Dear Editor(s),

We would like to thank you for considering our submission titled “NISQ Algorithm for Hamiltonian Simu-
lation via Truncated Taylor Series” for publication in Scipost. We would also like to extend our gratitude to
the referees for their valuable feedback and detailed reports. We believe we are able to provide a response to
the critiques and comments raised by the referees. Please find attached our revised manuscript and, below, our
response to the referees. The main comments we would like to address are summarized below:

1. We state explicitly the improvements our work makes on the existing published work in the field, and
explain how we expect our work will be of benefit to the community. We believe our work provides a
significant improvement to other NISQ algorithms for simulating dynamics in the literature as it uses
a different framework to approaching the problem of time evolution. This allows it to bypass problems
such as the barren plateau that have been shown to be one of the major problems in such approaches.
Our algorithm also avoid a quantum-classical feedback loop, which cuts down on the number of circuits
we need to run on the quantum computer by orders of magnitude. Also, our algorithm introduces a
systematic way to generate a more expressible ansatz, using the structure of the Hamiltonian, which is
absent in the existing NISQ algorithms for simulating dynamics.

2. We have elaborated on the scaling of our algorithm, both in our reply to the reviewers and in our main
manuscript’s appendix. The scaling of our algorithm is dependent on the number of moments we calcu-
late. In the worst case, the number of moments scales linearly with the rank of the Hamiltonian. This is
advantageous to other variational NISQ algorithms that rely on a parametric quantum circuit, especially
since it is an open question how the other algorithms perform when scaled up. This scaling is funda-
mentally a result from complexity theoretic statements about the difficulty of obtaining an appropriate
ansatz that is expressible enough and hence cannot be bypassed by any variational quantum simulation
algorithm.

3. We explicitly list down the conditions, which if fulfilled, we expect our algorithm will have the capability
to outperform classical methods. We also demonstrate an example of this with product states. While the
example with product states is classically trivial to solve, we expect that with slightly better and larger
quantum computers we can repeat the same examples with highly entangled states, which correspond to
classically intractable dynamics. We also establish the advantage that our algorithm already outperforms
most of the other NISQ dynamics algorithms.

4. Based on reviewers comments, we have worked on the presentation of our manuscript, taking the reviewers
comments into consideration.

We hope that the improved manuscript meets the requirements for publication in Scipost.

Yours sincerely,
J.W.Z. Lau, T.Haug, and L. C. Kwek, K. Bharti

Response to Reviewer 1

Reviewer 1: One of the main motivations of the authors seems to be to get rid of the quantum-classical feedback
loop of standard variational approaches for time evolution. However, in doing so it seems to me
that an exponential overhead has been introduced. In my opinion, the question the authors have to
answer is the following: How does the number of required basis states |x) grow as a function of time,
and at which point does it reach the dimension of the Hilbert space?



Authors:  We split the response to this question into 2 parts: Firstly, the issues leading us to want to find
alternatives to the standard variational approaches, and secondly, the scaling in our algorithm.

1.0Other variational algorithms like VQSEHZHﬂ , VFFEHﬂ , and their derivatives SVQSH and fsVFFlﬂ
all rely on a quantum-classical feedback loop optimizing the parameters of a parametric quantum
circuit, similar to the celebrated VQE algorithm for finding the ground statelﬂ’ﬂ Due to the fact
that for a variatonal ansatz that relies on parameterized gates on the quantum computer, every
time the circuit changes by changing the variational parameters, the quantum computer has to
recalculate the result. Furthermore, in most of these variational algorithms, we also need more
circuits to calculate gradients or related quantities, for the optimization to be performed. Thus,
these methods introduce too many circuits that need to be evaluated on a quantum computer,
with the number of circuits being a function of the number of variational parameters. In a
previous work, we reported that just to simulate a small 2 qubit system with VQS on the IBM
cloud quantum computer platform, we required around 500 circuits to be evaluated, which took
us 3 days, mainly due to the waiting time in the queue E From our own experience, this scaling
is too much to be of practical use in the NISQ era. This is not to mention that the way most
quantum computing platforms are being distributed right now (cloud services, which you may
not have dedicated access too), this feedback loop could cause your classical computer to spend
a large amount of time waiting for your circuits to be evaluated by the quantum computer, due
to queueing.
This is not to mention the other problems in those algorithms, for example the potential to still
be subject to the barren plateau problemEHE inherent in VQE, and the optimization being
over a non-convex landscape that causes it to be extremely hard for the classical computer to
optimize over once the system size grows past a few qubits. It has been shown that in variational
algorithms that rely on a parametric quantum circuit, there will always be a tradeoff between
trainability and expressibility.lE This is not to mention that the current ansatz that have been
used in such algorithms so far, hardware efficient ansatz, have not been shown to be capable of
improving systematically the expressibility of the ansatz as the system size grows larger.
Our algorithm aims to deal with these problems. We aim to make a more practical algorithm,
and thus mainly aim to compare our algorithm against these other algorithms. Although this is
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a heuristic approach, similar to the other approaches, we believe that its practical benefits will
be of interest to the community. As we mention in more detail in our manuscript, the problem
of exponential overhead in the number of |x) states needed is related to a far more fundamental
question of expressibility, which all variational NISQ algorithms will struggle with.

2.We have expanded the appendix to elaborate on the scaling of our argument. To summarize, in
the worst case the number of states in the ansatz scales linearly with the rank of the Hamiltonian.
We believe that this scaling is superior to other variational NISQ algorithms that require a
parametric quantum circuit which have been previously published. In fact, it is an open question
how variational quantum algorithms perform when scaling up and in general they also require
an exponential number of parameters. This is now further discussed in our manuscript, where
we added the connection to Krylov subspace for our method in the appendix. We provide a
short summary here:

In the worst case, the size of the set C'Sy scales as O(rX) for r terms in H. This is because
our algorithm essentially relies on being able to calculate expectation values of powers of the
Hamiltonian, ()| H*|¢) in an NISQ friendly manner. If we look at the Pauli string level (break
our Hamiltonian into linear sums of Pauli strings), the number of Pauli terms in H* grows
exponentially in k. Right now, for current implementation of our algorithm on available quan-
tum computers, this breaking into Pauli strings is necessary due to the imperfections in said
quantum computers. However, we want to point out that if we allow for more complex quantum
operations that are too difficult for NISQ era computers, such as complex controlled multi-qubit
unitaries, the resources needed to measure (v)| H*[1)) might scale more favourably@

In general, this issue is fundamentally about obtaining an appropriate ansatz that is expressible
enough. In other words, this is the problem of being able to generate an ansatz (whether it
being one with parameterized gates or one that is a linear combination of quantum states) that
has good enough parameters/quantum states to fully express the target quantum state. It is
known that to prepare an arbitrary state on an n qubit quantum computer, we require a circuit
depth of at least %2“@@@@ This tells us that it is very hard to produce an expressible
enough ansatz in general. This is a complexity theoretic statement that cannot be bypassed by
any quantum simulation algorithm based on parametric quantum circuits or linear combination
of quantum states.

Thus, all current NISQ algorithms (with the exception of Trotter) currently face this problem of
obtaining an expressible enough ansatz. In most variational algorithms like VQS, we create the
ansatz with parameterized gates. To make it fully expressible, we would need an ansatz that
has an exponential number of parameterized gates. In so doing, the variational algorithms faces
with the problem of optimizing over an exponential number of parameters or solving a matrix
differential equation, of which the size of the matrix also grows exponentially. Furthermore, the
other algorithms also usually require an overparameterized ansatz with an exponential number
of parameters to successfully simulate quantum dynamics. For the small examples where we
compare our algorithm to pVQD (which is a similar algorithm that instead relies on a parametric
quantum circuit), we note that our algorithm does not need an overparameterized ansatz, while
usually other NISQ algorithms require one. Thus, heuristically, we have evidence that our
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algorithm requires less variational parameters.

