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Quantum simulation with classical computers is fundamentally limited by the exponentially growing Hilbert
space of the underlying quantum systems. Even with better classical computers, past a few 10s of particles, it
will be impossible to model them without resorting to approximations to cut down the dimensionality of the
problem. However, many important problems in physics, which remain poorly understood, will benefit from
the ability to conduct such simulations, especially in the fields of condensed matter and low-temperature
physics. Feynman suggested to use quantum computing devices to simulate such quantum phenomenon,
and much work has been done in recent years to realize this. Recently with the development of digital
quantum computers, and especially noisy intermediate-scale quantum (NISQ) computers/devices, the power
of quantum computing has been demonstrated with simple quantum supremacy experiments, such as those
performed by Google. However, practical uses of such devices have yet to be seen. It is hoped that those
devices can be applied to such quantum simulation problems. By doing so, it will also be a demonstration
that NISQ devices do have practical use-cases.

To harness the NISQ devices’ potential for quantum simulation, many near-term quantum simulation al-
gorithms have been proposed. Most of the algorithms currently developed make use of a classical-quantum
feedback loop. For example, Variational Quantum Simulation (VQS), as described in the work “Variational
quantum simulation of general processes” (Physical Review Letters 125 (1), 010501), and Variational Fast
Forwarding (VFF), as described in “Variational fast forwarding for quantum simulation beyond the coher-
ence time” (npj Quantum Information 6 (1), 1-10), are two such examples. Such algorithms make use of of
a parametric quantum circuit, which is a quantum circuit with parameterized 1-qubit and 2-qubit rotation
gates, as their ansatz, and aim to optimize the parameters in a certain fashion. However, these algorithm
suffers from some limitations. They all employ a classical optimizer to update the parameters of a para-
metric quantum circuit in an adaptive feedback fashion. This classical-quantum feedback loop makes such
variational approaches very slow as the quantum computer has to wait for the classical computer’s output
at every step, especially if the quantum computer is accessed on a cloud in a queue system. Moreover, it
has been shown that variational approaches based on parameterizing a quantum circuit suffer from a fun-
damental trainability problem known as the barren plateau problem, which limits the effectiveness of these
algorithms. Another method to perform such simulations, by utilizing the Trotter-Suzuki decomposition of
the unitary time evolution operator into small discrete steps, is limited by the fact that past a few steps, the
circuit length grows too long to be implemented on current devices.

In our work, we present a new algorithm that circumvents all of the aforementioned weaknesses of the cur-
rently published variational approaches, such as the existence of the classical-quantum feedback loop and the
barren plateau problem. On current quantum computers, our algorithm requires significantly less quantum
resources than the alternatives. For example, to simulate a similar 2 qubit system, the best competing al-
ternatives require around 4000 circuits to be evaluated on the quantum computer, while our algorithm only
requires around 30 circuits, while retaining similar performance. We also show how our algorithm permits
systematic improvements to the ansatz, while other algorithms do not have similar systematic methods to
improve on an ansatz.



We believe that our work will be of high interest to the readership of SciPost Physics and ongoing investig-
ations concerning quantum advantage for quantum simulation in the NISQ era.
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Simulating the dynamics of many-body quantum systems is believed to be one of the first
fields that quantum computers can show a quantum advantage over classical computers. Noisy
intermediate-scale quantum (NISQ) algorithms aim at effectively using the currently available quan-
tum hardware. For quantum simulation, various types of NISQ algorithms have been proposed with
individual advantages as well as challenges. In this work, we propose a new algorithm, truncated
Taylor quantum simulator (TQS), that shares the advantages of existing algorithms and alleviates
some of the shortcomings. Our algorithm does not have any classical-quantum feedback loop and
bypasses the barren plateau problem by construction. The classical part in our hybrid quantum-
classical algorithm corresponds to a quadratically constrained quadratic program (QCQP) with a
single quadratic equality constraint, which admits a semidefinite relaxation. The QCQP based
classical optimization was recently introduced as the classical step in quantum assisted eigensolver
(QAE), a NISQ algorithm for the Hamiltonian ground state problem. Thus, our work provides a
conceptual unification between the NISQ algorithms for the Hamiltonian ground state problem and
the Hamiltonian simulation. We recover differential equation-based NISQ algorithms for Hamil-
tonian simulation such as quantum assisted simulator (QAS) and variational quantum simulator
(VQS) as particular cases of our algorithm. We test our algorithm on some toy examples on current
cloud quantum computers. We also provide a systematic approach to improve the accuracy of our
algorithm.

