
Dear Editor(s),

We would like to thank you again for considering our submission titled “NISQ Algorithm for Hamiltonian
Simulation via Truncated Taylor Series” for publication in Scipost. We would also like to extend our gratitude
to the referees for their second round of valuable feedback and reports. We have addressed their comments in
the reply below, and edited the manuscript accordingly.
We hope that the improved manuscript is fit for publication in Scipost.

Yours sincerely,
J.W.Z. Lau, T.Haug, and L. C. Kwek, K. Bharti

Response to Reviewer 1

Reviewer 1: The response to point 2 in my previous report is not reflected in any changes in the manuscript. (In
the thirds step of the description of the algorithm 4t is chosen based on knowledge of the eigenvalues
of H, however diagonalizing a many-body Hamiltonian is a challenging task in its own right, and this
knowledge should not be assumed.)

Authors: We thank the referee for pointing out the missing change in the manuscript and sincerely apologize
for this oversight. We have updated the manuscript accordingly, and the change is found in the
highlighted portion on page 2 on the updated manuscript. We reproduce the change here:

“∆t should be chosen smaller than all relevant timescales of the Hamiltonian H to be simulated.
This requires knowledge of the spectrum of H, which in general is not available. However, we can
find appropriate values for ∆t in an heuristic manner. In our algorithm, the evolution with ∆t is
performed on a classical computer only and thus we can choose any value for ∆t without requiring
any quantum computational cost. Thus, we can simply evolve with a very small value for ∆t. To
verify it is small enough, we can repeat the classical evolution for an even smaller value such as ∆t/2.
If the results for both ∆t and ∆t/2 match, we can assume that the value for ∆t is appropriate.”

Reviewer 1: The authors have not replied to point 5 in my previous report. (It is shown in figures 2 and 3 that
a choice of K = 3 saturates the fidelity even for very long times for the respective models. This is
a striking feature that is not discussed in detail. Should one expect such a saturation to happen
for more general models? Under which conditions? Or is it a consequence of the simplicity of the
considered models?)

Authors: We thank the reviewer for the comment. For our algorithm, only two types of errors can enter the
algorithm. First, the error resulting from the ansatz being not expressible enough. Secondly, initial
errors in the measurement of the matrix elements on the quantum computer which can propagate
errors in the time evolution performed on the classical computer. However, no additional errors
enter in the computation of the time evolution itself as it corresponds to classical post processing
of the relevant data from the quantum computer. If we are able to obtain very accurate initial
measurements for our matrix elements, and use an ansatz that fully captures the solution space, we
believe that our algorithm in general will be able to simulate the dynamics accurately indefinitely.
For our simulations, once we generate an expressible enough ansatz that captures the full solution
space as well as perform accurate measurements, we expect that the our results will saturate the
fidelity even for long evolution times.

For this specific case in figure 3, a choice of K = 3 produces an ansatz of 137 states, while the full
Hilbert space dimension is 256. As mentioned, we are studying the Ising model which has certain
symmetries. These symmetries reduce the solution space, which becomes smaller than the full Hilbert
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space. In this case, we suspect that the ansatz already fully captures the relevant Hilbert space. A
similar situation occurs for figure 2. However, note that we need not go to large K if we are only
interested in short time scales. For example, for the K = 2 case, we get good fidelity for short time
scales.

We have updated the manuscript to mention the above point, highlighted on page 4 of the updated
manuscript.

Reviewer 1: A similar comment to the previous point applies to the results in fig 5. K = 3 performs remarkably
well, this is a feature that should be discussed.

Authors: The same reasoning as in our previous answer applies here. We have updated the manuscript
accordingly to clarify this point.

Reviewer 1: The clarity of fig. 5 could be improved by using different markers for different lines.

Authors: We thank the referee for the comment. We have updated the plot accordingly.

Reviewer 1: Some formal inaccuracies that I pointed out in the previous version still persist, please fix them.

Authors: We thank the referee for the comment. We sincerely apologise for this oversight. We have fixed the
following inaccuracies that were pointed out.

1.The indices in equation (5) seem to be incorrectly formatted.
2.Reference [3] has the name of the collaboration incorrectly formatted.
3.Typo in equation (21), the summation goes over 9 qubits, instead of 8.
4.Typo in the summation indices of equation (22).
5.Typo in Appendix A, end of first paragraph: “We” is repeated.

Reviewer 1: Typo in the generalised eigenvalue equation.

Authors: We thank the referee for pointing out this mistake. We have fixed the topographical error.

Reviewer 1: A comment is misplaced above eq. (23)

Authors: We have fixed it.

Response to Reviewer 2

Reviewer 2: Overall, the authors took great efforts to answer my questions and to address my comments. My
main criticism was related to the dimension of the variational space (i.e. the number of cumulative
k-moment states) required to faithfully describe the time-evolved state. To some extent, I do agree
with the authors that this is related to the fundamental question of expressibility of variational
quantum circuits. I would not go so far and say that this is in general a completely open question
for all variational quantum algorithms. Most likely it is true when it comes to time evolution of
many body systems. On the other hand, if one (for instance) uses a variational quantum eigensolver
to prepare ground states of local gapped Hamiltonians, we know that these states should fulfil
the area laws of entanglement and are thus described by finite bond-dimension tensor networks.
According to that, we know that such states are described by a number of parameters that only scale
polynomially in the system size, in which case a "relatively" short depth quantum circuits should
provide sufficient expressibility. Time evolution as discussed in this manuscript is of course a different
story. Nevertheless, I would add the statement that this fundamental problem of expressibility does
particularly emerge in variational algorithms for time evolution.
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Authors: We thank the reviewer for the insightful comments. We have added in comments in the main
manuscript to mention that this problem particularly emerges for the problem of time evolution,
highlighted in page 6 of the manuscript.

Reviewer 2: I have the feeling that my question of how quickly the required size of the k-moment state-set grows
as a function of time has not really been answered. The authors say that in the worst case, the
parameter K is equal to the rank of the Hamiltonian, but that means that in this worst case the
method is impractical. I do not understand the statement of the authors: "... Thus, the number of
states that we require in our Ansatz scales linearly with the rank of the Hamiltonian. We believe
that this scales favourably compared to other NISQ algorithms such as VQS and VFF." How can
this clearly exponential scaling be favourable compared to something else?

Authors: We thank the reviewer for the comment. We have removed the statement that suggest that our
algorithm scales in general favourably compared to other NISQ algorithms. In the worst case we
expect that VQAs and our algorithm scale exponentially. However, we would like to emphasize two
main points that suggest favorable performance of our algorithm for many practical cases.

