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Mechanical metamaterials present a promising platform for seemingly impossible mechanics. They
often require incompatibility of their elementary building blocks, yet a comprehensive understanding
of its role remains elusive. Relying on an analogy to ferromagnetic and antiferromagnetic binary spin
interactions, we present a general approach to identify and analyze topological mechanical defects
for arbitrary building blocks. We underline differences between two- and three-dimensional metama-
terials, and show how topological defects can steer stresses and strains in a controlled and non-trivial
manner and can inspire the design of materials with hitherto unknown complex mechanical response.

I. INTRODUCTION

Mechanical metamaterials are structured from meso-
scopic building blocks, whose individual characteristics
and mutual arrangements dictate global properties and
functionalities, potentially leading to exotic macroscopic
responses [1–4]. For instance, a pruning process selec-
tively applied to random spring networks can cause them
to approach either the incompressible or completely aux-
etic limits [5], as well as tune specific long-range cou-
pled mechanical responses [6]. Hierarchical cut patterns
in elastic media allow for extremely large strains and
emergence of macroscopic shapes when stretched [7]. In
lattice-based structures, defects and dislocations can lo-
calize collective soft modes [8] and guide folding mo-
tions [9].

Combinatorial metamaterials, realized by an array of
soft or hinging anisotropic building blocks have elicited
much recent interest [10–12]. The ability to control the
orientations of individual blocks allows access to highly
complex non-periodic designs, and may lead to soft com-
patible structures with advanced mechanical functionali-
ties, such as mimicking kinematic mechanisms [1], tex-
tured sensing [10], or shape changing [13], with pos-
sible applications in pluripotent origami [14]. In such
systems, only very specific arrangements of the build-
ing blocks lead to cooperative soft deformations. Most
arrangements, however, contain multiple contradictions:
contacting blocks tend to deform in opposing directions.

Mechanical incompatibility controls the stiffness of the
metamaterial [10]. It also results in localized response to
an external force and thus limits its functionality [11, 15].
Crucially, it can be harnessed for advanced functionali-
ties such as multistability [16] and programmability [17].
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In particular, deliberate incompatibility of the constitut-
ing units can lead to topological defects and to com-
plex mechanical responses [11, 18]. Hence, understand-
ing and manipulating mechanical incompatibility opens a
path toward mechanical control at the macroscopic level.
When considering the directions of deformations as bi-
nary arrows, the study of building block incompatibility
in mechanical metamaterials can be greatly facilitated
by an analogy with geometrically-frustrated lattices [19],
random spin glasses [20] and spin-ice systems [21–26].

In this article, we introduce a general framework for
identifying and generating topological defects due to me-
chanical incompatibility in metamaterials based on the
analogy with frustrated spin systems, and provide guide-
lines for a material-by-design approach. Our formalism
describes incompatibility via Wilson loop products [27],
which count the parity of antiferromagnetic effective in-
teractions among emergent pseudo-spins, in complete
analogy to the case of geometric frustration in classical
Ising spin systems [28]. Our spins, in turn, are related to
mechanical deformations in the metamaterial. We apply
this framework to a novel class of two-dimensional (2D)
combinatorial mechanical metamaterials constructed of
hexagonal building blocks as well as to three-dimensional
(3D) metamaterials, whose compatible architectures have
been investigated recently [10]. We demonstrate the ca-
pability of our approach to induce complex frustration
motifs such as defect lines in 3D systems that can lead
to twisted stress distribution in the material, or defect
loops in 3D that can cause stress to concentrate in a cer-
tain region or alternatively to avoid that region, merely
by controlling the texture of the boundary forcing.

II. MAGNETIC SPIN ANALOGY IN
MECHANICAL METAMATERIALS

As a particular example of our general strategy, con-
sider the anisotropic hexagonal building block with hing-
ing facets presented in Fig. 1(a). Its soft deformation
mode, in which the constituent links do not change in
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FIG. 1. (a) 2D hexagonal building block, (b) the extended
2-in-4-out, and (c) the contracted 4-in-2-out states of its soft
deformation mode, which does not stretch or compress the
constituent links. (d,e) Vertices of sublattices A and B are
marked in blue and orange respectively. Ising spins are as-
signed to the deformation arrows according to the winding
direction around the two sublattice vertices: ±1 spins are in-
dicated in purple and green. Spin of two adjacent facets is
preserved (flipped) if deformations wind in the same (oppo-
site) direction with respect to the common vertex between
them, as indicated by the circular arrows. Resulting fer-
romagnetic (antiferromagnetic) interactions are indicated by
dashed (solid) lines connecting the two facets. Red director
line drawn perpendicular to the antiferromagnetic bonds des-
ignates the orientation of the building block.

length, consists of deformations along the six symmetry
directions such that a 2-in-4-out or 4-in-2-out rule ap-
plies, as indicated by the yellow arrows, see Fig. 1(b,c).
The rule reduces its symmetry from six-fold to two-fold,
around a director line marked in red in Fig. 1(d,e), so that
π/3 rotations of the building block change its mechanical
functionality. The resulting combinatorial metamaterial
comprises an array of such blocks positioned with arbi-
trary orientations in a honeycomb lattice. This lattice
is bipartite, see Fig. 1(d), with neighboring vertices al-
ternating between sublattices A (blue) and B (orange).
We map a deformation of a facet, indicated by an ar-
row in Fig. 1 to a +1 (−1) spin if it winds anticlockwise
(clockwise) around an A vertex, and conversely for a B
vertex. We identify ferromagnetic or antiferromagnetic
interactions between neighboring spins according to their
states in the building block’s lowest-energy deformation,
as shown in Fig. 1(d,e). These bonds are determined by
the mutual winding direction of the arrows around the
vertices of the honeycomb lattice: ferromagnetic (dashed
line) when both displacements wind in the same direc-

(a) (b)

FIG. 2. (a) Compatible and (b) incompatible vertices respec-
tively consist of an even or odd number of antiferromagnetic
bonds on the corresponding triangular plaquettes of the dual
kagome lattice. Black circle indicates a topological mechan-
ical defect. The four depicted interfaces account for all the
possible configurations of three hexagons meeting at a vertex,
up to rotations and reflections.

tion, and antiferromagnetic (solid line) when displace-
ments wind in opposite directions, as indicated by the
circular arrows in Fig. 1(d,e).

