryon system is of the order of the
baryon mass. We shall see later that this remains true for dense baryonic matter in the
present approximation.

2.3 Homogeneous ansatz for baryonic matter

We now turn to our main goal, the construction of isospin-asymmetric baryonic matter.
As introduced in table 1 we denote the dimensionless abelian and non-abelian gauge field
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components by âµ and aµ, with µ = 0, 1, 2, 3, u. Following Refs. [9, 50], we employ the
gauge choice âu = au = 0 and work with the homogeneous, i.e., x-independent, ansatz2

ai(u) =
λ0h(u)

2
σi , (20)

where the function h(u) vanishes at the UV boundary u = ∞ and has to be determined
dynamically. Within this ansatz all gauge fields are functions only of the holographic
coordinate u. Besides the spatial components of the non-abelian part of the gauge fields
(20) also the temporal components â0(u) and a0(u) are nonvanishing. In particular, and in
contrast to Refs. [9,50], the non-abelian part a0(u) plays a crucial role since its boundary
value encodes the isospin chemical potential. With Eq. (8) we thus arrive at the following
nonzero field strengths,

F̂u0 = iâ′0 , F au0 = iaa′0 , F ai0 = −iεiabλ0hab0 , F aij = −εija
λ20h

2

2
, F aiu = δia

λ0h
′

2
,

(21)
where the prime denotes derivative with respect to u, and where we have replaced â0 → iâ0,
a0 → ia0 since we work in Euclidean spacetime. (In a slight abuse of notation, we keep
using upper case letters for the dimensionless field strengths.)

It is useful to define a new (dimensionless) coordinate z through

u3 = u3KK + uKKz
2 , (22)

such that z ∈ [−∞,∞] runs from the UV boundary of the D8-branes to that of the D8-
branes, with z = 0 corresponding to the tip of the connected branes at u = uKK. In
the following we shall switch between the two variables depending on which one is more
convenient for a particular calculation or argument. For example, most derivations are
more compactly written in the u variable, while for some properties of our solutions, such
as their symmetry across the two halves of the flavor branes, it is unavoidable to employ
the z parametrization.

Using the definition based on the topological winding number, the baryon number
density is

NB

V
= −

M3
KK

8π2

∫ ∞
−∞

dzTr[FijFkz]εijk =
λ30M

3
KK

8π2

∫ ∞
−∞

dz ∂z(h
3) , (23)

where V is the three-volume. We see that within our simple ansatz no net baryon number
is generated unless h(z) is discontinuous. (This discontinuity can be avoided by introduc-
ing an ansatz on the level of the field strengths, not the gauge fields [51].) We introduce
the discontinuity at the tip of the connected branes, z = 0, and require h(z) to be anti-
symmetric under z → −z, with boundary conditions

h(z = 0±) = ±hc , h(z = ±∞) = 0 . (24)

If baryonic matter is described with the help of instantons, it was shown that different
layers appear as the density is increased [10,12,48,51]. In our current apporach this might
be included by introducing more than one discontinuity with dynamically determined
locations in the holographic direction. Here we only consider a single discontinuity for
simplicity.

2The isospin chemical potential we will introduce later breaks the SU(2) symmetry. In the instanton
solution this translates into a preferred direction in position space, as realized within the Skyrme model in
Ref. [65]. Therefore, one might consider anisotropic configurations with only azimuthal symmetry in the
current approximation. Here we will ignore this possibility for simplicity.
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For the practical calculation, we can restrict ourselves to one half of the connected
branes, say z ≥ 0 and work with the function h(u) with boundary conditions h(uKK) = hc
and h(∞) = 0. With the help of Eq. (23) we can relate the IR boundary condition hc to
the baryon density,

nB = −3

4
λ0h

3
c , (25)

with the dimensionless baryon density nB from table 1. We see that for positive baryon
densities hc < 0.

We now insert our ansatz into the action (3), use the YM approximation for the DBI
action (4) and notice that only the first term of the CS action (9) with the structure ÂFF
contributes. Omitting the term constant in the fields this yields

S = NNf
V

T

∫ ∞
uKK

duL , (26)

with

N =
NcM

4
KKλ

3
0

6π2
, (27)

and the Lagrangian

L =
u5/2

2
√
f

(
g1 − fâ′20 − fa′20 + g2 − g3

)
− 9

4
λ0â0h

2h′, (28)

where we have abbreviated3

g1 ≡
3fh′2

4
, g2 ≡

3λ20h
4

4u3
, g3 ≡

2λ20h
2a20

u3
, (29)

with a20 = aa0a
a
0 and a′20 = aa′0 a

a′
0 . We shall introduce the isospin chemical potential in the

σ3 direction, such that it is consistent to set the σ1 and σ2 components of a0 to zero, and
we denote a0 ≡ a30 from now on.

From the action (26) we derive the following EOMs for â0, a0 and h,

∂u

(
u5/2

√
fâ′0

)
=

9

4
λ0 h

2h′ , (30a)

∂u

(
u5/2

√
fa′0

)
=

2λ20h
2a0

u1/2
√
f
, (30b)

3

2
∂u

(
u5/2

√
fh′
)
− 9λ0h

2nBQ

2u5/2
√
f

=
λ20h

u1/2
√
f

(3h2 − 4a′20 ) , (30c)

where we have defined

Q(u) ≡ 1− h3(u)

h3c
. (31)

The EOM for the abelian gauge field (30a) can easily be integrated to obtain

â′0 =
nBQ

u5/2
√
f
, (32)

where the integration constant is the baryon density (25). The other two equations of
motion, which couple a0 and h, need to be solved numerically.

3This notation was also used in Ref. [9], and for g3 = 0 we recover the action in this reference. However,
within the definitions of g1 and g2 we differ by a factor Nf = 2 from Ref. [9] because in that reference the
flavor trace was taken within the square root only over the non-abelian terms.

10
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The thermodynamic potential (= free energy density) is then obtained from the on-
shell action. We define the dimensionless thermodynamic potential by

Ω =

∫ ∞
uKK

duL =
1

2

∫ ∞
−∞

dz
∂u

∂z
L , (33)

where
∂u

∂z
=

2uKK|z|
3u2

, (34)

and where L is evaluated at the stationary point. The dimensionful free energy density is
then obtained by multiplication with NNf . In the present YM approximation, Ω is finite
and does not require a vacuum subtraction. In the vacuum, where h = â′0 = a′0 = 0 we
have Ω = 0.

2.4 Including pion condensation

The chemical potentials of the boundary field theory are introduced through the UV
boundary conditions for the temporal components of the gauge field. Since the D8-D8
pairs join in the bulk there is only a single U(2) gauge field. However, in the UV chiral
symmetry is effectively restored, so that the gauge field is allowed to behave differently for
left-handed fermions at z → +∞ and right-handed fermions at z → −∞. Let us denote
the U(2)-valued boundary conditions by

µL,R = â0(±∞)1 + a0(±∞)σ3 . (35)

In order to implement a baryon chemical potential we set â0(±∞) = µB. In contrast,
for the isospin chemical potential it will be necessary to consider the possibility of having
either equal or opposite boundary conditions at the left- and right-handed boundaries. Let
us briefly review the arguments of Ref. [52] to explain this. As it was shown in Ref. [31],
one recovers the chiral Lagrangian for massless pions from the Witten-Sakai-Sugimoto
model by expanding in radial modes and carrying out the integral in z,

Lchiral =
f2π
4

Tr
[
DµΣDµΣ†

]
, (36)

where the pion decay constant is given in terms of the parameters of the Witten-Sakai-
Sugimoto model by

f2π =
λM2

KKNc

54π4
, (37)

and the pion matrix Σ can be expressed as the holonomy

Σ = P exp

(
i

∫ +∞

−∞
dz az

)
, (38)

where P denotes path ordering. The chemical potentials are introduced through the
covariant derivative in Eq. (36). Since pions do not carry baryon number, µB simply
drops out of this Lagrangian and thus, if only µB is nonzero, the vacuum is Σ = 1. As
Eq. (38) shows, this is consistent with our gauge choice az = 0. An isospin chemical
potential µI , however, induces an effective potential for the pions through the covariant
derivative DνΣ = ∂νΣ− iµIδν0[σ3,Σ], resulting in a nontrivial minimum Σ = Σmin ∝ σ1,2.
This minimum corresponds to a condensate of charged pions (which, since here mπ = 0,
already occurs at infinitesimally small µI). It seems this is in conflict with our gauge choice
az = 0. Fortunately, we may employ a global chiral transformation Σ → g−1L ΣgR where

11
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type â0(±∞) a0(±∞) h(±∞) x4(±∞)

σ µB µI 0 ±`/2
π µB ±µI 0 ±`/2

Table 2: Boundary conditions at z = ±∞ for the various components of the gauge fields
and the embedding function of the flavor branes x4 (the latter is only relevant for the
deconfined geometry discussed in Sec. 4). Boundary conditions of type π (σ) do (do not)
include pion condensation.

gL ∈ U(2)L and gR ∈ U(2)R, which leaves the potential invariant, to work in a frame
where the transformed minimum is trivial, g−1L ΣmingR = 1. For example, one can choose
gL = Σmin and gR = 1. This transformation affects the left- and right-handed chemical
potentials, which transform as µL → g−1L µLgL and µR → g−1R µRgR. As a consequence,
one finds that a vector isospin chemical potential µL = µR = µIσ

3 in the original frame
is seen after our transformation as axial, −µL = µR = µIσ

3. Thus, in order to study
pion condensation in the presence of a vector isospin chemical potential, we may keep the
az = 0 gauge but have to impose axial boundary conditions for the isospin component.
Vector boundary conditions in the isospin component correspond to a chirally broken
phase without pion condensation. In other words, rather than keeping the boundary
conditions fixed and vary the chiral field we fix the chiral field and vary the boundary
conditions according to the transformation that is needed to keep the chiral field fixed.
We collect the boundary conditions for all relevant functions in table 2, where, following
the terminology of Ref. [53], we refer to the two types of boundary conditions as σ and
π. Baryonic matter can be added in both cases, i.e., with and without pion condensation,
via the function h(z), and in each case we require the boundary condition (24), which is
also included in the table. For completeness, the table also gives the boundary condition
for the embedding function of the flavor branes, which is irrelevant in the present section
due to the antipodal separation of the flavor branes but which will become relevant when
we discuss the deconfined geometry in Sec. 4.

2.5 Free energy density

Next, we derive an expression for the free energy density and show that the usual ther-
modynamic relations with respect to baryon and isospin number densities are respected
in our approximation. We also derive expressions for the isospin density and the baryon
chemical potential which are useful for the practical evaluation. To this end, we need
to discuss the IR behavior of the functions â0, a0 and h. The series expansions about
u = uKK (and thus z = 0) of a0 and h can be written as

a0(u) = ac + a(1)
√
u− uKK + a(2)(u− uKK) + . . . = ac +

a(1)√
3uKK

z +
a(2)

3uKK
z2 + . . . ,

(39a)

h(u) = hc + h(1)
√
u− uKK + h(2)(u− uKK) + . . . = hc +

h(1)√
3uKK

z +
h(2)

3uKK
z2 + . . . .

(39b)

The EOMs (30b) and (30c) can be used to express all higher order coefficients a(2), a(3), . . .
and h(2), h(3), . . . recursively in terms of ac, a(1), hc, h(1). From Eq. (30a) we obtain the
expansion for the abelian component â0,

â0(u) = âc + â(2)(u− uKK) + â(3)(u− uKK)3/2 + . . . = âc +
â(2)

3uKK
z2 +

â(3)

(3uKK)3/2
z3 . . . ,(40)

12
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where â(2) and â(3) can be written in terms of the coefficients of the series expansion of h,

â(2) =
3
√

3λ0h
2
ch(1)

4uKK
, â(3) =

√
3λ0hc(h

2
(1) + hch(2))

2uKK
. (41)

All expressions are valid on the z > 0 half of the connected flavor branes. We can extend
them over both halves as follows. The discontinuity in h is implemented by using −h(|z|)
for the z < 0 half, where h(z) is the solution on the z > 0 half. The resulting function
is thus odd in z. Its IR boundary value ±hc is given by the baryon density, see Eq. (25),
and h(1) must be determined from the numerical solution of the EOMs. In both types of
boundary conditions we consider, â0(z) is even in z. [Note that changing the sign of h on
the z < 0 half results in a sign flip of the coefficient â(3), but not of â(2), leading to the
correct parity of the expansion (40).] Hence, â0(z) is automatically smooth at z = 0 since
there is no linear term in the expansion (40). The boundary value âc has to be determined
dynamically. Finally, the parity of a0 depends on the type of boundary conditions. For
σ-type conditions we require a0 to be even in z. In this case, ac is determined dynamically,
and we will show below that minimizing the free energy with respect to ac yields a(1) = 0.
Hence also a0 turns out to be smooth at z = 0. For π-type boundary conditions we require
a0 to be odd in z. Now a(1) will adjust itself to a nonzero value according to the EOMs
and we will see that we need to set ac = 0. Thus a0 is continuous and smooth at z = 0
also in this case.