1.Other algorithms like VQS that rely on a parameterized quantum circuit currently do not
have systematic ways to generate a more expressible ansatz. Heuristic ways, like the hardware
efficient ansatz that rely on adding in more layers and more one and two qubit rotations, do not
have guarantees that there will be a cap on the amount of layers needed, and thus no cap on the
amount of variational parameters needed. While VQS has not been explored that much in the
community, its cousin VQE has been, and most applications of VQE have relied on a heavily
over-parameterized ansatz, which means that empirically, it seems that they will require even
more parameters than the size of the Hilbert space. For this trade off, there is no guarantee
that it will work and provide a more expressible ansatz.

2.In contrast, our algorithm gives a systematic way to generate the ansatz. We agree that in the
worst case the scaling is exponential, but this is an issue related to the expressiblity problem
that will be present for all variational algorithms in general for the worst case. In contrast
to most VQS algorithms, our ansatz is problem-aware and is adapted to the problem at hand.
Thus, we believe that our algorithm can scale favourably, for example in cases where the Krylov
subspace closes fast. Further, our simulations show numerical evidence that we have superior
performance for small scale problems on current quantum devices compared to other algorithms.
However, so far a comprehensive study on the scaling is absent for both variational quantum
algorithms and our algorithm, thus we have to rely on heuristics so far.

Reviewer 2: I still have the feeling that in the cases where the numerical results match the exact time evolution (for
example Figure 3 a)), the number of basis states matches (or exceeds) the Hilbert space dimension.
The authors pointed out that in this case there are 137 states in the set while the full Hilbert space
dimension is 28 = 256. But of course the Ising model studied here exhibits certain symmetries, like
reflection around the center or a global Z2-symmetry which is perhaps (?) satisfied by the ansatz.
These symmetries might easily reduce the dimension by a factor of 2.

Authors: We thank the reviewer for the comments. We do agree that due to underlying symmetries of the
Hamiltonian, the reduced number of basis states could be explained by this. We now explicitly
mention this in the caption for Table I in the manuscript (where the basis states are mentioned).

Reviewer 2: The authors draw several connections to Krylov time evolution. In these algorithms the task is to
apply e−i4tH at each time step to the current state. To this end one constructs the Krylov subspace
at every time step, based on powers of H applied to the state. The number of Krylov vectors is

3



related to the size of the time step one is able to perform. It seems to me that the algorithm proposed
by the authors performs a single Krylov-timestep from the initial state. Thus, the maximum time
that can be reached might be very limited.

Authors: We thank the referee for this comment. Indeed, in analogy to classical Krylov time evolution, we
perform one Krylov timestep, where the basis states (in our case the K-moment states) are measured
on the quantum device. The approximation of the time evolution then depends on how well the
chosen basis states can represent the dynamics. While in the worst case only short times can be
simulated, depending on the structure of the Krylov subspace long evolution times are possible, e.g.
when the Krylov subspace is closing for a low number of moments.

Reviewer 2: I would ask the authors to point out clearly the framework in which their algorithm has meaningful
applications. In my opinion this is the following: If a quantum device prepares a highly entangled
state, i.e. a state that is difficult to store classically, this algorithm can be used to evolve such a
state for a short period of time. Alternatively, one could provide a detailed analysis on how many
basis states are required as a function of time in order to approximate the state to a given fidelity.
At the moment the authors say that in the worst case the number of basis states matches the rank
of the Hamiltonian. But at this point, the algorithm is impractical.

Authors: We thank the reviewer for this insightful comment.

Indeed, the power of our algorithm lies in leveraging the quantum computer to create states which
are intractable to be stored on classical computers, i.e. highly entangled states. Our algorithm then
performs various problem-dependent measurements to construct the K-moment states to calculate
the time evolution. In the general case for arbitrary Hamiltonians that explore the full Hilbertspace,
our algorithm can evolve states only for a short times reliably. This is a general problem for algorithms
of the simulation of dynamical problems. However, we also find cases where our algorithm is able to
provide accurate evolution over very long times, for example when the Hamiltonian is of low rank or
the Krylov subspace closes fast. In these cases, other NISQ-friendly algorithms like Trotter or VQS
often struggle. Here, our algorithm provides an immediate advantage in the NISQ era. We believe
further use cases where our algorithm can provide practical advantages in the long-time evolution
can be found in the future.

These considerations are highlighted in page 7 of the manuscript.

In our conclusion, we do point out the conditions where we expect our algorithm to have meaningful
applications. One of the conditions talks about the situations where we would expect to be able
to easily generate an expressible enough ansatz (and thus be able to capture accurate dynamics
for arbitrarily long periods of times). This is when the Hamiltonian is of low rank, or the Krylov
subspace closes fast. In general, even if this condition is met, we would still expect other NISQ-
friendly time evolution algorithms like Trotter or VQS to struggle with long time evolution. We
believe this constitutes a practical improvement over those algorithms.

However, we agree with the reviewer that in the general case, if these conditions are absent, our
algorithm would be impractical (as it stands currently), and it would be limited to providing ap-
proximations to evolution for short time scales. We expect the time frame (that can be reasonably
well approximated by our algorithm) to be highly dependent on the Hamiltonian and initial state
in question, as it is fundamentally about how fast the initial state in question explores the whole
Hilbert space under time evolution of the Hamiltonian.

We now mention this in the main manuscript, highlighted in page 7 of the manuscript.
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Simulating the dynamics of many-body quantum systems is believed to be one of the first
fields that quantum computers can show a quantum advantage over classical computers. Noisy
intermediate-scale quantum (NISQ) algorithms aim at effectively using the currently available quan-
tum hardware. For quantum simulation, various types of NISQ algorithms have been proposed with
individual advantages as well as challenges. In this work, we propose a new algorithm, truncated
Taylor quantum simulator (TQS), that shares the advantages of existing algorithms and alleviates
some of the shortcomings. Our algorithm does not have any classical-quantum feedback loop and
bypasses the barren plateau problem by construction. The classical part in our hybrid quantum-
classical algorithm corresponds to a quadratically constrained quadratic program (QCQP) with a
single quadratic equality constraint, which admits a semidefinite relaxation. The QCQP based
classical optimization was recently introduced as the classical step in quantum assisted eigensolver
(QAE), a NISQ algorithm for the Hamiltonian ground state problem. Thus, our work provides a
conceptual unification between the NISQ algorithms for the Hamiltonian ground state problem and
the Hamiltonian simulation. We recover differential equation-based NISQ algorithms for Hamil-
tonian simulation such as quantum assisted simulator (QAS) and variational quantum simulator
(VQS) as particular cases of our algorithm. We test our algorithm on some toy examples on current
cloud quantum computers. We also provide a systematic approach to improve the accuracy of our
algorithm.

I. INTRODUCTION

Digital quantum computers have made immense
progress in recent years, advancing to solving problems
considered to take an unreasonable time to compute for
classical computers [1, 2]. In short, we are now in the
Noisy Intermediate-Scale Quantum (NISQ) era [3, 4],
which is characterized by quantum computers with up to
a few hundred noisy qubits and lacking full scale quan-
tum error correction. Thus, noise will limit the usefulness
of the computations carried out by these computers [3],
preventing algorithms that offer quantum advantage for
practical problems, such as Shor’s algorithm for prime
factorization [5], from being implemented.