One of the other major contributions of the TQS algorithm is that it also provides a systematic
way to obtain a more and more expressible ansatz without suffering from the trainability issue.
It has been shown that it is incredibly difficult to perform the training in such variational al-
gorithms that rely on a changing quantum state E We avoid this trainability problem as our
training is done on a classical computer, with a quantum state that is not changing. Further-
more, the other variational algorithms still do not have a systematic method to generate an
expressible enough trainable ansatz.

I heavily criticize the way the cumulative K-moment states are introduced. The authors do not
connect them to the Taylor expansion of equation 3. It should be pointed out explicitly that if the
Taylor expansion is applied to a state |1)) the result is exactly a linear combination of cumulative
K-moment states. At this point it becomes pretty clear that after long times it would be very difficult
to generate a sufficiently expressible ansatz. Furthermore, the notation in equation (5) is sloppy. It
should be made clear that the indices ik, ...,79,7; all run from 1 to r. It is not mentioned that the
number of basis states in this set is exponential in K

We thank the reviewer for the comment. We have updated the manuscript and appendix to better
show the connection between the K-moment states and expressibility with the Taylor expansion, and
changed the manuscript to further improve the notation. However, we would like to mention that
this is a feature of the algorithm. Our method is essentially generating the Krylov subspace of H
on the support of the initial state |¢)). When we choose a K, we are essentially constructing our
ansatz with the Krylov subspace of our initial state up to HX. And as the reviewer mentioned, this
is taking advantage of the higher order terms in the Taylor expansion. By generating the ansatz in
such a manner, we guarantee that the expressibility of our ansatz increases. This is in contrast to
the other methods that other variational algorithms use to generate their ansatz, like the hardware
efficient ansatz, which contain no guarantees that by adding in more layers, the expressibility will
increase.

We would also like to mention again here that the problem of finding an expressible enough ansatz
is fundamentally a complexity theoretic problem, present in all NISQ variational algorithms, be it
based on linear combination of states or those based on parametric quantum circuits.

The authors test their approach on a couple of trivial examples: 2-qubit models that can be solved
with pen and paper and a "classical" 4-spin example.

All examples of simulating quantum dynamics on current quantum computers so far have been on
relatively trivial examples that can be solved with pen and paper. Shown below are the largest
systems that other algorithms have simulated on current quantum hardware:

e Trotterization, largest system tested approximately 10 qubits, well known to have serious prob-
lems when simulating for anything more than a few time steps.EHE

eVariational Quantum Simulation, largest system tested is 2 qubits, no detailed study done so
far on how it scales[?]
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eVariational Fast Forwarding, largest system tested is 2 qubits, no detailed study done so far on
how it scales]

Attempts to scale up the sizes of the systems have proved difficult due to various problems, such
as the noise inherent in current quantum computers limiting the lengths of the circuits that can be
run on current quantum computers. The question we want to answer if it is possible to develop an
algorithm that circumvents some of these problems. In our manuscript, we proposed a new algorithm
that avoids long circuits, complicated multi-qubit controlled-unitary gates, and the barren plateau
problem. This provides hope that some non trivial examples can be solved in the near future, once
better NISQ quantum computers are developed in the next few years. In our manuscript we now give
an explicit example where our algorithm performs superior to other NISQ algorithms. In figure 6,
we calculate the evolution under a Hamiltonian consisting of 7 random Pauli strings for thousands of
qubits. We require only a limited number of overlaps in this case. By using highly entangled states
instead of product states for the initial state, the evolution is intractable to simulate with classical
methods such as tensor networks. Our algorithm provides hope that with better quantum computers
that can be developed in the near future, we can outperform classical approaches along this line,
as our algorithm does not require deep circuits, highly connected qubit architecture, or complicated
controlled multi-qubit unitary gates, and only relies on sampling expectation values of Pauli strings
on an initial state.

In general, we believe that under the following conditions, our algorithm can provide quantum
advantage for these problems:

eThe basis states which are used to represent the initial quantum state are highly entangled. This
will make calculation of corresponding overlaps classically hard, as it boils down to a circuit
sampling task. Note that the Quantum Threshold Assumption (QUATH) by Aaronson and
Chen@ says that there is no polynomial-time classical algorithm which takes as input a random
circuit C' and can decide with success probability at least  + € (55) whether [(0"|C[0™)|? is
greater than the median of [(0"|C|2™)|? taken over all bit strings z”. In other words, the circuit
sampling task is difficult and hence classical algorithms should not be able to compete with
algorithms based on circuit sampling as system size scales. The quantum part of TQS is based

on circuit sampling which is classically difficult.

eThe Hamiltonian should be a linear combination of small number of unitaries or the set of basis
states corresponding to the terms in the Hamiltonian should close fast or the Hamiltonian is a
low rank matrix. As an example, for a system size with a multiple of 3 qubits, if we consider the
Hamiltonian of the form H = XYZXYZ . XYZ +YZXYZX.YZX + ZXYZXY..ZXY +
XXXXX.. XXX, the set spanned by the terms in the Hamiltonian is only size 8, implying
we can only generate 8 terms in our Ansatz no matter how high our K is or our system size
is. Our algorithm can easily simulate these Hamiltonians, requiring only a limited number
of overlaps. However, evolution by Trotterized methods or other variational methods on a
quantum computer would be very challenging as it requires deep circuits and many variational
parameters. It would even be a challenge to come up with an expressible enough Ansatz for
variational methods. As mentioned above and in our new appendix, we actually simulated our
algorithm with up to 1000 qubits for cases constructed in this way, and show that it is still able
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to obtain an expressible ansatz and capture the full dynamics. A further important example
are the simulation of many-body scars, which can have a low-rank Krylov subspace and thus
the ansatz space closes fast E Simulating these highly interesting systems are well suited for
our method.

eThe system size of interest should be beyond the reach of classical simulation methods, for
example beyond a few dozen qubits.

Furthermore they investigate time evolution of an 8-spin Ising chain. According to Figure 3, for
K =1 and K = 2 the fidelity drops quickly to zero (as expected) while the K = 3 moment
expansion is able to capture the time evolution exactly. The Hamiltonian in equation (21) consists
of 15 Pauli strings. If I count correctly, the number of basis states in the K = 3 moment expansion is
given by 152 + 152 +15+1 = 3616, which by far exceeds the Hilbert space dimension of 2% = 256. So
it seems to be no surprise at all that this is able to capture the dynamics. None of this is mentioned
by the authors.

We would like to clarify that we only take unique Pauli strings within the set. For example, if we
consider the Hamiltonian H = X Y273 + Y125 X35 + Z1 XoY3 + X1 X2 X3, we will get 4 + 1 states for
K=1. However, for K=2, instead of getting 4% + 4 4 1 states, we realize that only 8 unique Pauli
Strings can be generated (X11/223, YiZQXg, Z1X2Y3, X1X2X3, 1122Y3, 21}/213, }/1[2Z3, 11[213). Thus,
we end up with only 8 states in our K=2 ansatz for this case.

In the specific case the author mentioned that we used for 8 qubits, the number of states we end up
with is given in table I in our appendix. For the K = 3 case, instead of ending up with 3616 states,
we only consider 137 states. While this number is of the same order as the Hilbert space dimension,
we note that it does not exceed the dimension.

What is exactly the role of the initial state [¢))? The authors talk about an "efficiently preparable
quantum state". What happens if this a product state in the computational basis? In this case, it
seems to me, the matrices E and D can just be calculated with pen and paper. At this point, there is
no need for a quantum computer/simulator. So apparently, the algorithm proposed by the authors
is only meaningful if the initial state [¢)) is a nontrivial (possibly highly entangled) state. Do the
authors have any specific application in mind? Again, none of this is discussed.