Digital quantum computers have made immense
progress in recent years, advancing to solving problems
considered to take an unreasonable time to compute for
classical computers [1, 2]. Further, quantum computers
are reaching the stage where quantum chemistry prob-
lems such as finding the ground state of certain molecules
can be achieved within chemical accuracy [3]. In short,
we are now in the Noisy Intermediate-Scale Quantum
(NISQ) era [4, 5], which is characterized by quantum
computers with up to a few hundred noisy qubits and
lacking full scale quantum error correction. Thus, noise
will limit the usefulness of the computations carried out
by these computers [4], preventing algorithms that of-
fer quantum advantage for practical problems, such as
Shor’s algorithm for prime factorization [6], from being
implemented.

However, just because such algorithms cannot be im-
plemented on NISQ devices does not mean that quan-
tum advantage for practical problems cannot be found
with NISQ devices. There is currently great interest
in the quantum computing and quantum information
community to develop algorithms that can be run on
NISQ devices but yet deal with problems that are prac-
tical [5, 7, 8]. Some of the most promising avenues deal
with the problems in many-body physics and quantum
chemistry. One major problem in this field is to develop
algorithms capable of estimating the ground state and
energy of many-body Hamiltonians. To such ends, algo-
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rithms like variational quantum eigensolver (VQE) [9, 10]
and quantum assisted eigensolver (QAE) [11, 12] have
been proposed.

The other major problem is to be able to simulate the
dynamics of these many-body Hamiltonians. This task
can be extremely challenging for classical computers, and
Feynman proposed that this would be one of the areas
where quantum computers could exhibit clear advantages
over classical computers [13]. Powerful methods to simu-
late quantum dynamics on fault-tolerant quantum com-
puters have been proposed, such as the concept of using
truncated Taylor series by Berry et al [14].

On NISQ devices, a standard approach in simulating
quantum dynamics is to utilize the Trotter-Suzuki de-
composition of the unitary time evolution operator into
small discrete steps. Each step is made up of efficiently
implementable quantum gates, which can be run on the
quantum computer [15–21]. However, the depth of the
quantum circuit increases linearly with evolution time
and the desired target accuracy. On NISQ devices, fi-
delity rapidly decreases after a few Trotter steps [22],
implying long time scales will be unfeasible to simulate
with this method. Alternatives to Trotterization have
been proposed, such as VQS [23–25], subspace variational
quantum simulator (SVQS) [26], variational fast forward-
ing (VFF) [27, 28], fixed state variational fast forward-
ing (fsVFF) [29], quantum assisted simulator [30, 31] and
generalized quantum assisted simulator (GQAS) [32] to
name a few.

Recently, Otten, Cortes and Gray have proposed the
idea of restarting the dynamics after every timestep
by approximating the wavefunction with a variational
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ansatz [33]. Building on that, Barison, Vicentini and
Carleo have proposed a new algorithm [34] for simulat-
ing quantum dynamics. Their algorithm, named pro-
jected variational quantum dynamics (pVQD) combines
the Trotterization and VQS approaches [23, 24]. They re-
place the differential equation with an optimization prob-
lem, although not well characterized, and require much
simpler circuits compared to VQS. However, pVQD re-
quires a quantum-classical feedback loop and might suf-
fer from the barren plateau problem [35] as well the op-
timization problem may be computationally hard [36].
Further, the feedback loop mandates that one has to wait
for each computation to finish before the next computa-
tion is run, which can be a major bottleneck on cloud-
based quantum computers that are accessed via a queue.