However, just because such algorithms cannot be im-
plemented on NISQ devices does not mean that quan-
tum advantage for practical problems cannot be found
with NISQ devices. There is currently great interest
in the quantum computing and quantum information
community to develop algorithms that can be run on
NISQ devices but yet deal with problems that are prac-
tical [4, 6, 7]. Some of the most promising avenues deal
with the problems in many-body physics and quantum
chemistry. One major problem in this field is to develop
algorithms capable of estimating the ground state and
energy of many-body Hamiltonians. To such ends, algo-
rithms like variational quantum eigensolver (VQE) [8, 9]
and quantum assisted eigensolver (QAE) [10, 11] have
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been proposed.

The other major problem is to be able to simulate the
dynamics of these many-body Hamiltonians. This task
can be extremely challenging for classical computers, and
Feynman proposed that this would be one of the areas
where quantum computers could exhibit clear advantages
over classical computers [12]. Powerful methods to simu-
late quantum dynamics on fault-tolerant quantum com-
puters have been proposed, such as the concept of using
truncated Taylor series by Berry et al [13].

On NISQ devices, a standard approach in simulating
quantum dynamics is to utilize the Trotter-Suzuki de-
composition of the unitary time evolution operator into
small discrete steps. Each step is made up of efficiently
implementable quantum gates, which can be run on the
quantum computer [14–20]. However, the depth of the
quantum circuit increases linearly with evolution time
and the desired target accuracy. On NISQ devices, fi-
delity rapidly decreases after a few Trotter steps [21],
implying long time scales will be unfeasible to simulate
with this method. Alternatives to Trotterization have
been proposed, such as VQS [22–24], subspace variational
quantum simulator (SVQS) [25], variational fast forward-
ing (VFF) [26, 27], fixed state variational fast forward-
ing (fsVFF) [28], quantum assisted simulator [29, 30] and
generalized quantum assisted simulator (GQAS) [31] to
name a few.

Recently, Otten, Cortes and Gray have proposed the
idea of restarting the dynamics after every timestep
by approximating the wavefunction with a variational
ansatz [32]. Building on that, Barison, Vicentini and
Carleo have proposed a new algorithm [33] for simulat-
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ing quantum dynamics. Their algorithm, named pro-
jected variational quantum dynamics (pVQD) combines
the Trotterization and VQS approaches [22, 23]. They re-
place the differential equation with an optimization prob-
lem, although not well characterized, and require much
simpler circuits compared to VQS. However, pVQD re-
quires a quantum-classical feedback loop and might suf-
fer from the barren plateau problem [34] as well the op-
timization problem may be computationally hard [35].
Further, the feedback loop mandates that one has to wait
for each computation to finish before the next computa-
tion is run, which can be a major bottleneck on cloud-
based quantum computers that are accessed via a queue.

Here, we propose the truncated Taylor quantum sim-
ulator (TQS) as new algorithm to simulate quantum dy-
namics. Our algorithm is building on the ideas of pVQD
[32, 33] combined with the ansatz generation of QAS [29],
which we further enhance by applying the concept of
truncated Taylor series by Berry et al [13]. Our con-
tributions and our algorithm are as following:

1. We recast the simulation of the quantum dynam-
ics as a quadratically constrained quadratic pro-
gram (QCQP). This optimization problem, unlike
the optimization problem in pVQD, is well charac-
terized and invites rigorous analysis. The QCQP in
our algorithm admits a semidefinite relaxation [10].
Moreover, based on ideas from [10], one can provide
a sufficient condition for a local minimum to be a
global minimum, which a solver can further use as
a stopping criterion. Since the classical optimiza-
tion program in QAE is also a QCQP, it helps us
achieve a conceptual unification of TQS with QAE.

2. The differential equations which form the classi-
cal part of QAS and VQS can be recovered in our
framework. Since VQS is already a particular case
of QAS [29], our approach yields both VQS and
QAS as special cases of TQS.

3. We remove the need for the classical-quantum feed-
back loop in pVQD. The absence of the feedback
loop yields our algorithm to be exceptionally faster
than the feedback loop based NISQ algorithms for
simulating quantum dynamics such as [22, 25–28].

4. Our algorithm avoids the trainability issues that
plague other variational quantum algorithms. The
choice of a problem-aware ansatz and the struc-
ture of the TQS algorithm helps bypass the bar-
ren plateau problem. It is known that in varia-
tional quantum algorithms that rely on a paramet-
ric quantum circuit, there will always be a trade-
off between trainability and expressibility, imply-
ing that a highly expressible ansatz cannot be eas-
ily trainable [36]. In our case, we do not rely on
parametric quantum circuits, thus we bypass this
problem. Furthermore, our algorithm provides a
systematic way to obtain a more expressible ansatz,
which is missing in other algorithms.

II. TQS APPROACH

Let us first assume that the Hamiltonian H is ex-
pressed as a linear combination of r tensored Pauli ma-
trices

H =

r∑
i=1

βiPi , (1)

with coefficients βi ∈ C. The unitary evolution under the
action of the Hamiltonian H for time ∆t is given by

U (∆t) = exp (−ιH∆t) = exp

−ι∆t r∑
j=1

βjPj

 (2)

= I − ι∆t

 r∑
j=1

βjPj

− ∆t2

2

 r∑
j=1

βjPj

2

+O
(
∆t3

)
.

(3)

We do not need to implement the action of the unitary
evolution in such a way. However, for purposes of describ-
ing the algorithm, we will use this power series expansion
first, and talk more about alternatives later. We will now
truncate the series, similar to [13]. If we choose small val-
ues of ∆t with respect to the eigen energies of H, we can
approximate the unitary evolution with V (∆t)

U (∆t) ≈ I − ι∆t

 r∑
j=1

βjPj

 ≡ V (∆t) . (4)

The classical evolution timestep ∆t should be chosen
smaller than all relevant timescales of the Hamiltonian
H to be simulated. This requires knowledge of the spec-
trum of H, which in general is not available. However, we
can find appropriate values for ∆t in an heuristic man-
ner. In our algorithm, the evolution with ∆t is performed
on a classical computer only and thus we can choose any
value for ∆t without requiring any additional quantum
computational cost. Thus, we can simply evolve with a
very small value for ∆t. To verify it is small enough,
we can repeat the classical evolution for an even smaller
value such as ∆t/2. If the results for both ∆t and ∆t/2
match, we can assume that ∆t provides sufficient accu-
racy.

