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1 Introduction

Gauge theories play a central role in the current description of high energy physics. The

study of gauge theories based on connected and simply connected Lie groups, like SU(N),

has been a very active field of research early on, with the focus being really on the Lie

algebra. However it was soon acknowledged that the global structure of the gauge group,

beyond its Lie algebra properties, also plays a crucial physical role. The importance of the

fundamental group π1 has recently been abundantly discussed in the context of supersym-

metric gauge theories [2] and the standard model [3].

By contrast, the importance of the group π0 of connected components has been less

investigated, even though early studies pointed out its physical relevance [4–6], and more

recent works connect finite gauge groups and dualities in quantum field theory [7, 8]. It

should also be mentioned that discrete symmetries appear prominently in the context of

higher form symmetries [9], see for instance [10] for a recent account of the class S case.

Another example of the relevance of discrete gaugings is provided by the discovery of new
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types of 4d N = 3 SCFTs [11, 12]. These theories are constructed starting with the 4d

N = 4 SYM theory with complexified coupling constant τ tuned to a self dual point of the

SL(2,Z) S-duality group. It turns out that, for these specific values of τ , extra discrete

subgroups Γ ⊂ SL(2,Z) × SU(4)R are global symmetries of the theories and act in a no

trivial way on the supercharges. The gauging of these subgroups breaks the initial amount

of supersymmetry down to exactly 12 supercharges, leading this way to 4d N = 3 strongly

coupled SCFTs. As discussed in [11, 12], these 4d N = 3 SCFTs are different from those

obtained using the S-fold construction [13, 14].

In this article, we are interested in a particular form of discrete symmetry: any simple

connected Lie group has a (sometimes trivial) group of outer automorphisms. The auto-

morphisms can intervene in compactification by twisting along cycles, and this can be used

to engineer theories with non simply laced gauge groups from string / M theory [15–18].

This is also a much perused tool in F-theory since its early days [19]. The outer auto-

morphisms for a simple complex Lie algebra correspond to the symmetries of its Dynkin

diagram, and the the resulting non simply laced algebra is obtained by folding it. In par-

ticular it was studied how the Superconformal Index (SCI) [20, 21] of a 4d N = 2 class S
theory is affected by the twist of this symmetry. These theories are obtained starting with

the 6d N = (2, 0) theory on S3×S1×Σ2 labelled by a simply laced Dynkin diagram Γ and

performing a compactification over the punctured Riemann surface Σ2. In [22] the authors

considered the evaluation of the SCI twisted by the outer automorphism group along the

S1. Another possibility is to introduce twisted punctures in class S theories [23–25]; in

[26] it was studied how the SCI of type D theories is affected by twist lines on Σ2. Similar

ideas are considered in [27], where 3d mirror theories of class S theories of type A2N with

twisted punctures compactified on S1 are derived.

Another possibility offered by outer automorphisms is to promote them to gauge sym-

metries, in effect extending the gauge group and making it disconnected. This class of

disconnected groups is called principal extension, that is to say the disconnected gauge

group G̃ is obtained taking the semidirect product between the connected gauge group G

and the discrete outer automorphism group Γ of the Dynkin diagram

G̃ ' Go Γ . (1.1)

As amply discussed below, the equation (1.1) is not sufficient to define the group G̃: it is

necessary to provide an explicit action of Γ on G. While this construction could seem a

bit abstract a well known example is provided by the O(2N) group that is isomorphic to

SO(2N)oZ2, where the discrete group Z2 acts on the Dynkin diagram of type DN algebra

flipping its two final simple roots. It is then natural to extend the same construction also

to the case of type AN−1 Lie algebra, that is still endowed with a no trivial Z2 outer

automorphism group. In this case the Z2 acts on the set of roots {αi} by reflection , i.e.

αi ↔ αN−i+1. The corresponding disconnected group is denoted by S̃U(N) ' SU(N)oZ2.