Here, we propose the truncated Taylor quantum sim-
ulator (TQS) as new algorithm to simulate quantum dy-
namics. Our algorithm is building on the ideas of pVQD
[33, 34] combined with the ansatz generation of QAS [30],
which we further enhance by applying the concept of
truncated Taylor series by Berry et al [14]. The contri-
butions of the paper and our algorithm are as following:

1. We recast the simulation of the quantum dynam-
ics as a quadratically constrained quadratic pro-
gram (QCQP). This optimization problem, unlike
the optimization problem in pVQD, is well charac-
terized and invites rigorous analysis. The QCQP in
our algorithm admits a semidefinite relaxation [11].
Moreover, based on ideas from [11], one can provide
a sufficient condition for a local minimum to be a
global minimum, which a solver can further use as
a stopping criterion. Since the classical optimiza-
tion program in QAE is also a QCQP, it helps us
achieve a conceptual unification of TQS with QAE.

2. The differential equations which form the classi-
cal part of QAS and VQS can be recovered in our
framework. Since VQS is already a particular case
of QAS [30], our approach yields both VQS and
QAS as special cases of TQS.

3. We remove the need for the classical-quantum feed-
back loop in pVQD. The absence of the feedback
loop yields our algorithm to be exceptionally faster
than the feedback loop based NISQ algorithms for
simulating quantum dynamics such as [23, 26–29].
The choice of problem-aware ansatz and the struc-
ture of the TQS algorithm helps bypass the barren
plateau problem.

TQS Approach— Let us first assume that the Hamilto-
nian H is expressed as a linear combination of r tensored
Pauli matrices

H =

r∑
i=1

βiPi , (1)

with coefficients βi ∈ C. The unitary evolution under the
action of the Hamiltonian H for time ∆t is given by

U (∆t) = exp (−ιH∆t) = exp

−ι∆t r∑
j=1

βjPj

 (2)

= I − ι∆t

 r∑
j=1

βjPj

− ∆t2

2

 r∑
j=1

βjPj

2

+O
(
∆t3

)
.

(3)

We do not need to implement the action of the unitary
evolution in such a way. However, for purposes of de-
scribing the algorithm for the rest of the paper, we will
use this power series expansion first, and talk more about
alternatives later. We will now truncate the series, simi-
lar to [14]. If we choose small values of ∆t with respect to
the eigen energies of H, we can approximate the unitary
evolution with V (∆t)

U (∆t) ≈ I − ι∆t

 r∑
j=1

βjPj

 ≡ V (∆t) . (4)

Let us next choose the ansatz at time t as linear com-
bination of elements from cumulative K-moment states,
CSK (refer to the QAS paper [30] for the formal defi-
nition). These states are defined in the same way as in
[30] and will be constructed with the help of the given
Hamiltonian. Given a set of r tensored Pauli unitary
matrices obtained from the unitary terms of the Hamil-
tonian P ≡ {Pi}ri=1 and a positive integer K and some
efficiently preparable quantum state |ψ〉, the K-moment
states are the set of quantum states of the form

{|χi〉}i = {PiK . . . Pi2Pi1 |ψ〉}iK,...,i2,i1, (5)

for Pil ∈ P. This set is denoted by SK . The cumulative
K-moment states CSK are also defined in [30] as CSK ≡
∪Kj=0Sj .

Now the ansatz is expressed as

|ψ (α (t))〉K =
∑

|χi〉∈CSK

αi(t)|χi〉, (6)

with some αi ∈ C. For small values of ∆t, the ansatz at
time t+ ∆t is given by

|ψ (α (t+ ∆t))〉K =

V (∆t) |ψ (α (t))〉K
(〈ψ (α (t)) |KV † (∆t)V (∆t) |ψ (α (t))〉K)

1
2

. (7)

Using the ideas in [34], our goal now is to variationally
approximate the time evolution of the system by adjust-
ing our variational parameters. The crucial difference in
our case is that our variational parameters α are coeffi-
cients which do not change the basis quantum states |χi〉
. Thus, they can be solely updated via a classical com-
puter and do not require a quantum-classical feedback



3

loop. To evolve by time ∆t, we update the αi param-
eters to α′i such that the following fidelity measure is
maximized

F (α′) =
|〈ψ (α′) |KV (∆t) |ψ (α)〉K |2

〈ψ (α) |KV † (∆t)V (∆t) |ψ (α)〉K
(8)