Let us next choose the ansatz at time t as linear com-
bination of elements from cumulative K-moment states,
CSK (refer to [29] for the formal definition). These states
are defined in the same way as in [29] and will be con-
structed with the help of the given Hamiltonian, by es-
sentially considering powers of the Hamiltonian. In terms
of Pauli matrices, given a set of r tensored Pauli unitary
matrices obtained from the unitary terms of the Hamil-
tonian P ≡ {Pi}ri=1 and a positive integer K and some
efficiently preparable quantum state |ψ〉, the K-moment
states are the set of quantum states of the form

{|χ〉}K = {PiK . . . Pi2Pi1 |ψ〉}riK=1,...,i2=1,i1=1, (5)
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for Pil ∈ P, where the indices i all run from 1 to r.
We note that we only include unique states within the
set {|χ〉}K . This corresponds to removing any repeated
Pauli unitary in P. It should also be mentioned that the
way the K-moment states are being generated is closely
related to the Taylor expansion of the time evolution op-
erator. If we consider the evolution of an arbitrary state
by the time evolution operator, by observing that the
Taylor expansion involves powers of the Hamiltonian H,
it is clear that choosing the ansatz in such a way is suit-
able, as the |χi〉 ∈ {|χ〉}K states are essentially states in
the Hilbert space of HK |ψ〉. This set is denoted by SK .
The cumulative K-moment states CSK are also defined
in [29] as CSK ≡ ∪Kj=0Sj .

Now the ansatz is expressed as

|ψ (α (t))〉K =
∑

|χi〉∈CSK

αi(t)|χi〉 , (6)

with some αi ∈ C. For small values of ∆t, the ansatz at
time t+ ∆t is given by

|ψ (α (t+ ∆t))〉K =

V (∆t) |ψ (α (t))〉K
(〈ψ (α (t)) |KV † (∆t)V (∆t) |ψ (α (t))〉K)

1
2

. (7)

Using the ideas in [33], our goal now is to variationally
approximate the time evolution of the system by adjust-
ing our variational parameters. The crucial difference in
our case is that our variational parameters α are coeffi-
cients which do not change the basis quantum states |χi〉.
Thus, they can be solely updated via a classical computer
and do not require a quantum-classical feedback loop. To
evolve by time ∆t, we update the αi parameters to α′i
such that the following fidelity measure is maximized

F (α′) =
|〈ψ (α′) |KV (∆t) |ψ (α)〉K |2

〈ψ (α) |KV † (∆t)V (∆t) |ψ (α)〉K
. (8)

Using the notation |φ〉 = V (∆t) |ψ (α)〉K , the expression
for fidelity becomes

F (α′) =
〈ψ (α′) |φ〉K〈φ|ψ (α′)〉K

〈φ|φ〉
. (9)

Using the notation Wφ ≡ |φ〉〈φ|
〈φ|φ〉 , the above expression

further simplifies to

F (α′) = 〈ψ (α′) |KWφ|ψ (α′)〉K . (10)

The goal is to maximize the fidelity subject to the con-
straint that 〈ψ (α′) |ψ (α′)〉 = 1. Thus, the optimization
program at timestep t is given by

max
α′
〈ψ (α′) |KWφ|ψ (α′)〉K

s.t. 〈ψ (α′) |ψ (α′)〉K = 1. (11)

Using the elements from CSK and the Hamiltonian H,
we define the overlap matrices E and D as the following

Em,n = 〈χm|χn〉, (12)

Dm,n =
∑
j

βj〈χm|Pj |χn〉. (13)

Because of the way the |χn〉 states are constructed, these
values can be easily computed on a quantum computer,
as they simplify to the expectation values of Pauli strings
acting on the original quantum state |ψ〉. The constraint
in the optimization program 11 can written in terms of
α′ as

α′
†
Eα′ = 1. (14)

We proceed to write the objective in the optimization
program 11 in terms of the overlap matrices E and D. In
first order, we can simplify the expression

〈φ|φ〉 = 〈ψ(α)|K
(
I + (∆t)2H2

)
|ψ(α)〉K

= α†Eα+O((∆t)2) ≈ α†Eα. (15)

Further, using the notation G ≡ (E − ι∆tD) we find

〈ψ (α′) |φ〉K〈φ|ψ (α′)〉K = α′
†
Gαα†G†α′. (16)

Using Eq.14,15,16 and the notation Wα ≡ Gαα†G†

α†Eα , the
optimization program in 11 can be re-expressed in terms
of overlap matrices as

max
α′

α′
†
Wαα

′ (17)

s.t α′
†
Eα′ = 1. (18)

The aforementioned optimization program is a quadrati-
cally constrained quadratic program with a single equal-
ity constraint. As described in [10], this QCQP admits
a direct convex SDP relaxation. Moreover, the results
from [10] provide a sufficient condition for a local min-
imum to be a global minimum, which a solver can fur-
ther use as a stopping criterion. Alternatively, the prob-
lem can be solved with the classic Rayleigh-Ritz pro-
cedure by finding the eigenvector associated with the
largest eigenvalue λ of the generalized eigenvalue problem
Wαα

′ = λEα′.
It can be shown that in the limit of small ∆t, TQS re-

duces to QAS (see Appendix C). This could potentially
give us a way to obtain systematic higher-order correc-
tions to the QAS matrix differential equation. Interest-
ingly, this is a conceptual unification of the ground state
problem (QAE) with the dynamics problem (QAS) in
the quantum assisted framework. In QAE, finding the
ground state and ground state energy of a Hamiltonian
was formulated to become a QCQP. In TQS, the problem
of simulating the dynamics is also given as a QCQP. This
is conceptually satisfying as the problem of finding the
dynamics is expressed as e−itH |ψ〉, which is mathemati-
cally similar to using imaginary time evolution to finding
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the ground state via e−τH |ψ〉. The aforementioned con-
nection is also one of the primary justifications for ansatz
selection in [11]. We note that as alternative it is possible
implement the unitary evolution operator U(∆t) directly
instead of the Taylor series expansion of Eq.7, however
this would require the usage of Hadamard tests (see Ap-
pendix D).

We want to emphasize again that the quantum com-
puter is only required to measure the overlap matrices
E and D at the start of the algorithm. No quantum-
classical feedback loop for optimization is required. The
only optimization steps required are performed solely on
the classical computer with knowledge of the overlap ma-
trices. The algorithm is as follows:

1. Choose an efficiently implementable initial state
|ψ〉, then choose some K>0 and form the unique
K-moment states |χi〉 to construct the ansatz.

2. With knowledge of the Hamiltonian H, calculate
the overlap matrices E and D on the quantum com-
puter. The job of the quantum computer is now
done.

3. Choose a small ∆t with respect to the eigenvalues
of H and evolve the state forward in time using
a classical computer, by solving the optimization
program 17 subject to the constraint 18.

If a higher fidelity for the simulation is desired, one can
increase K to acquire an ansatz with a higher express-
ibility. The timestep ∆t could be increased by including
higher order terms in the power series expansion of U(∆t)
in our calculations (Described in Appendix E).

