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Abstract

The adjoint 2-dimensional QCD with the gauge group SU(N)/ZN admits topologically
nontrivial gauge field configurations associated with nontrivial π1[SU(N)/ZN ] = ZN . The
topological sectors are labelled by an integer k = 0, . . . , N − 1. However, in contrast to
QED2 and QCD4, this topology is not associated with an integral invariant like the
magnetic flux or Pontryagin index. These instantons may admit fermion zero modes,
but there is always an equal number of left-handed and right-handed modes, so that the
Atiyah-Singer theorem, which determines in other cases the number of the modes, does
not apply.

The mod. 2 argument [1] suggests that, for a generic gauge field configuration, there
is either a single doublet of such zero modes or no modes whatsoever. However, the
known solution of the Dirac problem for a wide class of gauge field configurations [2, 3, 4]
indicates the presence of k(N − k) zero mode doublets in the topological sector k. In this
note, we demonstrate in an explicit way that these modes are not robust under a generic
enough deformation of the gauge background and confirm thereby the conjecture of Ref.
[1].

The implications for the physics of this theory (screening vs. confinement issue) are
briefly discussed.



1 Introduction

The Lagrangian of the massless 2-dimensional QCD with fermions lying in the adjoint repre-
sentation of the SU(N) gauge group reads [5]

L = Tr

{
−1

2
FµνFµν + iψ̄γµDµψ

}
, (1.1)

where Aµ = Aaµt
a, ψ = ψata is a 2-component Majorana spinor, Dµψ = ∂µψ − ig[Aµ, ψ], and

the coupling g has the dimension of mass. We will not display the dependence on g in what
follows. It can always be restored on dimensional grounds. In 2-dimensional Minkowski space,
the gamma matrices can be chosen as γ0

M = σ2, γ1 = iσ1, where σ1,2,3 are the standard Pauli
matrices. Then γ5 = γ0

Mγ
1
M = σ3. The Euclidean gamma matrices, which we will mostly need

in the following, are

γ0
E = σ2, γ1 = σ1 . (1.2)

In this case, the elements of the center of SU(N) do not act faithfully on the fields, and we
are dealing with the group SU(N)/ZN . Its fundamental group is nontrivial, π1[SU(N)/ZN ] =
ZN , which leads to the existence of topologically nontrivial Euclidean field configurations—the
instantons [6, 2]. They are characterized by an integer k = 0, 1, . . . , N − 1.

In Refs. [2, 3], we imposed certain natural boundary conditions for the fermion fields and
solved the Dirac equation for a class of topologically nontrivial backgrounds on a cylinder [2]
and on the Euclidean plane [3]. We found the existence of k(N − k) left-handed and k(N − k)
right-handed zero modes in the spectrum. It was, however, argued in Ref.[1] that, for a generic
field configuration, there are only [k(N − k)]mod.2 doublets of zero modes.

The main motivation of this study was to reconcile these two seemingly contradictive state-
ments. As a result, we confirm the conjecture of Ref. [1] and demonstrate how the naive zero
modes disappear when the background is deformed in a general enough way.

The plan of the paper is the following.
In the next section, we consider, following Ref. [1], the theory on a finite torus and show

that, even in a topologically nontrivial sector, the field density can be brought to zero by a
continuous deformation of the potential.

In Sect. 3, we study the spectrum of the Dirac operator and show that all its eigenstates with
nonzero eigenvalues λ are split the quartets including two degenerate states with the eigenvalue
|λ| and two degenerate states with the eigenvalue −|λ|. The spectrum may include also some
number of the zero mode doublets. This number may be odd, and in this case at least one
such doublet must stay on zero for an arbitrary deformation, or it can be even, and in this case
the zero modes are not protected. This generic mod. 2 argument is confirmed by the analysis
of the topogically nontrivial toroidal configuration with zero field density. The number of the
zero modes depends on the fermionic boundary conditions. Choosing the conditions similar to
the conditions in Refs. [2, 3, 4], one finds in this case that the zero modes are absent if N is
odd and there are gcd(N, k) doublets of zero modes if N is even. This does not coincide with
k(N − k), but one can observe that the two estimates have the same parity.

In Sect. 4, we consider, following [2, 3, 4], the theory on a cylinder S1 × R, with S1

being a finite spatial circle with antiperiodic boundary conditions for the fermion fields and
R the infinite Euclidean time axis, t ∈ (−∞,∞). For a special Cartan instanton background,
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the Dirac operator admits in this case k(N − k) doublets of zero modes. The same result is
reproduced for the theory placed on a finite torus.

In Sect. 5, we first show that these zero modes are robust under a particular class of
deformations that do not modify the values of the potential at t = ±∞. Then we consider more
general deformations of the potential and show that in this case most zero modes disappear,
leaving only one doublet of the modes when k(N − k) is odd.

In Sect. 6, we discuss the impact of the zero analysis presented in the main body of the
paper on the physics of this theory — whether it exhibits confinement with the area law for
the fundamental Wilson loops or screening characterized by the perimeter law.

2 Instantons on the torus

We consider the theory on an Euclidean torus,

0 ≤ x ≤ L, 0 ≤ t ≤ β . (2.1)

The generic toroidal boundary conditions for Aµ(x, t) read [7]

Aµ(x+ L, t) = AΩ1
µ (x, t) ≡ −i[∂µΩ1(x, t)]Ω−1

1 (x, t) + Ω1(x, t)Aµ(x, t)Ω−1
1 (x, t) ,

Aµ(x, t+ β) = AΩ2
µ (x, t) ≡ −i[∂µΩ2(x, t)]Ω−1

2 (x, t) + Ω2(x, t)Aµ(x, t)Ω−1
2 (x, t) . (2.2)

However, the gauge transformation matrices Ω1,2 ∈ SU(N) are not quite arbitrary: we have
to require that, going from the point (x, t) to the point (x + L, t + β) in two different ways,
we obtain the same potential Aµ(x + L, t + β). Bearing in mind that the potential does not
transform under the action of the center, we obtain the self-consistency condition

Ω1(x, t+ β) Ω2(x, t) = ωkN Ω2(x+ L, t) Ω1(x, t) (2.3)

with
ωN = e2πi/N .

An integer k labels the topological sector.
We choose in the following Ω1(x, t) = 1 and the time-independent Ω2(x, t) ≡ Ω(x) that

interpolates between Ω(0) = 1 and Ω(L) = ωkN1. This gives

Aµ(x+ L, t) = Aµ(x, t),

Aµ(x, t+ β) = −i[∂µΩ(x)]Ω−1(x) + Ω(x)Aµ(x, t)Ω−1(x) , (2.4)

Note that Ω(x) represents a noncontractible loop in SU(N)/ZN . It is a “large” gauge trans-
formation.

Theorem 1. [8] The field density of any field configuration Aµ(x, t) satisfying (2.4) can be
brought to zero by a smooth deformation.

Proof. Consider first the simplest case N = 2. By a topologically trivial gauge transformation,
we can bring Ω(x) to the form1

Ω(x) = exp

{
iπx

L
τ 3

}
. (2.5)

1τa = 2ta are the Pauli matrices in the color space.
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Perform now a gauge transformation

Aµ → Bµ = −i(∂µU)U−1 + UAµU
−1 (2.6)

with U(x, t) satisfying the following b.c. :

U(x+ L, t) = iτ 1U(x, t),

U(x, t+ β) = iτ 3U(x, t)Ω−1(x) . (2.7)

Lemma. A continuous matrix function satisfying (2.7) exists.