We thank the reviewer for the comment. We agree that if the initial state |¢) is a product state in
the computational basis, the matrices are trivial and can be easily written down. The idea is that we
want to choose an initial state that is highly entangled that cannot be easily written down, allowing
us to study the dynamics of such highly entangled states with our algorithm. Examples of such
efficiently preparable initial states using hardware efficient circuits are shown in our manuscript, in
figure 7 and 8 in our appendix. These circuits were used in the manuscript. If we randomly choose the
parameters © in such circuits, these circuits produce highly random states where the calculation of
the E and D matrices is difficult for classical computers. In Fig.6, we demonstrate how our algorithm
can simulate dynamics even for thousands of qubits. To facilitate classical computations we use a
product state as demonstration, however using future quantum computers with more qubits one
could calculate the dynamics for highly entangled states which are intractable for classical methods.

Is the algorithm as outlined on the right column of page 4 actually correct as its written down? In
point 2, the authors say that E and D are measured for a fixed K > 0 and the job of the quantum
computer is done. At stage 3 it is said, that if the fidelity is not satisfying, K has to be increased.

2’Maksym Serbyn, Dmitry A Abanin, and Zlatko Papi¢. “Quantum many-body scars and weak breaking of ergodicity”. In:
Nature Physics 17.6 (2021), pp. 675-685.
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But if K needs to be increased, E and D get larger and new measurements have to be taken. So the
job of the quantum computer is not done, or do I misunderstand something?

We thank the referee for the comment. Once we choose a K, it is akin to choosing a particular
ansatz. Once that is done, in our algorithm, we only require the usage of the quantum computer
at the start, unlike other variational algorithms that require the usage of it through the simulation.
However, if after we run the algorithm, we are not satisfied with the results fidelity, we can choose
a more expressible ansatz by going to a higher K. To clarify, we removed the step about increasing
K from the algorithm itself.

In conclusion, I disagree with many of things put forward in this manuscript. The authors have to
explain why this is an efficient algorithm and where a possible advantage from using a quantum-
device comes in. In my opinion, the authors should reconsider their views on hybrid quantum-classical
algorithms. The authors claim that a hybrid quantum-classical feedback loop is inefficient since the
quantum computer has to wait for the output of the classical computer. In reality, it actually turns
out that very often the opposite is the case. This is particularly true for AMO systems, where
the repetition rate of the quantum machine is not particularly high but expectation values can be
obtained with very high quality.

We hope that through our clarifications and the additions to our manuscript, the reviewer can see
the value we hope to bring to the community with our paper. Above and through addition to our
manuscript, we explain how this algorithm is an improvement over existing algorithms in the NISQ
era and what examples we expect a possible advantage might come from. We would also like to state
that we never claimed that a hybrid quantum-classical feedback loop is inefficient since the quantum
computer must wait for the output of the classical computer. Indeed, most of the inefficiency of
such a loop is in the classical computer waiting for the output of a quantum computer, especially
if the quantum computer is delivered through a cloud computing platform where one might not
have dedicated usage of the computer. As mentioned above in our responses to other questions, our
algorithm removes the quantum-classical feedback loop and reduces the number of circuits needed
to be evaluated by orders of magnitude (at least heuristically).

Response to Reviewer 2

Reviewer 2:

Authors:

There is no discussion as to why a superposition of cumulative k moments states, although they are
generated based on the Hamiltonian, is a suitable ansatz for the time-evolved state. In particular, I
consider necessary to clarify bounds for the size of the set C'Sk, and if there is any estimate for how
high K needs to be for the ansatz to be expressive enough. This is also related to the claim that
this algorithm is “exceptionally faster than the feedback loop based NISQ algorithm for simulating
quantum dynamics”, which I do not find sufficiently justified.

We thank the reviewer for the comments. We have updated the manuscript and the appendix to
further elaborate on these points. For convenience, we reproduce the main points here.

Our method is essentially generating the Krylov subspace of H. The Krylov subspace idea is a
powerful method used in many classical algorithms to find approximate solutions to high-dimensional
linear algebra problems, two examples being the Lanczos method for solving closed systems and the
Generalized minimal residual method for solving the Lindblad master equation. Our approach is
motivated by this observation from classical theory. It is known that the the Krylov subspace
spans the entire space when you exponentiate the Hamiltonian H to the power of K — 1, where
K —1 =rank(H). Thus, the number of states that we require in our Ansatz scales linearly with the
rank of the Hamiltonian in the worst case.



We believe that this scales favourably compared to other NISQ algorithms previously mentioned
in this paper, like VQS, VFF, and pVQD, which depend on parameterized variational quantum
circuits and which do not contain any bounds on their scaling. The statement that this algorithm
is exceptionally faster than the feedback loop is a practical statement and not a mathematically
rigorous statement at this stage. Our belief in this statement stems from the fact that the other
algorithms require a quantum-classical feedback loop and generate their ansatz in a non systematic
way, which usually leads to a heavily over parameterized ansatz. Both these factors cause the number
of circuits needed to be evaluated on the quantum computer in those algorithms to be far more than
what we require, and for a few simple examples we show the evidence in our paper (comparing
our algorithm to pVQD). From our testing where we compare our algorithm to a similar NISQ
algorithm that requires a feedback loop (pVQD) for a simple 2 qubit system, the TQS algorithm
only required ~ 30 circuits to be run, while the pVQD algorithm required well over 4000 circuits
to be run. Considering the time overhead involved in a quantum-classical feedback loop, especially
when accessing the quantum computer through a cloud computing service (classical computer having
to wait for the results of the quantum computer, having to queue up when we do not have dedicated
access to the quantum computer), we believe that this is a practical statement to make. We also
demonstrate running our algorithm for larger systems on actual quantum computers compared to
other NISQ algorithms.

Also, if we consider the evolution of an arbitrary state by the time evolution operator exp (—tHAt),
oo (=A™ Hn
n )

n=0

by observing that the Taylor expansion involves powers of the Hamiltonian H <Z

it is clear that choosing the ansatz in such a way is suitable, as for a given k, the {|xx)}x states are

essentially states in the Hilbert space of the space of %

We can further see that at longer times we would struggle with finding an expressible enough ansatz
in the general case, as we need to keep considering higher powers of H. This is fundamentally an
expressibility problem, present in all NISQ variational algorithms, be it based on linear combination
of states or those based on parametric quantum circuits. It is known that to prepare an arbitrary
state on an n qubit quantum computer, we require a circuit depth of at least %2”@@@@ This
tells us that it is very hard to produce an expressible enough ansatz to obtain unit fidelity for an
arbitrarily long evolution time in general. This is a complexity theoretic statement that cannot
be bypassed by all quantum simulation algorithm based on parametric quantum circuits or linear
combination of quantum states.

In the worst case, the size of the set C'Sy scales as O(r®) for r terms in H. This is because our
algorithm essentially relies on being able to calculate expectation values of powers of the Hamiltonian,
(| H¥3) in a NISQ friendly manner. If we look at the Pauli string level (break our Hamiltonian
into linear sums of Pauli strings), the number of Pauli terms in H k grows exponentially in k. Right
now, for current implementation of our algorithm on available quantum computers, this breaking
into Pauli strings is necessary due to the imperfections in said quantum computers. However, we
want to point out that if we allow more complex operations that cannot be performed very well
right now, such as complex controlled multi-qubit unitaries, the resources needed to measure such
(¢)| H*|4p) values might scale more favourably

Reviewer 2: In the thirds step of the description of the algorithm At is chosen based on knowledge of the
eigenvalues of H, however diagonalizing a many-body Hamiltonian is a challenging task in its own
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right, and this knowledge should not be assumed.

We do not actually need to choose At based on knowledge of the eigenvalues of H. We can just
choose an extremely small value to start off with. The value of At does not affect the number of
circuits needed to be evaluated on the quantum computer and for all practical purpose can be taken
to be very small, it is just to help us in our mathematical analysis.