In order to verify the usual thermodynamic relations and to minimize the free energy
with respect to the parameters hc and ac, we compute the derivative Ω with respect to
x = µB, µI , hc, ac. With the help of the EOMs we obtain

∂Ω

∂x
=

1

2

∫ ∞
−∞

dz ∂z

(
∂L
∂â′0

∂â0
∂x

+
∂L
∂a′0

∂a0
∂x

+
∂L
∂h′

∂h

∂x

)

=
1

2

∫ ∞
−∞

dz

[
− ∂z

(
u5/2

√
fâ′0

∂â0
∂x

)
− ∂z

(
u5/2

√
fa′0

∂a0
∂x

)

+ ∂z

(
3u5/2

√
fh′ − 9λ0â0h

2

4

∂h

∂x

)]
, (42)

where, although the integration variable is z, the functions are written in terms of u for
compactness (throughout the paper prime stands for the derivative with respect to u).
The integral gives rise not only to z = ±∞ contributions but also to terms coming from
z = 0 since h is discontinuous there. For the first term we use that for all phases we
consider â0(z = ±∞) = µB, and that â′0 is odd in z because â0 is even (and because ∂uz
(34) is even). Therefore, using Eq. (31), we have u5/2

√
fâ′0 = ±nB for z = ±∞. For

the second term we recall that a0(z = ±∞) = µI for σ-type boundary conditions and
a0(z = ±∞) = ±µI for π-type boundary conditions. However, this difference in sign is
canceled by a′0, which has opposite parity (odd for σ-type and even for π-type). This term
thus gives nonzero contributions from the UV boundaries and from z = 0. Finally, the
only contribution to the third term comes from the discontinuity at z = 0 because the
boundary terms at z = ±∞ vanish. We use that h′ is even in z and h(z → 0±) = ±hc.

13
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Putting all this together, we find

∂Ω

∂x
= −nB

∂µB
∂x
−
(
u5/2

√
fa′0

)
u=∞

∂µI
∂x

+

√
3u2KKa(1)

2

∂ac
∂x

−

(
3
√

3u2KKh(1)

8
− 9λ0âch

2
c

4

)
∂hc
∂x

. (43)

This result only requires information from one half of the connected branes, so that we
can go back to working in the u coordinate (on the z > 0 half of the branes).

We expect x = µB, µI to yield the thermodynamic relations

∂Ω

∂µB
= −nB ,

∂Ω

∂µI
= −nI . (44)

Setting x = µB in Eq. (43) is simply a consistency check and gives no additional infor-
mation. The second relation defines nI , the dimensionless isospin density. It is related to
its dimensionful counterpart by the same factor as for nB, see table 1, as can be seen by
inserting the dimensionful factors for Ω and µB, µI into Eq. (44). We find

nI =
(
u5/2

√
fa′0

)
u=∞

=

√
3

2
u2KKa(1) + 2λ20

∫ ∞
uKK

du
h2a0

u1/2
√
f
, (45)

where we have made use of Eq. (30b). We see that the thermodynamic relations are
consistent with the AdS/CFT dictionary: both nB and nI are given by the subleading
terms at the holographic boundary,

â′0 =
nB
u5/2

+ . . . , a′0 =
nI

u5/2
+ . . . . (46)

To minimize the free energy with respect to hc we set x = hc in Eq. (43) and obtain

âc =
u2KKh(1)

2
√

3λ0h2c
. (47)

This result allows us to write µB as

µB = âc +

∫ ∞
uKK

du â′0 =
u2KKh(1)

2
√

3λ0h2c
+

∫ ∞
uKK

du
nBQ

u5/2
√
f
, (48)

where Eq. (32) has been used. Finally, we can set x = ac. Again, we expect the derivative
to vanish in this case. For the σ-type boundary conditions, where ac adjust itself dynami-
cally, we find a(1) = 0, which is the smoothness condition for a0. For the π-type boundary
condition in the UV we must require ac = 0 as an additional IR boundary condition to
begin with, which implies continuity and smoothness for a0, and in this case a(1) can only
be computed numerically. Applying this conclusion to the isospin density (45), we see
that in the absence of pion condensation, where a(1) = 0, the only contribution comes
from the integral, which only is nonzero for a nonzero function h(u), i.e., in the presence
of baryons. In the pion-condensed phase, however, where a(1) is nonzero, isospin density
is also generated in the absence of baryons, as it should be.

We can use these relations to compute an explicit form of the free energy (33). With
the help of partial integration and the EOMs we find

Ω =

∫ ∞
uKK

du
u5/2

2
√
f

[
g1 + g2 +

(nBQ)2

u5

]
− µBnB −

µInI
2

. (49)

This is a useful compact form to compute Ω numerically. The factor 1/2 in the last term
has no particular meaning, extracting an additional −µInI/2 from the integral is possible,
but would result in a more complicated integrand.
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2.6 Possible phases

In the previous subsection we have kept the notation general such that Eqs. (45), (48)
and (49) are valid for all phases we consider, in particular for both types of boundary
conditions explained in Sec. 2.4. We now describe all distinct phases included in this
analysis.

• Vacuum: The vacuum configuration is defined by vanishing baryon and isospin
densities, nB = nI = 0. The boundary conditions are of the σ type, and the
solutions to the EOMs are simply constants,

h(u) = 0 , â0(u) = µB , a0(u) = µI . (50)

In this phase, the free energy density is zero, Ω = 0.

• Pion-condensed phase (π): Here we have nB = 0 and a nonzero isospin den-
sity, which is created by a pion condensate. This phase requires π-type boundary
conditions, and the solutions of the EOMs are

h(u) = 0 , â0(u) = µB , a0(u) =
2µI
π

arctan

√
u3

u3KK

− 1 . (51)

To compute the isospin density we can simply expand a0(u) about uKK to find
the coefficient a(1) and insert the result into Eq. (45). The free energy density is
computed from Eq. (49) and we obtain

nI =
3u

3/2
KK

π
µI , Ω = −

3u
3/2
KK

2π
µ2I . (52)

As a check, one can use these expressions to confirm the thermodynamic relation
(44) for the isospin density. We also see that the pion-condensed phase is preferred
over the vacuum for any |µI | > 0, as expected in the chiral limit. With the expression
for fπ (37) the relation for the isospin density in Eq. (52) implies(

NcNfλ
2
0M

3
KK

6π2
nI

)
= 4f2π (λ0MKKµI) , (53)

where the expressions in parentheses are the physical dimensionful quantities de-
fined through table 1. This form of the isospin density is in agreement with chiral
perturbation theory [21]4.

• Pure baryonic phase (B): Here we work with σ-type boundary conditions, i.e.,
pions do not condense. Isospin number comes solely from baryonic matter and is
induced by the non-trivial profile of a0, which couples to h through the EOMs (30).
The B phase is a direct generalization of the baryonic phase studied in Refs. [9, 50]
to nonzero isospin. Here, the solutions of the EOMs and the value of the free energy
have to be computed numerically. Exemplary profiles that illustrate the shape and
symmetry of the solutions are shown in the left panel of Fig. 1. We discuss the
results more systematically in Sec. 3 and briefly explain the numerical procedure for
solving the EOMs at the beginning of that section.

4For this comparison it is important to note that in our convention µB = (µu + µd)/2 and µI =
(µu − µd)/2, with the quark chemical potentials µu = â0(∞) + a0(∞), µd = â0(∞) − a0(∞). In this
convention, the zero-temperature onset of pion condensation in the presence of a pion mass occurs at
mπ/2.
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Figure 1: Profiles of the functions h(z) (black, non-abelian spatial component of the gauge field),

â0(z) (blue, abelian temporal gauge field) and a0(z) (red, non-abelian temporal gauge field). The

chemical potentials act as boundary conditions, here chosen to be µB = 0.4 and µI = 0.15,

indicated by the dashed lines. The discontinuity in h(z) gives rise to a nonzero baryon number. In

the left panel a0(z) is even in z (σ-type boundary conditions, pure baryon phase B), while in the

right panel a0(z) is odd in z (π-type boundary conditions, coexistence phase πB). The resulting

baryon and isospin densities are (nB , nI) ' (0.08, 0.02) and (nB , nI) ' (0.07, 0.05) respectively. In

both panels we have used λ = 15.

• Coexistence phase (πB): Also in this case both number densities are allowed to
be nonzero, this time with π-type boundary conditions, such that a0(z) is antisym-
metric. In this phase baryonic matter coexists with a pion condensate, and both
contribute to the isospin density. Therefore, nI remains finite in the nB → 0 limit,
thus reproducing the π-phase above. The evaluation of this phase also has to be done
numerically. Since the only difference to the pure baryonic phase are the boundary
conditions, the numerical calculation is very similar. The profiles of the gauge fields
for a particular parameter set are shown in the right panel of Fig. 1.

Both isospin-asymmetric baryonic phases represent novel configurations in the Witten-
Sakai-Sugimoto model. For any given µB and µI we may now calculate their thermody-
namic properties and determine the energetically preferred phase. The results will be
discussed in Sec. 3.

Dense matter in a compact star lives on a curve in the µB-µI plane because of the
constraints of beta equilibrium – which relates µI to the electron chemical potential – and
electric charge neutrality – which fixes the electron chemical potential for any given µB.
As we have discussed in Sec. 2.2, our present holographic approach cannot be interpreted
as a system of neutrons and protons since this would require the quantization of instanton
solutions in the bulk. Nevertheless, it is illustrative to assume that our two isospin compo-
nents correspond to neutron and proton states simply by assigning electric charges 0 and
+1 to them. This will give us an idea of how compact star conditions affect our solutions
and may be useful as a reference for future studies that include neutron and proton states
in a more realistic way. To this end, we restrict ourselves to the B phase. The reason is
that in the πB phase we cannot easily separate baryon from pion contributions to assign
different electric charges to them. Moreover, although pion condensation in nuclear matter
was already envisioned a long time ago [66,67], it remains unclear whether the conditions
in dense neutron star matter are favorable for pions to condense, see for instance Ref. [68].
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Equilibrium in ordinary nuclear matter with respect to beta decay and electron capture
relates the electron chemical potential µe to the neutron and proton chemical potentials,
µe = µn − µp, and the electron chemical to the muon chemical potential µe = µµ, where
we have neglected the neutrino chemical potential, which is a good approximation except
for the very early stages in the life of the star. The lepton chemical potentials give rise to
the corresponding electron and muon number densities,

ne =
µ3e
3π2

, nµ = Θ(µe −mµ)
(µ2e −m2

µ)3/2

3π2
, (54)

where we have neglected the electron mass, and mµ ' 106 MeV is the muon mass. The
charge neutrality condition is then np = ne + nµ, where np is the proton number density.
We now identify the difference between neutron and proton chemical potentials (divided
by 2) with our isospin chemical potential µI , such that, using table 1 to turn µI into its
dimensionful version, beta equilibrium reads

µI =
µe

2λ0NcMKK
. (55)

Then, identifying the proton number density with (nB − nI)/2, the neutrality condition
becomes

nB − nI =
6π2(ne + nµ)

λ20M
3
KK

= 16N3
c λ0µ

3
I

1 + Θ(µe −mµ)

(
1−

m2
µ

µ2e

)3/2
 . (56)

Due to the additional mass scale mµ, the muon contribution requires us to choose a value
for MKK, which is not the case if only (approximately massless) electrons are included.
For given nB, Eq. (56) can be solved for µI because nI is a (complicated) function of nB
and µI , see Eq. (45). Then, the solution is used to determine the associated µB via Eq.
(48).

2.7 Low-density approximation

Solving Eqs. (30) requires numerical methods in general if baryons are present. In the
limit of small baryon and isospin densities, however, one finds an analytical solution. Even
though we shall see that this solution can only be applied in an unstable regime, we will
gain some insight from the analytical expressions and may use them as a benchmark for the
numerics. We assume µI and thus a0(u) to be small, say of order ε, and assume h(u) to be
of the same order. Since nB ∝ h3c the baryon density is then of order ε3, while nI is of order
ε in the πB phase and of order ε3 in the B phase on account of Eq. (45). Then, from Eq.
(48) we see that the leading-order behavior of the baryon chemical potential is µB ∝ 1/ε.
This simple power counting argument already shows that the baryon density will decrease
with increasing baryon chemical potential, which indicates a thermodynamical instability.