Proof. We choose U(0, 0) = 1. Then the conditions (2.7) dictate the following values of U(x, t)
at the edges of the square:

U(x, 0) = exp

{
iπx

2L
τ 1

}
,

U(0, t) = exp

{
iπt

2β
τ 3

}
,

U(x, β) = iτ 3 exp

{
iπx

2L
τ 1

}
exp

{
−iπx

L
τ 3

}
,

U(L, t) = iτ 1 exp

{
iπt

2β
τ 3

}
. (2.8)

In the corners:

U(0, 0) = 1, U(0, β) = iτ 3, U(L, 0) = iτ 1, U(L, β) = iτ 2 .

Capitalizing on the fact that π1[SU(2)] = 0, we can also continuously define U(x, t) in the
interior of the square.

If Aµ(x, t) satisfies (2.4) and U(x, t) satisfies (2.7), then the gauge-transformed field Bµ(x, t)
satisfies

Bµ(x+ L, t) = τ 1Bµ(x, t)τ 1 ,

Bµ(x, t+ β) = τ 3Bµ(x, t)τ 3 . (2.9)

These b.c. allow for a continuous deformation Bµ → 0. Performing the inverse gauge transfor-
mation with the matrix U−1(x, t), we obtain a pure gauge configuration,

Adeformed
µ (x, t) = iU−1∂µU . (2.10)

The corresponding field density is zero.

Let now N = 3. There are two nontrivial topological sectors: with k = 1 and with k = 2.
If k = 1, the loop Ω(x), uncontractible in SU(3)/Z3, can be chosen in the form

Ω(x) = exp

{
2iπx

3L
diag(1, 1,−2)

}
, (2.11)

so that Ω(L) = ω31.
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Perform the gauge transformation (2.6) with U(x, t) satisfying the following b.c. :

U(x+ L, t) = SU(x, t) ,

U(x, t+ β) = CU(x, t)Ω−1(x) , (2.12)

where C, S ∈ SU(3) are the “clock and shift” matrices [9]:

C =

 1 0 0
0 ω3 0
0 0 ω 2

3

 , S =

 0 0 1
1 0 0
0 1 0

 . (2.13)

The identities
S3 = C3 = 1, SC = ω2

3CS

hold.
One can represent C = eiP , S = eiQ with Hermitian P,Q. On the edges of the square, we

derive

U(x, 0) = exp

{
ixQ

L

}
,

U(0, t) = exp

{
iP t

β

}
,

U(x, β) = C exp

{
iQx

L

}
Ω−1(x) ,

U(L, t) = S exp

{
iP t

β

}
. (2.14)

In the corners:

U(0, 0) = 1, U(0, β) = C, U(L, 0) = S, U(L, β) = SC .

Bearing in mind that π1[SU(3)] = 0, we can also continuously define U(x, t) in the interior of
the square.

The gauge-transformed field (2.6) satisfies the conditions

Bµ(x+ L, t) = SBµ(x, t)S−1 ,

Bµ(x, t+ β) = CBµ(x, t)C−1 . (2.15)

It can be smoothly deformed to zero, which means that the original field Aµ(x, t) satisfying the
conditions (2.4) can be smoothly deformed to a pure gauge form with zero field density.

In the sector k = 2, we choose

Ω(x) = exp

{
2iπx

3L
diag(2,−1,−1)

}
, (2.16)

If we substitute ω3 → ω−1
3 = ω2

3 in the definition of the matrix C and the subsequent formulas,
the whole reasoning can be repeated.
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N ≥ 4. The generalization is straightforward. In the sector with a given k, one should
choose Ω(x) in the form

Ω(x) = exp

2iπx

NL
diag(k, . . . , k︸ ︷︷ ︸

N−k

, k −N, . . . , k −N︸ ︷︷ ︸
k

)

 , (2.17)

so that Ω(L) = ωkN1 with ωN = e2iπ/N .
The matrices C, S entering the boundary conditions (2.12) and (2.15) may now be defined

as

C = eiπk(N+1)/Ndiag{1, ωkN , . . . , ω
k(N−1)
N } ,

S = eiπ(N+1)/N


0 0 · · · · · · 1
1 0 · · · · · · 0
· · · · · · · · · · · · · · ·
0 · · · · · · 1 0

 . (2.18)

The phase factors in (2.18) are chosen such that C, S ∈ SU(N): detC = detS = 1.
As earlier, the field Bµ(x, t), untwined by the gauge transformation, can be continuously

deformed to zero.

The theorem just proven clearly displays that a nontrivial topology is not associated in our
case with any topological charge like the magnetic flux in the 2D Abelian gauge theory or the
Pontryagin index in the 4D Yang-Mills theory,2

q2 =
1

2π

∫
F, q4 =

1

8π2

∫
Tr{F ∧ F} . (2.19)

Indeed, the presence of the topological invariants (2.19) depends on the fact that their
integrands are exact forms: FAb = dA and Tr{F ∧ F} = dTr{A ∧ dA + 2i

3
A ∧ A ∧ A}. But

in QCD2, the form F is not exact and Tr{F} is simply zero.

3 Dirac operator and its spectrum

Bearing in mind the chosen explicit form (1.2) of the Euclidean gamma matrices, the Euclidean
Dirac spectral problem reads

iDψ =

(
σ2
∂

∂t
+ σ1

∂

∂x

)
ψ − i(σ2[A0, ψ] + σ1[A1, ψ]) = iλψ , (3.1)

ψ ≡ ψata. It has the following important symmetries:

• For any eigenfunction ψ with eigenvalue λ, the function

ψ′ = σ3ψ (3.2)

is an eigenfunction with eigenvalue −λ.

2Here F is the field density 2-form F = Fµνdx
µ ∧ dxν/2.
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• For any eigenfunction ψ with eigenvalue λ, the function

ψ′′ = σ2ψ
∗ (3.3)

is an eigenfunction with the same eigenvalue.

Suppose λ 6= 0. Then all the states

ψ1, ψ2 = σ3ψ1, ψ3 = σ2ψ
∗
1, ψ4 = σ3σ2ψ

∗
1

are linearly independent. Indeed, the states ψ1, ψ3 cannot coincide with the states ψ2, ψ4 because
the latter have a different eigenvalue of D. On the other hand, the state ψ1 cannot coincide
with ψ3. Indeed, the equality σ2ψ

∗
1 = κψ1 can be spelled out in terms of the spinor components

of ψ1 as (
0 −i
i 0

)(
a∗

b∗

)
= κ

(
a
b

)
=⇒

{
ia∗ = κb
−ib∗ = κa

,

which is possible only if a = b = 0.
In other words, the spectrum of the excited states of the operator H = D2 in a generic

gauge background is split into quartets of degenerate states. H is a second-order differential
operator, which may be called a Hamiltonian. The four-fold degeneracy of all the excited levels
means that this Hamiltonian enjoys extendedN = 2 supersymmetry. Extended supersymmetry
implies the existence of two doublets of Hermitially conjugated supercharges. One such doublet,
associated with the symmetry (3.2) has a nice local form,

Q = D(1 + σ3), Q† = D(1− σ3) . (3.4)

Another doublet associated with the symmetry (3.3) is nonlocal.
Two of the quartet states, ψ1 + ψ2 and ψ3 + ψ4 are right-handed (they are eigenstates of

the chirality operator γ5 = σ3 with eigenvalue +1) and two other states, ψ1 − ψ2 and ψ3 − ψ4

are left-handed.
If λ = 0, ψ1 and ψ2 are not necessarily linearly independent. They are not if ψ1 has a definite

chirality. In this case, we have a doublet of states, ψ1 and ψ3. Note that these states have
opposite chiralities, so that the Atiyah-Singer index nL−nR of the supersymmetric Hamiltonian
H is equal to zero.