Thus, a metamaterial specified by the orientations
of all its building blocks maps to an Ising model
of mixed ferromagnetic and antiferromagnetic bonds,
thereby defining a bond distribution on the dual lattice.
Here, the displacement arrows in Fig. 1, which sit on
the facets of the hexagonal building blocks, constitute
the sites of the kagome lattice, the dual of the honey-
comb, and each metamaterial maps to a different bond
distribution on the kagome lattice. Mechanical compati-
bility of a vertex in the hexagonal metamaterial is hence
determined by the parity of antiferromagnetic bonds in
the corresponding triangular plaquette of the kagome lat-
tice, which can be inferred from the parity of director
lines meeting at the central vertex, see Fig. 2; For an
even number of antiferromagnetic bonds, as shown in
Fig. 2(a), all three building blocks meeting at the ver-
tex can simultaneously deform to their lowest-energy soft
mode; If there is an odd number of antiferromagnetic
bonds, as shown in Fig. 2(b), the spins are frustrated,
meaning that the displacements cannot be assigned in
a way that satisfies all interactions simultaneously, thus
generating a topological mechanical defect, which is in-
dicated with a black circle in Fig. 2(b).
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III. COMPATIBLE METASTRUCTURES

Lack of frustration in each plaquette implies that the
entire emergent Ising model is described by what we call
an even bond distribution and is thus unfrustrated, and
the corresponding mechanical system is globally compat-
ible. Note that in this system compatible configurations
exhibit holographic order in the soft mode maintained
by the alternating displacements of each pair of oppos-
ing facets. A global soft mode can thus be uniquely de-
termined by the deformations along the boundary of the
metamaterial; In a rhombic metamaterial consisting of
N = L×L building blocks, the soft mode of a compatible
architecture can be described using the 4L− 1 principal
axes running through it, see Fig. 3(a), and written in the
form:

dâ (i, j) = (−1)
aj+i

db̂ (i, j) = (−1)
bi+j

dĉ (i, j) = (−1)
ci+j−1+sij

sij =

{
j i+ j ≤ L+ 1

L+ 1− i i+ j ≥ L+ 1

(1)

where dk̂ (i, j) denotes the displacement along direction

k̂ of the building block in the row i and column j, where
k = a, b, c, and aj , bi, c` describe the deformation along
the boundary, see Fig. 3(a). Hence, the number of com-
patible architectures Ω0 scales sub-extensively with the
system size, ln Ω0 ∼

√
N , with N denoting the total

number of hexagons, see Fig. 3(b). We can bound Ω0

by 22L−1 ≤ Ω0 ≤ 32L−1, see Appendix A for details.
This is in contrast, for example, to the 2D combinatorial
metamaterials studied in Ref. [11], in which the freedom
to individually orient the constituent triangles leads to
an extensive number of compatible configurations. The
scarcity of such configurations in the hexagonal case high-
lights the importance of studying architectures beyond
the compatible scope.

IV. MECHANICAL CONSEQUENCES OF
DEFECTS IN 2D METAMATERIALS

To understand defects from a global perspective, con-
sider arbitrarily long loops of bonds in the kagome lattice.
The compatibility of such loops is determined by the par-
ity of antiferromagnetic interactions along the loop [28],
which in turn, is set by the number of defects it contains,
see Appendix B. For example, any loop surrounding the
defect in Fig. 4(a) will consist of an odd number of anti-
ferromagnetic interactions, whereas any loop surrounding
the two defects in Fig. 4(b) will consist of an even such
number. This topological characterization is related to
Wilson loops, also known as holonomies of a connection,
which were previously studied in the context of frustrated
spin systems. The connection is defined as the product

(a) (b)

FIG. 3. The deformation field of a global soft mode is de-
scribed according to holographic order and set by the defor-
mations along the boundary, e.g., the yellow hexagons. The
holographic order defines 4L − 1 axes along which deforma-
tions alternate; a1 . . . aL, b1 . . .bL, c1 . . . c2L−1, with L = 4 in
this drawing. (b) The number of compatible rhombic L × L
structures, exactly counted up to L = 10 (black dots), falls
between the lower and upper bounds (blue region), and is very
close to the lower bound, where the leading order is 22L−1.

of bonds along a line; +1 for ferromagnetic bonds, and
−1 for antiferromagnetic bonds. The connection along a
closed loop is gauge invariant, and tells us whether there
is frustration or not [27].

There is a remarkable similarity between the pattern
formed by the red director lines around mechanical de-
fects, see Fig. 4(a,b), and the point defects present in
2D nematic liquid crystals, which posses a topological
charge of winding number ±1/2 [29–31]. However, the
discrete orientations and positions of the building blocks
in the mechanical system do not allow for a definition
of a winding number, and indeed the two types of me-
chanical defects are indistinguishable. Locally rotating
building blocks changes the number of defects by an even
amount, suggesting that in our metamaterials, the parity
of the defects is the topologically protected quality, see
Appendix B.