Within this approximation, the EOMs (30) become to lowest order in ε

∂u

(
u5/2

√
fâ′0

)
' ∂u

(
u5/2

√
fa′0

)
' ∂u

(
u5/2

√
fh′
)
' 0 . (57)

Thus, all three functions have the form c1 + c2 arctan
√
u3/u3KK − 1, and the only differ-

ence between them comes from the boundary conditions, which determine the integration
constants c1 and c2. We find

â0(u) ' µB , h(u) ' −
(

4nB
3λ0

)1/3
(

1− 2

π
arctan

√
u3

u3KK

− 1

)
, (58)
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and

a0(u) '


µI B phase

2µI
π

arctan

√
u3

u3KK

− 1 πB phase
. (59)

This yields the leading-order contribution to the baryon chemical potential from Eq. (48),

µB '
u
3/2
KK

π

(
3

4λ20nB

)1/3

, (60)

and the leading-order contribution to the isospin density from Eq. (45),

nI '


2αu

7/2
KKµI

π2µ2B
B phase

3u
3/2
KKµI
π

πB phase

, (61)

where we have abbreviated the numerical factor

α ≡
∫ ∞
1

duu√
u3 − 1

(
1− 2

π
arctan

√
u3 − 1

)2

' 0.455359 . (62)

The dimensionless free energy (49) can be approximated by

Ω '
∫ ∞
uKK

du
u5/2g1

2
√
f
− µBnB −

µInI
2
'


3u

9/2
KK

8π3λ20

1

µ2B
−
αu

7/2
KK

π2
µ2I
µ2B

B phase

3u
9/2
KK

8π3λ20

1

µ2B
−

3u
3/2
KK

2π
µ2I πB phase

. (63)

Here we have kept the leading contribution of order ε2 in both cases, and in the B phase
also the µI dependent part of the subleading ε4 contribution, such that the thermodynamic
relations (44) are fulfilled at leading order for both baryon and isospin number.

As already anticipated, Eq. (60) confirms that the approximation is only valid in a
regime where the baryon number goes to zero as the chemical potential is increased. This
is not only an unstable branch of the solution, it also indicates a well-known shortcoming
of the present homogeneous ansatz for baryonic matter: One would expect µB to approach
the vacuum mass of the baryon as nB → 0. In other words, in our approach the vacuum
mass is infinite. Since the ansatz is expected to work well at large baryon densities it is
not surprising that unphysical results can arise in the low-density regime.

We may further exploit our low-density approximation to investigate the symmetry
energy. Here we focus on the B phase since the isospin contribution to the πB free energy
in Eq. (63) is a pure pion contribution and thus in this phase we do not learn anything
about baryonic matter from computing the symmetry energy in the present approximation.
With the dimensionless energy density ε = Ω + µBnB + µInI we find for the energy per
baryon in the B phase

ε

nB
'

3u
3/2
KK

2π

(
3

4λ20nB

)1/3
[

1 +
π

6αu2KK

(
3n2B
4λ20

)1/3
n2I
n2B

]
. (64)
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This result can be compared to the single baryon energy (16). In particular, we can read
off the symmetry energy

S

MKK
' 3Nc

8αu
1/2
KK

(
nB
6λ0

)1/3

. (65)

We shall compare this low-density expression to the full numerical result in Sec. 3.3. As

we shall see, the n
1/3
B behavior is a reasonable qualitative indication for the symmetry

energy even at larger densities, though the actual result does deviate quantitatively.
We can also use the low-density results for an illustration of how the neutrality con-

dition and the beta equilibrium affect our holographic matter. Neglecting the muon con-
tribution for simplicity, the two conditions (55) and (56) together with the low density
expressions (60) and (61) yield

1 =
3p

21/3
x
1/3
P + 2xP , (66)

where we have abbreviated

p ≡ αu1/2KK

(
2

3

)5/3 λ0
Nc

, (67)

and where

xP ≡
nB − nI

2nB
=

µ3e
λ20nBM

3
KK

(68)

is the “proton” fraction (more precisely, since our system does not have proton states, the
fraction of baryonic matter in the isospin component that we have assumed to behave like
a proton in terms of electric charge and beta decay). We can solve Eq. (66) to find

xP =
[p− (

√
1 + p3 − 1)2/3]3

4(
√

1 + p3 − 1)
=


1

2
− 3p

25/3
+ . . . for p→ 0

2

27p3
+ . . . for p→∞

. (69)

We see that for small λ/Nc we approach symmetric nuclear matter. This suggests that in
this case the symmetry energy is very large, the system prefers to have the same numbers
of protons and neutrons despite the conditions of charge neutrality and beta equilibrium.
In realistic nuclear matter the proton fraction is much smaller, typically around 10%,
depending on the density. Its precise value is of astrophysical relevance: for example the
neutrino emissivity of nuclear matter strongly depends on it since the so-called direct
Urca process only becomes significant above a certain threshold for xP [1]. Here, in our
prototypical approach to holographic isospin-asymmetric matter we are mostly interested
in the qualitative behavior and quantitative comparisons to real-world nuclear matter
are difficult. Nevertheless, it is interesting to see that even within our approach (and
within the low-density approximation of this subsection) the limit of large λ/Nc does yield
arbitrarily small proton fractions, i.e., for λ/Nc → ∞ we approach pure neutron matter,
although we should keep in mind that for large λ/Nc we are extrapolating beyond the
regime of validity of holographic models.

3 Results: confined geometry

In this section we evaluate the model in the confined geometry and determine the preferred
phases for given baryon and isospin chemical potentials (in the confined geometry, there is
no temperature dependence of the phases we consider). In the practical calculation, baryon
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Figure 2: Top row: Dimensionless baryon and isospin number densities nB and nI in the pure

baryonic phase as functions of µB at fixed values of the isospin chemical potential µI . Dashed lines

indicate first-order phase transitions from the vacuum to the B phase, i.e., the branches below

the dots are metastable or unstable. Bottom row: Same quantities in the phase where baryonic

matter coexists with a pion condensate. The thin (red) lines indicate the values of nI in the pure

pion-condensed phase, and the dashed lines indicate the transition from the π phase to the πB

phase. All curves are calculated with λ = 15. The dimensionless quantities can be translated into

physical units with the help of table 1 and a choice for the Kaluza-Klein scale MKK.

and isospin chemical potentials are treated in different ways. The simplest approach is
to first fix nB and µI . This defines the boundary conditions for h(u) and a0(u) and the
coupled system of equations (30b), (30c) can be solved (we have found that it is somewhat
easier to transform these equations to the z coordinate before solving them numerically).
The resulting functions can then be used to compute the isospin number density nI from
Eq. (45), the baryon chemical potential µB from Eq. (48), and the free energy Ω from Eq.
(49). Working at a fixed µB is somewhat trickier because then the EOMs (30b), (30c)
have to be solved simultaneously with the condition (48). In either case, the numerical
evaluation can be done with standard routines in Mathematica without major difficulties.

3.1 Baryon and isospin densities

Let us first discuss the baryon and isospin densities as functions of µB for various fixed
values of µI . The results are shown in Fig. 2. In the upper panels we consider the pure
baryonic phase, while pion condensation is included in the lower panels. We shall later see
that the phases without pion condensate are never preferred unless µI = 0. Nevertheless,
we present the results for the pure baryonic phase as well, which is of theoretical interest
but also because in a more realistic situation with nonzero pion mass we expect this phase
to be important for small isospin chemical potentials.

In the upper left panel we see that for small µI the curves diverge to infinite µB
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for nB → 0. This was already noticed in Ref. [9] for µI = 0, and we have observed
this unphysical behavior in the low-density approximation of Sec. 2.7. It means that the
current approximation does not yield a vacuum mass for the baryon, which is in contrast to
the pointlike approximation for baryons [46] and the instanton gas approximation [9, 11].
As the baryon density is increased the nB curves turn around and acquire a positive slope,
which corresponds to the thermodynamically stable branch. By comparing free energies
one finds the phase transition between the vacuum and the B phase (upper panels) and
between the π phase and the πB phase (lower panels), indicated by vertical dashed lines.
We will discuss the result for the free energy itself below, see Fig. 4. The effect of the
isospin chemical potential is to move the phase transition towards lower baryon chemical
potentials and baryon densities, and to weaken it in the sense that the jump in the densities
becomes smaller.

The most striking feature of the nB curves is that their low-density part flips from
µB = +∞ to µB = −∞ at a certain critical value of µI . This value depends on whether
pion condensation is taken into account or not: we find µI ' 0.42 for the critical value
in the pure baryon configuration, and µI ' 0.71 in the πB configuration. For µI larger
than these critical values we see in particular that there is a nonzero baryon density even
for µB = 0. If we ignore pions, the only way for the system to create an isospin density
is by creating baryons. This is exactly what the system does at sufficiently large µI . In
the presence of a pion condensate, there is already a nonzero isospin density and thus
baryons are not the only way for the system to respond to the isospin chemical potential.
Nevertheless, baryonic matter is created even in this situation, but now for larger values
of µI . It might seem curious that we find a positive net baryon number at µB = 0, where
there should not be any preference for baryons or antibaryons. The reason is that there
also exists a “mirror” state with negative net baryon number with the same free energy
and same isospin density, such that the symmetry between baryons and antibaryons at
µB = 0 is indeed respected. In other words, there is a first-order phase transition at large
µI and µB = 0 where the baryon density nB jumps from a nonzero positive value to the
negative value with equal magnitude, while nI remains continuous across the transition.
We shall come back to this phase transition when we discuss the phase diagram in Sec.
3.2. A priori, the baryon/antibaryon symmetry could also have been realized through a
vanishing baryon density at µB = 0 for all µI . It is a prediction of our model that this
is not the case and for sufficiently large µI a nonzero positive (negative) baryon density
exists even for µB → 0+ (µB → 0−).

The corresponding nI curves are presented in the right panels of Fig. 2. In the B
phase, the qualitative behavior of the isospin density is similar to that of the baryon
density. This is consistent with the fact that in this phase the isospin density is created
solely from baryons. In the πB phase, however, the results demonstrate that for vanishing
nB the curves approach the nonzero value for nI of the π phase, shown as horizontal lines.
The first-order phase transition manifests itself in a jump of the isospin density from its
already nonzero value to a larger value due to the onset of baryons.

In Fig. 3 we again plot the number densities nB and nI , but now as functions of µI at
various fixed values of µB. While the general behavior at large densities is very similar to
Fig. 2, now as the densities approach zero (or the density of the π phase in the case of nI
in the πB phase), the chemical potentials remain finite. They approach asymptotic values
which are exactly the values of µI at which the divergences in Fig. 2 flip sign, i.e., µI ' 0.42
(upper panels) and µI ' 0.71 (lower panels). In Fig. 3 the physical meaning of these values
is more obvious. The isospin chemical potential is the energy needed to place an NI = 1
charge into the system. Therefore, these critical values of µI can be interpreted as the mass
of an NI = 1 baryon placed into the vacuum (upper panels) or into a pion condensate
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Figure 3: Counterpart to Fig. 2, now with fixed values of µB instead of µI . Top row: Dimen-

sionless baryon and isospin number densities nB and nI in the pure baryon phase as functions of

µI at fixed values for the baryon chemical potential µB . For µB = 0.40 there are two disconnected

branches, the lower one being unstable. Bottom row: Same quantities in the coexistence phase.

The thin (red) line shows the behavior of nI in the pure pion-condensed phase, which is linear in µI
and identical to the result from chiral perturbation theory, see Eq. (52). The gray band in the lower

right panel indicates the physical pion mass mπ ' 140 MeV for the range MKK = (500−1500) MeV,

i.e., even if the pion mass was taken into account in the calculation, pion condensation is expected

to occur everywhere to the right of that band.