A proposal to include higher orders in the power expansion of U(At) should be accompanied with a
warning that more quantum resources are needed, if not a full discussion about the scaling of such an
increase. The inability to simulate long timescales is mentioned in the text as one of the drawbacks
of currently available algorithms, how does the proposed algorithm compare?

We thank the referee for the suggestion. In our manuscripts and its appendix we now provide a more
detailed discussion of the scaling. We also provide a simulation comparison between Trotterization
and our algorithm, run on a noise model taken from a real noisy quantum computer provided through
Qiskit, in figure 5. As can be seen, even for a small system, Trotterization already shows an inability
to simulate for long timescales/many time steps on a noisy quantum computer, and our method
compares favourably.

Although error mitigating techniques are mentioned for the data obtained through IBM, no error
bars are shown in any of the plots, is it because they are too small to be shown? If so, this should
be explicitly mentioned.

We used a error mitigation technique called Measurement Error Mitigation that involved character-
izing the readout error of the quantum computer before we run our algorithm. This helps us obtain
an error correction matrix that helps to mitigate the effect of imperfect readouts on our circuits.
This method is well established and more details can be found in the Qiskit documentation here.
This is more like a form of very restrictive tomography. If we are to obtain error bars, we would need
to run our algorithm many times to obtain a large enough data set. However, this is quite expensive
at this stage of quantum computation, and most other NISQ algorithm papers also do not run their
algorithms many times to obtain error bars on the evolution. We ran our algorithm a few times, and
did not see any noticeable difference in our results. Thus, we did not put in any error bars.

The data in Table 1 is very confusing. According to the notation in equation (5), for K = 1, Sk has
r elements (as many as Pauli strings in H). Are the values of K wrongly labelled, or is equation (5)
wrong? Further, how can increasing K from 3 to 4 for the 4 quit case increase the number of basis
states only by one?

We would like to clarify that we only take unique Pauli strings. For example, if we consider the
Hamiltonian H = X Y273 + Y125 X3 + Z1 X2Ys5 + X1 X2 X3, we will get 4 + 1 states for K=1. How-
ever, for K—=2, instead of getting 42 + 4 + 1 states, we realize that only 8 unique Pauli strings can
be generated (X1Y2Z3, Y1Z2X3, Z1X23/3, X1X2X3, 1122}/3, 211/2]3, 1/1]223, 11]213). Thus, we end up
with only 8 states in our K=2 ansatz for this case.
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Simulating the dynamics of many-body quantum systems is believed to be one of the first
fields that quantum computers can show a quantum advantage over classical computers. Noisy
intermediate-scale quantum (NISQ) algorithms aim at effectively using the currently available quan-
tum hardware. For quantum simulation, various types of NISQ algorithms have been proposed with
individual advantages as well as challenges. In this work, we propose a new algorithm, truncated
Taylor quantum simulator (TQS), that shares the advantages of existing algorithms and alleviates
some of the shortcomings. Our algorithm does not have any classical-quantum feedback loop and
bypasses the barren plateau problem by construction. The classical part in our hybrid quantum-
classical algorithm corresponds to a quadratically constrained quadratic program (QCQP) with a
single quadratic equality constraint, which admits a semidefinite relaxation. The QCQP based
classical optimization was recently introduced as the classical step in quantum assisted eigensolver
(QAE), a NISQ algorithm for the Hamiltonian ground state problem. Thus, our work provides a
conceptual unification between the NISQ algorithms for the Hamiltonian ground state problem and
the Hamiltonian simulation. We recover differential equation-based NISQ algorithms for Hamil-
tonian simulation such as quantum assisted simulator (QAS) and variational quantum simulator
(VQS) as particular cases of our algorithm. We test our algorithm on some toy examples on current
cloud quantum computers. We also provide a systematic approach to improve the accuracy of our

algorithm.

Digital quantum computers have made immense
progress in recent years, advancing to solving problems
considered to take an unreasonable time to compute for
classical computers [1, 2]. Further, quantum computers
are reaching the stage where quantum chemistry prob-
lems such as finding the ground state of certain molecules
can be achieved within chemical accuracy [3]. In short,
we are now in the Noisy Intermediate-Scale Quantum
(NISQ) era [4, 5], which is characterized by quantum
computers with up to a few hundred noisy qubits and
lacking full scale quantum error correction. Thus, noise
will limit the usefulness of the computations carried out
by these computers [4], preventing algorithms that of-
fer quantum advantage for practical problems, such as
Shor’s algorithm for prime factorization [6], from being
implemented.

However, just because such algorithms cannot be im-
plemented on NISQ devices does not mean that quan-
tum advantage for practical problems cannot be found
with NISQ devices. There is currently great interest
in the quantum computing and quantum information
community to develop algorithms that can be run on
NISQ devices but yet deal with problems that are prac-
tical [5, 7, 8]. Some of the most promising avenues deal
with the problems in many-body physics and quantum
chemistry. One major problem in this field is to develop
algorithms capable of estimating the ground state and
energy of many-body Hamiltonians. To such ends, algo-
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rithms like variational quantum eigensolver (VQE) [9, 10]
and quantum assisted eigensolver (QAE) [11, 12] have
been proposed.

The other major problem is to be able to simulate the
dynamics of these many-body Hamiltonians. This task
can be extremely challenging for classical computers, and
Feynman proposed that this would be one of the areas
where quantum computers could exhibit clear advantages
over classical computers [13]. Powerful methods to simu-
late quantum dynamics on fault-tolerant quantum com-
puters have been proposed, such as the concept of using
truncated Taylor series by Berry et al [14].

On NISQ devices, a standard approach in simulating
quantum dynamics is to utilize the Trotter-Suzuki de-
composition of the unitary time evolution operator into
small discrete steps. Each step is made up of efficiently
implementable quantum gates, which can be run on the
quantum computer [15-21]. However, the depth of the
quantum circuit increases linearly with evolution time
and the desired target accuracy. On NISQ devices, fi-
delity rapidly decreases after a few Trotter steps [22],
implying long time scales will be unfeasible to simulate
with this method. Alternatives to Trotterization have
been proposed, such as VQS [23-25], subspace variational
quantum simulator (SVQS) [26], variational fast forward-
ing (VFF) [27, 28], fixed state variational fast forward-
ing (fsVFF) [29], quantum assisted simulator [30, 31] and
generalized quantum assisted simulator (GQAS) [32] to
name a few.

Recently, Otten, Cortes and Gray have proposed the
idea of restarting the dynamics after every timestep
by approximating the wavefunction with a variational
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ansatz [33]. Building on that, Barison, Vicentini and
Carleo have proposed a new algorithm [34] for simulat-
ing quantum dynamics. Their algorithm, named pro-
jected variational quantum dynamics (pVQD) combines
the Trotterization and VQS approaches [23, 24]. They re-
place the differential equation with an optimization prob-
lem, although not well characterized, and require much
simpler circuits compared to VQS. However, pVQD re-
quires a quantum-classical feedback loop and might suf-
fer from the barren plateau problem [35] as well the op-
timization problem may be computationally hard [36].
Further, the feedback loop mandates that one has to wait
for each computation to finish before the next computa-
tion is run, which can be a major bottleneck on cloud-
based quantum computers that are accessed via a queue.

Here, we propose the truncated Taylor quantum sim-
ulator (TQS) as new algorithm to simulate quantum dy-
namics. Our algorithm is building on the ideas of pVQD
[33, 34] combined with the ansatz generation of QAS [30],
which we further enhance by applying the concept of
truncated Taylor series by Berry et al [14]. Our con-
tributions and our algorithm are as following:

1. We recast the simulation of the quantum dynam-
ics as a quadratically constrained quadratic pro-
gram (QCQP). This optimization problem, unlike
the optimization problem in pVQD, is well charac-
terized and invites rigorous analysis. The QCQP in
our algorithm admits a semidefinite relaxation [11].
Moreover, based on ideas from [11], one can provide
a sufficient condition for a local minimum to be a
global minimum, which a solver can further use as
a stopping criterion. Since the classical optimiza-
tion program in QAE is also a QCQP, it helps us
achieve a conceptual unification of TQS with QAE.