Using the notation |φ〉 = V (∆t) |ψ (α)〉K , the expression
for fidelity becomes

F (α′) =
〈ψ (α′) |φ〉K〈φ|ψ (α′)〉K

〈φ|φ〉
. (9)

Using the notation Wφ ≡ |φ〉〈φ|
〈φ|φ〉 , the above expression

further simplifies to

F (α′) = 〈ψ (α′) |KWφ|ψ (α′)〉K . (10)

The goal is to maximize the fidelity subject to the con-
straint that 〈ψ (α′) |ψ (α′)〉 = 1. Thus, the optimization
program at timestep t is given by

max
α′
〈ψ (α′) |KWφ|ψ (α′)〉K

s.t. 〈ψ (α′) |ψ (α′)〉K = 1. (11)

Using the elements from CSK and the Hamiltonian H,
we define the overlap matrices E and D as the following

Em,n = 〈χm|χn〉, (12)

Dm,n =
∑
j

βj〈χm|Pj |χn〉. (13)

Because of the way the |χn〉 states are constructed, these
values can be easily computed on a quantum computer,
as they simplify to the expectation values of Pauli strings
acting on the original quantum state |ψ〉. The constraint
in the optimization program 11 can written in terms of
α′ as

α′
†
Eα′ = 1. (14)

We proceed to write the objective in the optimization
program 11 in terms of the overlap matrices E and D. In
first order, we can simplify the expression

〈φ|φ〉 = 〈ψ(α)|K
(
I + (∆t)2H2

)
|ψ(α)〉K

= α†Eα+O((∆t)2) ≈ α†Eα. (15)

Further, using the notation G ≡ (E − ι∆tD) we find

〈ψ (α′) |φ〉K〈φ|ψ (α′)〉K = α′
†
Gαα†G†α′. (16)

Using Eq.14,15,16 and the notation Wα ≡ Gαα†G†

α†Eα , the
optimization program in 11 can be re-expressed in terms
of overlap matrices as

max
α′

α′
†
Wαα

′ (17)

s.t α′
†
Eα′ = 1. (18)

The aforementioned optimization program is a quadrati-
cally constrained quadratic program with a single equal-
ity constraint. As described in [11], this QCQP admits
a direct convex SDP relaxation. Moreover, the results
from [11] provide a sufficient condition for a local min-
imum to be a global minimum, which a solver can fur-
ther use as a stopping criterion. Alternatively, the prob-
lem can be solved with the classic Rayleigh-Ritz proce-
dure by finding the eigenvector associated with the small-
est eigenvalue λ of the generalized eigenvalue problem
−Wαα

′ = λEα′.
It can be shown that in the limit of small ∆t, TQS re-

duces to QAS (see Appendix C). This could potentially
give us a way to obtain systematic higher-order correc-
tions to the QAS matrix differential equation. Interest-
ingly, this is a conceptual unification of the ground state
problem (QAE) with the dynamics problem (QAS) in
the quantum assisted framework. In QAE, finding the
ground state and ground state energy of a Hamiltonian
was formulated to become a QCQP. In TQS, the problem
of simulating the dynamics is also given as a QCQP. This
is conceptually satisfying as the problem of finding the
dynamics is expressed as e−itH |ψ〉, which is mathemati-
cally similar to using imaginary time evolution to finding
the ground state via e−τH |ψ〉. The aforementioned con-
nection is also one of the primary justifications for ansatz
selection in [12]. We note that as alternative it is possible
implement the unitary evolution operator U(∆t) directly
instead of the Taylor series expansion of Eq.7, however
this would require the usage of Hadamard tests (see Ap-
pendix D).

We want to emphasize again that the quantum com-
puter is only required to measure the overlap matrices
E and D at the start of the algorithm. No quantum-
classical feedback loop for optimization is required. The
only optimization steps required are performed solely on
the classical computer with knowledge of the overlap ma-
trices. The algorithm is as follows:

1. Choose an efficiently implementable initial state
|ψ〉, then choose some K>0 and form the K-
moment states |χi〉 to construct the ansatz. This
step can be done on paper.