Suppose that in a particular gauge background there is only one doublet of the fermion
zero modes. Then these modes cannot shift from zero under a smooth deformation, because
a doublet cannot become a quartet. But if there are two such doublets, they can move from
zero simultaneously, forming a quartet. Similarly, if we have any even number 2n of doublets
— they all can move from zero forming n quartets of excited states. And if there were an odd
number 2n + 1 of doublets, 2n of them can be shifted from zero, but one doublet is bound to
stay.

This is the mod. 2 index argument of Ref. [1]. It says that there are no compelling reasons
to expect the existence of more than one doublet of the fermion zero modes of the Dirac operator
(3.1) in a generic gauge background.

To find out whether this theoretical lower bound for the number of the zero modes is
saturated for particular backgrounds, one should perform an explicit study of the solutions to
the problem (3.1).
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One possibility [1] is to perform a gauge transformation (2.6) of the gauge fields and simul-
taneously of the fermion fields and then smoothly deform Bµ(x, t) to zero, in which case we are
simply dealing with the free Dirac problem,(

σ2
∂

∂t
+ σ1

∂

∂x

)
Ψ(x, t) = 0 (3.5)

Eq. (3.5) is equivalent to a doublet of equations(
∂

∂x
± i ∂

∂t

)
Ψ±(x, t) = 0 , (3.6)

for the upper and lower spinor components. The solution to (3.6) is very simple: Ψ+ must be
holomorphic and Ψ− antiholomorphic in z = x+ it.

A nontriviality resides, however, in the boundary conditions to be imposed on the fermion
field. The result depends on their choice. We choose the conditions

ψ(x+ L, t) = −ψ(x, t),

ψ(x, t+ β) = Ω(x)ψ(x, t)Ω−1(x) , (3.7)

These conditions are similar to (2.4) (periodicity in space and the periodicity up to a large gauge
transformation under the imaginary time shift), but note the presence of the extra minus in the
first line. We inserted it to make contact with the settings of Ref. [4], where the fermion fields
were also chosen to be antiperiodic in spatial direction. This choice can be traced back to earlier
papers [10, 2] where the adjoint QCD2 at finite temperature was studied — as is well-known, a
finite temperature amounts to a finite Euclidean time extension with antiperiodic conditions for
the fermion fields. In [4], the whole picture was rotated by π/2 and the theory was considered
on a finite spatial circle, while keeping the antiperiodic fermion boundary conditions.

Consider first the case N = 2. After the gauge transformation

ψ(x, t)→ Ψ(x, t) = U(x, t)ψ(x, t)U−1(x, t) , (3.8)

with U(x, t) satisfying (2.7), the transformed field satisfies the conditions

Ψ(x+ L, t) = −τ 1Ψ(x, t)τ 1,

Ψ(x, t+ β) = τ 3Ψ(x, t)τ 3 , (3.9)

The matrix functions Ψ±(x, t) are double periodic functions on the large torus, {0 ≤ x ≤
2L, 0 ≤ t ≤ 2β}. The only (anti)holomorphic nonsingular double periodic function (the
absence of the poles follows from the normalizabily requirement) is a constant. We only have
to check now if the boundary conditions (3.9) admit constant solutions. The answer is positive,
the solution is Ψ ∝ τ 3. We have proven the theorem:

Theorem 2. In the N = 2 theory with the fermion boundary conditions (3.7), the Dirac
operator on the background Aµ(x, t) representing a pure gauge (2.10) [which corresponds to
Bµ(x, t) = 0] has one left-handed and one right-handed zero mode.

Note that, for the fermion boundary conditions with the positive sign in the first line in
(3.7) and (3.9), there would be no zero mode solutions whatsoever.
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The next in complexity case is N = 3. Let k = 1. We may repeat our reasoning by
imposing the fermion boundary conditions (3.7) with Ω(x) given by (2.11), performing the
gauge transformation with the parameter U(x, t) satisfying (2.12) and choosing the background
Bµ(x, t) = 0. The problem boils down to the search of the (anti)holomorphic Hermitian matrix
functions Ψ(x± it) that satisfy the conditions

Ψ(x+ L, t) = −SΨ(x, t)S−1,

Ψ(x, t+ β) = CΨ(x, t)C−1 . (3.10)

However, such functions do not exist. The conditions (3.10) imply the periodicity in the imag-
inary time direction and antiperiodicity in the spatial direction on the large torus, {0 ≤ x ≤
3L, 0 ≤ t ≤ 3β}. The only (anti)holomorphic nonsingular matrix that satisfies this condition
is Ψ(x, t) = 0. Obviously, this reasoning applies to any odd N with any k.

We have proven the theorem:

Theorem 3. In the theory with odd N and with the fermion boundary conditions (3.7) in any
topological sector k, the Dirac operator on the background Aµ(x, t) representing a pure gauge
(2.10) does not admit zero modes.

Consider now the case of generic even N ≥ 4.
We have to search constant Hermitian matrices Ψ that commute with C and anticommute

with S in (2.18).
• Consider first the case k = 1. Then the condition ΨC = CΨ brings Ψ in the Cartan

subalgebra. There is only one (up to a factor) diagonal real traceless matrix that anticommutes
with S:

Ψ = diag(1,−1, . . . , 1,−1) , (3.11)

giving a single zero mode of the Dirac operator. Clearly, this also applies to the theory with
any k that does not have common nontrivial divisors with N .
• Let k = 2. The matrix C may now be chosen as

Ck=2 = diag(1, e4iπ/N , . . . , e−4iπ/N , 1, e4iπ/N , . . . , e−4iπ/N)

Each eigenvalue is repeated twice. The centralizer of such C is the subalgebra

c = su(2)⊕ · · · ⊕ su(2)︸ ︷︷ ︸
N/2

⊕u(1)⊕ · · · ⊕ u(1)︸ ︷︷ ︸
N/2−1

. (3.12)

This centralizer includes the Cartan subalgebra, which gives the zero mode (3.11) as earlier,
and also certain nondiagonal matrices depending on N/2 complex parameters. In the particular
case N = 6, these matrices have the form

Ψ =


0 0 0 a1 0 0
0 0 0 0 a2 0
0 0 0 0 0 a3

a∗1 0 0 0 0 0
0 a∗2 0 0 0 0
0 0 a∗3 0 0 0

 . (3.13)
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The condition ΨS + SΨ = 0 implies the chain of N/2 relations

a1 + a2 = . . . = aN/2−1 + aN/2 = aN/2 + a∗1 = 0 . (3.14)

The solution is

{a1, . . . , aN/2} = λ {1,−1, . . . , (−1)N/2−1} (3.15)

with a real λ if N/2 is even and an imaginary λ if N/2 is odd. This gives the second doublet
of zero modes.

We obtain the same result (two zero modes) for any k with gcd(N, k) = 2. In this case, the
centralizer of C is still the subalgebra (3.12), the nondiagonal elements of the centralizer are
still parametrized by N/2 complex numbers aj and we still have one Cartan zero mode doublet
and one doublet (3.15).
• Let now gcd(N, k) = 3. In this case, the clock matrix C includes N/3 different eigenvalues

that enter thrice. The centralizer is

c = su(3)⊕ · · · ⊕ su(3)︸ ︷︷ ︸
N/3

⊕u(1)⊕ · · · ⊕ u(1)︸ ︷︷ ︸
N/3−1

. (3.16)

Its nondiagonal elements include N complex parameters organized in two different “ladders”,
as illustrated below for N = 6, k = 3.