From a physical perspective the gauging of this Z2 corresponds to gauging the charge

conjugation symmetry. The study of SCFTs with S̃U(N) gauge groups was initiated in

[1] and further extended in [28]. In both these works we focused on a 4d N = 2 context

and consider SQCD-like theories, with a N = 2 vector multiplet transforming under the
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adjoint representation of S̃U(N) and matter provided by N = 2 hypermultiplets in the

fundamental representation of the gauge group.

In the discretely gauged theory with S̃U(N) gauge group the gauge and the matter

fields transform under representations of the disconnected gauge group. This is the place in

which the different global structures of the groups play a crucial role since, in general, the

representations of S̃U(N) differ from representations of SU(N). Moreover it was observed

in [28] that when N is even there are two non equivalent ways of performing the gauging

of the Z2 symmetry, that give rise to two distinct gauge groups, that have been denoted

by S̃U(N)I and S̃U(N)II respectively. On the other hand, when N is odd, there is only

one possibility corresponding to S̃U(N)I . From a mathematical point of view these two

possibilities, arising in the N even case, are related to the fact that the complexified Lie

algebra sl(N,C) admits two distinct real forms that give rise to two non equivalent ways

of gauging charge conjugation.1

All the theories that we study are endowed with a moduli space of vacua parametrized

by BPS chiral scalar gauge invariant operators. It is then natural to investigate how the

discrete gauging action affects these spaces. From a physical point of view the fact that

the gauge group has become larger introduces further restrictions on the types of gauge

invariant operators that we can construct and therefore, we expect a modification of the

geometric structure of the corresponding moduli space. A systematic way to characterize

the geometry of these moduli spaces is provided by the Plethystic program [29, 30], with

the central notion of Hilbert series, a generating function that counts the chiral operators

present in the theory according to their conformal dimension and other quantum numbers

[31, 32]. The extension of these tools, in the context of principal extensions, was performed

in [33] and we employ them in our analysis.

Moreover, even if the complete characterization the full moduli space of vacua is in

general very difficult, for a 4d N = 2 gauge theory we can identify two particular sub-

branches, namely the Coulomb branch and Higgs branch. Specifically the Coulomb branch

arises when we give a vacuum expectation value (VEV) to the complexified scalar inside

the N = 2 vector multiplet. For the theories discussed in this article the computation of

the Hilbert series of the Coulomb branch was performed in [1, 28]. Remarkably it was

found that the Coulomb branch of these theories is not freely generated. On the other

hand the Higgs branch is parameterized by the VEVs of the scalar fields inside the N = 2

hypermultiplets. In general if there is enough matter in the theory a generic VEV com-

pletely breaks the gauge group. Nevertheless we can also give a VEV only to a subset

of the scalar fields, this way the gauge group could be broken to a no-trivial subgroup.

This partial Higgs mechanism is naturally described by a partial order diagram, called the

Hasse diagram, where each node of the diagram is related to the subgroup of the initial

gauge group that is left unbroken by the Higgs mechanism. The systematic study of the

Higgs branch of theories with 8 supercharges using Hasse diagrams was initiated in [34]

and further analysed in [35–45]. The Higgs branch Hasse diagram in turns reveals the

1See Section 2.3 of [28] for details on that point, and Appendix A for a compendium of the essential

definitions.
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geometric structure of the Higgs branch as a symplectic singularity, the nodes being in

correspondence with symplectic leaves, and the links representing elementary transverse

slices. In this paper we aim to move a further step in this direction and we analyse how the

structure of the Higgs branch of the SQCD-like theories with S̃U(N)I or S̃U(N)II gauge

groups is revealed by the partial Higgsing procedure described above. In particular our

first main result is the derivation of the Hasse diagrams for Type I and Type II gauging in

Figure 3 and Figure 5. This is based on a careful analysis of representations of S̃U(N)I/II
groups, their characters and branching rules.