2. The differential equations which form the classi-
cal part of QAS and VQS can be recovered in our
framework. Since VQS is already a particular case
of QAS [30], our approach yields both VQS and
QAS as special cases of TQS.

3. We remove the need for the classical-quantum feed-
back loop in pVQD. The absence of the feedback
loop yields our algorithm to be exceptionally faster
than the feedback loop based NISQ algorithms for
simulating quantum dynamics such as [23, 26-29].

4. Our algorithm avoids the trainability issues that
plague other variational quantum algorithms. The
choice of a problem-aware ansatz and the struc-
ture of the TQS algorithm helps bypass the bar-
ren plateau problem. It is known that in varia-
tional quantum algorithms that rely on a paramet-
ric quantum circuit, there will always be a trade-
off between trainability and expressibility, imply-
ing that a highly expressible ansatz cannot be eas-
ily trainable [37]. In our case, we do not rely on
parametric quantum circuits, thus we bypass this
problem. Furthermore, our algorithm provides a

systematic way to obtain a more expressible ansatz,
which is missing in other algorithms.

TQS Approach— Let us first assume that the Hamilto-
nian H is expressed as a linear combination of r tensored
Pauli matrices

H=> BiP, (1)
i=1

with coefficients 8; € C. The unitary evolution under the
action of the Hamiltonian H for time At is given by

U (At) = exp (—tHAt) = exp | —tAt Z B P; (2)
j=1
2

T 2 T
:I—LAt Zﬂjpj —ATt Zﬁjpj +O(At3)
j=1 j=1

We do not need to implement the action of the unitary
evolution in such a way. However, for purposes of describ-
ing the algorithm, we will use this power series expansion
first, and talk more about alternatives later. We will now
truncate the series, similar to [14]. If we choose small val-
ues of At with respect to the eigen energies of H, we can
approximate the unitary evolution with V' (At)

j=1

Let us next choose the ansatz at time ¢ as linear com-
bination of elements from cumulative K-moment states,
CSk (refer to [30] for the formal definition). These states
are defined in the same way as in [30] and will be con-
structed with the help of the given Hamiltonian, by es-
sentially considering powers of the Hamiltonian. In terms
of Pauli matrices, given a set of r tensored Pauli unitary
matrices obtained from the unitary terms of the Hamil-
tonian P = {P;};_; and a positive integer K and some
efficiently preparable quantum state |¢), the K-moment
states are the set of quantum states of the form

{Ixi)}i = {Pix - PP [0) ik 2y somiinms (B)

for P; € P, where the indices 7 all run from 1 to r.
We note that we only include unique states within the
set {|x:)}i. This corresponds to removing any repeated
Pauli unitary in P. It should also be mentioned that the
way the K-moment states are being generated is closely
related to the Taylor expansion of the time evolution op-
erator. If we consider the evolution of an arbitrary state
by the time evolution operator, by observing that the
Taylor expansion involves powers of the Hamiltonian H,
it is clear that choosing the ansatz in such a way is suit-
able, as the {|x;)}:; states are essentially states in the



Hilbert space of H*|t)). This set is denoted by Sg. The
cumulative K-moment states CSy are also defined in [30]
as CSk = Uf(:OSj.

Now the ansatz is expressed as

S ), (6)

[xi)ECSK

[ (a(®)x =

with some «; € C. For small values of At, the ansatz at
time ¢t + At is given by

[ (a (t+ At) i =
V(A8 [ @ () o
(0 (@) VT (AOV (A1) [ (@ (1))

Using the ideas in [34], our goal now is to variationally
approximate the time evolution of the system by adjust-
ing our variational parameters. The crucial difference in
our case is that our variational parameters « are coeffi-
cients which do not change the basis quantum states |x;).
Thus, they can be solely updated via a classical computer
and do not require a quantum-classical feedback loop. To
evolve by time At, we update the a; parameters to o
such that the following fidelity measure is maximized

| (@) |V (A) [ (@) |
(¥ () [ VT (AL V (At) [ ()

Using the notation |¢) =V (At) | (a)) k, the expression
for fidelity becomes

N

F(of) = (8)

n_ (@ (@) o)k (el (o)) K
F = 9
) (610) ©
Using the notation W, = %, the above expression
further simplifies to
F () = (¥ (o) [kWe|¥ () k- (10)

The goal is to maximize the fidelity subject to the con-
straint that (¢ (a/) | (o)) = 1. Thus, the optimization
program at timestep t is given by
max {1 (o) [k Wl (o))
st () [ (o)) i = 1. (11)

Using the elements from CSyx and the Hamiltonian H,
we define the overlap matrices £ and D as the following

gm,n = <Xm|Xn>7 (12)
Do = D Bi{xm| Py xn): (13)

Because of the way the |y, ) states are constructed, these
values can be easily computed on a quantum computer,
as they simplify to the expectation values of Pauli strings
acting on the original quantum state |¢). The constraint

in the optimization program 11 can written in terms of
o as

o Eal = 1. (14)
We proceed to write the objective in the optimization
program 11 in terms of the overlap matrices £ and D. In
first order, we can simplify the expression

(@lo) = ()| (I + (A2 H?) [(a))
=af€a +0((A1)?) = af&a. (15)

Further, using the notation G = (£ — tAtD) we find

;

(¥ (@) |9)x (9]¢ (') x = " GaalGTa. (16)
Using Eq.14,15,16 and the notation W, = %;a@’ the
optimization program in 11 can be re-expressed in terms
of overlap matrices as

max o Waa! (17)
st € = 1. (18)

The aforementioned optimization program is a quadrati-
cally constrained quadratic program with a single equal-
ity constraint. As described in [11], this QCQP admits
a direct convex SDP relaxation. Moreover, the results
from [11] provide a sufficient condition for a local min-
imum to be a global minimum, which a solver can fur-
ther use as a stopping criterion. Alternatively, the prob-
lem can be solved with the classic Rayleigh-Ritz proce-
dure by finding the eigenvector associated with the small-
est eigenvalue A of the generalized eigenvalue problem
—Woo! = \Ed/.

It can be shown that in the limit of small At, TQS re-
duces to QAS (see Appendix C). This could potentially
give us a way to obtain systematic higher-order correc-
tions to the QAS matrix differential equation. Interest-
ingly, this is a conceptual unification of the ground state
problem (QAE) with the dynamics problem (QAS) in
the quantum assisted framework. In QAE, finding the
ground state and ground state energy of a Hamiltonian
was formulated to become a QCQP. In TQS, the problem
of simulating the dynamics is also given as a QCQP. This
is conceptually satisfying as the problem of finding the
dynamics is expressed as e~ |¢), which is mathemati-
cally similar to using imaginary time evolution to finding
the ground state via e~ |3)). The aforementioned con-
nection is also one of the primary justifications for ansatz
selection in [12]. We note that as alternative it is possible
implement the unitary evolution operator U (At) directly
instead of the Taylor series expansion of Eq.7, however
this would require the usage of Hadamard tests (see Ap-
pendix D).

We want to emphasize again that the quantum com-
puter is only required to measure the overlap matrices
€ and D at the start of the algorithm. No quantum-
classical feedback loop for optimization is required. The
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FIG. 1. Time evolution of TQS on a 2 qubit state, with
Hamiltonian Hs2, simulated on the IBM quantum processor
ibmg_rome. a) Expectation value of (Z1) b) Fidelity of the
state.

only optimization steps required are performed solely on
the classical computer with knowledge of the overlap ma-
trices. The algorithm is as follows:

1. Choose an efficiently implementable initial state
|1}, then choose some K>0 and form the unique
K-moment states |y;) to construct the ansatz.