(lower panels). Of course we need to keep in mind that these values are obtained by
extrapolating our approximation, which cannot be expected to work well at low densities,
to zero densities. In other words, here we are trying to make a statement about a single
baryon with the help of an approximation whose starting point is a dense many-baryon
system. Therefore, this interpretation has to be taken with some care. Nevertheless, it is
tempting to compare our effective mass with the single-baryon result (16). Setting NI = 1
in this result and using the same ’t Hooft coupling λ = 15 as in the figure gives e ' 0.61,
which is somewhat larger than the NI = 1 vacuum mass µI ' 0.42 from Fig. 3. More
importantly, we observe that the effective mass of the NI = 1 baryon is larger in the
presence of a pion condensate compared to the vacuum. This tendency is in accordance
with the arguments of Ref. [21]. There, however, it was conjectured, based on results from
chiral perturbation theory (including baryons), that in QCD for µB = 0 baryonic matter
never appears as µI is increased. This is obviously different in our holographic model,
which does go beyond chiral perturbation theory in the sense that our approximation is
not expected to fail at large energies, although at asymptotically large energies our model
is certainly different from QCD due to the lack of asymptotic freedom. In all curves shown
in Fig. 3 we see that baryons do appear at sufficiently large µI through a first-order phase
transition. For µB → 0 we see that the first-order transition becomes weaker and we
have checked that at µB = 0 the transition turns into a second-order baryon onset in
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both cases, i.e., no matter if we include pion condensation or not. The lower right panel
shows that in the presence of pion condensation the isospin density follows the result from
chiral perturbation theory until baryonic matter contributes to the isospin density. We
shall come back to this behavior when we discuss non-antipodal brane configurations in
the deconfined geometry, where corrections to chiral perturbation theory can be found
already in the π phase, see Fig. 8.

One might ask to what extent our conclusions will change if quark masses are taken
into account. To get some idea of the effect we have added a band in the lower right
panel to indicate at which point pion condensation is expected for a physical pion mass.
Collecting the constants from table 1 and taking into account that in our conventions pion
condensation should occur for isospin chemical potentials larger than mπ/2, the critical
dimensionless isospin chemical potential is µI = mπ/(2λ0MKK). The limits of the band
are chosen to correspond to MKK = 500 MeV and MKK = 1500 MeV, which is a range that
(generously) covers the values typically chosen for MKK, for instance MKK = 949 MeV in
the original works [31,32]. We thus conclude that all the interesting details of Fig. 3 that
we have just discussed may receive corrections through quark mass effects, but are in the
regime where pion condensation is expected even in the presence of a nonzero pion mass.

3.2 Phase structure

We have already indicated the first-order transitions to baryonic matter in the results
of the previous subsection. These transitions are obtained by computing the free energy
(49), which is plotted in Fig. 4 for the various candidate phases discussed in Sec. 2.6. The
free energy is shown as a function of µB at fixed µI = 0.10 (left panel) and as a function
of µI at fixed µB = 0.15 (right panel). These plots confirm that the pion-condensed
phase is preferred for small nonzero isospin chemical potentials and not too large baryon
chemical potentials. In this phase, the free energy is quadratic in µI and independent of
µB, see Eq. (52). In accordance with Figs. 2 and 3 we see that as the B and πB curves
approach the non-baryonic phases, they go to infinite µB at fixed µI , but to a finite µI
at fixed µB. At large µI and/or µB the phase where baryonic matter coexists with a
pion condensate becomes preferred. The pure baryonic phase is never preferred. For large
chemical potentials, where baryons dominate over pions, the free energies of the B phase
and the πB phase approach each other.

We can now construct the phase diagram by tracing the intercept of the free energies
of the π and πB phases shown in Fig. 4 in the µI -µB plane. The result is shown in the
left panel of Fig. 5. Here we have also included the phase transition line in the absence of
pion condensation, i.e., for the transition between the vacuum and the B phase. Strictly
speaking, within our calculation in the chiral limit, this line is not part of the phase
diagram since it indicates the transition between two metastable phases. Nevertheless, it
is useful for comparison and also may play a role once a nonzero pion mass is included
in an improved version of our setup. For µI = 0 we have a first-order baryon onset at
about µB ' 0.4, as already discussed in Ref. [9]. A nonzero isospin chemical potential
moves the critical µB to lower values, and the first-order transition becomes weaker. By
comparing to the dashed curve we see that the baryon onset is delayed to larger chemical
potentials by pion condensation. The phase transition line intersects the horizontal axis
at µI ' 0.71 (with pions) and µI ' 0.42 (without pions). These are exactly the values
interpreted in the previous section as effective NI = 1 baryon masses. The reason why
the phase transition coincides with these masses is that it has become second order in the
µB → 0 limit.

By extending the calculation to negative baryon densities one finds that the horizontal
axis is actually a first-order phase transition line beyond that second-order point, as already
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In both diagrams (black) solid lines are the actual phase transition lines, while the dashed lines

correspond to the situation where pions are ignored, i.e., they show the phase transition from
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charge neutral matter, including leptons in the B phase. No stable homogeneous phase exists in
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anticipated in the previous subsection. In other words, as one crosses the horizontal axis
in the πB phase, the baryon density is discontinuous. This is manifest in the right panel
of Fig. 5, where we show the phase diagram in the nB-nI plane. This diagram is best
understood as follows. Without pion condensation, the area enclosed by the dashed curve
in the left panel shrinks to a point in the right panel because this is the vacuum where
nB = nI = 0. The dashed line itself, across which the density jumps, becomes the area
enclosed by the semi-circle-like curve in the right panel. For densities in this area there
is no stable homogeneous phase and one might construct a mixed phase of the vacuum
and baryonic matter, not unlike ordinary nuclei. Finally, the first-order line along the
horizontal axis also opens up to a regime where there are no “allowed” densities. In the
presence of pion condensation (solid lines) the situation is similar. However, now the area
enclosed by the phase transition line in the left panel shrinks to a line on the horizontal
axis of the right panel (nonzero nI since this is the π phase, not the vacuum), and the
phase transition line in the left panel becomes one of the shaded areas in the right panel,
where one expects a π-πB mixed phase. The second shaded area again comes from the
first-order transition along the horizontal axis of the left panel.
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’t Hooft coupling λ. The shaded band indicates the physical value S ' 32 MeV for the range of

the Kaluza-Klein scale MKK = (500− 1500) MeV.

In QCD, these phase diagrams would include chirally restored (and deconfined) matter
at large µB and/or µI . In the present calculation there is no further phase transition
because in the confined geometry the flavor branes are necessarily connected and chiral
symmetry restoration does not occur. This is one of the main reasons for us to also study
the deconfined geometry, where both chirally broken and chirally restored geometries are
possible, see Sec. 4.

In both panels of Fig. 5 we have indicated beta-equilibrated, charge neutral, purely
baryonic matter according to Eqs. (55) and (56) (the line is dashed to emphasize that
this curve is for B matter, not for πB matter). As for realistic nuclear matter in compact
stars, we see that the isospin chemical potential is much smaller than the baryon chemical
potential, for the curve shown here µI varies from about 6% to 8% of µB. The proton
fraction, however, is much larger than expected for ordinary nuclear matter under neutron
star conditions. With the definition (68) we find that along the blue curve in the phase di-
agram xP ' 0.465, i.e., our beta-equilibrated, charge neutral holographic baryonic matter
is almost isospin symmetric. If the blue curve was continued to lower µI we would enter
an unstable branch for which the analytical approximation (69) is valid. We have checked
that our numerical result indeed approaches this value, which in this case is xP ' 0.444,
i.e., it is a good approximation also for the stable branch shown in the figure. Our large
proton fraction shows that creating isospin-asymmetric baryonic matter is associated with
a large energy cost in our approximation. This suggests a large symmetry energy, which
we discuss next.

3.3 Symmetry energy

In Fig. 6 we present the symmetry energy defined in Eq. (18) for fixed λ as a function
of the baryon density (left panel) and at saturation density n0 as a function of λ (right
panel). For these curves, we have calculated the derivative in Eq. (18) purely numerically.
For both plots, n0 is defined as the density just above the first-order baryon onset of
isospin-symmetric baryonic matter. Therefore it only depends on λ, there is no difference
between B and πB phases because for zero isospin asymmetry these phases are identical.
For λ = 15 we have n0 ' 0.07, see right panel of Fig. 5. The low-density symmetry energy
in the B phase has a qualitative behavior similar to many different approaches based on
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phenomenological models or effective theories (see for example [69] and references therein).
Only for very small baryon densities our result is well approximated by the analytical ap-
proximation (65). For large densities, where the traditional approaches differ from each
other [69], our symmetry energy keeps increasing monotonically, comparable to the result
of a similar holographic model using a D4-D6 setup, albeit with very different approxi-
mations [63]. For comparison we have included the coexistence phase which behaves like
the π phase for small baryon densities and approaches the pure baryonic phase for large
densities.

For the right panel we have calculated the saturation density for each lambda in order
to take the derivative in Eq. (18) at this λ-dependent n0. We observe that the symmetry
energy of the B and πB phase behave very differently at small λ. As in the left panel,
we see that the πB phase interpolates between the π phase and the B phase also as a
function of λ. Most importantly, this panel shows that the symmetry energy of the purely
baryonic phase is much larger than the real-world value S ' 32 MeV [70,71]. Namely, for
any reasonable value of MKK, for example to reproduce vacuum properties of mesons, the
gray band in the right panel shows that the symmetry energy of our holographic baryonic
matter is larger by an order of magnitude or more, depending on the value of λ.

This observation is in agreement with the large proton fraction observed in the pre-
vious section. The explanation of this behavior was already briefly mentioned below Eq.
(16): the cold and dense isospin-asymmetric baryonic matter in our model is not made of
neutrons and protons. As the single-baryon spectrum (16) suggests, we can think of our
baryonic matter as a homogeneous distribution of classical instanton solutions deformed
away from the usual BPST-type configuration of [36] by the presence of the isospin chemi-
cal potential. Such solutions are heavier (and effectively larger) than the isospin-symmetric
ones. (The relative mass difference is a 1/λ correction such that its relative importance
decreases for larger values of λ.) The crucial point is that our isospin-symmetric mat-
ter is different from a system with equal number of neutrons and protons, because the
lightest available single-baryon state has zero isospin. Then, forcing the system to create
an isospin asymmetry amounts to exciting new – heavier – baryonic states with nonzero
isospin rather than simply reshuffling the occupation numbers for neutron and proton
states, resulting in a much larger symmetry energy. The difference between a system of
protons and neutrons and a gas of such deformed classical solutions was also discussed in
the context of the Skyrme model in Ref. [72], where it was argued that the classical solu-
tions are more accurate approximations for larger rather than smaller isospin asymmetries
(the symmetry energy, where the discrepancy of our results to real-world nuclear matter
is most obvious, is a derivative evaluated at vanishing isospin asymmetry). Analogous
considerations hold in our context since, as shown in Ref. [36], the states with different
isospin eigenvalues are obtained in the Witten-Sakai-Sugimoto model by quantizing the
moduli space of slowly moving instantons in analogy with the corresponding procedure for
Skyrmions [73]. It would be very interesting to construct isospin-asymmetric dense matter
configurations starting from the holographic protons and neutrons of Ref. [36], perhaps
along the lines of the instanton gas in [9].

4 Deconfined geometry

The setting of the confined geometry and maximally separated flavor branes of the previous
sections was well suited to explain our main ideas and for a systematic evaluation without
significant numerical difficulties. For a better applicability to real-world QCD it is desirable
to perform the analogous calculation in the deconfined geometry. This allows us to include
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temperature effects and the possibility of chiral restoration. The price we have to pay is
a more involved calculation which also poses some numerical difficulties in the evaluation.
We shall therefore, after deriving the relevant EOMs and thermodynamic quantities, be
less exhaustive in the evaluation and restrict ourselves to a few key results.

4.1 Setup

In the deconfined geometry, the induced metric on (half of) the D8-D8 flavor branes is

ds2 =

(
U

R

)3/2

(fTdX
2
0 + dX2) +

(
R

U

)3/2
{[

1

fT
+

(
U

R

)3

(∂UX4)
2

]
dU2 + U2dΩ2

4

}
.

(70)
where

fT (U) = 1−
U3
T

U3
, UT =

(
4π

3
T

)2

R3 , (71)

such that in our conventions the dimensionless temperature is t = 3u
1/2
T /(4π). Moreover,

the function X4(U) describes the shape of the flavor branes. This setup corresponds
to the high-temperature phase of the background geometry, usually associated with the
deconfined phase of the dual field theory (see however Ref. [74]). Its topology is such that
the flavor branes are allowed to extend all the way to the black hole horizon. Thus, whether
they join in the bulk or not becomes a dynamical question and depends in particular on
their asymptotic separation X4(U →∞) = L/2. We may think of L (or its dimensionless
counterpart ` = LMKK) as a third model parameter besides λ and MKK. This extension
produces new interesting physics compared to the antipodal case ` = π. In particular, it
allows for the appearance of a deconfined but chirally broken phase [75], such that the chiral
transition depends on the chemical potentials µB and µI , as expected in QCD at Nc = 3.
Following Refs. [9, 11, 12, 38, 39, 60], we choose to work in the so-called “decompactified”
limit, characterized by a small separation ` � π. In this limit, glue and flavor physics
become decoupled, and we employ the metric (70) for arbitrarily small temperatures. Since
the gluon dynamics is neglected in this approach, the dual field theory bears resemblance
to the Nambu-Jona-Lasinio model [39, 76, 77]. Some of the top-down control is lost in
this limit since, strictly speaking, the Kaluza-Klein modes become relevant. Nevertheless,
this effective approach has proven to yield very interesting insights akin to a much richer
phase structure, see for example the recent study of holographic quarkyonic matter [12].
We emphasize that, besides the fact that we use Eq. (70) for all t, the small ` limit is not
enforced explicitly in any of the following calculations.