The Higgs branch of certain 4d N = 2 theories can be equivalently described as the

Coulomb branch of 3d N = 4 quiver gauge theories. When this is the case, the quiver

is called a magnetic quiver for that Higgs branch [46–50]. Our second main result is a

magnetic quiver for the Higgs branch of S̃U(N)I theories, in the form of a wreathed quiver,

as introduced in [39]. As a check of our conjecture we compute the 3d N = 4 Coulomb

branch Hilbert series of that quiver and find perfect agreement with the Higgs branch

Hilbert series of the corresponding S̃U(N)I theory that was computed in [1, 28]. The

computation is performed using the monopole formula originally introduced in [31] and

generalized to wreathed quivers in [39].

The present article is organized as follows. In Section 2 we introduce the notion of

characters for representations of disconnected groups and we discuss the derivation of the

branching rules relevant for the partial Higgsing mechanisms discussed in this article. In

Section 3 we briefly review the notion of Hasse diagram and we discuss its construction for

type I and type II discretely gauged theories. In Section 4 we review the generalization

of the monopole formula in the context of 3d N = 4 wreathed quiver gauge theories and

we apply it to theories of type I providing a candidate magnetic quiver. The appendices

gather basic definitions and technicalities regarding S̃U(N) groups.

2 Characters and branching rules for disconnected groups

In this section we develop tools that allow to use the theory of characters of Lie groups

in the context of disconnected groups, focusing on the examples of O(N) and S̃U(N).

This allows to compute tensor products, and more importantly branching rules, which are

needed to compute Hasse diagrams in the next section.

Writing the characters for a group G (connected or not) requires firstly the identifica-

tion of irreducible representations ρ : G → GL(V ), and secondly the choice of a subgroup

T ⊂ G parametrized by fugacities (which can assume continuous or discrete values). The

character is then the function χρ : T → C defined by χρ(t) = Tr(ρ(t)) for t ∈ T . The new

feature of this analysis for disconnected groups G is the appearance of discrete fugacities

in T . This can be seen as a fusion between the usual theories of characters of connected

Lie group on one side, and of representation theory of finite groups (here the component

group of G) on the other side. Here we consider only the simplest non trivial case (1.1)
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where Γ = Z2, which has character table

ε 1 −1

χ1 1 1

χε 1 −1

(2.1)

but the principles would remain valid for a larger component group. In the character table

(2.1), the two Z2 elements are denoted by ε = ±1. and rows of this table contain the

characters of its two irreducible representations.2

2.1 Representations and characters for O(N)

Groups O(2N)

We start with the very simple example of O(2) to setup the concepts and notations in a

framework where everything can be written explicitly. This group is a semidirect product

SO(2) o Z2, so an element of O(2) can be written as a pair (g, ε) ∈ SO(2) × Z2. The

semidirect product is specified by the Θε automorphism of SO(2) defined by

Θ1

(
cos θ − sin θ

sin θ cos θ

)
=

(
cos θ − sin θ

sin θ cos θ

)
, Θ−1

(
cos θ − sin θ

sin θ cos θ

)
=

(
cos θ sin θ

− sin θ cos θ

)
.

(2.2)

Note that Θ−1 is the conjugation by the reflection matrix Diag(−1, 1). The fundamental

representation is

O(2) =

{(
cos θ − sin θ

sin θ cos θ

)∣∣∣∣∣ θ ∈ T 1

}
∪

{(
cos θ sin θ

sin θ − cos θ

)∣∣∣∣∣ θ ∈ T 1

}
. (2.3)

Setting z = eiθ, the trace of the matrices in the identity component is z + z−1 while the

trace vanishes in the disconnected component. Therefore the character can be written as

a function of z and ε as

χ
O(2)
Fundamental(z, ε) =

(
1 + ε

2

)
(z + z−1) =

{
z + z−1 if ε = 1

0 if ε = −1
. (2.4)

The character has two fugacities, one continuous variable z and one discrete variable ε, and

they span the fugacity group.