III. RESULTS

We first use TQS to simulate a 2 qubit Heisenberg
model

H2 =
1

2
X1X2 +

1

2
Y1Y2 +

1

2
Z1Z2. (19)

We apply it to evolve an initial randomized 2 qubit state
|ψ2〉. This initial state is generated by 5 layers of U3

rotations and CNOT gates on the 2 qubits (see Appendix
A). We ran the TQS algorithm on the 5-qubit quantum
computer ibmq rome, available through IBM Quantum
Experience. We used error mitigation by calibrating the
measurement errors and applying a filter obtained from
that calibration on our data with the toolbox provided in
Qiskit [37]. The results are shown in Fig.1. The evolution
of the state under TQS reproduces the exact behavior
very well for an ansatz with K = 1 moment states, even
in the presence of the noise of a real quantum computer.

Next, we apply TQS to simulate a 4 qubit XX chain
model on a quantum computer

H4 =
1

2
X1X2 +

1

2
X2X3 +

1

2
X3X4 . (20)

0 2 4 6 8
time

0.0

0.2

0.4

<
Z 1

> K = 1
exact

a

0 2 4 6 8
time

0.997

0.998

0.999

1.000

F

K = 1
b

FIG. 1. Time evolution of TQS on a 2 qubit state, with
Hamiltonian H2, simulated on the IBM quantum processor
ibmq rome. a) Expectation value of 〈Z1〉 b) Fidelity of the
state.

Although this Hamiltonian is analytically solvable, we
simulate this as a proof of principle. In Fig.2, we simu-
late (20) on ibmq rome with an initial randomized 4 qubit
state, generated by 5 layers of U3 rotations and CNOT
gates (see Appendix A). We run it for the K = 1 to
K = 3 moment states. The evolution of the state under
TQS again reproduces the exact behavior very well for
the K = 3 case. We would like to point out that our al-
gorithm can accurately simulate dynamics even for long
time periods. The only errors that enter our algorithm
are due to the ansatz being not expressible enough, and
noise in the measurement of the matrix elements. Both
type of errors affect only the initial conditions of the clas-
sical post-processing part. However, errors do not enter
during the computation of the evolution itself as they are
fully calculated on the classical computer. If we are able
to obtain very accurate initial measurements for our ma-
trix elements, and use an ansatz that fully captures the
solution space, we believe that our algorithm in general
will be able to simulate the dynamics accurately for long
timescales.

0 2 4 6 8
time

0.5

0.0

0.5

<
Z 1

>

K = 1
K = 2
K = 3
exact

a

0 2 4 6 8
time

0.25

0.50

0.75

1.00

F

K = 1
K = 2
K = 3

b

FIG. 2. Time evolution of TQS on a 4 qubit state with
Hamiltonian H4 simulated on the IBM quantum processor
ibmq rome. a) Expectation value of 〈Z1〉 b) Fidelity with
exact solution.

Next, we investigate in Fig.3 the transverse Ising model
with 8 qubits by simulating TQS on a classical computer.

H8 =

7∑
i=1

1

2
ZiZi+1 +

8∑
j=1

Xj . (21)
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time
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K = 1
K = 2
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FIG. 3. Time evolution of TQS on a 8 qubit state, with
Hamiltonian H8, simulated on a classical computer, with a
random initial state. The initial state was generated with 3
successive layers of U3 rotations with randomized parameters
on each qubit, followed by CNOT/entangling gates. This is
further described in Appendix A. a) Expectation value of
〈Z1〉. b) Fidelity of the state.

With an initial random state, we find that the evolution
of the state reproduces the exact dynamics for the case
of K = 3 moment expansion.

Lastly, we compare TQS to pVQD for a 2 qubit trans-
verse Ising model on a simulation. We consider the 2
qubit transverse Ising Hamiltonian

HTFI,2 =
1

2
Z1Z2 +

2∑
j=1

Xj . (22)

We compare the algorithms with noisy simulators, where
the noise models taken from the IBM Quantum Expe-
rience provider. The results are shown in Fig.4. While
both TQS and pVQD show errors when simulating this
Hamiltonian in the presence of noise, the expectation val-
ues for TQS are closer to the exact results most of the
time. This is especially the case for the expectation value
of 〈Z1〉. However, while the results might be argued to
be somewhat similar, the resource requirements of both
algorithms on the quantum computer are quite different.
The TQS algorithm requires ≈ 30 circuits to be run,
while the pVQD simulator requires well over 4000 cir-
cuits, which is a major effort to run on the IBM Quan-
tum Experience. We note that to increase the simula-
tion time for this example, no extra circuits are required
with TQS as the algebra already has closed, whereas the
number of circuits in pVQD scales linearly with simula-
tion time. Furthermore, TQS performs well with circuit
that are shallower compared to pVQD, which requires a
circuit with 8 variational parameters. This behavior of
TQS requiring less variational parameters to get a simi-
lar result seems to be consistent for the small models we
tested, as other variational algorithms usually need an
over-parameterized ansatz to perform well.

We also compare TQS to Trotterization on a noisy sim-
ulator for the same 2 qubit transverse Ising Hamiltonian.
A simple Trotterization of the time evolution operator

1.0

0.5

0.0

0.5

1.0

Y 1

pVQD
Classical

TTQS

0 1 2 3 4 5
Time

1.0

0.5

0.0

0.5

1.0

Z 1

FIG. 4. Time evolution of TQS and pVQD on a 2 qubit
state, with Hamiltonian HTFI,2, simulated with a noisy sim-
ulator. The noise model was taken from the IBM Quantum
Experience provider, mimicking the noise of the real quantum
processor ibmq bogota. pVQD was run for 100 optimization
steps, and made use of a parametric quantum circuit with 8
parameters, made out of successive layers of single qubit X
rotations and 2-qubit ZZ rotations. The expectation values
of 〈Y1〉 and 〈Z1〉 are plotted.

for this case is decomposed as

e−iτH2,TFI ≈
N∏
i=1

((
e−iδtiZ1Z2

) (
e−iδtiX1e−iδtiX2

))
,

(23)

with
∑N
i=1 δti = τ . The results are shown in Fig.5. As

can be seen, even for a simple case such as this, due to
the circuit lengths in Trotter increasing linearly with the
time, the circuit lengths rapidly grow too long to ob-
tain any meaningful results from the quantum computer.
This is in contrast to TQS, which is able to capture the
dynamics faithfully.

In Fig.6, we study our algorithm for up to thousands
of qubits N . We use a Hamiltonian H =

∑r
i=1 Pi

that consists of r randomly chosen N -body Pauli strings
Pi = ⊗Nj=1σj , where σj ∈ {I,X, Y, Z}. The cumula-
tive K-moment states close at order K = r and yield
the full ansatz space necessary to describe the dynam-

ics exactly. We use the product state |0〉N as initial
state for the dynamics. This choice makes the dynam-
ics tractable for classical computation. However, choos-
ing an highly entangled initial state |ψ〉 would require a
quantum computer to evaluate the overlaps. For such in-
tractable states, our method provides a possible quantum
advantage.
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FIG. 5. Dynamics of H2,TFI compared between Trotteriza-
tion and TQS. The noise model was taken from the IBM
Quantum Experience provider, mimicking the noise of the
real quantum processor ibmq bogota. We used a total of 100
steps for the Trotterized run. The expectation value of 〈Z1〉
is shown.