2. With knowledge of the Hamiltonian H, calculate
the overlap matrices £ and D on the quantum com-
puter. The job of the quantum computer is now
done.

3. Choose a small At with respect to the eigenvalues
of H and evolve the state forward in time using
a classical computer, by solving the optimization
program 17 subject to the constraint 18.

If a higher fidelity for the simulation is desired, one can
increase K to acquire an ansatz with a higher express-
ibility. The timestep At could be increased by including
higher order terms in the power series expansion of U (At)
in our calculations (Described in Appendix E).

Results— We first use TQS to simulate a 2 qubit Heisen-
berg model

1 1 1
HQ == inXQ + §Y1}/é + §Z1Z2. (19)

We apply it to evolve an initial randomized 2 qubit state
|th2). This initial state is generated by 5 layers of Us
rotations and CNOT gates on the 2 qubits (see Appendix
A). We ran the TQS algorithm on the 5-qubit quantum
computer ibmgq_rome, available through IBM Quantum
Experience. We used error mitigation by calibrating the
measurement errors and applying a filter obtained from
that calibration on our data with the toolbox provided in
Qiskit [38]. The results are shown in Fig.1. The evolution
of the state under TQS reproduces the exact behavior
very well for an ansatz with K = 1 moment states, even
in the presence of the noise of a real quantum computer.

Next, we apply TQS to simulate a 4 qubit XX chain
model on a quantum computer. Although this Hamilto-
nian is analytically solvable, we simulate this as a proof

of principle.

1 1 1
Hy= X0 X + 5 Xa X5+ 5 X X (20)

In Fig.2, we simulate this Hamiltonian on ¢bmg_rome
with an initial randomized 4 qubit state, generated by
5 layers of Us rotations and CNOT gates (see Appendix
A). We run it for the K = 1 to K = 3 moment states.
The evolution of the state under TQS again reproduces
the exact behavior very well for the K = 3 case.
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time time
FIG. 2. Time evolution of TQS on a 4 qubit state with

Hamiltonian H4 simulated on the IBM quantum processor
ibmg_rome. a) Expectation value of (Z1) b) Fidelity with
exact solution.

Next, we investigate in Fig.3 the transverse Ising model
with 8 qubits by simulating TQS on a classical computer.

6 7
1
Hy = 5 ZiZis1 + > X (21)
i=0 =0

With an initial random state, we find that the evolution
of the state reproduces the exact dynamics for the case
of K = 3 moment expansion.

Lastly, we compare TQS to pVQD for a 2 qubit trans-
verse Ising model on a simulation. We consider the 2
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FIG. 3. Time evolution of TQS on a 8 qubit state, with
Hamiltonian Hg, simulated on a classical computer, with a
random initial state. The initial state was generated with 3
successive layers of Us rotations with randomized parameters
on each qubit, followed by CNOT /entangling gates. This is
further described in Appendix A. a) Expectation value of
(Z1). b) Fidelity of the state.



qubit transverse Ising Hamiltonian:
2 2
Hrpro = ; §ZiZi+1 + ;)Xj- (22)

We compared them with noisy simulators, with the
noise models taken from the IBM Quantum Experience
provider, which is meant to mimic the noise on their ac-
tual quantum computers. The results are shown in Fig.4.
As can be seen, while both TQS and pVQD do have
errors when trying to simulate this Hamiltonian in the
presence of noise, the results for the expectation values
of the state for TQS are closer to the classical results
most of the time. This is especially so for the expec-
tation value of (Z;). However, while the results might
be argued to be somewhat similar, the resource needs
of both algorithms on the quantum computer are quite
different. The TQS algorithm in our case required ~ 30
circuits to be run, while the pVQD simulator required
well over 4000 circuits to be run, which is already a lit-
tle challenging for us to run on the IBM Quantum Ex-
perience. It should be mentioned that if we wanted to
increase the simulation time for this example, since the
algebra has already closed, we could do that with no
extra circuits with TQS, while the number of circuits
in pVQD scales linearly with the number of steps re-
quired. Furthermore, we only needed to use 4 variational
parameters in the TQS case, while for the pVQD case
we required 8 variational paramters. This behavior of
TQS requiring less variational parameters to get a simi-
lar result seems to be consistent for the small models we
tested, as the other variational algorithms usually need
an over-parameterized ansatz when using hardware effi-
cient ansatz. Maybe add a citation here

We also compare TQS to Trotterization on a noisy sim-
ulator, for a 2 qubit transverse Ising Hamiltonian.

Hyrpr = Z122 + X1 + Xo. (23)

A simple Trotterization of the time evolution operator
for this case is decomposed as:

N
e—iTHzﬁTF[ ~ H ((e—iétizlzg) (e—iz;tiX]e—iétng )) ;
i=1

(24)

with Zf\il 0t; = 7. The results are shown in Fig.5. As
can be seen, even for a simple case such as this, due to
the circuit lengths in Trotter increasing linearly with the
time, the circuit lengths rapidly grow too long to ob-
tain any meaningful results from the quantum computer.
This is in contrast to TQS, which is able to capture the
dynamics faithfully for a high enough K (representing an
expressible enough ansatz).

In Fig.6, we study our algorithm for up to thousands
of qubits N. We use a Hamiltonian H = Y. | P,
that consists of r randomly chosen N-body Pauli strings

--- pvQD e TTQS
—— Classical

1.04

0.5

0.0

(Y1)

—0.5

~1.01

FIG. 4. Time evolution of TQS and pVQD on a 2 qubit
state, with Hamiltonian Hrrr 2, simulated with a noisy sim-
ulator. The noise model was taken from the IBM Quantum
Experience provider, mimicking the noise of the real quantum
processor ibmg_bogota. pVQD was run for 100 optimization
steps, and made use of a parametric quantum circuit with 8
parameters, made out of sucessive layers of single qubit X
rotations and 2-qubit ZZ rotations. The expectation values
of (Y1) and (Z1) are plotted.

0.75 4

0.50 1

0.254

= 0.00
N
—0.25
—— TQSK=1
0509 tosk=2
—— TQSK=3
—0.75 1 —— Classical
—— Trotter
0 2 4 6 8 10

time

FIG. 5. Dynamics of Hz rr; compared between Trotteriza-
tion and TQS. The noise model was taken from the IBM
Quantum Experience provider, mimicking the noise of the
real quantum processor ibmg_bogota. We used a total of 100
steps for the Trotterized run. The expectation value of (Z1)
is shown.

P; = @ 0;, where o; € {I,X,Y,Z}. The cumula-
tive K-moment states close at order K = r and yield
the full ansatz space necessary to describe the dynam-
ics exactly. We use the product state [0)" as initial
state for the dynamics. This choice makes the dynam-
ics tractable for classical computation. However, choos-
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FIG. 6. Dynamics of Hamiltonians consisting of multi-body
Pauli strings for varying number of qubits N. Hamiltoni-
ans are composed of r different random Pauli strings H =
>r_1 Pi, where the Pauli strings P; = ®§-V:10'j consist of
N tensored Pauli operators o; € {I,X,Y,Z}. The initial
state [¢) = |0)®" is the N-qubit product state with all zeros.
The cumulative K-moment states consists of 2" = 128 ansatz
states and exactly captures the full dynamics.

ing an highly entangled initial state |¢)) would require a
quantum computer to evaluate the overlaps. For such in-
tractable states, our method provides a possible quantum
advantage.

Discussion and Conclusion— The currently proposed
NISQ algorithms face problems in scaling up to sys-
tem sizes where classical computers cannot simulate
the same systems, or in other words, to the point
where we would see quantum advantage. For exam-
ple, VQS/SVQS/pVQD require the use of a quantum-
classical feedback loop, usually require complicated cir-
cuits, share similar problems as VQE like the barren
plateau problem, and lack a systematic way to generate
a parameterized ansatz. VFF/fsVFF also suffers from
lacking a systematic way to generate the ansatz, usually
requires complicated circuits and has to run a quantum-
classical feedback loop it at the start. Further, the no
fast-forwarding theorem suggests that not all Hamilto-
nians will be able to be accurately diagonalized with a
reasonable amount of gates and circuit length, and the
optimization step of the cost function in VFF might be
too difficult to carry out efficiently. However, the barren
plateau problem and ansatz state generation could be im-
proved upon by applying various techniques [37, 39-42].