2. With knowledge of the Hamiltonian H, calculate
the overlap matrices E and D on the quantum com-
puter. The job of the quantum computer is now
done.

3. Choose a small ∆t with respect to the eigenvalues
of H and evolve the state forward in time using
a classical computer, by solving the optimization
program 17 subject to the constraint 18. If results
are not up to the desired fidelity, increase K and
repeat the algorithm.

The timestep ∆t could be increased by including higher
order terms in the power series expansion of U(∆t) in
our calculations (Described in Appendix E).
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FIG. 1. Time evolution of TQS on a 2 qubit state, with
Hamiltonian H2, simulated on the IBM quantum processor
ibmq rome. a) Expectation value of 〈Z1〉 b) Fidelity of the
state.

Results— We first use TQS to simulate a 2 qubit Heisen-
berg model

H2 =
1

2
X1X2 +

1

2
Y1Y2 +

1

2
Z1Z2. (19)

We apply it to evolve an initial randomized 2 qubit state
|ψ2〉. This initial state is generated by 5 layers of U3

rotations and CNOT gates on the 2 qubits (see Appendix
A). We ran the TQS algorithm on the 5-qubit quantum
computer ibmq rome, available through IBM Quantum
Experience. We used error mitigation by calibrating the
measurement errors and applying a filter obtained from
that calibration on our data with the toolbox provided in
Qiskit [37]. The results are shown in Fig.1. The evolution
of the state under TQS reproduces the exact behavior
very well for an ansatz with K = 1 moment states, even
in the presence of the noise of a real quantum computer.

Next, we apply TQS to simulate a 4 qubit XX chain
model on a quantum computer. Although this Hamilto-
nian is analytically solvable, we simulate this as a proof
of principle.

H4 =
1

2
X1X2 +

1

2
X2X3 +

1

2
X3X4. (20)

In Fig.2, we simulate this Hamiltonian on ibmq rome
with an initial randomized 4 qubit state, generated by
5 layers of U3 rotations and CNOT gates (see Appendix
A). We run it for the K = 1 to K = 3 moment states.
The evolution of the state under TQS again reproduces
the exact behavior very well for the K = 3 case.

Next, we investigate in Fig.3 the transverse Ising model
with 8 qubits by simulating TQS on a classical computer.

H8 =

7∑
i=0

1

2
ZiZi+1 +

8∑
j=0

Xj . (21)

With an initial random state, we find that the evolution
of the state reproduces the exact dynamics for the case
of K = 3 moment expansion.

Lastly, we compare TQS to pVQD for a 2 qubit trans-
verse Ising model on a simulation. We consider the 2
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FIG. 2. Time evolution of TQS on a 4 qubit state with
Hamiltonian H4 simulated on the IBM quantum processor
ibmq rome. a) Expectation value of 〈Z1〉 b) Fidelity with
exact solution.
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FIG. 3. Time evolution of TQS on a 8 qubit state, with Hamil-
tonian H8, simulated on a classical computer, with a random
initial state. a) Expectation value of 〈Z1〉. b) Fidelity of the
state.

qubit transverse Ising Hamiltonian:

HTFI,2 =

2∑
i=0

1

2
ZiZi+1 +

2∑
j=0

Xj . (22)

We compared them with noisy simulators, with the
noise models taken from the IBM Quantum Experience
provider, which is meant to mimic the noise on their ac-
tual quantum computers. The results are shown in Fig.4.
As can be seen, while both TQS and pVQD do have er-
rors when trying to simulate this Hamiltonian in the pres-
ence of noise, the results for the expectation values of the
state for TQS are closer to the classical results most of
the time. This is especially so for the expectation value
of 〈Z1〉. However, while the results might be argued to be
somewhat similar, the resource needs of both algorithms
on the quantum computer are quite different. The TQS
algorithm in our case required ≈ 30 circuits to be run,
while the pVQD simulator required well over 4000 cir-
cuits to be run, which is already a little prohibitory for
us to run on the IBM Quantum Experience. It should
be mentioned that if we wanted to increase the simula-
tion time for this example, since the algebra has already
closed, we could do that with no extra circuits with TQS,
while the number of circuits in pVQD scales linearly with
the number of steps required.