Consider now the adjoint representation, i.e. the action of (g, ε) ∈ O(2) on a ∈ R given

by (
0 a

−a 0

)
7→ (g, ε)

(
0 a

−a 0

)
(g, ε)−1 . (2.5)

This is a 7→ a for ε = 1 and a 7→ −a for ε = −1. Therefore the corresponding character

reads

χ
O(2)
Adjoint(z, ε) =

(
1 + ε

2

)
× (1) +

(
1− ε

2

)
× (−1) = ε . (2.6)

2We slightly abuse notation in denoting by the same symbol ε two related objects, namely the generic

element of Z2 (which plays the role of a discrete fugacity, satisfying ε2 = 1) and the non-trivial irreducible

representation of Z2. With this choice the character of the ε representation is ε.
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We note an interesting fact: the adjoint representation is not the same as the trivial

representation. There are two inequivalent representations of dimension 1, while there is

only one of dimension 2.

Consider now O(4) = SO(4)oZ2, the first example in which the choice of the subgroup

of fugacities T is not straightforward. As maximal torus of SO(4) we choose matrices of

the form 
cos θ1 − sin θ1 0 0

sin θ1 cos θ1 0 0

0 0 cos θ2 − sin θ2

0 0 sin θ2 cos θ2

 (2.7)

The trace of this matrix is z1 + z−1
1 + z2 + z−1

2 with z1 = eiθ1 and z2 = eiθ2 . However

we now need to specify how the semidirect product is defined, as there is no way to make

this choice symmetric in z1 and z2. We choose to define Θ−1 as the conjugation by the

reflection Diag(−1, 1, 1, 1). As a consequence, the trace of an element with ε = −1 in the

fundamental representation is z2 + z−1
2 . The symmetry between z1 and z2 is broken. The

embedding O(2) ⊂ O(4) is obtained by sending z2 → 1, while sending z1 → 1 gives the

embedding SO(2) ⊂ O(4). The reader is encouraged to check this on the characters of the

fundamental and adjoint representations of O(4) which read

χ
O(4)
Fundamental(z1, z2, ε) =

(
1 + ε

2

)
(z1 + z−1

1 ) + (z2 + z−1
2 ) , (2.8)

χ
O(4)
Adjoint(z1, z2, ε) =

(
1 + ε

2

)(
2 + (z1 + z−1

1 )(z2 + z−1
2 )
)
. (2.9)

One can generalize these computations to O(2N) = SO(2N) o Z2, with Θ−1 given

by conjugation by Diag(−1, 1, · · · , 1). The characters of the fundamental and adjoint

representations of O(2N) are

χ
O(2N)
Fundamental(zi, ε) =

(
1 + ε

2

)
(z1 + z−1

1 ) +
N∑
i=2

(zi + z−1
i ) , (2.10)

χ
O(2N)
Adjoint(zi, ε) =

(
1 + ε

2

)2 + (z1 + z−1
1 )

∑
2≤j≤N

(zj + z−1
j )


+(N − 2) +

∑
2≤i<j≤N

(zi + z−1
i )(zj + z−1

j ) . (2.11)

Note that the group O(2N) is simple for N ≥ 3, and in those cases the trivial, funda-

mental and adjoint representations are given by Dynkin labels [0, . . . , 0], [1, 0, . . . , 0] and

[0, 1, 0, . . . , 0] respectively. These are invariant under the exchange of the Dynkin labels for

the two spinor nodes, so from each of these representation one can build another inequiv-

alent one by tensoring with ε.3 In the case N = 2, the group O(2N) is not simple, and

accordingly the adjoint representation corresponds to Dynkin labels [2, 0]⊕ [0, 2]; from the

3These representations are sometimes called ”pseudo”. From the trivial or scalar representation one

builds the pseudo-scalar, and from the fundamental or vector one builds the pseudo-vector.
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O(2N) −→ O(2N − 1)×O(1) = (SO(2N − 1)× Z2)× Z2