0 5 10 15 20
t

0.5

0.0

0.5

1.0

Z 1
(t)

N = 10
N = 100
N = 1000
N = 10000

FIG. 6. Dynamics of Hamiltonians consisting of multi-body
Pauli strings for varying number of qubits N . Hamiltoni-
ans are composed of r different random Pauli strings H =∑r

i=1 Pi, where the Pauli strings Pi = ⊗N
j=1σj consist of

N tensored Pauli operators σj ∈ {I,X, Y, Z}. The initial

state |ψ〉 = |0〉⊗N is the N -qubit product state with all zeros.
The cumulative K-moment states consists of 2r = 128 ansatz
states and exactly captures the full dynamics.

IV. DISCUSSION AND CONCLUSION

The currently proposed NISQ algorithms face prob-
lems in scaling up to system sizes where classical com-
puters cannot simulate the same systems, or in other
words, to the point where we would see quantum ad-
vantage. For example, VQS/SVQS/pVQD require the
use of a quantum-classical feedback loop, usually require
complicated circuits, share similar problems as VQE like

the barren plateau problem, and lack a systematic way
to generate a parameterized ansatz. VFF and fsVFF
also suffer from lacking a systematic way to generate the
ansatz, usually require complicated circuits and have to
run a quantum-classical feedback loop at the start. Fur-
ther, the no fast-forwarding theorem suggests that not all
Hamiltonians will be able to be accurately diagonalized
with a reasonable amount of gates and circuit length, and
the optimization step of the cost function in VFF might
be too difficult to carry out efficiently. However, the bar-
ren plateau problem and ansatz state generation could be
improved upon by applying various techniques [36, 38–
41].

One problem that VQS and QAS share is that they re-
quire solving a differential equation which includes the
pseudo-inverse of a matrix, whose elements are mea-
sured on a quantum computer. This matrix can be
ill-conditioned. This procedure, via singular value de-
composition, can be numerically unstable and sensitive
to noise, especially as the system increases in size [42].
However, the sensitivity of these matrices has not been
rigorously analyzed and more work has to be done to
understand the scaling of the sensitivity.

In this work, we develop TQS for simulating quantum
dynamics on digital quantum computers. TQS recasts
the dynamical problem as a QCQP optimization pro-
gram, which is well characterized unlike the optimization
program in pVQD, allowing us to avoid the aforemen-
tioned problem in VQS and QAS.

At the same time, TQS retains the advantages of QAS,
namely providing us a systematic method to select the
ansatz, avoiding complicated Hadamard tests and con-
trolled unitaries, avoiding the barren plateau problem,
and only requiring usage of the quantum computer at
the start, all of which are problems that are present in
pVQD.

However, there are still many problems to tackle in
our approach. One problem is an inherited problem from
QAS. As the Hamiltonian size and complexity increase,
large K values may be needed to generate enough states
for a sufficiently expressible ansatz to produce accurate
results. It is clear from the connection between the Tay-
lor expansion of the time evolution operator and our K-
moment states that in the general case, the further in
time we want to simulate, the exponentially larger our
ansatz should be and the harder the difficulty of generat-
ing that ansatz. However, this is fundamentally a com-
plexity theoretic statement which can not be bypassed in
the general case by any quantum simulation algorithm
based on parametric quantum circuits (variational quan-
tum algorithms) or linear combination of quantum states
(our algorithm). This problem particularly emerges in
variational algorithms for time evolution. For example,
in algorithms such as VQE for finding the ground state
of Hamiltonians, we know that the ground state of lo-
cally gapped Hamiltonians fulfil area laws of entangle-
ment and thus do not need exponentially many param-
eters to be described. However, for the time evolution
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over longer times a similar statement about the complex-
ity of the problem is not known. Though our algorithm
uses a problem aware ansatz, more information from the
problem such as the combination coefficients βi and sym-
metries of the Hamiltonian could be employed to further
tame the complexity. A further discussion and analysis
on the number of states needed is given in Appendix B.

As the system size increases, it may be required to
reduce ∆t to preserve accuracy in the classical post-
processing part of the algorithm. This will increase the
computational cost of the classical computer, however it
requires no additional quantum computations. The num-
ber of classical optimization steps to be carried out in-
creases linearly with the number of discretizations steps
of the evolution time. Determining whether this poses
a bottleneck for TQS when applied to large systems re-
quires further studies.

Furthermore, in the presence of noise, the calculated
fidelity of our states can go above one. A possible ori-
gin are small eigenvalues in the E overlap matrix, which
can give the procedure of optimizing or solving the gen-
eralized eigenvalue problem numerical instability. As we
scale up the system and consider more ansatz states, this
issue can become more prevalent.

We expect our algorithm not to provide quantum ad-
vantage in the general case. However, we believe our al-
gorithm is capable of providing quantum advantage over
classical methods for certain cases. The conditions where
we believe our algorithm will do so are:

• The basis states which are used to represent the ini-
tial quantum state are highly entangled such that
they cannot be stored on a classical computer. This
will render the calculation of corresponding over-
laps classically hard, as it boils down to a circuit
sampling task. Note that the Quantum Thresh-
old Assumption (QUATH) by Aaronson and Chen
[43] says that there is no polynomial-time classical
algorithm which takes as input a random circuit
C and can decide with success probability at least
1
2 +Ω

(
1

2n

)
whether |〈0n|C|0n〉|2 is greater than the

median of |〈0n|C|xn〉|2 taken over all bit strings xn.
In other words, the circuit sampling task is difficult
and hence classical algorithms will not be able to
compete with algorithms based on circuit sampling
as system size scales. The quantum part of TQS is
based on circuit sampling which is classically diffi-
cult.

• The Hamiltonian possesses a particular structure.
For example, the Hamiltonian consists of a small
number of unitaries, the Krylov subspace closes

fast, or the Hamiltonian is a low-rank matrix. We
demonstrated such an example for a Hamiltonian
consisting of a limited amount of multi-body Pauli
strings where our method can simulate the dy-
namics of thousands of qubits. These Hamiltoni-
ans would be challenging for other methods such
as Trotter or variational quantum algorithms. For
those algorithms, the multi-body interactions and
the large number of qubits would require an ex-
tensive number of gates and circuit depth to accu-
rately represent the evolved state. A further ex-
ample where our algorithm can perform well are
quantum many-body scars. This quantum many-
body phenomena can arise when the Krylov sub-
space closes fast at a low order K [44], which is
exactly the condition needed for our algorithm to
perform well. The timescales that can be reason-
ably approximated by our algorithm is dependent
on the Hamiltonian in question. Arbitrary Hamil-
tonians without the aforementioned conditions ex-
plore the full Hilbertspace during the evolution.
Thus, it will be difficult for our ansatz to cover the
whole solution space and approximate the dynam-
ics accurately. Note that other variational quantum
algorithms suffer similar problems as their ansatz is
restricted to polynomial number of parameters. In
the case of general Hamiltonians, our algorithm can
provide systematic approximations for the quan-
tum evolution of short time scales.