The action S is again given by a DBI and a CS term as in Eq. (3). Since the CS term
does not depend on the metric, it has the same form as in the confined geometry. The
DBI action is, in analogy to Eq. (4),

SDBI = 2T8V4

∫
d4X

∫ ∞
Uc

dUe−φ STr
√

det(g + 2πα′F) , (72)

where Uc > UT is the value of the holographic coordinate at the tip of the connected flavor
branes in the chirally broken phase. This value will have to be determined dynamically
and depends on temperature and the chemical potentials. In the chirally restored phase,
the branes are straight, X ′4 = 0, and U ∈ [UT ,∞] instead. As already briefly discussed
below Eq. (4), it is necessary to state precisely how the action (72) is to be interpreted in
the non-abelian case. Although the exact answer is not known, a useful prescription was
put forward in Ref. [78] and used in a context similar to ours for instance in Refs. [10,79].
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Figure 7: Single-baryon energy as a function of the isospin number for different temperatures (left

panel), T/Tc = 0, 0.8, 0.9, 1 from top to bottom, and as a function of temperature for different

isospin numbers (right panel), NI = 0, 0.5, 1, 2 from bottom to top. The energy is given in units

of the inverse asymptotic separation of the flavor branes L−1, while Tc is the critical temperature

for the chiral phase transition, and we have set λ/` = 20. In the semi-classical approximation of

this paper, the spectrum is continuous in NI .

The idea is to first compute the determinant as if the gauge fields were abelian, which
yields (using the same dimensionless quantities as in Sec. 2)

SDBI =
N

λ0M4
KK

∫
d4x

∫ ∞
uc

duLDBI , (73)

with N defined in Eq. (27), and where the DBI Lagrangian is

LDBI = u5/2 STr

{
fT
F2
iu

λ20
+ (1 + u3fTx

′2
4 + F2

0u)

(
1 +

F2
ij

2u3λ20

)
+
fT (FijFkuεijk)2

4u3λ40

+
1 + u3fTx

′2
4

u3fT

[
F2
0i +

(FijFk0εijk)2

4u3λ20

]
+
F2
0iF2

ju − (F0iFiu)2 + 2F0uF0iFijFju
u3λ20

}1/2

.(74)

Now, firstly, we again consider the energy of a single baryon with isospin, in analogy to the
confined geometry, see Sec. 2.2. To this end, we work with the simple YM Lagrangian and
the BPST instanton solution, which is a good approximation for large λ. This calculation
is carried out in appendix A and leads to the (dimensionless) energy

e = uc

√
fT (uc)

3
+

√
6β0uc
λ0

√
N2
I

6
+

2

15
, (75)

where we have abbreviated

β0 ≡ 1−
u3T
8u3c
−

5u6T
16u6c

. (76)

For vanishing isospin we recover the result of Ref. [10]. The energy is very similar to
the one of the confined case (16). In particular, we observe the same dependence on the
isospin number NI . The main difference is the temperature dependence. The temperature
enters not only in uT but also through uc, which has to be calculated numerically for each
temperature. Since we have derived Eq. (75) from putting a single baryon into the mesonic
vacuum (ignoring pion condensation), uc has to be determined in that phase, for instance
using the equations given for the vacuum in Sec. 4.3 below. In Fig. 7 we plot the baryon
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mass E = λ0NcMKKe as a function of NI for fixed temperatures (left) and as a function
of T for fixed isospin numbers (right). In this figure, Tc is the critical temperature for the
chiral phase transition, obtained by comparing the free energies of the vacuum with the
chirally restored phase, which is also discussed in Sec. 4.3. The behavior of the baryon
mass, being almost constant in T before it decreases as we approach Tc is similar to thermal
baryon masses calculated on the lattice [80].

Secondly, our main focus is again on the thermodynamic system with nonzero baryon
and isospin densities. As in the confined case, we shall use the homogeneous ansatz (20)
and the resulting field strengths (21). In principle, one can expand the square root in Eq.
(74) and take the symmetrized trace of each individual term. This prescription is known
to be consistent with open string theory amplitudes up to O(F 6) corrections. Within our
ansatz this procedure can be carried out, and the expansion can be resummed explicitly,
as we demonstrate in appendix B. However, the all-order result is much too complicated to
be of practical use for our purposes. Truncations of the resulting infinite series at O(F 2)
or O(F 4) are possible, but also lead to a relatively complicated action due to the presence
of the embedding function and thus a complicated, purely numerical evaluation would be
necessary. We circumvent these complications by using the following action (including the
CS contribution)

S = NNf
V

T

∫ ∞
uc

duL , (77)

where

L = u5/2
√

(1 + u3fTx′24 + g1 − â′20 − a′20 )(1 + g2 − g3)−
9

4
λ0â0h

2h′ , (78)

with

g1 ≡
3fTh

′2

4
, g2 ≡

3λ20h
4

4u3
, g3 ≡

2λ20h
2a20

u3fT
. (79)

These functions differ from their counterparts in the confined geometry (29) due to the
different metric. (In a slight abuse of notation we use the same symbols for them, but
since the confined and deconfined calculations are clearly separated this should not lead
to any confusion.)

The reasons for our approximation (78) are as follows. To O(F 2) we reproduce the YM
approximation, which in turn is identical to the truncated result from the symmetrized
trace prescription carried out in appendix B. (Our approximation (78) does not yield the
O(F 4) result from that prescription.) The isospin asymmetric terms are included in a
simple way, motivated by how they enter the YM Lagrangian in the confined case (28).
In the isospin-symmetric limit a0 = g3 = 0, we recover the Lagrangian of Ref. [9], while
retaining the simplifications due to the factorized square root structure, which, as we shall
see, allows for a trivial first integration of the EOMs. We will also be able to compute
relatively simple semi-analytical expressions for the functions x4(u) and â0(u), and in the
general method we subsequently use for solving the system we can then follow Ref. [9].
Had we used the YM approximation, which can be obtained by expanding the square root
in Eq. (78) to second order in the gauge fields, this would not have been possible due to
the presence of the embedding function x4(u).

4.2 Equations of motion and free energy

The procedure for solving the EOMs and computing the free energy density is conceptually
analogous to but technically more involved than that of Sec. 2, mainly because of the
embedding function x4(u) and the associated dynamical parameter uc. In this subsection,
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we focus on the chirally broken configurations, i.e., we assume the D8-D8 pairs to join in
the bulk. For this scenario we define the coordinate z ∈ [−∞,∞] in analogy to Eq. (22),

u3 = u3c + ucz
2 , (80)

and we will again make use of both coordinates, depending on which one is more convenient
for a given calculation or argument.

The integrated EOMs for x4 and â0 are

u5/2â′0
√

1 + g2 − g3√
1 + u3fTx′24 + g1 − â′20 − a′20

= nBQ , (81a)

u11/2fTx
′
4

√
1 + g2 − g3√

1 + u3fTx′24 + g1 − â′20 − a′20
= k , (81b)

where Q = 1 − h3/h3c as defined in Eq. (31), and k is an integration constant to be
determined below. We can solve these equations algebraically for x′4 and â′0 and write the
result compactly as

â′0 =
nBQ

u5/2
ζ , x′4 =

k

u11/2fT
ζ , (82)

where we have abbreviated

ζ ≡
√

1 + g1 + u3fTx′24 − â′20 − a′20√
1 + g2 − g3

=

√
1 + g1 − a′20√

1 + g2 − g3 + (nBQ)2

u5
− k2

u8fT

. (83)

Using this abbreviation and the solutions (82), the EOMs for a0 and h read

∂u

(
u5/2a′0
ζ

)
=

2λ20h
2a0

u1/2fT
ζ , (84a)

∂u

(
u5/2fTh

′

ζ

)
− 3λ0h

2nBQ

u5/2
ζ =

2λ20hζ

3u1/2

(
3h2 − 4a20

fT

)
. (84b)

As in Sec. 2, the function h is discontinuous at u = uc, and its IR boundary condition is
given by the baryon density, see Eq. (25). The UV boundary conditions are the same as
in the confined geometry, see table 2. It is convenient to rewrite the boundary conditions
for the embedding function and the temporal components of the gauge fields as

`

2
=

∫ ∞
uc

dux′4 , (85a)

µB =

∫ ∞
uc

du â′0 + â0(uc) , (85b)

µI =

∫ ∞
uc

du a′0 + a0(uc) . (85c)

As in the confined geometry we find two types of solutions, depending on whether the
non-abelian component a0(z) is symmetric or antisymmetric under z → −z, which is de-
termined by the type of boundary conditions. Once again, it is useful to introduce the
coefficients of the expansions around the tip of the connected branes z = 0, which cor-
responds to u = uc. We use the same notation as in the deconfined geometry, i.e., the
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functions a0, and h have the expansions (39) with uKK replaced by uc, and the same con-
tinuations to the second half of the connected branes as explained below these expansions.
With the help of these expansions we find

ζ =
c√

u− uc
+ . . . =

√
3uc c

z
+ . . . , (86)

with the abbreviation

c ≡ 1

4

√√√√ 3fT (uc)h2(1) − 4a2(1)

1− k2

u8cfT (uc)
+

λ20h
2
c

4u3c
[3h2c −

8a2c
fT (uc)

]
. (87)

With x′4 from Eq. (82) this result implies that x′4 diverges at u = uc, and thus the brane
embedding is smooth, even in the presence of the discontinuity in h. This result is valid
for both types of boundary conditions for a0. In the symmetric case (σ-type boundary
conditions) the coefficient of the linear term vanishes, a(1) = 0, while in the anti-symmetric
case (π-type boundary conditions) the value at u = uc vanishes, ac = 0.

The dimensionless free energy density is

Ω =

∫ ∞
uc

duL =
1

2

∫ ∞
−∞

dz
∂u

∂z
L , (88)

with the Lagrangian L from Eq. (78) evaluated at the stationary point. In analogy to Eq.
(42), we write the derivatives of the free energy with respect to x = µB, µI , hc, ac (with
the other of these variables held fixed) as

∂Ω

∂x
=

1

2

∫ ∞
−∞

dz

{
−∂z

(
u5/2â′0
ζ

∂â0
∂x

)
− ∂z

(
u5/2a′0
ζ

∂a0
∂x

)
+ ∂z

(
k
∂x4
∂x

)

+ ∂z

[(
3u5/2fTh

′

4ζ
− 9λ0â0h

2

4

)
∂h

∂x

]}
, (89)

where we have used Eq. (82). For the first two terms we need ζ(z = ±∞) = 1, and the
second term creates a nonzero contribution from z = 0 if, for now, we allow a′0 to be
discontinuous. The third term vanishes since the boundary value of x4 is a fixed model
parameter. Finally, in the fourth term we need to take into account the discontinuity of
h at z = 0. We thus obtain (going back to the formulation in terms of the coordinate u)

∂Ω

∂x
= −nB

∂µB
∂x
− (u5/2a′0)∞

∂µI
∂x

+
u
5/2
c a(1)

2c

∂ac
∂x

+

[
3u

5/2
c fT (uc)h(1)

8c
− 9λ0âch

2
c

4

]
∂hc
∂x

.(90)

With x = µB we simply confirm the usual thermodynamic relation between baryon chem-
ical potential and baryon density, i.e., the baryon density is indeed given by the boundary
condition for h(u), also in the thermodynamic sense. Then, we use x = µI to identify the
isospin density, which, with the help of Eq. (84a) can be written as

nI = (u5/2a′0)u→∞ =
u
5/2
c a(1)

2c
+ 2λ20

∫ ∞
uc

du
h2a0

u1/2fT
ζ . (91)
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Next, requiring the free energy to be stationary with respect to x = hc yields

âc =
u
5/2
c fT (uc)h(1)

6cλ0h2c

=
uc
√
fT (uc)

3

h(1)√
h2(1) −

4a2
(1)

3fT (uc)

√
1− 8a2c

3h2cfT (uc)
+

4u3c
3λ20h

4
c

[
1− k2

u8cfT (uc)

]
. (92)

This relation is needed to compute µB from the numerical solutions with the help of Eq.
(85b). The explicit expression on the right-hand side is interesting because in the absence
of isospin, ac = a(1) = 0, together with the limit of large ’t Hooft coupling, λ0 → ∞, it
reduces to the vacuum mass of the baryon in the pointlike limit. This connection between
the homogeneous ansatz and the completely different pointlike approach, which is based
on the instanton picture, was already pointed out in Ref. [9]. It is not obvious how to
generalize the pointlike approximation to nonzero isospin. If âc can still be interpreted as
the baryon mass, Eq. (92) – in the limit λ0 →∞, but keeping ac and a(1) nonzero – might
be helpful to develop such a generalization because it contains the isospin corrections to
the mass of a pointlike baryon with (ac = 0) and without (a(1) = 0) pion condensation.
Finally, the conclusion from Eq. (90) for x = ac is the same as in the confined case: for
σ-type boundary conditions we obtain the smoothness condition a(1) = 0, while for π-type
conditions we need to impose the additional boundary condition ac = 0.