Ψ =


0 0 a1 0 a5 0
0 0 0 a2 0 a6

a∗1 0 0 0 a3 0
0 a∗2 0 0 0 a4

a∗5 0 a∗3 0 0 0
0 a∗6 0 a∗4 0 0

 . (3.17)

In contrast to (3.13), the ladders in (3.17) are “long” — they involve 6 complex parameters
each. On the other hand, the elements in the left ladder and in the right ladder are complex
conjugated to each other.

The condition {Ψ, S} = 0 that the matrix (3.17) should satisfy to represent a zero mode
gives the long chain of relations

a1 + a2 = a2 + a3 = a3 + a4 = a4 + a∗5 = a∗5 + a∗6 = a∗6 + a1 = 0 (3.18)

for the left ladder, and the right ladder gives nothing new. The solution is

{a1, . . . , a6} = {a,−a, a,−a, a∗,−a∗} (3.19)

with a complex a. For a generic N with gcd(N, k) = 3, the relations are

a1 + a2 = . . . = a2N/3−1 + a2N/3 = a2N/3 + a∗2N/3+1 = . . . = a∗N−1 + a∗N = 0 , (3.20)

and their solution also involves a single complex parameter. This gives 2 nondiagonal zero
mode doublets, to which the Cartan doublet should be added.
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•When gcd(N, k) = 4, the matrix C includes 4 coinciding sets of N/4 different eigenvalues,
the centralizer is

c = su(4)⊕ · · · ⊕ su(4)︸ ︷︷ ︸
N/4

⊕u(1)⊕ · · · ⊕ u(1)︸ ︷︷ ︸
N/4−1

, (3.21)

and its nondiagonal elements depend on 3N/2 complex parameters organized in three ladders:
two of them are complex conjugate to each other, depend on N different complex parameters
and the condition {Ψ, S} = 0 gives a “long” chain of relations like in (3.20), leaving only one
complex parameter. Besides, there is a ladder depending on N/2 complex parameters and their
complex conjugates. The requirement {Ψ, S} = 0 gives a short chain of relations like in (3.14),
leaving only one real parameter. We obtain four doublets of zero modes: a Cartan doublet and
three nondiagonal doublets.
• This counting is easily generalized for an arbitrary k. When gcd(N, k) = r and r is odd,

the nondiagonal elements of the centralizer of C are parameterized by N(r − 1)/2 complex
numbers organized in r − 1 “long” ladders. Only a half of these ladders are relevant — the
other half includes complex conjugated parameters. After imposing the condition ΨS+SΨ = 0,
only one complex parameter is left for each doublet of complex conjugate ladders. This gives
r − 1 doublets of zero modes, to which the Cartan doublet should be added.

If r is even, the nondiagonal part of the centralizer still depends on N(r − 1)/2 complex
parameters organized in r − 1 ladders. But only r − 2 of these ladders [(r − 2)/2 doublets of
complex conjugated ladders) are long. They originally include N(r−2)/2 complex parameters,
of which only (r − 2)/2 are left after imposing the condition {Ψ, S} = 0. This gives r − 2
doublets of zero modes. There is also a “short” ladder depending on N/2 complex parameters,
of which only one real parameter is left after imposing the anticommutation condition. This
gives one zero mode doublet.

All together we obtain
(r − 2)long + 1short + 1Cartan = r

doublets of zero modes — the same number as for odd r.
We have proven the theorem:

Theorem 4. In the theory with even N with the fermion boundary conditions (3.7), the Dirac
operator on the background Aµ(x, t) representing a pure gauge (2.10) [which corresponds to
Bµ(x, t) = 0] admits gcd(N, k) right and gcd(N, k) left zero modes in the topological sector k.

As was mentioned above, the number of modes depends on the fermion boundary conditions.
For example, if the periodic boundary conditions in the both directions are imposed, the number
of the zero mode doublets is equal to [1]

ndouble periodic
0 = gcd(N, k)− 1 . (3.22)

Indeed, we now have to count the elements of c that commute with S. This excludes the
elements of the Cartan subalgebra. Consider a generic nondiagonal element of c. It includes
several ladders — long and short. The condition [Ψ, S] = 0 dictates that all the complex matrix
elements in a long ladder coincide. The matrix elements in a short ladder also coincide with
an additional constraint that they must be real. This gives the same count of parameters as in
the problem with the boundary conditions (3.10). We arrive at (3.22).
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If we choose the b.c. that are antiperiodic in imaginary time, but periodic in space, we need
to count the matrices that commute with S and anticommute with C. For k = 1, S is related
to C by a group conjugation, S = V CV −1 and the same is true for their centralizers. Thus, the
centralizer of S also represents a Cartan subalgebra embedded in su(N) in a noncanonical way.
Only one of its generators anticommutes with C, and we obtain one single zero mode doublet.

If k > 1, the matrices S and C belong to different conjugacy classes and there is no reason
for the same counting in the problem where S and C are interchanged. And generically the
counting is different, indeed. In the case N = 4, k = 2, it happens to be the same, but for
N = 6, k = 2 it is already different: there are two matrices that satisfy [Ψ, C] = {Ψ, S} = 0
and no matrices satisfying [Ψ, S] = {Ψ, C} = 0 whatsoever [1].

We presented the calculation of the number of fermion zero modes on a torus in a particular
gauge background. For k = 1, there is one doublet of zero modes or none depending on whether
N is even or odd. This conforms to the mod. 2 argument outlined above. But for higher k,
the number of the zero mode doublets is sometimes larger than 1.

In order to understand whether the counting n0 =gcd(N, k) holds for a generic field configu-
rations, it is natural to choose some other handleable gauge background and solve the problem
in that case.

4 Cartan instantons and their zero modes

In this section, we will not unwind the gauge field by the gauge transformation (2.6) and then
deform it to zero, as we did before, but consider the original boundary conditions (2.4), choose
the simplest topologically nontrivial gauge background Aµ(x, t) and study the Dirac spectrum
there.

4.1 On the cylinder

A similar problem was first solved in Ref. [2]. In that paper, we studied the physics of the theory
(1.1) at finite temperature, i.e. the theory was put on the cylinder with the finite extension
β along the imaginary time t and the infinite spatial extension. We imposed the boundary
conditions

Aµ(x, t+ β) = Aµ(x, t) ,

ψ(x, t+ β) = −ψ(x, t) . (4.1)

and solved the Dirac equation in a topologically nontrivial background with k = 1. We obtained
N − 1 doublets of zero modes. This result was then confirmed in [4], whose authors rotated
the cylinder by 90o and considered the theory on a finite spatial circle of length L and the
infinite extension in t. In [3], we generalised the discussion for any k and discussed also the
Dirac problem on an infinite Euclidean plane. We derived the presence of k(N − k) doublets
of zero modes.

We reproduce here this derivation following the approach of [4], where the physical instanton
picture is somewhat more transparent. In the second half of this section, we translate it onto
a finite torus.
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Thus, we impose the boundary conditions3

Aµ(x+ L, t) = Aµ(x, t) ,

ψ(x+ L, t) = −ψ(x, t) (4.2)

and impose the Hamilton gauge A0(x, t) = 0. The instanton A1(x, t) is then interpreted as a
topologically nontrivial tunneling transition trajectory between the different vacua, similar to
the interpretation of the familiar BPST instanton [11].

We are in a position to study the vacuum structure of our theory. We consider the case
N = 2 first.