• The system size of interest and the amount of en-
tanglement of the quantum state should be beyond
the reach of classical simulation methods. Here, our
algorithm can make use of the power of the quan-
tum computer to prepare and measure classically
intractable states.

In the future, the NISQ community should investigate
these challenges, so that we can successfully run NISQ
algorithms for larger qubit numbers.
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K = 1 K = 2 K = 3 K = 4
2 Qubit Case 1 4
4 Qubit Case 1 4 7 8
8 Qubit Case 1 17 137

TABLE I. Comparison of the number of basis states used to construct the hybrid ansatz for each K for each Hamiltonian.
For example, the K = 2 expansion for the 4 qubit case, using the Hamiltonian H4, requires 4 quantum states to construct the
hybrid ansatz. We only considered unique states, which correspond to only taking unique Pauli strings. For example, in the
8 qubit case, while the number of Pauli strings in the Hamiltonian is 15, which might suggest the K = 3 expansion generates
153 + 152 + 15 + 1 = 3616 Pauli strings and thus 3616 states, many of them are repeated and only 137 of those strings are
unique. Thus, we only end up having 137 states in our ansatz which turns out to be sufficient to represent the full dynamics
of the 28 = 256 dimensional Hilbertspace. This could be due to the transverse Ising model having underlying symmetries that
reduce the number of basis states needed to capture the full dynamics.

Appendix A: Details on running circuits on the IBM quantum computer

For the runs on the real quantum computer, we generated an initial state with randomized parameters to evolve
with the following circuit. It comprised 5 layers of successive U3 rotation with randomized parameters on each qubit,
followed by a CNOT/entangling gate (see Fig.7 and 8). We sampled from each circuit with 8192 shots.

|0〉 Rx(Θ1) Ry(Θ2) Rz(Θ3)

|0〉 Rx(Θ4) Ry(Θ5) Rz(Θ6) Z

FIG. 7. Circuit for two qubits that generate one set of U3 rotation with randomized parameters, followed by a CNOT gate
between the 2 qubits. 5 successive layers of this circuit were used to generate the initial starting state for the 2 qubit case on
the IBM quantum computer for our runs of TQS. The Θs were randomly generated.

|0〉 Rx(Θ1) Ry(Θ2) Rz(Θ3)

|0〉 Rx(Θ4) Ry(Θ5) Rz(Θ6) Z

|0〉 Rx(Θ7) Ry(Θ8) Rz(Θ9) Z

|0〉 Rx(Θ10) Ry(Θ11) Rz(Θ12) Z

FIG. 8. Circuit for four qubits that generate one set of U3 rotation with randomized parameters, followed by a series of CNOT
gates between the adjacent qubits. 5 successive layers of this circuit were used to generate the initial starting state for the 4
qubit case on the IBM quantum computer for our runs of TQS. The Θs were randomly generated.

Appendix B: Number of basis states considered for each K, and discussion on scaling

The number of basis states that was used to construct the hybrid ansatz, for each K moment expansion, for each
Hamiltonian, is given in Table I.

Given a scalar τ , an N ×N matrix A and an N ×1 vector v, the action of the matrix exponential operator exp (τA)
on v can be approximated as

exp (τA) v ≈ pK−1 (τA) v, (B1)

where pK−1 is a K − 1 degree polynomial. The approximation in equation B1 is an element of the Krylov subspace,

KrK−1 ≡ span
{
v,Av, · · · , AK−1v

}
. (B2)
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Thus, the problem of approximating exp (τA) v can be recast as finding an element from KrK . Note that the approx-
imation in equation B1 becomes exact when K − 1 = rank(A). In our case, we can identify v with the initial state
|ψ〉, τ with −ιt and A with the Hamiltonian H.

In the worst case, the number of overlaps scales as O(rK) for r terms in H. By observing the Taylor expansion of the
time evolution operator exp(−iH∆t), we can see that at longer times we would struggle with finding an expressible
enough ansatz in the general case, as we need to keep considering higher powers of H. This is fundamentally an
expressibility problem, present in all NISQ variational algorithms, be it based on linear combination of states or those
based on parametric quantum circuits. It is known that to prepare an arbitrary state on an n qubit quantum computer,
we require a circuit depth of at least 1

n2n [45–48]. This suggests that it is very hard to produce an expressible enough
Ansatz to reproduce an arbitrary quantum state in the Hilbert space.

It is known that the the Krylov subspace spans the entire space when you exponentiate the Hamiltonian H to the
power of K − 1, where K − 1 = rank(H). Thus, the number of states that we require in our Ansatz scales linearly
with the rank of the Hamiltonian.

Furthermore, one of the major contributions of the TQS algorithm is that, by using this problem-aware Ansatz, it
provides a systematic way to obtain a more and more expressible Ansatz. The other variational algorithms like VQS
and VFF still do not have a systematic method to generate an expressible enough Ansatz, or to improve on an Ansatz
in a efficient way. Also, it has been shown that if we use a hardware efficient Ansatz, we would in general expect
to encounter the barren plateau problem, which makes it very hard for the algorithm to train and optimize [34, 49].
Furthermore, the usual technique of using more and more layers of hardware efficient Ansatz circuits gives no guarantee
that it will become more and more expressible in an efficient manner, when compared to the number of variational
parameters that we are adding. There is also no guarantee that this will indeed improve the appropriateness of the
Ansatz. This is especially true for larger systems. In TQS, with the way we generate the Ansatz with K moment
states, we can see that at worst, we get an Ansatz with as many states as the size of the Hilbert space, which is fully
expressible. This is due to the group of Pauli strings closing on itself eventually. Also, we can see that as we increase
the K, we will definitely improve our Ansatz and get to a point where it is eventually expressible enough. In future,
using the coefficients of the terms in the Hamiltonian, we expect to be able to slow down the growth of the number
of states.

Our algorithm also relies on being able to calculate expectation values of powers of the Hamiltonian, 〈ψ|Hk|ψ〉 in
an efficient manner. If we look at the Pauli string level (break our Hamiltonian into linear sums of Pauli strings), the
number of Pauli terms in Hk grows exponentially in k. Right now, for current implementation of our algorithm on
available quantum computers, this breaking into Pauli strings is necessary due to the imperfections in said quantum
computers. However, if we allow more complex operations that cannot be performed very well right now, such as
complex controlled unitaries, the resources needed to measure such 〈ψ|Hk|ψ〉 values might scale less [50].