We study the mechanics of the metamaterial by means
of a coarse-grained model, in which we describe the com-
plex deformation field by scalar normal displacements de-
fined for each facet, and by assigning harmonic interac-
tions between these scalar displacements at each hexago-
nal building block. The deformations of the facets serve
as continuous mechanical degrees of freedom, and we can
therefore write the elastic energy in the metamaterial in
the following way:

E =
1

2
kijuiuj =

1

2
uTKu, (2)

where u is a vector containing the displacements of all
the facets in the metamaterial and K is a matrix con-
taining the elastic interaction constants kij between the
facets i and j. Symmetries reduce kij to eight indepen-
dent interaction constants kn, see Fig. 5. If the arrange-
ment of the hexagons leads to a compatible structure,
the ground state of the corresponding unfrustrated Ising
model describes the deformations of the global soft mode.
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FIG. 4. (a) Single defect, and (b) two defects (black circles),
where director lines terminate or branch and where triangular
plaquettes of the kagome lattice have an odd number of an-
tiferromagnetic bonds. Loops of interaction bonds consisting
of an even (green) or odd (blue) number of antiferromagnetic
bonds. (c-f) Displacement conditions at the left and right
boundaries (red arrows) lead to displacements of the facets
(black arrows) and to finite elastic energy stored in each build-
ing block (color-coded hexagons). The color bar indicates
the percentile of the stored energy, separately calculated for
each case. Single defect (c,d): Compatible actuation on each
one of the boundaries concentrates the stresses (strains) at
the top (bottom) or bottom (top) half of the metamaterial.
Two defects (e,f): Compatible actuation on opposing bound-
aries concentrates the stresses either between the defects (e)
or around them (f), whereas the strains concentrate in the
complementary region.

However, if the system is incompatible, the lowest energy
configurations of the corresponding Ising system do not
necessarily describe its elastic deformations. A distinc-
tion can be made based on the different nature of the
physical degrees of freedom; discrete spin degrees of free-
dom result in high energetic cost locally concentrated at
specific (frustrated) interaction bonds, whereas continu-
ous deformation degrees of freedom reduce the energetic
cost by spreading the deviations from the local soft mode

(a) (b)

FIG. 5. (a) The coarse-grained variables ui describing the
displacements of the facets. (b) For a hexagonal building
block, symmetries allow eight different interaction constants
between pairs of facets. The interacting facets are indicated
by a connecting line, or by a circle for the diagonal terms.

over the sample, see also Ref. [26].
In realistic metamaterials, the softest deformation

mode of the building block generally has finite rigidity.
For simplicity, we ascribe zero energy cost to the defor-
mation mode described in Fig. 1(b,c). This translates to
the condition of a vanishing net force acting on the facets,
and results in two independent equations describing the
interaction constants kn,

k1 = 2k4 + 2k7 − k3,
k2 = k4 − k5 − k6 + k7 − k8,

(3)

see Appendix C for further details on selecting the values
of the interaction constants and solving the mechanical
response. Our model and calculations can be easily ad-
justed for finite rigidity of the softest mode, and we do
not expect qualitative differences as a result.

To understand how defects can be harnessed to steer
the stress distribution, note that actuating a facet of a
building block defines the compatible actuation of any of
its neighboring facets, given by satisfying the interaction
bond between the two facets. Compatible actuation can
therefore be defined along any path in the metamaterial,
but can only be defined along loops containing an even
number of antiferromagnetic bonds, i.e, surrounding an
even number of defects.

Consider first an architecture with a single defect as
portrayed in Fig. 4(a); any loop winding around it would
have an odd number of antiferromagnetic interactions
and thus can not be actuated compatibly. By setting
compatible actuations along the opposing left and right
boundaries of the metamaterial, we can control the loca-
tion of the compatible and incompatible regions, thereby
steering the stresses and strains to complementary parts
of the system: when the actuation along the left bound-
ary can be compatibly extended towards the actuation
along the right boundary using a path below the defect,
stresses concentrate above the defect, coinciding with a
region of vanishing deformations, see Fig. 4(c). If we then
flip the actuation of one the boundaries, so that the left
and right boundaries can now be compatibly connected
via a path above the defect, stresses and vanishing defor-
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mations concentrate below the defect, see Fig. 4(d).
In a similar manner, when the system contains multi-

ple defects, as shown in Fig. 4(b), the regions between
the defects and the boundaries can be made stressed or
strained in an alternating manner, depending on the cho-
sen compatible boundary actuation, see Fig. 4(e,f).

Note that the topological signature of a defect in our
system, an odd number of antiferromagnetic interactions
along a loop seemingly seeking to invert the deforma-
tion at the loop’s origin, is reminiscent of the topological
structure of nonorientable ribbons [32]. Therefore, it is
instructive to compare their mechanical response: both
systems feature a region of vanishing deformations and a
region of vanishing stresses. The latter is maximally sep-
arated from the applied boundary actuations, whereas
the location of the former is system-dependent. In elastic
ribbons, the linear constitutive relations between stress
and strain dictate that the region of vanishing deforma-
tion coincides with that of vanishing stresses. In our sys-
tem, however, the local soft (floppy) mode violates these
simple relations, and finite deformations persist in the
region of vanishing stresses that compatibly connects the
two boundaries.