FO(2N) 7−→
(
FSO(2N−1) ⊗ ε⊗ 1

)
⊕
(
1SO(2N−1) ⊗ 1⊗ ε

)
AdjO(2N) 7−→

(
AdjSO(2N−1) ⊗ 1⊗ 1

)
⊕
(
FSO(2N−1) ⊗ ε⊗ ε

)

SO(2N + 1) −→ O(2N)

FSO(2N+1) 7−→ FO(2N) ⊕ 1O(2N)

AdjSO(2N+1) 7−→ AdjO(2N) ⊕ FO(2N)

Table 1. Summary of branching rules for O(N) groups.

general arguments given in [28, Sec. 3.1], it follows that the character should vanish for

ε = −1, and this is indeed the case in (2.11).

Groups O(2N + 1) and Branching rules

The group O(2N+1) is a direct product SO(2N+1)×Z2 so the characters factorize. Using

the characters one can check the branching rules for orthogonal groups. The branching

rules O(2N + 1)→ O(2N) are obtained by restricting the O(2N + 1) characters to O(2N)

characters, with no change in the fugacities. The branching rules O(2N)→ O(2N − 1) are

obtained by setting zN → 1. The results are presented in Table 1.

2.2 Representations and characters for S̃U(N)

We can apply similar techniques to express characters of representations of S̃U(N)I/II .

Definitions and notations for these groups are gathered in Appendix A. As for O(N), we

first have two one-dimensional representations:

1. The trivial representation, with character χ
S̃U(N)
1 = 1.

2. The ε representation, with character χ
S̃U(N)
ε = ε.

Let us now move to higher dimensional representations. As explained in [28], repre-

sentations of SU(N) induce representations of S̃U(N) according to the following rule. Let

R be a representation of SU(N) with highest weight λ. If λ = [λ1, . . . , λN−1] is invariant

under the permutation λi ↔ λN−i then there are two corresponding representations of

S̃U(N), both of dimension dim(R), which differ by a tensor product with the ε representa-

tion; if the highest weight is not invariant under that permutation, then there is a single

corresponding representation of S̃U(N), of dimension 2dim(R).

In this paper we focus on the representations induced by the fundamental and the

adjoint of SU(N). These are
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Representation Value on (g, 1) Value on (g,−1)

Trivial 1 1

ε 1 −1

F ⊕ F

(
g 0

0 Θ−1(g)

) (
0 g

Θ−1(g) 0

)
Adj X 7→ gXg−1 X 7→ gθ−1(X)g−1

Adj⊗ ε X 7→ gXg−1 X 7→ −gθ−1(X)g−1

Representation Character

Trivial 1

ε ε

F ⊕ F
(

1+ε
2

)N−1∑
i=0

(
zi
zi+1

+ zi+1

zi

)

Adj


(

1+ε
2

)(
−1 +

N−1∑
i=0

N−1∑
j=0

zi
zi+1

zj+1

zj

)
+ (1−N)

(
1−ε

2

)
Type I

(
1+ε

2

)(
−1 +

N−1∑
i=0

N−1∑
j=0

zi
zi+1

zj+1

zj

)
+ (1 +N)

(
1−ε

2

)
Type II

Adj⊗ ε


(

1+ε
2

)(
−1 +

N−1∑
i=0

N−1∑
j=0

zi
zi+1

zj+1

zj

)
− (1−N)

(
1−ε

2

)
Type I

(
1+ε

2

)(
−1 +

N−1∑
i=0

N−1∑
j=0

zi
zi+1

zj+1

zj

)
− (1 +N)

(
1−ε

2

)
Type II

Table 2. The first table shows the representations of S̃U(N) used in the paper, by giving the

explicit action of elements of the form (g, ε) for ε = ±1. For the 1-dimensional representations,

this is a number; for the F ⊕ F representation we give a 2N × 2N matrix, and for the adjoint

and ε-adjoint we give the action on an element X in the Lie algebra g. The second table gives the

characters expressed in terms of fugacities (z1, . . . , zN−1, ε) ∈ T with the convention z0 = zN = 1.