We would also like to mention that depending on the Lie algebra of the Pauli terms in the Hamiltonian and the rank
of the Hamiltonian, the number of required overlaps can be a lot smaller compared to the upper bound. By considering
specific kinds of Hamiltonians, the number of states needed will be manageable. As an example, for a system size
with a multiple of 3 qubits, if we consider the Hamiltonian of the form H = XY ZXY Z...XY Z+Y ZXY ZX...Y ZX+
ZXY ZXY...ZXY +XXXXX...XXX, the set of K-moment states is maximally size 8, implying that 8 ansatz states
are sufficient to simulate the dynamics with our algorithm.

Appendix C: QAS and VQS as special cases of TQS

In this appendix, we show that in the limit of choosing a very small ∆t, one obtains QAS from TQS. Since VQS
is a special case of QAS [29], we get VQS also as special case of TQS. We start out with the series expansion of
|ψ(~α+ δ~α)〉

|ψ(~α+ δ~α)〉 = |ψ(~α)〉+
∑
j

∂

∂αj
|ψ(~α)〉 δαj . (C1)
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Now in TQS we want to maximize the overlap of U(∆t) |ψ(~α)〉 and |ψ(~α+ δ~α)〉, which is essentially the fidelity
measure in equation 8

| 〈ψ(~α)|U†(∆t) |ψ(~α+ δ~α)〉 |2 =

〈ψ(~α)|U†(∆t) |ψ(~α)〉+
∑
j

|ψ(~α)〉U†(∆t)∂ |ψ(~α)〉
∂αj

δαj

× [C. C.]

|ψ(~α)〉=
∑

j αj |χj〉
=

〈ψ(~α)|U†(∆t) |ψ(~α)〉+
∑
j

|ψ(~α)〉U†(∆t) |χj〉 δαj

× [C. C.]

= | 〈ψ(~α)|U†(∆t) |ψ(~α)〉 |2 +
∑
j

〈ψ(~α)|U†(∆t) |χj〉 〈ψ(~α)|U(∆t) |ψ(~α)〉 δαj

+
∑
j

〈χj |U(∆t) |ψ(~α)〉 〈ψ(~α)|U†(∆t) |ψ(~α)〉 δα∗j +
∑
j,k

〈ψ(~α)|U†(∆t)|χj〉 〈χk|U(∆t)|ψ(~α)〉 δαjδα∗k. (C2)

Now in the same manner as QAS, using the Mclachlan’s variational principle [23, 29, 30, 51], we demand that the
variation of this fidelity is equal to 0 with respect to αj :

=⇒ 〈ψ(~α)|U†(∆t) |χj〉 〈ψ(~α)|U(∆t) |ψ(~α)〉+
∑
k

〈ψ(~α)|U†(∆t)|χj〉 〈χk|U(∆t)|ψ(~α)〉 δα∗k = 0

=⇒ 〈ψ(~α)|U(∆t) |ψ(~α)〉+
∑
k

〈χk|U(∆t)|ψ(~α)〉 δα∗k = 0. (C3)

Now we substitute in U(δt) = I − i∆tH:

=⇒ 〈ψ(~α)|ψ(~α)〉 − i∆t 〈ψ(~α)|H |ψ(~α)〉+
∑
k

〈χk|ψ(~α)〉 δα∗k − i∆t
∑
k

〈χk|H|ψ(~α)〉 δα∗k = 0. (C4)

Now we take the derivative of this equation with respect to ∆t. Note that d
d∆tδα

∗
k = δα̇∗k. We then discard any terms

remaining that are linear in ∆t or in δα (implying we have chosen such a small ∆t that δα is also very small).

=⇒ −i 〈ψ(~α)|H |ψ(~α)〉+
∑
k

δα̇∗k 〈χk|ψ(~α)〉 δα∗k = 0. (C5)

Using the above definition of the E and D matrices in equation 12 and 13, this simplifies to:

=⇒ −i~α†D~α+ ~̇α†E~α = 0

=⇒ E ~̇α = −iD~α. (C6)

This is exactly the same differential equation that we aim to solve in QAS. If we do not ignore the higher order terms,
we could obtain systematic higher order corrections to the QAS matrix differential equation using such a method.

Appendix D: Unitary implementation

As alternative, we could implement the unitary evolution operator U(∆t) directly instead of the Taylor series
expansion of Eq.7

|ψ (α (t+ ∆t))〉K = U (∆t) |ψ (α (t))〉K . (D1)

and defining the matrix Rm,n = 〈χm|U(∆t)|χn〉 to solve the program

max
α′

α′
†
Rαα†R†α′ (D2)

s.t α′
†
Eα′ = 1 . (D3)

U(∆t) could be implemented with a Trotter decomposition or with an oracle. However, this complicates the circuits
needed to calculate the R matrix, requiring the usage of Hadamard tests.
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Appendix E: Higher order approximations

We investigate higher order expansion for the evolution operator in this section. First, we define the overlap matrix
J

Jm,n =
∑
i,j

βiβj〈χm|PiPj |χn〉. (E1)

Considering the next highest power expansion of U(∆t):

U(∆t) ≈ I − ι∆t

 r∑
j=1

βjPj

− ∆t2

2

 r∑
j=1

βjPj

2

≡ V2 (∆t) , (E2)

and defining |φ〉 = V2(∆t) |ψ(α)〉K , the constraint in the optimization program 11 turns out to be still the same as
equation 14:

〈ψ(α′
†
)|ψ(α′

†
)〉 = α′

†
Eα′. (E3)

It turns out that 〈φ|φ〉 is actually exactly equal to α†Eα, which is the result we used earlier in equation 15, as all the
2nd order terms nicely cancel out.

Now, using the notation G2 ≡
(
E − ι∆tD − ∆t2

2 J
)

,

〈ψ (α′) |φ〉K〈φ|ψ (α′)〉K = α′
†
G2αα

†G†2α
′. (E4)

Now the optimization program in 11 can be re-expression in this higher order approximation as

max
α′

α′
†

(
G2αα

†G†2
α†Eα

)
α′ (E5)

s.t α′
†
Eα′ = 1.

And using the notation W2,α ≡ G2αα
†G†

2

α′Eα , we further condense the above optimization program as

max
α′

α′
†
W2,αα

′ (E6)

s.t α′
†
Eα′ = 1. (E7)

Once again, the only work that the quantum computer need to do is to calculate overlap matrices in the start, in
this case having to calculate E , D and J . In fact, when going from lower order approximations to higher order
approximations, you can reuse the saved matrices and only calculate the new ones needed. In this case, in the original
TQS, which uses a first order approximation for U(∆t), we already have the E and D matrices, so if we deem the
results not up to our desired accuracy, we can easily go to the second order approximation showed here, and only
require calculation of one additional matrix J .