One problem that VQS and QAS share is that they re-
quire solving a differential equation which includes the
pseudo-inverse of a matrix, whose elements are mea-
sured on a quantum computer. This matrix can be
ill-conditioned. This procedure, via singular value de-
composition, can be numerically unstable and sensitive
to noise, especially as the system increases in size [43].
However, the sensitivity of these matrices has not been
rigorously analyzed and more work has to be done to

understand the scaling of the sensitivity.

In this work, we develop TQS for simulating quantum
dynamics on digital quantum computers. TQS recasts
the dynamical problem as a QCQP optimization pro-
gram, which is well characterized unlike the optimization
program in pVQD, allowing us to avoid the aforemen-
tioned problem in VQS and QAS.

At the same time, TQS retains the advantages of QAS,
namely providing us a systematic method to select the
ansatz, avoiding complicated Hadamard tests and con-
trolled unitaries, avoiding the barren plateau problem,
and only requiring usage of the quantum computer at
the start, all of which are problems that are present in
pVQD.

However, there are still many problems to tackle in
our approach. One problem is an inherited problem from
QAS. As the Hamiltonian size and complexity increase,
large K values may be needed to generate enough states
for a sufficiently expressible ansatz to produce accurate
results. It is clear from the connection between the Tay-
lor expansion of the time evolution operator and our K-
moment states that in the general case, the further in
time we want to simulate, the exponentially larger our
ansatz should be and the harder the difficulty of generat-
ing that ansatz. However, this is fundamentally a com-
plexity theoretic statement which can not be bypassed in
the general case by any quantum simulation algorithm
based on parametric quantum circuits (variational quan-
tum algorithms) or linear combination of quantum states
(our algorithm). Though our algorithm uses a problem
aware ansatz, more information from the problem such
as the combination coefficients 8; and symmetries of the
Hamiltonian could be employed to further tame the com-
plexity. A further discussion and analysis on the number
of states needed is given in appendix B.

As the system size increases, it may be required to re-
duce At to preserve accuracy in the post-processing part
of the algorithm. This will increase the computational
cost of the classical computer. The number of optimiza-
tion steps to be carried out increases linearly with the
number of discretizations steps of the evolution time. De-
termining whether this poses a bottleneck for TQS when
applied to large systems requires further studies.

Furthermore, in the presence of noise, the calculated
fidelity of our states can go above one. A possible ori-
gin are small eigenvalues in the £ overlap matrix, which
can give the procedure of optimizing or solving the gen-
eralized eigenvalue problem numerical instability. As we
scale up the system and consider more ansatz states, this
issue can become more prevalent.

We expect our algorithm not to provide quantum ad-
vantage in the general case. However, we believe our al-
gorithm is capable of providing quantum advantage over
classical methods for certain cases. The conditions where
we believe our algorithm will do so are:

e The basis states which are used to represent the
initial quantum state are highly entangled. This



will render the calculation of corresponding over-
laps classically hard, as it boils down to a circuit
sampling task. Note that the Quantum Thresh-
old Assumption (QUATH) by Aaronson and Chen
[44] says that there is no polynomial-time classical
algorithm which takes as input a random circuit
C and can decide with success probability at least
14 (5 ) whether [(0"|C|0")|? is greater than the
median of |(0"|C|z™)|? taken over all bit strings z".
In other words, the circuit sampling task is difficult
and hence classical algorithms will not be able to
compete with algorithms based on circuit sampling
as system size scales. The quantum part of TQS is
based on circuit sampling which is classically diffi-
cult.

e The Hamiltonian possesses a particular structure.
For example, the Hamiltonian consists of a small
number of unitaries, the Krylov subspace closes
fast, or the Hamiltonian is a low-rank matrix. We
demonstrated such an example for a Hamiltonian
consisting of a limited amount of multi-body Pauli
strings where our method can simulate the dynam-
ics of thousands of qubits. These Hamiltonians
would be challenging for other methods such as
Trotter or variational quantum algorithms. First,
simulating the multi-body interaction would re-

quire deep circuits to implement. Further, for the
number of qubits we studied it is very difficult to
find an expressible ansatz that captures the dynam-
ics accurately. A further prominent example that
has been of major interest recently are quantum
many-body scars. They can arise when the Krylov
subspace closes fast at a low order K [45]. Our al-
gorithm is thus very capable to simulate these fun-
damental effect of many-body physics using NISQ
computers.

e The system size of interest should be beyond the
reach of classical simulation methods, for example
beyond a few dozen qubits.

In the future, the NISQ community should investigate
these challenges, so that we can successfully run NISQ
algorithms for larger qubit numbers.
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Appendix A: Details on running circuits on the IBM quantum computer

For the runs on the real quantum computer, we generated an initial state with randomized parameters to evolve
with the following circuit. It comprised 5 layers of successive Us rotation with randomized parameters on each qubit,
followed by a CNOT /entangling gate. We (see Fig.7 and 8). We sampled from each circuit 8192 shots.

0) —] B=(©1) | Ry(62) | R-(63)

10) —] Re(01) | Ry (05) - R.(06)

FIG. 7. Circuit for two qubits that generate one set of Us rotation with randomized parameters, followed by a CNOT gate
between the 2 qubits. 5 successive layers of this circuit were used to generate the initial starting state for the 2 qubit case on
the IBM quantum computer for our runs of TQS. The ©s were randomly generated.

10) —{ R.(©1) }—{ Ry(©2) }—{ R.(©3) I .

0) — Ra(©4) | Ry (©5) | R=(Os)

10) —] Ro(07) F— Ry (05) | B-(69)

|0) —{ Rz (©10) H Ry(©11) H R.(©12) I z

FIG. 8. Circuit for four qubits that generate one set of Us rotation with randomized parameters, followed by a series of CNOT
gates between the adjacent qubits. 5 successive layers of this circuit were used to generate the initial starting state for the 4
qubit case on the IBM quantum computer for our runs of TQS. The ©s were randomly generated.
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K=1K=2K=3|K=4
2 Qubit Case|1 4
4 Qubit Case|1 4 7 8
8 Qubit Case|1 17 137

TABLE I. Comparison of the number of basis states used to construct the hybrid ansatz for each K for each Hamiltonian.
For example, the K = 2 expansion for the 4 qubit case, using the Hamiltonian H4, requires 4 quantum states to construct the
hybrid ansatz. We only considered unique states, which correspond to only taking unique Pauli strings. For example, in the
8 qubit case, while the number of Pauli strings in the Hamiltonian is 15, which might suggest the K = 3 expansion generates
15% 4+ 152 4+ 15 + 1 = 3616 Pauli strings and thus 3616 states, many of them are repeated and only 137 of those strings are
unique. Thus, we only end up having 137 states in our ansatz.

Appendix B: Number of basis states considered for each K, and discussion on scaling

The number of basis states that was used to construct the hybrid ansatz, for each K moment expansion, for each
Hamiltonian, is given in Table I.

Given a scalar 7, an N x N matrix A and an N x 1 vector v, the action of the matrix exponential operator exp (7A4)
on v can be approximated as

exp (TA)v = pr_1 (TA) v, (B1)
where px_1 is a K — 1 degree polynomial. The approximation in equation Bl is an element of the Krylov subspace,
Kri_1 = span {U,Av,-~- ,AK_lv}. (B2)

Thus, the problem of approximating exp (7A) v can be recast as finding an element from Krx. Note that the approx-
imation in equation Bl becomes exact when K — 1 = rank(A). In our case, we can identify v with the initial state
|y, 7 with —ut and A with the Hamiltonian H.