In QCD2, a classical vacuum with zero field density is the constant field configuration A1 =
const. By a gauge rotation, one can bring A1 to the Cartan subalgebra. For SU(2), we may
pose A1 = aτ 3. Classically, the energy of all such constant configurations is zero. But taking
into account the quantum corrections due to fermion loops,4 the effective potential emerges [10].
In Refs.[10], bearing in mind the finite temperature applications, the effective potential for the
zeroth component of the vector potential was calculated assuming the antiperiodic boundary
conditions for the fermions under the Euclidean time shift. For SU(2), this potential reads

V eff(A0 = aτ 3) =
β

2π

[(
2a+

π

β

)
mod. 2π

β

− π

β

]2

. (4.3)

In our case, the dependence is the same:

V eff(a) =
L

2π

[(
2a+

π

L

)
mod. 2π

L

− π

L

]2

. (4.4)

It is periodic with the period π/(L) (see Fig. 1). This periodicity is due to the fact that
any a outside the interval

0 ≤ a ≤ π

L
(4.5)

can be brought into this interval by a topologically trivial gauge transformation. There are two
types of such transformations:

1. The shift a→ a+ (2π)/L realized by the gauge transformation

Ω̃(x) = exp

{
2πix

L
τ 3

}
. (4.6)

In contrast to the loop (4.7), this loop is contractible in SU(2)/Z2.

2. The Weyl reflection aτ 3 → −aτ 3 realized by the rotation by π around the first or the
second color axis.

3The physical picture happens to be more simple when the spatial fermionic boundary conditions are an-
tiperiodic. It would also be interesting to perform a systematic study of the theory with periodic b.c. both for
Aµ and ψ.

4In two dimensions, there are no physical degrees of freedom associated with the gauge fields, and the latter
do not contribute.
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a
π/ π/ π/

Veff

−− (2L) (2L)L Lπ/

Figure 1: Effective potential (4.4)

The interval (4.5) may be called Weyl alcove.
We are left with only two vacuum states at a = 0 and a = π/(L). They are related by a

noncontractible gauge transformation

Ω(x) = exp

{
iπx

L
τ 3

}
, (4.7)

The instanton that we are interested in (we will call it the Cartan instanton) interpolates
between these states along the path

A1(t) = a(t)τ 3 with a(−∞) = 0, a(∞) =
π

L
. (4.8)

We will assume that a(t) tends to its asymptotic values exponentially fast.
Note that there are no antiinstantons: the configuration (4.8) with a(−∞) = π/L and

a(∞) = 0 belongs to the same topological class.
The Dirac equation (3.1) with A0 = 0 and A1(t) given by (4.8) admits the following doublet

of zero modes satisfying the antiperiodicity condition:

Φ+ = τ+

(
0
1

)
eiπx/Leφ(t) ,

Φ− = τ−
(

1
0

)
e−iπx/Leφ(t) , (4.9)

where

dφ(t)

dt
=

π

L
− 2a(t) . (4.10)

When t→ ±∞, the solutions behave as

ψ±(t) ∼ e−π|t|/L . (4.11)
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They are normalizable.
We see that there are two zero modes—with positive and negative chirality. They have the

opposite color structure, which corresponds to the fields of positive and negative charge in the
Abelian theory. In agreement with the standard Atiyah-Singer theorem, the zero modes have
negative chirality in the former case and positive chirality in the latter case.

Consider now the case N = 3. The Weyl alcove for SU(3) represents a triangle shown in
Fig. 2. The effective potential for the classical vacuum,

A1 = diag(a1, a2, a3),
∑
j

aj = 0 ,

is the sum of three terms:

V eff(aj) =
L

2π

∑
j<k

[(
aj − ak +

π

L

)
mod. 2π

L

− π

L

]2

. (4.12)

A

A
1

3

1
8

2π/L

Figure 2: The Weyl alcove for N = 3. The vertices of the triangle mark the topologically
distinct vacua.

The potential (4.12) has the minima at the vertices of the triangle:

A
(0)
1 = 0; A

(1)
1 =

2π

3L
diag(1, 1,−2) =

4π

L
√

3
t8; A

(3)
1 =

2π

3L
diag(2,−1,−1) . (4.13)

The Cartan instantons interpolate between different vacua. There are in principle 6 such
configurations corresponding to three edges of the triangle passed in two directions, but all
“clockwise” instantons belong to the same topological class k = 1 and all “counterclockwise”
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instantons belong to the class k = 2. It is sufficient to consider only one of them, the configu-
ration

A1(t) =
2

3
a(t) diag(1, 1,−2) , (4.14)

All other configurations have the same properties.
The Dirac equation (3.1) with A0 = 0 and A1(t) given by (4.14) admits two doublets of zero

modes:

Φ+
1,2 = E+

1,2

(
0
1

)
eiπx/Leφ(t) ,

Φ−1,2 = E−1,2

(
1
0

)
e−iπx/Leφ(t) , (4.15)

where

E+
1 =

 0 0 1
0 0 0
0 0 0

 , E+
2 =

 0 0 0
0 0 1
0 0 0

 (4.16)

and E−1,2 are Hermitially conjugated. φ(t) is related to a(t) in the same way (4.10) as before.

Generically, for larger values of N , the instantons of different types are labelled by an integer
k = 1, . . . , N − 1 and have the form

A1(t) =
2

N
a(t) diag(k, . . . , k︸ ︷︷ ︸

N−k

, k −N, . . . , k −N︸ ︷︷ ︸
k

) . (4.17)

Only the instantons with k = 1, . . . , [N/2] are essentially different. For example, for SU(4), the
Weyl alcove is an asymmetric tetrahedron with the vertices representing the following elements
of su(4): O = 0 and

A =
π

2L
diag(1, 1, 1,−3); B =

π

2L
diag(2, 2,−2,−2); C =

π

2L
diag(3,−1,−1,−1) . (4.18)

It has four short and two long edges and, correspondingly, there are instantons of two types:
with k = 1 and with k = 2.

The instanton (4.17) admits k(N −k) zero mode doublets, given by the same formulas as in
(4.15) with k(N −k) different matrices E+’s and k(N −k) different E−’s. Only one component
of these matrices somewhere in the upper right (correspondingly, lower left) block k× (N − k)
is equal to 1. All other components are zeros.

4.2 On the torus

We now roll up into a ring also the Euclidean time dimension and impose the boundary con-
ditions (2.4) on the gauge fields and (3.7) on the fermion fields with a topologically nontrivial
Ω(x).

Consider first the case N = 2. Ω(x) is given by (4.7). The instanton configuration reads

A1(t) =
πt

Lβ
τ 3 . (4.19)
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Again, the Dirac operator admits a doublet of zero modes, which have, however, a somewhat
more complicated form than on the cylinder,

Φ+ = τ+

(
0
1

) ∞∑
n=−∞

exp

{
iπx

L
(2n+ 1)

}
exp

{
−πβ
L

(
t

β
− n− 1

2

)2
}
,

Φ− = τ−
(

1
0

) ∞∑
n=−∞

exp

{
−iπx

L
(2n+ 1)

}
exp

{
−πβ
L

(
t

β
− n− 1

2

)2
}
. (4.20)

These functions belong to the Θ family. The same functions describe the toric fermion zero
modes in the constant magnetic field of unit flux in the Abelian theory.

It is also interesting to see what would happen if we imposed the periodic boundary condi-
tions in both directions:

ψ(x+ L, t) = ψ(x, t),

ψ(x, t+ β) = Ω(x)ψ(x, t)Ω−1(x) , (4.21)

In this case, one obtains a doublet of the charged zero modes given by the similar expressions:

Φ+
per. = τ+

(
0
1

) ∞∑
n=−∞

exp

{
2iπnx

L

}
exp

{
−πβ
L

(
t

β
− n

)2
}
,

Φ−per. = τ−
(

1
0

) ∞∑
n=−∞

exp

{
−2iπnx

L

}
exp

{
−πβ
L

(
t

β
− n

)2
}
. (4.22)

And on top of that, there is a doublet of constant neutral zero modes:

Φ1 = τ 3

(
1
0

)
and Φ2 = τ 3

(
0
1

)
. (4.23)

Two doublets altogether.
For higher N , the cylindrical argumentation above is translated onto the torus in a similar

fashion. The toric zero modes have the same color structure as the cylindrical ones, while their
coordinate dependence is the same as in (4.20).