Discussion and Conclusion— The currently proposed
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FIG. 4. Time evolution of TQS and pVQD on a 2 qubit
state, with Hamiltonian HTFI,2, simulated with a noisy sim-
ulator. The noise model was taken from the IBM Quantum
Experience provider, mimicking the noise of the real quantum
processor ibmq bogota. pVQD was run for 100 optimization
steps, and made use of a parametric quantum circuit with 8
parameters, made out of sucessive layers of single qubit X ro-
tations and 2-qubit ZZ rotations. The expectation values of
〈Y1〉 and 〈Z1〉 are plotted. The results are somewhat similar,
although TQS does have results closer to the classical results
most of the time, especially so for the expectation value of
〈Z1〉, as it is better able to capture the peaks and troughs of
the expectation values. However, while the results might be
argued to be somewhat similar, the resource needs of both
algorithms on the quantum computer are quite different. The
TQS algorithm in our case required ≈ 30 circuits to be run,
while the pVQD simulator required well over 4000 circuits to
be run.

NISQ algorithms face problems in scaling up to sys-
tem sizes where classical computers cannot simulate
the same systems, or in other words, to the point
where we would see quantum advantage. For exam-
ple, VQS/SVQS/pVQD require the use of a quantum-
classical feedback loop, usually require complicated cir-
cuits, share similar problems as VQE like the barren
plateau problem, and lack a systematic way to generate
a parameterized ansatz. VFF/fsVFF also suffers from
lacking a systematic way to generate the ansatz, usually
requires complicated circuits and has to run a quantum-
classical feedback loop it at the start. Further, the no
fast-forwarding theorem suggests that not all Hamilto-
nians will be able to be accurately diagonalized with a
reasonable amount of gates and circuit length, and the
optimization step of the cost function in VFF might be
too difficult to carry out efficiently. However, the barren
plateau problem and ansatz state generation could be
improved upon by applying various techniques [38–42].

One problem that VQS and QAS share is that they re-
quire solving a differential equation which includes the
pseudo-inverse of a matrix, whose elements are mea-

sured on a quantum computer. This matrix can be
ill-conditioned. This procedure, via singular value de-
composition, can be numerically unstable and sensitive
to noise, especially as the system increases in size [43].
However, the sensitivity of these matrices has not been
rigorously analyzed and more work has to be done to
understand the scaling of the sensitivity.

In this work, we develop TQS for simulating quantum
dynamics on digital quantum computers. TQS recasts
the dynamical problem as a QCQP optimization pro-
gram, which is well characterized unlike the optimization
program in pVQD, allowing us to avoid the aforemen-
tioned problem in VQS and QAS.

At the same time, TQS retains the advantages of QAS,
namely providing us a systematic method to select the
ansatz, avoiding complicated Hadamard tests and con-
trolled unitaries, avoiding the barren plateau problem,
and only requiring usage of the quantum computer at
the start, all of which are problems that are present in
pVQD.

However, there are still many problems to tackle in
our approach. One problem is an inherited problem from
QAS. As the Hamiltonian size and complexity increase,
large K values may be needed to generate enough states
for a sufficiently expressible ansatz to produce accurate
results. Though QAS uses a problem aware ansatz, more
information from the problem such as the combination
coefficients βi and symmetries of the Hamiltonian should
be employed to further tame the complexity.

As the system size increases, it may be required to re-
duce ∆t to preserve accuracy in the post-processing part
of the algorithm. This will increase the computational
cost of the classical computer. The number of optimiza-
tion steps to be carried out increases linearly with the
number of discretizations steps of the evolution time. De-
termining whether this poses a bottleneck for TQS when
applied to large systems requires further studies.

Furthermore, in the presence of noise, the calculated
fidelity of our states can go above one. A possible ori-
gin are small eigenvalues in the E overlap matrix, which
can give the procedure of optimizing or solving the gen-
eralized eigenvalue problem numerical instability. As we
scale up the system and consider more ansatz states, this
issue can become more prevalent.