V. MECHANICAL CONSEQUENCES OF
DEFECTS IN 3D METAMATERIALS

We can extend our simple approach to 3D systems,
which are usually much harder to analyze. Con-
sider the class of combinatorial metamaterials presented
in Ref. [10], where cubic building blocks possess the
anisotropic soft mode of deformation shown in Fig. 6(a).
Similar to our 2D hexagonal metamaterials, the holo-
graphic order maintained by the building block’s soft de-
formation mode results in sub-extensive scaling of com-
patible architectures with system size, see Appendix D.
Here too, we define ferromagnetic and antiferromagnetic
bonds between adjacent arrows describing deformations
in the building block, according to whether or not they
maintain the same winding direction around the shared
lattice edge between them, as depicted by the dashed
and solid lines in Fig. 6(b). Again, compatibility is asso-
ciated with parity of antiferromagnetic interactions along
closed loops. However, simple connectedness is removed
by point defects in 2D, but by line defects in 3D. This
has well known consequences in materials: for instance,
dislocations are point defects in 2D, but line defects in
3D. Similarly, incompatibilities are described as line de-
fects in this 3D system while they are point defects in
the 2D system [30], see Fig. 2(b). In 2D, our elementary
loops on the dual lattice wind around lattice vertices. In
3D, they wind around the shared edge of four cubes, see
Fig. 6(c,d), which is identified as a defect if the number of
antiferromagnetic bonds surrounding it is odd, as shown
in Fig. 6(d).

Because the parity of antiferromagnetic interactions
along a 3D loop must remain unchanged as it morphs be-

(a) (b)

(c) (d)

FIG. 6. (a) 3D cubic building block and its soft deforma-
tion mode (reproduced from Ref. [10]). (b) Deformation sign
between two adjacent facets is preserved (flipped) if deforma-
tions wind in the same (opposite) direction with respect to the
common edge between them. Ferromagnetic sign-preserving
(antiferromagnetic sign-flipping) interactions are indicated by
dashed (solid) lines connecting the two facets. A red cross
drawn perpendicular to the sign-flipping interactions desig-
nates the orientation of the building block. (c) Top view of a
compatible and (d) an incompatible edge consisting of an even
(odd) number of antiferromagnetic interactions, as indicated
by white (black) circle. The number of antiferromagnetic in-
teractions can be inferred from the parity of red lines meeting
at the central edge.

tween the facets and over the non-frustrated lattice edges
of an even bond distribution, defected edges must join to
form defect lines. These must either close into loops, or
extend between the boundaries of the system [33]. Start-
ing from a compatible configuration and rotating a single
building block leads to two parallel loops of frustrated
edges. In that sense, mechanical defects in 3D are remi-
niscent of the topologically neutral disclination loops seen
in 3D active nematics [34].

To study the mechanics of the system, we imply the
coarse-grain model described in Eq. (2) to the metama-
terial comprised of the cubic building blocks described in
Fig. 6(a). We can identify the facets of the cubic build-
ing blocks with those of the hexagonal building block,
and use Eq. (3) together with k4 = k7 and k5 = k6
to describe the interaction constants (a total of six in-
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dependent interaction constants). Textured actuation
along the boundary of the metamaterial can steer strains
and stresses around the complex lines of frustrated edges
in different fashions, giving rise to different mechanical
functionalities for a given structure.

Consider first the simple extension from 2D to 3D,
namely frustrated edges connected to form a straight de-
fect line terminating on opposing faces of the metacube.
The metacube can be compatibly actuated on the op-
posing defect-free faces (parallel to the (y, z) plane) in
such a way that stresses can be steered around the defect
line, and can be localized on the one half of the ma-
terial, whereas the strains are larger in the other half,
cf. Fig. 7(a). While this scenario is reminiscent of 2D
stress steering, the structure’s extra dimension offers a
richer plethora of possibilities. For instance, by actuat-
ing the same metacube through its incompatible faces
(those parallel to the (x, z) plane), we can generate more
complex response patterns such as a twisted stressed re-
gion, as shown in Fig. 7(b). In this case, since we cannot
force the entire (x, z) faces in a compatible manner, we
introduce a cut running from the location of the defect
to the system’s boundary, and do not actuate along this
cut. When the remaining face is actuated in a compat-
ible manner, stresses concentrate along the designated
cut. We set the cuts on two opposing faces to be orthog-
onal to one other, thus causing a 3D twist in the stress
concentration inside the metamaterial, cf. Fig. 7(b). The
other fundamental defect topology we consider is a closed
defect loop, see Fig. 7(c,d). Here, by compatibly actu-
ating opposing facets parallel to the (x, z) plane, we can
concentrate the stresses outside or inside the loop.

Finally, in complex topologies featuring multiple defect
lines, such as the defect cross arrangement presented in
Fig. 7(e), stress and strain concentrate in complementary
regions that alternate around the defect lines with respect
to the boundary conditions. Therefore, by compatibly
actuating the facets opposing the defect cross (parallel
to the (x, z) plane), we can concentrate the stresses in
two separate quadrants. Note that taking cross sections
of the stress concentration maps through planes rotated
around the y axis results in images reminiscent in na-
ture to Fig. 4(e,f). Also note that our combinatorial ap-
proach allows us to generate these different defect pat-
terns both with periodic and with non-periodic struc-
tures, cf. Fig. 7(f), however, the described features of
the mechanical response remain unchanged, as shown in
Appendix E.