In the worst case, the number of overlaps scales as O(r) for 7 terms in H. By observing the Taylor expansion of the
time evolution operator exp(—iHAt), we can see that at longer times we would struggle with finding an expressible
enough ansatz in the general case, as we need to keep considering higher powers of H. This is fundamentally an
expressibility problem, present in all NISQ variational algorithms, be it based on linear combination of states or those
based on parametric quantum circuits. It is known that to prepare an arbitrary state on an n qubit quantum computer,
we require a circuit depth of at least %2“ [46-49]. This suggests that it is very hard to produce an expressible enough
Ansatz to reproduce an arbitrary quantum state in the Hilbert space.

It is known that the the Krylov subspace spans the entire space when you exponentiate the Hamiltonian H to the
power of K — 1, where K — 1 = rank(H). Thus, the number of states that we require in our Ansatz scales linearly
with the rank of the Hamiltonian. We believe that this scales favourably compared to other NISQ algorithms such as
VQS and VFF.

Furthermore, one of the major contributions of the TQS algorithm is that, by using this problem-aware Ansatz, it
provides a systematic way to obtain a more and more expressible Ansatz. The other variational algorithms like VQS
and VFF still do not have a systematic method to generate an expressible enough Ansatz, or to improve on an Ansatz
in a efficient way. Also, it has been shown that if we use a hardware efficient Ansatz, we would in general expect
to encounter the barren plateau problem, which makes it very hard for the algorithm to train and optimize [35, 50].
Furthermore, the usual technique of using more and more layers of hardware efficient Ansatz circuits gives no guarantee
that it will become more and more expressible in an efficient manner, when compared to the number of variational
parameters that we are adding. There is also no guarantee that this will indeed improve the appropriateness of the
Ansatz. This is especially true for larger systems. In TQS, with the way we generate the Ansatz with K moment
states, we can see that at worst, we get an Ansatz with as many states as the size of the Hilbert space, which is fully
expressible. This is due to the group of Pauli strings closing on itself eventually. Also, we can see that as we increase
the K, we will definitely improve our Ansatz and get to a point where it is eventually expressible enough. In future,
using the coefficients of the terms in the Hamiltonian, we expect to be able to slow down the growth of the number
of states.

Our algorithm also relies on being able to calculate expectation values of powers of the Hamiltonian, (|H¥|y) in
an efficient manner. If we look at the Pauli string level (break our Hamiltonian into linear sums of Pauli strings), the
number of Pauli terms in H* grows exponentially in k. Right now, for current implementation of our algorithm on
available quantum computers, this breaking into Pauli strings is necessary due to the imperfections in said quantum
computers. However, if we allow more complex operations that cannot be performed very well right now, such as
complex controlled unitaries, the resources needed to measure such (1| H¥|¢)) values might scale less [51].
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We would also like to mention that depending on the Lie algebra of the Pauli terms in the Hamiltonian and the rank
of the Hamiltonian, the number of required overlaps can be a lot smaller compared to the upper bound. By considering
specific kinds of Hamiltonians, the number of states needed will be manageable. As an example, for a system size
with a multiple of 3 qubits, if we consider the Hamiltonian of the form H = XY ZXYZ. XY Z+YZXYZX..YZX +
ZXYZXY.ZXY+XXXXX..XXX, the set of K-moment states is maximally size 8, implying that 8 ansatz states
are sufficient to simulate the dynamics with our algorithm .

Appendix C: QAS and VQS as special cases of TQS

In this appendix, we show that in the limit of choosing a very small At¢, one obtains QAS from TQS. Since VQS
is a special case of QAS [30], we get VQS also as special case of TQS. We start out with the series expansion of
(a4 b))

[(& + dd)) )+ Z 7)) daj. (C1)

Now in TQS we want to maximize the overlap of U(At)|¢(&)) and |¢(&@ + d&)), which is essentially the fidelity
measure in equation 8

4]0 A0+ = | (@] UT(80) (@) + 3 i) U (2250, (0. 0]

Y(@)=2; ajlx;
[$(@)=%; es1xs) (W(@)| U (A (@ Z (@) UT(AL) |x;) ey | x [C. C]]

J

= {@(@)|U" (At [y (@ |2+Z @) UN(AL) [x;) (@) U(AL) [(d)) b

+ 061U (A [9(@) (0(@)] UT (AL [(a)) 60 +Z @)U (A|x;) (xelU (A |(d)) dazoar.  (C2)

J

Now in the same manner as QAS, using the Mclachlan’s variational principle [24, 30, 31, 52|, we demand that the
variation of this fidelity is equal to 0 with respect to «;:

= (@)U (A) [x) (0(@)| U(A?) [ (@ Z @)U (A)]x;) (xelU (A1) |(d)) da = 0
= (Y(@)|U(AY) [p(a@ +Z Xk U (A)[1p(@)) b, = 0. (C3)

Now we substitute in U(6t) = I — iAtH:

= (W(@)|(a@)) — I ((@) H [9(@)) + Y (xl(@)) daf, — it Y (xulH|(@)) daf = 0. (C4)
k k

Now we take the derivative of this equation with respect to At. Note that A 70y, = dcy. We then discard any terms
remaining that are linear in At or in da (implying we have chosen such a small At that da is also very small).

= —i ((@)| H [¢(a@ +Zaak (k| (@)) daj, = 0. (C5)

Using the above definition of the £ and D matrices in equation 12 and 13, this simplifies to:
= —id'Da+aléad =0
— &&= —iDa. (C6)

This is exactly the same differential equation that we aim to solve in QAS. If we do not ignore the higher order terms,
we could obtain systematic higher order corrections to the QAS matrix differential equation using such a method.
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Appendix D: Unitary implementation

As alternative, we could implement the unitary evolution operator U(At) directly instead of the Taylor series
expansion of Eq.7

Y (a(t+ A1)k = U (At) ¢ (a (1)) k- (D1)

and defining the matrix Ry, = (Xm|U(At)|xn) to solve the program
max o' Raa R/ (D2)
sto €/ =1. (D3)

U(At) could be implemented with a Trotter decomposition or with an oracle. However, this complicates the circuits
needed to calculate the R matrix, requiring the usage of Hadamard tests.

Appendix E: Higher order approximations

We investigate higher order expansion for the evolution operator in this section. First, we define the overlap matrix

J
jm,n = ZBiﬁj<XmuDin‘Xn>- (El)
i,
Considering the next highest power expansion of U(At):
2

U(At)%[—LAt Zﬁjpj

Jj=1

S 8P| =va(An, (E2)

At? [ &
2 -
j=1

and defining |¢) = Va(At) |(a)) x, the constraint in the optimization program 11 turns out to be still the same as
equation 14:

W (")) =a" Ea. (E3)

It turns out that (@|¢) is actually exactly equal to af Ea, which is the result we used earlier in equation 15, as all the
2nd order terms nicely cancel out.

Now, using the notation Gy = (5 — LAtD — A7’52\7),

:
(W (@) 9) k(B () ke = o Graa! Gha. (B4)
Now the optimization program in 11 can be re-expression in this higher order approximation as
\Tell
A [ Gead'Gy\
E5
e ( aféa )a (E5)

st o o =1.

ot
And using the notation W3 o, = %, we further condense the above optimization program as
max o/TWQ,ao/ (E6)
a/
sta o =1. (E7)

Once again, the only work that the quantum computer need to do is to calculate overlap matrices in the start, in
this case having to calculate £, D and J. In fact, when going from lower order approximations to higher order
approximations, you can reuse the saved matrices and only calculate the new ones needed. In this case, in the original
TQS, which uses a first order approximation for U(At), we already have the & and D matrices, so if we deem the
results not up to our desired accuracy, we can easily go to the second order approximation showed here, and only
require calculation of one additional matrix 7.