The free energy should also be minimized by the value of uc. The derivative with
respect to this parameter is best done separately because one has to be more careful in
the derivation, as pointed out in Ref. [9]. Since the IR boundary values depend on uc not
only through u but also explicitly, we write

∂x4
∂uc

∣∣∣∣
u=uc

=
∂x4(uc)

∂uc
− x′4(uc) , (93)

and analogously for â0, a0 and h. Starting from the formulation in the u coordinate for
the z > 0 half, we find

∂Ω

∂uc
=

[
kx′4 − nBQâ′0 − u5/2ζ−1a′20 +

(
3u5/2fTh

′

4ζ
− 9λ0â0h

2

4

)
h′ − L

]
u=uc

= − u5/2

ζ

∣∣∣∣∣
u=uc

= 0 , (94)

where we have used Eqs. (78), (79), (82), and (83). We see that the minimization with
respect to uc is equivalent to the smoothness of x4 and is automatically satisfied, as already
noticed in the absence of an isospin asymmetry [9].

We can use partial integration and the EOMs to derive a useful form of the free energy
at the stationary point. In contrast to the YM approximation that we used in Sec. 2, now
the free energy is formally divergent. We subtract the medium-independent term 2

7Λ7/2,
where Λ is a UV cutoff, and the resulting renormalized free energy density can be written
as

Ω =

∫ ∞
uc

du

(
1 + g1
ζ

+ g3ζ − 1

)
− 2

7
u7/2c − nBµB − nIµI + k

`

2
(95)

for both types of boundary conditions, where the integral is now manifestly finite.
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4.3 Possible phases

As in the confined geometry, our setup allows us to discuss and compare different types
of solutions, corresponding to distinct physical phases. Here we also need to take into
account the chirally restored phase, where the flavor branes are straight. The chirally
broken phases are analogous to those obtained in the confined case, see section 2.6. These
phases can all be obtained as limits of our general expressions of the previous subsection.
We now list all phases we consider.

• Vacuum: The vacuum contains neither pions nor baryons, i.e., here we set h = 0 and
use σ-type boundary conditions. This yields the constant gauge fields â0(u) = µB,
a0(u) = µI . One also finds k = u4c

√
fT (uc), and the embedding function is given by

x′24 =
u8cfT (uc)

u3fT (u) [u8fT (u)− u8cfT (uc)]
, (96)

with uc computed from the boundary condition (85a). The renormalized free energy
is independent of the chemical potentials and takes the form

Ω =

∫ ∞
uc

duu5/2

{[
1− u8cfT (uc)

u8fT

]−1/2
− 1

}
− 2

7
u7/2c . (97)

At zero temperature one obtains the analytic expressions

uc =
16π2

`2

[
Γ(9/16)

Γ(1/16)

]2
, Ω = −215π4

15`7
tan

( π
16

) Γ(31/16)

Γ(23/16)

[
Γ(9/16)

Γ(1/16)

]7
. (98)

• Pion-condensed phase: In this phase, the baryon density is zero, and thus h = 0.
As a consequence, the properties of this phase do not depend on µB, and â0(u) is
constant, as in the vacuum. Due to the π-type boundary conditions, however, a0(u)
is nontrivial and creates an isospin density nI . In contrast to the confined geometry,
a0(u) does not have a simple analytical form. Integrating its EOM and the one for
x4(u) gives

a′0 =
nI
u5/2

ζ , x′4 =
k

u11/2fT
ζ , (99)

where

ζ =
1√

1 +
n2
I
u5
− k2

u8fT

, k = u4c

√
fT (uc)

(
1 +

n2I
u5c

)
. (100)

For given ` and µI , we can then determine uc and nI from the boundary conditions
(85a) and (85c) with a0(uc) = 0. These conditions have to be solved numerically,
and the results can be inserted into the renormalized free energy

Ω =

∫ ∞
uc

duu5/2
(

1

ζ
− 1

)
− 2

7
u7/2c − nIµI + k

`

2
. (101)

Moreover, for small isospin densities we can derive an analytical solution. To lowest
order in nI we may set nI = 0 in ζ and obtain from (85a) and (85c)

nI '
8µI
`3

(∫ ∞
1

du

u3/2
√
u8 − 1

)3
(∫ ∞

1

duu3/2√
u8 − 1

)−1
. (102)
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After performing the integrals and inserting the relevant constants to translate our
dimensionless quantities into physical ones, this relation reads(

NcNfλ
2
0M

3
KK

6π2
nI

)
' 4f2π (λ0MKKµI) , (103)

with the pion decay constant in the deconfined geometry [12,81],

f2π =
32λNcM

2
KK

3π2`3

(
Γ[9/16]

Γ[1/16]

)3 Γ[11/16]

Γ[3/16]
. (104)

The relation between isospin density and isospin chemical potential (103) is thus in
exact agreement with chiral perturbation theory in the limit of vanishing pion mass.
This was already observed in the confined phase, see Eq. (53). However, in that case
the result was exact. Interestingly, in the deconfined setting there are corrections to
this relation at larger values of nI (even without including baryons), as will become
apparent in the next subsection, see Fig. 8.

• Pure baryonic phase: In this case we allow for the presence of baryons, and we
work with σ-type boundary conditions, such that there is no pion condensate. The
numerical procedure for solving the EOMs is somewhat involved. First, we write the
integration constant k in terms of the coefficients of the expansions around u = uc
by demanding the EOMs (84) to be fulfilled order by order in u − uc. The order
(u− uc)−1/2 contribution of Eq. (84a) vanishes for

a(2) =
4c2λ20h

2
cac

u3cfT (uc)
, (105)

with c defined in Eq. (87). Taking this expression for a(2) into account, the order
(u− uc)0 contribution of Eq. (84b) yields the desired expression for k,

k2 =
u8cfT (uc)

16uc + 9h2(1)fT (uc)

{
16uc − 3h2(1)

(
5− 2

u3T
u3c

)

+
3λ20h

4
c

4u3c

[
16uc − 3h2(1)

(
2 +

u3T
u3c

)]
− 4λ20h

2
ca

2
c

u3cfT (uc)

[
8uc − 3h2(1)fT (uc)

]}
. (106)

This result can now be inserted back into the EOMs (84), which, then, are coupled
differential equations for h(u) and a0(u) that contain the unknown coefficients h(1)
and ac explicitly. In the simplest setting nB and µI are given, which determines the
boundary conditions h(uc) = hc and a0(∞), respectively. In addition, the equations
contain the unknown parameter uc. Therefore, we have to solve them simultaneously
with the condition (85a). This can be done with the help of the shooting method.
As in the confined case, if we work at fixed µB instead, the additional equation (85b)
together with the expression (92) for âc has to be added to this system of equations.
In fact, this is what we do to obtain the results of the following subsection, where we
discuss the system at µB = 0. In either case, we observe that the (fixed) parameter
` drops out of all equations after an appropriate rescaling of all variables, which is
given in table II of Ref. [9]. We thus do not have to choose a value for ` before
the numerical evaluation and rather can reinsert the appropriate powers of ` after
the calculation. It turns out to be useful to employ a similar rescaling with the
(dynamical) parameter uc, also given in table II of Ref. [9]. This further simplifies
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the numerical problem, although it does not decouple any of the equations (it would
completely eliminate uc from the EOMs if also the ’t Hooft coupling λ and the
temperature t were rescaled appropriately, but this would not allow us to work
at fixed λ and t). Also, as for the confined geometry, we find that the numerical
evaluation is best done in the z coordinate. The calculation then yields h(u), a0(u),
uc, from which we extract h(1) and ac, and use all this to compute the remaining
thermodynamic quantities, in particular the free energy via Eq. (95). The entire
calculation can be done using Mathematica, but the numerics turn out to be much
more time consuming than in the confined phase with antipodally separated flavor
branes.

• Coexistence phase: In this phase baryonic matter coexists with a pion condensate,
which is taken into account by imposing π-type boundary conditions. As a result,
the isospin density nI receives an extra contribution from the boundary term in Eq.
(91). Again, we first need to determine the integration constant k. Now, both EOMs
(84a) and (84b) are fulfilled to order (u− uc)−1/2 if

a(2) = 0 , h(2) =
4c2λ20h

3
c

u3cfT (uc)
. (107)

Then, to order (u− uc)0 the EOMs can only be satisfied if

k2 =
u8cfT (uc)

16uc + 9h2(1)fT (uc)−
12a2

(1)

fT (uc)

{
16uc + 20a2(1) − 3h2(1)

(
5− 2

u3T
u3c

)

+
3λ20h

4
c

4u3c

[
16uc − 3h2(1)

(
2 +

u3T
u3c

)
+ 8a2(1)

]}
. (108)

With the help of these relations the procedure is analogous to that of the purely
baryonic phase: For given nB and µI we compute h(u), a0(u), uc, which give h(1)
and a(1), and µB, nI , Ω can be computed from these results.

• Chirally symmetric phase: Finally, in the chirally symmetric phase the flavor
branes are straight, x′4 = 0, and extend all the way down to the horizon at u = uT .
Here we set the “baryon field” h to zero5. We thus have two independent sets of
gauge fields, and may simply work with one half of the configuration, imposing the
boundary conditions

â0(∞) = µB , a0(∞) = µI , â0(uT ) = a0(uT ) = 0 . (109)

The integrated EOMs can be solved for â′0 and a′0,

â′0 =
nB√

u5 + n2B + n2I

, a′0 =
nI√

u5 + n2B + n2I

, (110)

5It is conceivable that baryons exist as an ingredient of chirally symmetric quarkyonic matter, which
was discussed within the pointlike approximation and found to be preferred at large baryon densities [12].
Whether this phase can be constructed within our current ansatz is beyond the scope of this paper. Also,
we restrict ourselves to the case where the branes of both flavors are straight, although phases with one
connected and one straight pair of branes are conceivable as well [82].
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which can be integrated once more to obtain the solutions

â0(u) = µB −
CnB

(n2B + n2I)
3/10

+
nBu√
n2B + n2I

2F1

[
1

5
,
1

2
,
6

5
,− u5

n2B + n2I

]
,(111a)

a0(u) = µI −
CnI

(n2B + n2I)
3/10

+
nIu√
n2B + n2I

2F1

[
1

5
,
1

2
,
6

5
,− u5

n2B + n2I

]
, (111b)

together with the coupled equations

µB =
nB√
n2B + n2I

{
C(n2B + n2I)

1/5 − uT 2F1

[
1

5
,
1

2
,
6

5
,−

u5T
n2B + n2I

]}
, (112a)

µI =
nI√

n2B + n2I

{
C(n2B + n2I)

1/5 − uT 2F1

[
1

5
,
1

2
,
6

5
,−

u5T
n2B + n2I

]}
, (112b)

which relate the chemical potentials to the densities. Here 2F1 is the hypergeometric
function, and we have abbreviated C ≡ Γ(3/10)Γ(6/5)/

√
π. The renormalized free

energy becomes

Ω =

∫ ∞
uT

duu5/2

 1√
1 +

n2
B
u5

+
n2
I
u5

− 1

− 2

7
u
7/2
T

= −2

7
u
7/2
T 2F1

[
− 7

10
,
1

2
,

3

10
,−

n2B + n2I
u5T

]
. (113)

In the zero-temperature limit, this reduces to the simple result

Ω = −
2(µ2B + µ2I)

7/4

7C5/2
, (114)

and the baryon and isospin densities are

nB =
µB(µ2B + µ2I)

3/4

C5/2
, nI =

µI(µ
2
B + µ2I)

3/4

C5/2
. (115)

4.4 Results: deconfined geometry

Compared to the confined geometry, where we explored the phase structure systematically
in Sec. 3, the deconfined geometry is expected to have a richer phase structure due to the
nontrivial temperature dependence and the existence of the chirally symmetric phase. We
leave a systematic study of the full phase diagram to the future and focus on a few key
features which can be compared to known results from the literature. In particular, we
shall only consider the case of vanishing baryon chemical potential. This case relates
to various studies using lattice QCD [16–18, 20], perturbative QCD [22, 28, 29], chiral
perturbation theory [21–27], and phenomenological models [83,84].