VI. DISCUSSION

The framework we present maps the soft modes of
deformable building blocks to ferromagnetic and anti-
ferromagnetic interactions on the underlying dual lat-
tice of the metamaterial that is formed by these blocks.
The orientations of all blocks in the structure define a
bond distribution on this lattice, and that, in turn dic-

(a) (b)

(c) (d)

(e) (f)
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FIG. 7. (a) Compatible actuation on the back and front faces
can concentrate stresses beneath the defect line. (b) Twist-
ing the stressed region through actuation on the incompatible
left and right faces. (c,d) Compatible actuation on the front
and back faces concentrates stresses outside (c) or inside (d)
a defect loop. (e) Compatible actuation on the front and back
faces concentrates stresses on two separated quadrants. Color
bar indicates the percentile of the stored energy, separately
calculated for each case. The faces on which the actuation is
applied are indicated by red frames. (f) Partial cross section
close to the centered defect line of the structures in (a,b),
showing the non-periodic internal architecture. In this top
view, building blocks oriented along the y axis are represented
by a red cross (cf. Fig. 6(c,d)), whereas building blocks ori-
ented along the x and z axes are represented by horizontal
and vertical rectangles, respectively. All calculations are for
metacubes of dimension 35× 35× 35.

tates the compatibility, frustration, and topological de-
fects of the combinatorial metamaterial. We provide de-
tailed demonstrations for such combinatorial metama-
terials constructed of two specific hexagonal and cubic
building blocks. However, our framework is suitable for
many types of metamaterials made of deformable blocks
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with arbitrary internal interaction rules. It also provides
a platform to describe metamaterials with vacancies, or
constructed by mixing different types of building blocks.
Our approach enables programming metamaterials with
complex defect patterns, as well as devising spatially tex-
tured actuations that yield different mechanical function-
alities from a single sample. Controlling and steering
the mechanical response in the bulk of 3D metamate-
rials could enable adaptive failure control, could poten-
tially be implemented in nematic elastomers [35], and
may also lead to additional applications such as steering
waves [36], or to drive active matter [37–39].
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Appendix A: Compatible 2D structures

The number of compatible 3D metacube configurations
has been investigated in Ref. [10]. We will complete the
discussion of counting compatible configurations by simi-
larly providing lower and upper bounds for our 2D hexag-
onal metamaterials. Below, we discuss non-periodic 3D
metacube structures, and will also show that a tighter
lower bound can be derived for the number of compati-
ble metacubes, compared to the lower bound presented in
Ref. [10]. Note that the following discussion concerning
compatible configurations and global floppy modes also
applies to identifying the softest global modes, in case
that the mode described in Fig. 1(a) is the softest mode,
but not necessarily completely floppy.

Counting the compatible configurations is equivalent
to identifying all the global floppy modes in the system,
as the displacement field of a global floppy mode uniquely
defines the constituent architecture. The floppy mode of
an individual hexagon exhibits alternating displacement
directions between each pair of opposing facets. In a com-
patible structure, all building blocks can deform simulta-
neously according to their floppy mode, and thus the dis-
placement field of a global floppy mode maintains holo-
graphic order in the form of alternating displacements
along any direction into the metamaterial. Because of
that, such displacement fields in an N = L× L rhombic

(a) (b) (c)

FIG. 8. (a) 2L − 1 straight lines, along the diagonal princi-
pal directions of the honeycomb lattice. (b) L straight lines,
along the horizontal and vertical principal directions of the
honeycomb lattice. (c) Straight vertical or horizontal lines,
followed by a single curve. Given an LÖL structure, the num-
ber of straight lines in (c) can range between 0 and L − 2.
In (a), (b) and (c) red arrows represent two possibilities for
a straight zig-zag line, whereas blue arrows represent a line
uniquely determined by the curve.

metamaterial can be described by the boundary displace-
ments along the 4L−1 principal axes running through it,
see Fig. 3 and Eq. (1). Therefore, there are up to 24L−1

candidates for the global displacement fields, which cor-
respond to up to 24L−2 different global floppy modes, and
similarly compatible structures.

However, some of these candidates for global floppy
modes will result in building blocks, in which all the
displacements point outwards, or all inwards, violating
the local floppy mode of the individual building blocks.
Some of these unwanted modes can be avoided by con-
sidering that at least along the (2L− 1)-long boundary,
the displacement field at each building block is consis-
tent with a floppy mode of one of the orientations, see
yellow hexagons in Fig. 3(a). This can be easily verified
by noting that choosing the orientation of each building
block along the boundary is sufficient to define the dis-
placement field (up to global reversal), and thus to define
potential global floppy modes. We therefore arrive at an
upper bound of 32L−1 for the number of LÖL compatible
configurations as there are three possible orientations per
hexagon.

A lower bound for Ω0, the number of compatible ar-
chitectures, is obtained by presenting systematic strate-
gies to design such structures. Consider the red lines
depicted in Fig. 1(d,e), which designate the orientation
of the building blocks. In a compatible structure, these
red indicators connect to form a pattern of zig-zag lines
that must not terminate or bifurcate, see Fig. 2. We can
therefore consider a simple strategy to design compati-
ble structures, in which the zig-zag lines run along the
2L − 1 parallel ci-axes or along the L ai- or bi-axes of
the parallelogram, as shown in Fig. 8(a,b). Along each
such axis, there are two possibilities for the zig-zag pat-
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tern, as it can be mirrored with respect to the axis whilst
still keeping the same path, see red arrows in Fig. 8.
There are therefore 22L−1 structures constructed by zig-
zag lines confined to the ci-axes and 2L structures with
zig-zag lines along the ai- or bi-axes. We therefore arrive
at Ω0 ≥ 22L−1 + 2L+1.

By adding configurations in which only some of the
zig-zag lines stay along the principal axes, whilst the
others curve and are thus restricted to a specific pat-
tern, see Fig. 8(c), it could be easily verified that Ω0 ≥
22L−1 + 2L+2 − 4, for L ≥ 2. Additional contributions
with multiplicity that scales as 2L can be obtained by
considering more complex patterns, yet 22L−1 remains
the leading term in the large L limit.