We arrive at the conclusion:
Naive instantons of the SU(N) theory belonging to the topological sector k admit k(N − k)

doublets of the fermion zero modes.

5 Deformations

From the fact that different gauge background admit different number of zero modes, it follows
that this number is not a topological invariant and may change under deformation. In this
section, we confirm it in a quite explicit way. We will study the deformations of cylindrical
Cartan instantons — this is essentially simpler than for the toric configurations.
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5.1 Fixed asymptotics

To begin with, we will prove the following theorem:

Theorem 5. In the gauge A0 = 0, consider the gauge field background

A1(x, t) = A
(0)
1 (t) + α(x, t) , (5.1)

where A
(0)
1 (t) is the Cartan instanton configuration (4.17) and α(x, t) = αa(x, t)ta is periodic

in x:

α(x, t) = αa(x, t)ta =
∞∑

m=−∞

αm(t)e2πimx/L (5.2)

with αn(t) falling off to zero as t → ±∞ in such a way that the integral
∫
αn(t) dt converges

there.
Then the equation (3.1) still has k(N − k)L + k(N − k)R normalized zero mode solutions in

any order in the perturbation α(x, t).

This statement and the idea of the proof can be found back in [2], but we did not give there
much details, which we are going to provide now.

Proof. Consider first the SU(2) theory.

Consider the fate of the positively charged mode [the first line in Eq.(4.9)]. This mode
carries the negative chirality, and we can replace in this case σ1 → 1, σ2 → −i. We are going
to solve the equation (

∂

∂t
+ i

∂

∂x

)
ψ + [a(t)τ 3 + α, ψ] = 0 (5.3)

by iterations. We pose

ψ = ψ0 + ψ1 + ψ2 + . . . , (5.4)

where ψ0 is the Cartan zero mode in (4.9) and ψn is of order ∼ αn. We obtain the chain of
equations (

∂

∂t
+ i

∂

∂x

)
ψn + a(t)[τ 3, ψn] = −[α, ψn−1]

def
= γn−1 . (5.5)

Each equation in (5.5) is split into three equations for the different color components:(
∂

∂t
+ i

∂

∂x

)
ψ3
n = γ3

n−1 , (5.6)

(
∂

∂t
+ i

∂

∂x
+ 2a(t)

)
ψ+
n = γ+

n−1 (5.7)

and (
∂

∂t
+ i

∂

∂x
− 2a(t)

)
ψ−n = γ−n−1 (5.8)
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I. Let us assume first that the deformation αa does not depend on x. Then the x-dependence
of all the terms in (5.4) and (5.6)-(5.8) is the same as that of ψ0

ψn(x, t) = ψn(t)eiπx/L , γan(x, t) = γn(t)eiπx/L . (5.9)

In this case, the chain (5.6) - (5.8) is reduced to the system of ordinary differential equations,(
∂

∂t
− π

L

)
ψ3
n(t) = γ3

n−1(t) , (5.10)

(
∂

∂t
− π

L
+ 2a(t)

)
ψ+
n (t) = γ+

n−1(t) , (5.11)

and (
∂

∂t
− π

L
− 2a(t)

)
ψ−n (t) = γ−n−1(t) . (5.12)

We will prove the existence of the normalized solutions to this system for all n by induction.

More exactly, we will prove that the correction ψn(t) decays at t → ±∞ as ∼ e−π|t|/L at
any order n.

• For n = 0, this follows from the explicit solution in (4.9).

• Suppose that ψn−1(t) decays as e−π|t|/L. Let us prove that ψn(t) also has this property.
Note first that, if ψn−1(t) ∼ e−π|t|/L, γn−1(t) decays faster than e−π|t|/L.

Note also that, by our assumption about the behavior of α(t), the integrals
∫∞

eπt/Lγn−1(t) dt
and

∫
−∞ e

−πt/Lγn−1(t) dt converge.

(i) Consider Eq. (5.10). Its formal solution is

ψ3
n(t) = −eπt/L

∫ ∞
t

e−πt
′/L γ3

n−1(t′) dt′ + C . (5.13)

Choose C = 0. For t→∞, ψ3
n(t) decays faster than e−πt/L together with γ3

n−1(t), and for
t→ −∞, the integral is finite and ψ3

n(t) ∼ eπt/L = e−π|t|/L.

(ii)

Consider now equation (5.11). Choose its particular solution in the form

ψ+
n (t) = −eF (t)

∫ ∞
t

e−F (t′) γ+
n−1(t′) dt′ , (5.14)

where

F ′(t) =
π

L
− 2a(t) . (5.15)

When t→∞, F (t)→ −πt/L and

ψ+
n (t) ∼ e−πt/L

∫ ∞
t

eπt
′/L γ+

n−1(t′) dt′ ∼ e−πt/L ,
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as the integral converges at the upper limit.

When t→ −∞, F (t)→ πt/L = −π|t|/L and

ψ+
n (t) ∼ e−π|t|/L

∫ ∞
−∞

eπt
′/L γ+

n−1(t′) dt′ ∼ e−π|t|/L ,

as the integral converges at both limits.

(iii)

For Eq. (5.12), the reasoning is analogous. We choose its solution as

ψ−n (t) = −eG(t)

∫ ∞
t

e−G(t′) γ−n−1(t′) dt′ , (5.16)

where G′(t) = π
L

[1 + 2a(t)].

When t→∞,

ψ−n (t) ∼ e3πt/L

∫ ∞
t

e−3πt′/L γ−n−1(t′) dt′ ∼ e−πt/L .

When t→ −∞,

ψ−n (t) ∼ e−π|t|/L
∫ ∞
−∞

e−G(t′) γ−n−1(t′) dt′ ∼ e−π|t|/L .

II. Let us now take into account the higher Fourier modes in the expansion (5.2).
Their presence entails the presence of higher Fourier modes in the expansion for the correc-

tion ψn(x, t):

ψn(x, t) =
∑
m

ψ(m)
n (t) exp

{
iπx

L
(1 + 2m)

}
(5.17)

The equations (5.10) - (5.12) acquire the form(
∂

∂t
− π

L
(2m+ 1)

)
ψ(m) 3
n (t) = γ

(m) 3
n−1 (t) , (5.18)

(
∂

∂t
− π

L
(2m+ 1) + 2a(t)

)
ψ(m) +
n (t) = γ

(m) +
n−1 (t) , (5.19)

and (
∂

∂t
− π

L
(2m+ 1)− 2a(t)

)
ψ(m)−
n (t) = γ

(m)−
n−1 (t) , (5.20)

where

γ
(m) a
n−1 (t) = −

∑
p+q=m

[αp(t), ψ
(q)
n−1(t)] . (5.21)

19



We can prove now that the three components of ψ
(m)
n (t) exponentially decay at large |t| by

induction in the same way as we did it in the absence of the higher harmonics in (5.2). Consider
e.g. Eq. (5.18). Let m > 0. Choose the particular solution of the equation in the form

ψ(m) 3
n (t) = −eπt(2m+1)/L

∫ ∞
t

e−πt
′(2m+1)/L γ

(m) 3
n−1 (t′) dt′ . (5.22)

By inductive assumption, ψ
(m) a
n−1 (t) and hence γ

(m) a
n−1 (t) fall down ∼ e−π|t|/L. By the same

reasoning as before, it follows that ψ
(m) 3
n (t) falls down ∼ e−π|t|/L; the presence of the factor

2m+ 1 in the exponents in Eq.(5.22) is irrelevant.
If m < 0, we choose the solution in the form

ψ(m) 3
n (t) = eπt(2m+1)/L

∫ t

−∞
e−πt

′(2m+1)/L γ
(m) 3
n−1 (t′) dt′ (5.23)

and, by exploring the limits t→ ±∞, deduce that it falls down ∼ e−π|t|/L.
The equations (5.19) and (5.20) can be treated in a similar way.