Our results are shown in Fig. 8. To obtain the physical units in these plots we have,
firstly, used the factors in table 1. Secondly, one finds that for a given λ/` only a value of
the energy scale L−1 is needed (and not also of MKK) to obtain the results in the figure.
We fix this scale by reproducing the physical pion decay constant fπ ' 93 MeV, with fπ
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Figure 8: Left panel: Phase transition (solid) between the pion-condensed phase without baryons

and the chirally symmetric phase in the plane of temperature T and isospin chemical potential

µI for µB = 0 and two different values of λ/`. The arrows indicate the zero-temperature onset

of baryons (in the presence of a pion condensate). The dashed curves show the corresponding

chiral phase transition in the absence of pion condensation. The vertical thin dashed line marks

the zero-temperature critical chemical potential for pion condensation if a physical pion mass was

taken into account, µI = mπ/2. Right panel: Isospin chemical potential as a function of the

isospin density nI for µB = T = 0 and the same values of λ/` as in the left panel. The cusp

in the curves corresponds to the baryon onset. The curves are compared to the ones from chiral

perturbation theory (χPT), free quarks, and perturbative QCD to order αs.

given in terms of the model parameters in Eq. (104). For the two choices in Fig. 8 we
find L−1 ' 480 MeV for λ/` = 40 and L−1 ' 680 MeV for λ/` = 20. Since antipodal
branes correspond to ` = π, the geometric setup only makes sense for ` < π, while the
chirally broken phase in the deconfined geometry only exists for ` < 0.30768π [85], and
our decompactified limit even requires `� π (although one might consider the setup as an
effective approach, which is then extrapolated beyond its original regime of validity). Let
us use the critical value ` ' 0.3π for a rough comparison. For λ/` = 40 this implies λ ' 38
and MKK ' 450 MeV, while for λ/` = 20 we have λ ' 19 and MKK ' 640 MeV. The
original fit by Sakai and Sugimoto [32], using the pion decay constant and the rho meson
mass (however in the confined geometry), gave λ ' 17 and MKK ' 949 MeV. Compared
to these values our result for λ/` = 20 seems more sensible, although even in this case
our Kaluza-Klein scale is somewhat low. Nevertheless, the two different values for λ/` are
useful to observe a tendency of our results upon variation of the ’t Hooft coupling.

The left panel of Fig. 8 shows the chiral phase transition in the T -µI plane in the
absence of baryons. Since we work in the chiral limit, pions condense for any µI at
sufficiently small T . In a more realistic scenario, where the pion mass is nonzero, the
chiral phase transition will be given by the dashed curve for small µI , where we have
ignored pion condensation (this curve will also be slightly corrected by a quark mass
term [60]). We have indicated the value of the chemical potential µI = mπ/2, where we
expect the zero-temperature onset of pion condensation once quark masses are included.
Then, for larger values of µI we expect the phase transition line to approach our solid
curve, where pion condensation is taken into account. This suggests a picture not unlike
the recent results from lattice QCD [20]. Differences are location and nature of our µI = 0
transition, which occurs at a smaller temperature than in the real world (although our
value strongly depends on the choice of λ/`) and is of first order, as in many related
holographic studies, but in contrast to the smooth crossover in QCD. Also, we observe
no chiral restoration for small temperatures as µI is increased. Instead, we find that the
critical temperature saturates at a value almost twice as large as the critical temperature at
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µI = 0. This curve is obtained without taking into account baryonic matter for simplicity
and also without taking into account any additional meson condensation, for instance
condensation of rho mesons, which we have ignored throughout the paper. We have
indicated the zero-temperature baryon onset, which occurs at µI ' 970 MeV ' 6.9mπ for
λ/` = 20. A complete nonzero-temperature study is left for the future.

The zero-temperature effect of the baryons is illustrated in the right panel. We see
that the relation between isospin density and chemical potential follows chiral perturba-
tion theory for small µI , as already observed analytically, see Eq. (103) (the expressions
in the parentheses in that equation are exactly the dimensionful quantities plotted in Fig
8, denoted for simplicity by the same symbols as their dimensionless counterparts). Then,
a deviation from chiral perturbation theory is observed already before baryons appear
through a second-order onset. Such a second-order onset was also seen in the confined
geometry at µB = 0, as discussed in the context of Fig. 3. Recall from the evaluation
in the confined geometry that after this onset there is a coexistence between two states
with positive and negative net baryon number, see Secs. 3.1 and 3.2. The same qualitative
behavior is found in the deconfined geometry. Therefore, we may think of the isospin den-
sity shown here to receive contributions from baryons (net positive baryon number) “just
above” the phase transition at µB = 0 or, equivalently, contributions from antibaryons
(net negative baryon number) “just below” the phase transition. We see that baryons
create a further deviation from the results of chiral perturbation theory, rendering the
isospin density more sensitive to changes in the isospin chemical potential. The figure
suggests that this deviation is required to approach the limit at asymptotically large µI .
For comparison we have plotted the result of free massless two-flavor quark matter (since
µB = 0 here, this is a gas of up and anti-down quarks) and the correction to linear order
in the strong coupling constant αs using the running of the coupling from Ref. [86]. Since
our model is not asymptotically free, we do not expect our curves to reproduce these weak-
coupling results. It is nevertheless intriguing that our result seems to roughly interpolate
between chiral perturbation theory and the ultra-high density regime. In this sense, our
holographic model behaves similarly to the lattice results of Ref. [18], which however are
obtained at nB = 0, see also Fig. 3 in Ref. [86] (where an unphysically large pion mass is
assumed).

5 Summary and outlook

We have studied spatially uniform baryonic matter in the presence of an isospin asymmetry
within the Witten-Sakai-Sugimoto model. Baryon number is created by a homogeneous
ansatz for the spatial components of the non-abelian part of the U(2) gauge field in the
bulk, following earlier studies for isospin-symmetric baryonic matter. An isospin chemical
potential µI gives rise to a non-trivial profile for the temporal non-abelian component a0
and deforms the baryonic field together with the abelian gauge potential â0 associated
with the baryon chemical potential µB. We have also allowed for a pion condensate to
coexist with baryonic matter and have compared the free energies of the various possible
phases. This has been done in the confined geometry – best suited for the introduction
of our concepts and a complete evaluation – and in the deconfined geometry (within the
decompactified limit) – which is more difficult, but better suited for a comparison to real-
world QCD due to the existence of a chiral phase transition and a nontrivial temperature
dependence.

We have found that the phase of coexistence between pion condensation and baryonic
matter plays a very prominent role in the phase diagram. In the confined geometry we
have shown that within our approximations, most notably neglecting the pion mass, this
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coexistence phase is energetically preferred in the entire µB-µI plane except for a corner of
sufficiently small µB and µI , where baryons cannot be created and the pure pion-condensed
phase is preferred. In particular, even at µB = 0 baryons (or, equivalently, a mirror state
with anti-baryons) are created for sufficiently large µI . Even though our approximation is
expected to be valid only at large baryon densities, we have pointed out that if the baryon
density is taken to zero with µB held fixed the system approaches a certain finite value
of µI , which we can interpret as a baryon mass. This is different at fixed µI , where µB
diverges as the baryon density goes to zero, a known shortcoming of the approximation.
We have also discussed charge neutral, beta-equilibrated baryonic matter, having in mind
future applications to the physics of compact stars, and computed the trajectory of this
matter in our phase diagram. Most strikingly, we have found an extremely large proton
fraction very close to isospin-symmetric matter, in contrast to realistic nuclear matter
where, at least at not too large densities, the proton fraction is about 10% or lower. This
result is related to an unphysically large symmetry energy, which can be explained by the
continuous isospin spectrum, a large-Nc artifact due to our semi-classical approximation
without quantization of the holographic baryonic states.

Using the deconfined geometry, we have pointed out that the model can also be used for
predictions regarding the phase structure in the T -µI plane at µB = 0. In the absence of
baryons, we have computed the critical temperature for the chiral phase transition, which
in the given model saturates at large µI . For zero temperature we have demonstrated that
the isospin density agrees with chiral perturbation theory for small µI and deviates at
large µI – within the pion-condensed phase and at even larger µI due to the appearance
of baryons – in a way that is qualitatively the same as suggested by lattice QCD and
by perturbative benchmarks at asymptotically large µI . In particular the appearance
of baryons is an interesting prediction that should be investigated further in different
approaches, possibly using lattice gauge theory.

Our study is the first to include isospin-asymmetric baryonic matter in a consistent
way within a holographic model and thus various improvements are necessary for a more
realistic approach, be it in the Witten-Sakai-Sugimoto model or in a different holographic
setup. Firstly, we have only started to evaluate our setup in the deconfined geometry,
and a more systematic study, although numerically somewhat challenging, can be done
with the present approach, for instance regarding the effect of temperature on asymmetric
baryonic matter. No further approximation would be required and our model consistently
accounts for pions and baryons and their interactions at any temperature. This may be
of relevance in the context of core-collapse supernovae or neutron star mergers, where the
potential importance of thermal pions was pointed out recently [87]. More conceptual work
is needed to connect our current approach with the instanton solutions for single baryons
and the various many-baryon approximations based on these solutions. This is probably
necessary to account for baryonic matter made of neutrons and protons rather than a
continuum of isospin states. More straightforwardly, one can include a nonzero pion mass
into our approach, which will affect the physics at not too large µI (relevant for compact
stars) and which can be done along the lines of Refs. [12, 60]. Other possible extensions
include the addition of a magnetic field, which has been done in similar calculations [53,88]
and which could be compared to results on the lattice [89], and the question of isospin-
asymmetric quarkyonic matter, building on the symmetric case [12] and comparing the
results to a recently developed phenomenological approach [90].
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A Single-instanton solution with isospin (deconfined geom-
etry)

In this appendix we derive the effect of the isospin chemical potential on the single-
instanton configuration. We present the details of the calculation for the deconfined ge-
ometry, for the confined geometry one proceeds analogously. Here we restrict ourselves to
a single baryon in the vacuum, not in the presence of a pion condensate.