Finally, the exact number of compatible configurations
was calculated for up to 10Ö10 systems by manually con-
sidering all the deformation fields that obey holographic
order, yet do not violate the floppy mode in any of the
building blocks. The exact count follows very closely the
provided lower bound, see Fig. 3(b).

Appendix B: Topological defects

The fundamental property of topological defects is that
their removal requires tampering with the system at arbi-
trarily great distances away from the defect itself [40]. In
our system, we define a mechanical defect as an interface
between neighboring building blocks that induces an odd
number of antiferromagnetic bonds at the corresponding
elementary loop on the dual lattice, see Fig. 1. In this
appendix, we demonstrate that it is the parity of such
defects which determines the far-away topological impli-
cations, and resultantly, that only an odd number of such
mechanical defects constitute a topological defect.

The signature of defects is observed through the par-
ity of antiferromagnetic bonds along loops on the bond
distribution, which in turn alludes to mechanical com-
patibility. A space containing no mechanical defects, and
therefore only elementary loops with an even number of
antiferromagnetic bonds, induces an even bond distribu-
tion [28]. Over such a space, any loop homotopic to an
elementary loop also consists of an even number of anti-
ferromagnetic bonds. In fact, it can be generally argued
that over the space of an even bond distribution, homo-
topic loops share the same parity of antiferromagnetic
bonds. Consider the loops depicted in Fig. 9(a). The
solid loop is homotopic to the loop in which the path be-
tween points A and B is replaced by the dashed path. To
prove that both loops share the same parity of antiferro-
magnetic bonds, we observe the loop that is formed by
the solid and dashed paths connecting points A and B.
Note that this loop is homotopic to an elementary loop
in the even bond distribution, and therefore consists of
an even number of antiferromagnetic bonds. As a result,
both paths share the same parity of antiferromagnetic
bonds, and one can be replaced by the other without

(b)(a)

FIG. 9. Parity of antiferromagnetic bonds along homotopic
loops. The dashed circles represent defects - elementary loops
with an odd number of antiferromagnetic bonds. These circles
constitute holes in the space of the even bond distribution.

FIG. 10. Hexagonal building block before (top left) and after
(bottom left) a π/3 rotation. Induced changes to the bond
distribution (right). Violet and green lines represent antifer-
romagnetic bonds that were replaced by ferromagnetic bonds,
and vice versa. The elementary loops surrounding the rotated
building block that changed their parity due to the rotation
are indicated by dashed background.

changing the overall parity. However, loops whose ho-
motopy requires crossing over a defect, have a different
parity of antiferromagnetic bonds. Consider the loops
depicted in Fig. 9(b). The solid loop is no longer ho-
motopic to the loop in which the path between points A
and B is replaced by the dashed path. In this case, the
loop that is formed by the solid and dashed paths con-
necting points A and B is homotopic to the elementary
loop surrounding the defect, and hence consists of an odd
number of antiferromagnetic bonds. Replacing the solid
path with the dashed path therefore changes the parity
of antiferromagnetic bonds.

Switching the parity of the total number of defects,
therefore, requires changing the bond distribution in-
finitely far away (or, equivalently, all the way to the
boundary of the system). We have therefore proven that
locally rotating building blocks could only alter the num-
ber of defects by an even amount, and that the parity
of the defects is topologically stable, which means that
the defect charge has Z2 symmetry. To provide insights
specific to our system, it is instructive to observe the ef-
fects on the bond distribution of rotating a single building
block. Figure 10 demonstrates that such a local change
to the configuration changes an even number of bonds,
which can only alter the number of defects by an even
amount. This result is independent of the specific shape
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of the soft mode (and hence, the inner bond distribution)
of our building blocks. In fact, we can exchange the type
of the building block altogether and still observe a total
even number of changed bonds. This argument holds be-
cause the inner bond distribution, derived from the local
shape of the soft mode, by construction must consist of
an even number of antiferromagnetic bonds.

In 3D, where the space is embedded with defect lines,
the homotopic properties of loops and parity of antifer-
romagnetic bonds can be inferred from the three pro-
jections of the loop into planar loops, together with the
corresponding projections of each segment of the defect
lines into defect points in the perpendicular plane. Com-
bining the number of defect points inside the three planar
loops gives the equivalent of the winding number of the
3D loop around the defect lines.

Appendix C: Mechanical response model

To understand how to choose the interaction constants
kij in Eq. (2), it is instructive to observe a single building
block, where Ks is a 6Ö6 matrix containing the elastic
interaction constants, both for the 2D hexagons and for
the 3D cubes. From symmetry considerations, it can be
easily seen that both the 2D hexagonal and the 3D cubic
building blocks have only two types of facets, two along
the minority axis and four along the majority axes. It
can also be easily verified that there are eight (six) pos-
sible different interaction constants kij for the hexago-
nal (cubic) building block, see Fig. 5. These interaction
constants take positive (negative) values if the energy
decreases when the facets displace oppositely (similarly)
with respect to the building block.