In the future, the NISQ community should investigate
these challenges, so that we can successfully run NISQ
algorithms for larger qubit numbers.
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K = 1 K = 2 K = 3 K = 4
2 Qubit Case 1 4
4 Qubit Case 1 4 7 8
8 Qubit Case 1 17 137

TABLE I. Comparison of the number of basis states used to construct the hybrid ansatz for each K for each Hamiltonian.
For example, the K = 2 expansion for the 4 qubit case, using the Hamiltonian H4, requires 4 quantum states to construct the
hybrid ansatz.

Appendix A: Details on running circuits on the IBM quantum computer

For the runs on the real quantum computer, we generated an initial state with randomized parameters to evolve
with the following circuit. It comprised 5 layers of successive U3 rotation with randomized parameters on each qubit,
followed by a CNOT/entangling gate. We (see Fig.5 and 6). We sampled from each circuit 8192 shots.

|0〉 Rx(Θ1) Ry(Θ2) Rz(Θ3)

|0〉 Rx(Θ4) Ry(Θ5) Rz(Θ6) Z

FIG. 5. Circuit for two qubits that generate one set of U3 rotation with randomized parameters, followed by a CNOT gate
between the 2 qubits. 5 successive layers of this circuit were used to generate the initial starting state for the 2 qubit case on
the IBM quantum computer for our runs of TQS. The Θs were randomly generated.

|0〉 Rx(Θ1) Ry(Θ2) Rz(Θ3)

|0〉 Rx(Θ4) Ry(Θ5) Rz(Θ6) Z

|0〉 Rx(Θ7) Ry(Θ8) Rz(Θ9) Z

|0〉 Rx(Θ10) Ry(Θ11) Rz(Θ12) Z

FIG. 6. Circuit for four qubits that generate one set of U3 rotation with randomized parameters, followed by a series of CNOT
gates between the adjacent qubits. 5 successive layers of this circuit were used to generate the initial starting state for the 4
qubit case on the IBM quantum computer for our runs of TQS. The Θs were randomly generated.

Appendix B: Number of basis states considered for each K

The number of basis states that was used to construct the hybrid ansatz, for each K moment expansion, for each
Hamiltonian, is given in Table I.

Appendix C: QAS and VQS as special cases of TQS

In this appendix, we show that in the limit of choosing a very small ∆t, one obtains QAS from TQS. Since VQS
is a special case of QAS [30], we get VQS also as special case of TQS. We start out with the series expansion of
|ψ(~α+ δ~α)〉

|ψ(~α+ δ~α)〉 = |ψ(~α)〉+
∑
j

∂

∂αj
|ψ(~α)〉 δαj . (C1)
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Now in TQS we want to maximize the overlap of U(∆t) |ψ(~α)〉 and |ψ(~α+ δ~α)〉, which is essentially the fidelity
measure in equation 8

| 〈ψ(~α)|U†(∆t) |ψ(~α+ δ~α)〉 |2 =

〈ψ(~α)|U†(∆t) |ψ(~α)〉+
∑
j

|ψ(~α)〉U†(∆t)∂ |ψ(~α)〉
∂αj

δαj

× [C. C.]

|ψ(~α)〉=
∑

j αj |χj〉
=

〈ψ(~α)|U†(∆t) |ψ(~α)〉+
∑
j

|ψ(~α)〉U†(∆t) |χj〉 δαj

× [C. C.]

= | 〈ψ(~α)|U†(∆t) |ψ(~α)〉 |2 +
∑
j

〈ψ(~α)|U†(∆t) |χj〉 〈ψ(~α)|U(∆t) |ψ(~α)〉 δαj

+
∑
j

〈χj |U(∆t) |ψ(~α)〉 〈ψ(~α)|U†(∆t) |ψ(~α)〉 δα∗j +
∑
j,k

〈ψ(~α)|U†(∆t)|χj〉 〈χk|U(∆t)|ψ(~α)〉 δαjδα∗k. (C2)

Now in the same manner as QAS, using the Mclachlan’s variational principle [24, 30, 31, 44], we demand that the
variation of this fidelity is equal to 0 with respect to αj :