5.1.1 N > 2

This proof can be translated without much change to the theories with higher N . Consider the
SU(3) theory. The Cartan instanton has the form (4.14). It has two doublets of zero modes.
Let us add the deformation (5.2) with the same properties as before and explore the fate of one
of the positive chirality modes. For example, the fate of the mode

Φ
+(0)
1 (t) =

 0 0 1
0 0 0
0 0 0


color

(
0
1

)
spin

Φ(4+i5)(0)(t) ,

(5.24)

with
Φ(4+i5)(0)(t) = eiπx/Leφ(t), φ′(t) = π[1− 2a(t)]/L .

We obtain the chain of the equations(
∂

∂t
− π

L
(2m+ 1)

)
ψ(m) 1,2,3,8
n (t) = γ

(m) 1,2,3,8
n−1 (t) (5.25)

and (
∂

∂t
− π

L
(2m+ 1)∓ 2π

L
a(t)

)
ψ(m) 4±i5
n (t) = γ

(m) 4±i5
n−1 (t) ,(

∂

∂t
− π

L
(2m+ 1)∓ 2π

L
a(t)

)
ψ(m) 6±i7
n (t) = γ

(m) 6±i7
n−1 (t) (5.26)

with

γ
(m) a
n−1 (t) = ifabc

∑
p+q=m

αcp(t)ψ
(q) b
n−1(t) . (5.27)
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The inductive proof that, at any order, the corrections ψ
(m) a
n (t) fall down exponentially as

t→ ±∞ is translated from the proof for the N = 2 theory without much change.
For an arbitrary N , we obtain a similar chain. Ii involves the equations for the components

ψ
(m) a
n (t) where the index a corresponds to the centralizer SU(k) × SU(N − k) × U(1) of the

Cartan instanton confuguration (4.17). These components do not “feel” the presence of the
gauge field. It involves also k(N − k) doublets of the components corresponding to the root
vectors that do not commute with (4.17). The inductive proof constructed above works also in
this case.

5.2 Generic deformations

To understand that the deformations considered above are not the most generic ones, consider
the SU(2) theory with the gauge background

A1(t) = τ 3b(t), with b(−∞) = 0, b(∞) =
2π

L
. (5.28)

In this case, the Dirac equation admits two doublets of normalized zero modes. The positively
charged modes are

Φ1(x, t) = τ+

(
0
1

)
eiπx/Leφ1(t) ,

Φ2(x, t) = τ+

(
0
1

)
e3iπx/Leφ2(t) , (5.29)

where

dφ1

dt
=
π

L
− 2b(t),

dφ2

dt
=

3π

L
− 2b(t) . (5.30)

In the Abelian theory, the existence of two zero modes follows from the Atiyah-Singer theorem:
the field (5.28) carries the double magnetic flux. However, in the non-Abelian theory, the
configuration (5.28) is topologically trivial, it satisfies the boundary condition

A1(x,∞) = −i∂xΩ̃(x) Ω̃−1(x) + Ω̃(x)A1(x,−∞)Ω̃−1(x) (5.31)

with a contractible loop (4.6). We expect that the zero modes (5.29) are not robust under a
generic non-Abelian deformation.

However, they are robust under the deformations of the same kind as in (5.1) with the
requirement that α(x, t) vanishes rapidly at t = ±∞. All the steps in the proof of Theorem 5
can also be reproduced in this case. The deformations of a more general nature such that the
corresponding Dirac operator does not sustain zero modes anymore must exist, and they do.

The loop (4.6) is contractible, i.e. there exists a continuous family Ωξ(x) such that

Ωξ(0) = Ωξ(L) = 1, Ω0(x) = Ω(x), Ω1(x) = 1 . (5.32)

Consider the corresponding family of field configurations,

A
(ξ)
1 (x, t) = −ib(t)L

2π
∂xΩξ(x) Ω−1

ξ (x) . (5.33)
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As ξ changes from 0 to 1, the configuration (5.33) interpolates between the field (5.28) sustaining
two doublets of zero modes to the configuration A1(x, t) = 0 where the zero modes are absent5

A very plausible guess is that the zero modes disappear as soon as ξ 6= 0 and the loop slides
aside as in Fig. 3.

ξ

ξ=0

=1

ξ=.5

Figure 3: Sliding loops

Note that the configuration

A
(ξ)
1 (x,∞) = −i∂xΩξ(x) Ω−1

ξ (x) (5.34)

is still a vacuum configuration with zero field density [we assumed that b(t → ∞) approaches
the value 2π/L exponentially fast]. It is topologically trivial, being related to A1 = 0 and to
A1 = 2πτ 3 by contractible gauge transformations. But the configurations (5.33) are not related
to (5.28) by gauge transformations. They represent genuine deformations of (5.28), and these
deformations matter!

Note also that one can find a gauge transformation A1 → Ã1 that brings (5.33) to the form

where Ã1(x, t) keeps its asymptotic values: Ã
(ξ)
1 (x,−∞) = 0 and Ã

(ξ)
1 (x,∞) = 2πτ 3. This

transformation is realized by ωξ(x, t) such that

ωξ(x,−∞) = 1, ωξ(x,∞) = Ω̃(x)Ω−1
ξ (x) .

Thus, the fact that the configuration (5.33) carries no zero modes if ξ 6= 0 seems to contradict
the statement above that the zero modes are robust under the deformations that keep the
asymptotics. There is no contradiction, however, as the transformation ωξ(x, t) brings about
a nonzero A0(x, t). And if one imposes the Hamilton gauge, a generic deformed instanton
configuration does not keep the simple boundary condition assumed in Sect. 5.1.

5A constant zero mode for the free Dirac equation would be present if ψ(x, t) satisfied periodic boundary
conditions on the spatial circle, but our b.c. are antiperiodic.
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For N = 2, a generic topologicallly nontrivial instanton keeps a single doublet of zero modes.
This is dictated by Theorem 2, which is also valid on a cylinder. But the two doublets of zero
modes (4.15) for N = 3 theory are not robust under a generic deformation. To understand
that, consider along with the field (4.14),

A1(t) =
2

3
a(t) diag(1, 1,−2) , (5.35)

the field

B1(t) =
4

3
a(t) diag(2,−1,−1) (5.36)

These two fields satisfy the same boundary conditions and belong to the same topological class.
The vacua at t =∞ are related as

B1(∞) = −i∂xV (x)V −1(x) + V (x)A1(∞)V −1(x) , (5.37)

where

V (x) = exp

{
2iπx

L
diag(1,−1, 0)

}
(5.38)

represents a contractible loop in SU(3)/Z3.
Still, the configuration (5.35) has two doublets of zero modes and the configuration (5.36)

has four such doublets: the modes 0 1 0
0 0 0
0 0 0


color

(
0
1

)
spin

eiπx/Leφ1(t),

 0 0 1
0 0 0
0 0 0


color

(
0
1

)
spin

eiπx/Leφ1(t) (5.39)

with φ̇1(t) = π/L− 4a(t), 0 1 0
0 0 0
0 0 0


color

(
0
1

)
spin

e3iπx/Leφ2(t),

 0 0 1
0 0 0
0 0 0


color

(
0
1

)
spin

e3iπx/Leφ2(t) (5.40)

with φ̇2(t) = 3π/L− 4a(t), and the Hermitially conjugated modes of opposite chirality.