Satisfying Eq. (3), i.e, a vanishing net force on the
facets when deformed according to the desired floppy
mode, guarantees that this mode indeed costs no energy,
and that it is an eigenmode of the matrix Ks with a zero
eigenvalue. Finally, in order for the building block to be
mechanically stable, the remaining interaction constants
were chosen such as that the other eigenvalues of Ks

are all positive. In our numerical demonstrations of the
mechanical response in the presence of defects we used
the arbitrary values k1 = 0.5, k2 = 0.5, k3 = −0.289,
k4 = 0.065, k5 = −0.219, k6 = −0.027, k7 = 0.041,
k8 = −0.149 in 2D, and k1 = 1, k2 = 2, k3 = 0.246,
k4 = k7 = 0.311, k5 = k6 = −0.929, k8 = 0.48 in 3D. We
also tested other sets of values and observed no qualita-
tive difference in the results. It should be noted that it
is possible to adjust the ki selection for finite rigidity by
setting the desired soft mode to be the eigenmode of the
matrix Ks with the lowest eigenvalue, however we do not
expect qualitative changes as a result of switching from
a floppy mode to a soft mode.

In order to find the mechanical response of a metama-
terial structure to a set of externally applied constraints
on some of its facets, we find the deformation field such
that the net forces on the remaining free facets vanish.
Since we assume a harmonic energy term, the forces are
linear in the deformations and a set of linear equations

Kfuf = b can be written and easily solved numerically,
where Kf is the matrix describing the interaction be-
tween the free facets uf , and b is a set of the external
forces applied on these facets. Solving this equations set
requires inverting matrix Kf , which scales as L2 × L2

for L × L hexagonal metamaterials and as L3 × L3 for
L × L × L cubic metamaterials. Note that because the
energy landscape is a convex second-order expression of
the deformations, the thereby found extremal deforma-
tion field is guaranteed to be an energy minimum.

Appendix D: Compatible 3D structures

We construct compatible L×L×L metacubes by care-
fully stacking L × L × 1 layers. First, we observe the
conditions under which such layers are individually com-
patible. We refer to building blocks whose minority axis
is oriented in the i direction as i blocks, and to lattice
edges along the i direction as i edges. To satisfy compati-
bility in the (x, y) plane, z blocks must reside in a pattern
of alternating regions demarcated by a set of vertical and
horizontal lines that form a subset of all grid lines, see
Fig. 11. This guarantees that there are 0, 2 or 4 red lines

meeting at each z-edge. There are thus
(
2L−1

)2
possible

ways to select the subset of the vertical and horizontal
lines.

A given selection of the vertical and horizontal lines,
as demonstrated by solid black lines in Fig. 11, defines
two possible colorings for the z blocks and complemen-
tary regions, in which the complementary regions consist

(a) (b) (c)

FIG. 11. Compatible layers: z blocks, indicated by a red
cross, cf. Fig. 6, are bound to alternating regions between a
subset of horizontal and vertical grid lines, indicated by solid
black lines. The empty blocks in the complimentary regions
are free to choose between x and y. The horizontal and ver-
tical lines are each selected from a set of {L − 1} possible
grid lines. The chosen (unchosen) lines are indicated by solid
black (dashed gray) arrows. (a) and (b) depict the two possi-
ble colorings for the same selection of vertical and horizontal
lines. If there are f free blocks in coloring (a), then there are
L2 − f free blocks in coloring (b). (c) Row swapping with
respect to the layer at (b). Every block in the z direction
was replaced with a block in the y direction and vice versa. y
blocks are indicated by elongated rectangles in the y direction.
The swapping changes the selection status of the horizontal
lines bounding the line; from a solid arrow indicating a se-
lected line to a dashed arrow indicating an unchosen line, and
vice versa.
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of a total of f or
(
L2 − f

)
blocks, see Fig. 11(a,b). Each

individual block in the complementary regions is free to
choose between being an x block or a y block. There are

thus 2f or 2L
2−f different ways in which the orientations

of the blocks in the complementary regions can be cho-

sen. Note that 2f + 2L
2−f ≥ 2L

2/2+1, and therefore the
number of compatible L× L× 1 layers satisfies

ΩL ≥ 2L
2/2+2L−1. (D1)

The second stage of our procedure involves stacking
compatible layers. Compatible stacking requires an even
number of red lines meeting at the x and y edges be-
tween the layers, in addition to the z edges inside each
layer. x or y edges may receive 0, 1 or 2 red line contri-
butions from each layer, depending on how many blocks
are facing the x or y directions on either sides of the edge.
Note that stacking the layer on itself always results in a
compatible interface as this number of red lines doubles.

Consider a special case, in which along a row in the x
direction, all the free blocks were chosen to be in the y
direction, see Fig. 11(b). Now consider a stacking where
in the next layer along the same row, every block in the z
direction was replaced with a block in the y direction and
vice versa, see Fig. 11(c). This change does not change
the number of red lines on any x edge between the layers
compared to stacking the layer on itself. The y edges
between the original row and the swapped row will have
exactly 2 red lines and will therefore also be compatible.
Finally, the described swapping is equivalent to chang-
ing the selection status of the horizontal lines bounding
the described row, see Fig. 11(c), which means that the
swapped layer will still satisfy compatibility on all its
z edges. Therefore, when such rows exist, they can be
swapped freely between the layers without compromising
the stacking compatibility.

The described stacking process can easily be used to
create non-periodic compatible structures. Consider a
compatible layer comprised only of z and y blocks, where
only vertical lines were chosen to separate between z and
y regions. There are 2L−1 possibilities to select the ver-
tical lines for this reference layer. However, each row in
this layer can be swapped, allowing 2L compatible stack-
ing possibilities. The number of compatible L × L × L
metacubes that can be constructed in this way is a lower
bound to the total number of compatible metacubes

Ω0 ≥ 3 · 2L
2+L, (D2)

where a factor of 2 was included to account for column
swapping as well as row swapping, and a factor of 3 was
included to account for stacking planes in the x and y
directions, equivalent to 6 rotations in space. Note that
the exact same lower bound was found in Ref. [10], using
different arguments.