The first part of the derivation follows appendix A of Ref. [10]. We start from the YM
approximation, by expanding the DBI action (73) up to second order in the field strengths,
which, together with the CS term gives

S ' S0 + SYM + SCS , (116)

where S0 is a purely geometric term, independent of the field strengths,

S0 =
NfN
M3

KKT

∫
d3x

∫ ∞
uc

duu5/2
√

1 + u3fTx′24 , (117)

where the YM action is

SYM =
N

2λ20M
3
KKT

∫
d3x

∫ ∞
uc

duu5/2

{
λ20Tr[F2

0z] + fTTr[F2
iz]√

1 + u3fTx′24

+

√
1 + u3fTx′24
u3fT

(
λ20Tr[F2

0i] +
fT
2

Tr[F2
ij ]

)}
, (118)

and where the CS contribution comes from the first term of the general form (9),

SCS = −i 3N
2λ20M

3
KKT

∫
d3x

∫ ∞
uc

du â0Tr[FiuFjk]εijk . (119)

In the absence of baryons (or other sources) S0 yields the vacuum solution for the embed-
ding x4(u), namely Eq. (96). At low energy, a single baryon is created at u = uc, i.e., at
z = 0, with a width that goes to zero for λ → ∞. We will thus use the (temperature-
dependent) embedding given by Eq. (96) with uc computed from Eq. (85a) (without back-
reaction of the single baryon on this embedding, such that S0 can be ignored from now
on), and will apply an expansion in powers of z, which is equivalent to a strong coupling
expansion. The leading term is of order λ and receives a contribution only from the YM
term,

S
(1)
YM =

N
4λ20M

3
KKT

uc
√
fT (uc)

γ

∫
d3x

∫ ∞
−∞

dz

(
1

2
Tr[F 2

ij ] + γ2Tr[F 2
iz]

)
, (120)
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where only the non-abelian field strengths contribute (recall the decomposition (7)), and
where we have abbreviated

γ2 ≡ 6u3c

(
1−

5u3T
8u3c

)
. (121)

From the action (120) we derive the EOMs for the non-abelian gauge fields,

∂jF
a
ji − 2εabca

b
jF

c
ji = γ2(∂zF

a
iz − 2εabca

b
zF

c
iz) , (122a)

∂iF
a
iz − 2εabca

b
iF

c
iz = 0 , (122b)

which are solved by the BPST instanton solutions

aaz(x, z) = −1

γ

xa
ξ2 + (ρ/γ)2

, aai (x, z) =
z/γ δia − εijaxj
ξ2 + (ρ/γ)2

, (123)

with the width ρ, to be determined dynamically in the presence of the subleading terms,
and ξ2 ≡ x2 + (z/γ)2. The corresponding field strengths are

F azi(x, z) =
2(ρ/γ)2δia

γ[ξ2 + (ρ/γ)2]2
, F aij(x, z) =

2(ρ/γ)2εija
[ξ2 + (ρ/γ)2]2

. (124)

For the temporal components (both abelian and non-abelian) we need to compute the
subleading contributions of order λ0. At this order we have contributions form the CS
term (119) and from the subleading YM term,

S
(0)
YM =

N
4λ20M

3
KKT

uc
√
fT (uc)

γ

∫
d3x

∫ ∞
−∞

dz

[
λ20

Tr[F2
0i] + γ2Tr[F2

0z]

fT (uc)
+ 3ucz

2Tr[F2
iz]

+
4u6c + 10u3cu

3
T − 5u6T

8γ2u5cfT (uc)
z2

(
Tr[F2

ij ]

2
+ γ2Tr[F2

iz]

)]
, (125)

The resulting EOMs for â0 and a0 are thus

∂iF̂i0 + γ2∂zF̂z0 = −i
3γ
√
fT (uc)

2λ20uc
F aziF

a
jkεijk , (126a)

∂iF
a
i0 − 2εabca

b
iF

c
i0 = γ2(∂zF

a
0z − 2εabca

b
zF

c
0z) . (126b)

We impose the following boundary conditions for the Euclidean fields (i.e., after â0 → iâ0
and a0 → ia0)

â0(z → ±∞) = µB , aa0(z → ±∞) = va . (127)

These are the σ-type boundary conditions explained in the main text since here we do not
take into account pion condensation. We have also used a general three-vector v for the
boundary values of the non-abelian part, the isospin chemical potential is then introduced
by v = (0, 0, µI) or, equivalently, simply by v = |v| = µI . With these boundary conditions
the EOMs are solved by the Euclidean temporal components

â0(x, z) = µB −
3
√
fT (uc)

2λ20uc

ξ2 + 2(ρ/γ)2

[ξ2 + (ρ/γ)2]2
,

aa0(x, z) =
[(z/γ)2 − x2]va + 2xav · x− 2(z/γ)εabcvbxc

ξ2 + (ρ/γ)2
, (128)
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which leads to the field strengths

F a0z = −2(ρ/γ)2[va(z/γ)− εabcvbxc]
γ[ξ2 + (ρ/γ)2]2

,

F a0i =
2(ρ/γ)2[−δiav · x+ (z/γ)εiabvb + vaxi − vixa]

[ξ2 + (ρ/γ)2]2
. (129)

Reinserting all solutions into the action S ' S(1)
YM + S

(0)
YM + SCS and performing the x and

z integrals yields the free energy TS = λ0NcMKKφ, with the dimensionless free energy

φ =
uc
√
fT (uc)

3

[
1 +

9γ2

5ρ2λ20u
2
c

+
ucβρ

2

γ2fT (uc)

]
− µB , (130)

where we have abbreviated

β ≡ β0 −
λ20v

2

uc
, β0 ≡ 1−

u3T
8u3c
−

5u6T
16u6c

. (131)

For v = 0 we have β = β0 and we recover the result of Ref. [10]. We see that the result only
depends on the modulus of v (and not on the SU(2) direction) and will identify v = µI
from now on. The minimization with respect to the instanton width ρ yields

ρ2 =
12π√

5λ

γ2
√
fT (uc)

u
3/2
c β1/2

. (132)

As expected, we have found ρ ∼ 1/
√
λ, which justifies the expansion above a posteriori.

Moreover, we find that the width is increased by the presence of the isospin chemical
potential, and for ρ2 to be real we need β > 0, which imposes the constraint

|µI | <
√
ucβ0
λ0

. (133)

By using (132) the free energy at the stationary point can be written as

φ =
uc
√
fT (uc)

3

[
1 +

6β1/2
√

5λ0u
1/2
c

√
fT (uc)

]
− µB , (134)

so that the baryon and isospin numbers are

NB = − ∂φ

∂µB
= 1 , NI = − ∂φ

∂µI
=

2√
5

µIλ0

u
1/2
c β1/2

. (135)

As it should be, the baryon number is 1, according to the winding number of the instanton
solution, while NI monotonically increases with µI . Despite the upper limit for µI (133),
arbitrarily large values of NI can be assumed. In other words, with µI we can tune the
isospin content of a single baryon continuously in the entire range NI ∈ [−∞,∞].

We can also compute the (dimensionless) energy e of a single baryon via the relation
φ = e− µINI − µBNB, which yields

e =
uc
√
fT (uc)

3

[
1 +

6β0√
5λ0u

1/2
c β1/2

√
fT (uc)

]
. (136)

This shows that the mass of the single baryon increases monotonically (and without limit)
with µI . With Eq. (135) we can derive the useful relation

β0
β

= 1 +
5

4
N2
I , (137)

such that the baryon mass expressed in terms of the isospin number is Eq. (75) in the
main text.
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B Symmetrized trace

Here we apply the symmetrized trace prescription of Ref. [78] to the non-abelian DBI
action in the presence of the isospin chemical potential. The idea is to first compute the
determinant as if the field-strengths were abelian, which was already done in the main text,
see Eq. (74). We then expand the square root, still ignoring the non-abelian structure,
and finally take the so-called symmetrized trace of each term in the expansion, i.e., we
sum over all possible permutations of the field strengths before taking the usual trace.

Within our homogeneous ansatz we can write the DBI Lagrangian (74) as

LDBI = u5/2 STr
√
t+ taσa + tabσaσb + tabcσaσbσc + tabcdσaσbσcσd , (138)

where we have abbreviated

t = 1 + u3fTx
′2
4 − â′20 , (139a)

ta = −2â′0a
′
0δa3 , (139b)

tab = (g1 + tg2)
δab
3
− g3

2
(1 + u3fTx

′2
4 )(δab − δa3δb3)− δa3δb3a′20 , (139c)

tabc = −â′0
[

2g2
3
a′0δa3δbc −

λ20h
3h′a0

2u3
(δacδb3 − δabδc3)

]
, (139d)

tabcd = −g2
3
a′20 δa3δb3δcd +

g1g2
9
δabδcd −

g1g3
6

(δab − δa3δb3)δcd

+ εab3εcd3
g3
6

[
g1 − g2(1 + u3fTx

′2
4 )
]
− λ20h

3h′a0a
′
0

2u3
δa3(δbdδc3 − δbcδd3), (139e)

with g1, g2, g3 defined in Eq. (79).
In the isospin-symmetric case we have a0 = a′0 = g3 = 0, and the square root of the

determinant becomes a function of the variable x = σ2 = σaσa,

LDBI = u5/2 STr[f(x)] , f(x) =

√(
t+

g1
3
x
)(

1 +
g2
3
x
)
. (140)

For this case, the symmetrized trace was computed in Ref. [10], following appendix A in
Ref. [79]. We can write the formal expansion as

f(x) =

∞∑
n=0

cnx
n , (141)

with coefficients cn, and introduce the notation

[(σ2)n]sym ≡
1

N(n)

N(n)∑
i=1

πi[(σ
2)n] , (142)

where each πi is a permutation of the 2n Pauli matrices which are pairwise contracted.
The sum is only over distinct permutations, and the number of distinct permutations is
denoted by N(n). For instance, for n = 2 we have N(2) = 3, and the permutations are
σaσaσbσb, σaσbσaσb, σaσbσbσa. For general n one easily finds

N(n) = (2n− 1)!! =
(2n)!

2nn!
. (143)
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With the help of induction one proves [79]

[(σ2)n]sym = (2n+ 1) 1 , (144)

which implies

STr [f(x)] =

∞∑
n=0

cnSTr[(σ2)n] = 2

∞∑
n=0

cn (2n+ 1) =

(
4x

∂

∂x
+ 2

)
f(x)

∣∣∣∣
x=1

, (145)

such that one can actually avoid performing the series expansion explicitly.
The presence of a non-zero isospin chemical potential makes this analysis more com-

plicated. In this case, the square root of the determinant gives rise to a function of the
variables x = σ2 and y = σ3, whose explicit form can be obtained from Eqs. (138) and
(139), and whose formal expansion we can write as

f(x, y) =
∞∑

n,p=0

cn,p x
nyp . (146)

We need to compute the symmetrized trace of f(x, y). It is clear that the terms with
odd p give a vanishing contribution. For even p we need to generalize Eq. (144). Setting
p = 2m we will show that the following identity holds,

[(σ2)n(σ23)m]sym =
2(n+m) + 1

2m+ 1
1 . (147)

This is proven by induction in n and m. For m = 0 we simply reproduce Eq. (144), while
for n = 0 Eq. (147) holds trivially. Therefore, it is enough to show that, for a given pair
(n,m), Eq. (147) is a consequence of the (n− 1,m) and (n,m− 1) cases. To show this, let
us first denote the number of distinct permutations of (σ2)n(σ23)m by N(n,m). One finds

N(n,m) = (2n− 1)!!
(2n+ 2m)!

(2n)!(2m)!
=

(2n+ 2m)!

2nn!(2m)!
. (148)

We can divide the sum over all permutations into categories depending on the first two
matrices as follows,

N(n,m)[(σ2)n(σ23)m]sym =

N(n,m)∑
i=1

πi[(σ
2)n(σ23)m]

= σaσa

N1∑
i=1

πi[(σ
2)n−1(σ23)m] + σaσb

N2∑
i=1

πi[(σaσbσ
2)n−2(σ23)m]

+(σaσ3 + σ3σa)

N3∑
i=1

πi[σaσ3(σ
2)n−1(σ23)m−1] + σ3σ3

N4∑
i=1

πi[(σ
2)n(σ23)m−1] , (149)

where

N1 = N(n−1,m) , N2 = (2n−2)N(n−1,m) , N3 = 2mN(n−1,m) , N4 = N(n,m−1) .
(150)

44
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Consequently, with {σa, σb} = 2δab,

N(n,m)[(σ2)n(σ23)m]sym = 3N1[(σ
2)n−1(σ23)m]sym +N2δab[σaσb(σ

2)n−2(σ23)m]sym

+2N3δa3[σaσ3(σ
2)n−1(σ23)m−1]sym +N4[(σ

2)n(σ23)m−1]sym

= (3N1 +N2 + 2N3)[(σ
2)n−1(σ23)m]sym +N4[(σ

2)n(σ23)m−1]sym

= N(n,m)
2(n+m) + 1

2m+ 1
1 , (151)

where, in the last step, we have inserted Eq. (150) and used Eq. (147) for the (n − 1,m)
and (n,m− 1) cases. This proves Eq. (147).

Thus, with Eq. (146) we find

STr[f(x, y)] = 2
∑
n,m

cn,2m
2(n+m) + 1

2m+ 1
. (152)

This result cannot simply be written with the help of derivatives acting on f(x, y) as in
Eq. (145). Instead, we can introduce an integro-differential operator acting on f(x, ỹw),

STr[f(x, y)] =

(
2x

∂

∂x
+ ỹ

∂

∂ỹ
+ 1

)∫ 1

−1
dw f(x, ỹw)

∣∣∣∣
x=ỹ=1

. (153)

Besides generating the denominator in (152), the auxiliary integral in w removes the terms
with odd powers of y from (146) as needed. If f is independent of y this integration simply
gives a factor 2, and we recover Eq. (145), as it should be.

This result can now in principle be used to compute the symmetrized trace in the
presence of an isospin asymmetry (and within our homogeneous ansatz). However, the
resulting expression is very lengthy and not particularly illuminating, and thus we do
not include it here. For our main calculation in the deconfined geometry we apply the
approximation (78), correct to O(F 2), for the reasons explained in the main text.
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