Consider now the family of configurations A
(ξ)
1 (x, t) that smoothly interpolate between A1(t)

and B1(t) as ξ changes from 0 to 1. For intermediate values of ξ, there probably are no zero
modes at all.

6 Discussion: screening vs. confinement

The technical issue about the existence or non-existence of fermion zero modes in adjoint QCD2

is interesting by its relationship to the physics of this model. The model is confining in the
sense that its physical spectrum does not involve states that carry color charge. But a nontrivial
question is whether we are dealing with confinement in the strong sense where the potential
between two static color sources grows linearly and the Wilson loop has the area law or with
the confinement in the weak sense or screening with the perimeter law for the Wilson loop.
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For example, in the pure Yang-Mills theory in 4 dimensions, we have6 strong confinement
of fundamental heavy sources, but adjoint sources are screened by the gluons. In QCD4, the
fundamental sources are also screened due to the presence of dynamical fundamental quarks.
The ordinary QCD2 with dynamical quarks has the same properties as QCD4: any heavy
colored source is screened. The adjoint QCD2 with massive fermions has the same properties
as 4-dimensional gluodynamics: strong confinement for fundamental sources, whereas adjoint
sources (and all other sources with zero n-ality) are screened.

And the massless adjoint QCD2 exhibits a nontrivial behavior. We showed in Ref. [13] that,
contrary to naive expectations, the massless adjoint fermions may well screen the fundamental
sources and all other sources with nonzero n-ality.7 This observation was based on the following
conjecture: 8

Conjecture 1. In the topological trivial sector of the massless adjoint QCD2, the fundamental
Wilson loop average

〈W (C)〉triv =

〈
1

N
Tr

{
P exp

(
ig

∮
C

Aµ(x) dxµ
)}〉

triv

(6.1)

satisfies the property

σ = lim
A→∞

[
− ln〈W (C)〉triv

A

]
= 0 , (6.2)

where A is the area embraced by the contour.

In other words, the averages of large Wilson loops fall down in this sector according to the
perimeter law rather than area law.

Together with most other experts, we believe this conjecture to be correct though, to the
best of our knowledge, its formal proof has not been given yet. The difficulty lies in the
non-Abelian nature of the theory. The Abelian version of this conjecture is an exact theorem:

Proof. Consider the Schwinger model at the infinite Euclidean plane in the trivial topological
sector,

Φ =
e

2π

∫
F (x) d2x = 0 , (6.3)

where F = εµν∂µAν/2 is the Abelian field density and the fermion charge e is included in the
definition of the flux. Suppose that F (x) vanishes at infinity fast enough. In view of (6.3), one
can then choose a gauge where Aµ(x) also vanishes there. And that means that the Abelian
Wilson loop,

WAb(C) = exp

(
ie′
∮
C

Aµ(x) dxµ
)
, (6.4)

6Or rather we believe to have.
7A similar phenomenon is known to take place in the massless Schwinger model where the massless fermions

of charge one manage to screen any heavy source of integer or fractional electric charge [12].
8In Ref. [13], we also presented several other arguments, but we only discuss here the most solid one having

an immediate relationship to the main subject of this paper.
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is equal to 1 for the asymptotic contour C embracing infinity, and this is true for any charge e′

of a heavy probe.
Note that in the sectors with nonzero flux Φ = n, the vector potential behaves at infinity as

Aµ(x) = −i[∂µeinθ] e−inθ , (6.5)

where θ is the polar angle, and the asymptotic Wilson loop takes the value

W asympt
n = exp

{
2iπne′

e

}
.

We go back to the sector n = 0 and consider a large but not asymptotically large loop. The
Stokes theorem allows us to write

〈WAb(C)〉n=0 =

〈
exp

{
ie′
∫
D

F (x) d2x

}〉
n=0

, (6.6)

where D is the domain embraced by the loop. The Gaussian nature of the path integral in the
Schwinger model allows one to present it as

exp

{
−e
′2

2

∫
D

∫
D

d2xd2y 〈F (x)F (y)〉n=0

}
. (6.7)

The correlator 〈F (x)F (y)〉n=0 depends only on x− y. In the massless Schwinger model, it

is known exactly. It decays exponentially ∝ e−µ
√

(x−y)2 at large separations (µ = e/
√
π being

the mass of the Schwinger boson) and satisfies the property∫
whole plane

d2x 〈F (x)F (0)〉n=0 = 0 . (6.8)

If the integral (6.8) did not vanish, the exponent in (6.7) would be proportional to the area A
of the domain D giving a nonzero string tension. But as it vanishes, the string tension vanishes
too.

If the integral is done over a finite region D rather than the whole plane, the integrals in
(6.8), (6.7) do not vanish. The double integral in (6.7) is saturated by the values of x that
are close to the border of D and y that are within the distance ∼ µ−1 from x. We obtain the
perimeter law [14],

〈WAb(C)〉n=0 = exp

{
−e
′2P

4µ

}
. (6.9)

Consider now the non-Abelian theory of interest. Assuming as before that the field density
vanishes at infinity, the gauge potential in the topological sector k can be brought into the form

Aµ(x) = −i
[
∂µ exp

{
ikθ

N
τ 3

}]
exp

{
−ikθ
N
τ 3

}
, (6.10)

This gives the values

Wk = e2iπk/N (6.11)
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for the asymptotic Wilson loop [6]. For k = 0, it is just the unity.
The property (6.2) could possibly be proven using the non-Abelian version of the Stokes

theorem. The latter reads [15]

P exp

{
i

∮
C

Aµ(x) dxµ
}

= P exp

{
i

∫
D

F d2x

}
, (6.12)

where P is the ordinary path ordering and P is the operator of area-ordering, i.e. the infinites-
imal loops should first be multiplied over along the direction of x, and then along the direction
of y. As for F , it is not simply the field density, but the object

F(x) = UF (x)U−1 , (6.13)

where

U = P exp

{
i

∫ x

O

Aµ(x) dxµ
}

(6.14)

is the string operator connecting a reference point O on the contour C to the point x inside
the contour along a certain prescribed path.

Anyway, if we assume that the conjecture above is correct, we can be sure that the N = 2
theory exhibits screening. Indeed, the topologically nontrivial sector there has a doublet of
zero modes, the fermion determinant vanishes and hence this sector does not contribute to the
path integral. Whatever is true in the topologically trivial sector (like the perimeter law for
the Wilson loop), is true in the whole theory.

The situation is less clear for higher N starting from N = 3. In [13], the existence of the
zero modes for k 6= 0 was assumed also for higher N , which entailed the conclusion that this
theory exhibits screening. But we know today that, e.g. for N = 3, a generic Euclidean field
configuration does not sustain fermion zero modes and the contributions of the topologically
nontrivial sectors do not vanish. In the sum of the contributions of the sectors k = 0, 1, 2,
cancellations might occur, so that 〈W (C)〉 exhibits the area rather than perimeter law and the
theory is confining [1].

In recent [16], it was argued, however, that this does not happen and adjoint massless
QCD2 with any unitary gauge group always exhibits screening. String operators similar to
(6.14) played an important role in this analysis.

An independent argument in favour of the screening scenario was given in [17].
More studies in this direction are highly desirable.
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