=⇒ 〈ψ(~α)|U†(∆t) |χj〉 〈ψ(~α)|U(∆t) |ψ(~α)〉+
∑
k

〈ψ(~α)|U†(∆t)|χj〉 〈χk|U(∆t)|ψ(~α)〉 δα∗k = 0

=⇒ 〈ψ(~α)|U(∆t) |ψ(~α)〉+
∑
k

〈χk|U(∆t)|ψ(~α)〉 δα∗k = 0. (C3)

Now we substitute in U(δt) = I − i∆tH:

=⇒ 〈ψ(~α)|ψ(~α)〉 − i∆t 〈ψ(~α)|H |ψ(~α)〉+
∑
k

〈χk|ψ(~α)〉 δα∗k − i∆t
∑
k

〈χk|H|ψ(~α)〉 δα∗k = 0. (C4)

Now we take the derivative of this equation with respect to ∆t. Note that d
d∆tδα

∗
k = δα̇∗k. We then discard any terms

remaining that are linear in ∆t or in δα (implying we have chosen such a small ∆t that δα is also very small).

=⇒ −i 〈ψ(~α)|H |ψ(~α)〉+
∑
k

δα̇∗k 〈χk|ψ(~α)〉 δα∗k = 0. (C5)

Using the above definition of the E and D matrices in equation 12 and 13, this simplifies to:

=⇒ −i~α†D~α+ ~̇α†E~α = 0

=⇒ E ~̇α = −iD~α. (C6)

This is exactly the same differential equation that we aim to solve in QAS. If we do not ignore the higher order terms,
we could obtain systematic higher order corrections to the QAS matrix differential equation using such a method.

Appendix D: Unitary implementation

As alternative, we could implement the unitary evolution operator U(∆t) directly instead of the Taylor series
expansion of Eq.7

|ψ (α (t+ ∆t))〉K = U (∆t) |ψ (α (t))〉K . (D1)

and defining the matrix Rm,n = 〈χm|U(∆t)|χn〉 to solve the program

max
α′

α′
†
Rαα†R†α′ (D2)

s.t α′
†
Eα′ = 1 . (D3)

U(∆t) could be implemented with a Trotter decomposition or with an oracle. However, this complicates the circuits
needed to calculate the R matrix, requiring the usage of Hadamard tests.
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Appendix E: Higher order approximations

We investigate higher order expansion for the evolution operator in this section. First, we define the overlap matrix
J

Jm,n =
∑
i,j

βiβj〈χm|PiPj |χn〉. (E1)

Considering the next highest power expansion of U(∆t):

U(∆t) ≈ I − ι∆t

 r∑
j=1

βjPj

− ∆t2

2

 r∑
j=1

βjPj

2

≡ V2 (∆t) , (E2)

and defining |φ〉 = V2(∆t) |ψ(α)〉K , the constraint in the optimization program 11 turns out to be still the same as
equation 14:

〈ψ(α′
†
)|ψ(α′

†
)〉 = α′

†
Eα′. (E3)

It turns out that 〈φ|φ〉 is actually exactly equal to α†Eα, which is the result we used earlier in equation 15, as all the
2nd order terms nicely cancel out.

Now, using the notation G2 ≡
(
E − ι∆tD − ∆t2

2 J
)

,

〈ψ (α′) |φ〉K〈φ|ψ (α′)〉K = α′
†
G2αα

†G†2α
′. (E4)

Now the optimization program in 11 can be re-expression in this higher order approximation as

max
α′

α′
†

(
G2αα

†G†2
α†Eα

)
α′ (E5)

s.t α′
†
Eα′ = 1.

And using the notation W2,α ≡ G2αα
†G†

2

α′Eα , we further condense the above optimization program as

max
α′

α′
†
W2,αα

′ (E6)

s.t α′
†
Eα′ = 1. (E7)

Once again, the only work that the quantum computer need to do is to calculate overlap matrices in the start, in
this case having to calculate E , D and J . In fact, when going from lower order approximations to higher order
approximations, you can reuse the saved matrices and only calculate the new ones needed. In this case, in the original
TQS, which uses a first order approximation for U(∆t), we already have the E and D matrices, so if we deem the
results not up to our desired accuracy, we can easily go to the second order approximation showed here, and only
require calculation of one additional matrix J .