However, our approach for non-periodic stacking easily
allows us to tighten this lower bound by also considering
Ωxyz, the number of structures created from reference

FIG. 12. Ratio between the exact number of compatible
metacube structures and the lower bounds, using the origi-
nal lower bound described in Ref. [10] (blue) and the tighter
lower bound of Eq. (D4) (red).

layers with rows containing also x blocks. When creat-
ing structures from such layers, the aforementioned rows
cannot be swapped between the stacked layers. Note
that unlike the structures described for the lower bound
in Ref. [10] or in the main text, Ωxyz structures contain
blocks of all three possible orientations. A layer with
1 ≤ k ≤ L rows containing x blocks has 2L−k compatible
stacking possibilities. Consider one of the 2L−1 possible
choices of the vertical lines, the two coloring of which de-
fine a or (L− a) non-z blocks along each row. To avoid
double counting, within the chosen k rows, at least one of
these blocks must be an x block while the rest can choose
between x and y blocks. We can then use the inequality

(2a − 1)
k

+
(
2L−a − 1

)k ≥ 2
(
2L/2 − 1

)k
to arrive at

Ωxyz ≥
L∑

k=1

3 · 2L
(
L

k

)[
2
(

2L/2 − 1
)k]

2(L−k)L

= 3 · 2L
2+L+1

[(
1 + 2−L/2 − 2−L

)L
− 1

]
,

Ωxyz ≥ 3L · 2L+1 ·
(

2L
2/2 − 1

)
,

(D3)

where a factor of 6 was included to account for structure
rotations in space, and at the last step only the leading
term of a Taylor expansion was kept. Finally, we arrive
at

Ω0 ≥ 3 · 2L
2+L + 3L · 2L+1 ·

(
2L

2/2 − 1
)
. (D4)

Figure 12 shows the improvement in the lower bound as
a result of the added term.
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Appendix E: Non-periodic incompatible 3D
structures and their mechanical response

Straight defect lines can be achieved by stacking layers
containing defects in the desired locations, see Fig. 13.
By implementing the swapping rule discussed earlier,
no additional defects are created within or between the
stacked layers, and the defects inside the different layers
connect to form a continues line. This way, we can eas-
ily design structures with multiple parallel defect lines at
designated locations.

(a) (b) 1 5 64321 5 6432

1

5

6

4

3

2

1

5

6

4

3

2

FIG. 13. A defect is formed by truncating together a vertical
and a horizontal line, indicated by the red arrows. x (y) blocks
are indicated by green (blue) elongated rectangles. Swappable
rows (columns) are numbered in blue (green). (a) A periodic
design is constructed by self stacking the presented layer. A
non-periodic design can be constructed by swapping any of
the columns in (a) or by swapping of permitted columns or
rows in (b). Note that switching from columns swapping to
row swapping requires going through the presented reference
layer.

To construct a structure with a defect loop, we devised
two layers such that the interface between them will re-
sult in a 2D defect loop, see Fig. 14. This way we can
design non-periodic structures with 2D defect loop of an
arbitrary shape. Note that in a similar fashion we can
also design multiple arbitrary loops on parallel planes.

FIG. 14. To create a defect loop, a layer with x blocks only is
stacked on top a similar layer that also features an enclosed
region of y blocks. Separately, each of these layers is com-
patible. However, when stacked, a defect loop matching the
contour of the y blocks is formed between them. This is be-
cause along this contour each x edge (y edge) receives 3 (1)
red line contributions. Without compromising the shape and
position of the defect loop, all the columns outside the cross
section of the loop can be swapped in the front layer, as well
as all the columns in the back layer.

To construct a defect cross we need to control the lo-
cation of two defect lines that are perpendicular to one
another. We create such defect lines using transitions be-
tween three reference layers, see Fig. 15. If the first and
third layers are stacked directly on top of one another,
the two perpendicular defect lines are formed in the same
plane, resulting in a defect cross.

FIG. 15. Defect cross: The first reference layer (top right)
contains two vertical regions of x and y blocks, the second
layer contains only y blocks, and the third (bottom left) con-
tains two horizontal regions of y and z blocks. In the tran-
sition between the first (second) and second (third) layers,
along the boundary between the vertical (horizontal) regions,
the x (y) edges receive one (three) red line contribution and
hence a defect line is formed parallel to the x (y) direction.
The rows in the top region before the first transition, as well
as all the rows after the second transition can be swapped
without changing the resulting defect locations.

We presented various ways in which different structures
can be designed with the same underlying defect pattern.
These included self stacking of layers, as well as swapping
of rows and columns. Here, we compare the mechanical
response of two structures with a straight defect line; a
periodic and a non-periodic structure, see Fig. 16. Even
though the exact spatial distribution of stresses varies be-
tween the periodic and non-periodic structures, the abil-
ity to steer stresses around the defect lines is qualitatively
similar. Note that the textured boundary condition ap-
plied to the faces of the structure depends on the internal
architecture and thus differs completely between the two
cases.
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(a) (b)
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FIG. 16. Mechanical response of periodic (a) and non-periodic
(b) metamaterials with the same defect structure. In (a),
a simple reference layer, similar to the one presented in
Fig. 13(a) is self stacked along the y direction. In (b), a com-
plex reference layer, similar to the one depicted in Fig. 13(b),
is stacked along the y direction with multiple rows or columns
swaps between consecutive layers. Top (bottom) - applying a
textured boundary condition to the (y, z) faces ((x, z) faces)
in order to steer the stresses below the defect line (twist the
stressed region).
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