3. The fundamental representation. This is a 2N dimensional representation which we

denote by (F ⊕F ). Let us emphasize that despite this notation, this is an irreducible

representation, as the Z2 element mixes the F and F of the starting SU(N) group.

4. The adjoint representation, of dimension N2 − 1.

5. The tensor product of the adjoint representation with ε representation, of dimension

N2 − 1.

To write down characters for these representations, we need to pick a group of fugac-

ities. For characters in SU(N), the natural choice is to consider the subgroup of diagonal

matrices U(1)N−1. In the case of the disconnected group S̃U(N), it turns out that the choice

of an appropriate fugacity subgroup is a subtle problem that is discussed at length in Ap-

pendix A. In a nutshell, the reason for which the choice is subtle is that certain subgroups,
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S̃U(N)I −→ S̃U(N − 1)I

(F ⊕ F )
S̃U(N)I

7−→ (F ⊕ F )
S̃U(N−1)I

⊕ ε⊕ 1

Adj
S̃U(N)I

7−→ Adj
S̃U(N−1)I

⊕ (F ⊕ F )
S̃U(N−1)I

⊕ ε

ε 7−→ ε

S̃U(2N)II −→ S̃U(2N − 2)II

(F ⊕ F )
S̃U(2N)II

7−→ (F ⊕ F )
S̃U(2N−2)II

⊕ 2× ε⊕ 2× 1

Adj
S̃U(2N)II

7−→ Adj
S̃U(2N−2)II

⊕ 2× (F ⊕ F )
S̃U(2N−2)II

⊕ ε⊕ 3× 1

ε 7−→ ε

S̃U(N)I,II −→ SU(N)

(F ⊕ F )
S̃U(N)

7−→ FSU(N) ⊕ F SU(N)

Adj
S̃U(N)

7−→ AdjSU(N)

ε 7−→ 1

Table 3. Summary of branching rules for S̃U(N) groups.

called Cartan subgroups, are well suited for representation theory (e.g. an extension of the

Weyl character formula is valid) but do not commute with the embedding of smaller discon-

nected groups like S̃U(N−1) ⊂ S̃U(N). In the present section, we are interested in branch-

ing rules for that embedding, so we pick instead T = {(z1, . . . , zN−1, ε)} = U(1)N−1 o Z2

as defined in (A.23), where the first factor corresponds to diagonal matrices in SU(N) and

the semidirect product is the one that serves to define the extension S̃U(N). With these

choices, the representations and their characters are summarized in Table 2.

For instance, in the fundamental representation the trace of the matrix corresponding

to an element (g,−1) is clearly 0, so that the character is the product of the the cor-

responding SU(N) character by the projector 1+ε
2 . As another example, for the adjoint

representation the action of (g,−1) on the Lie algebra is X 7→ gθ−1(X)g−1, see equa-

tion (A.13). As shown in section A.3, the computation of the character reduces to the

computation of the trace of θ−1, which is given in equations (A.14) and (A.15).

The characters of Table 2 allow to compute branching rules. For instance the branching

rules for fundamentals are

χ(F⊕F )
S̃U(N)

|zN−1→1 =

(
1 + ε

2

)N−2∑
i=0

(
zi
zi+1

+
zi+1

zi

)
+ 2

(
1 + ε

2

)
= χ(F⊕F )

S̃U(N−1)
+ 1 + ε . (2.12)

For a less trivial example, let us look at the adjoint representation in type II. We take
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N ≥ 4 even and consider the branching rules for the embedding S̃U(N − 2)II ⊂ S̃U(N)II

χAdj
S̃U(N)II

|zN−2,zN−1→1 =

(
1 + ε

2

)(
χAdjSU(N)

|zN−2,zN−1→1

)
+ (1 +N)

(
1− ε

2

)
=

(
1 + ε

2

)(
χAdjSU(N−2)

+ 2χ(F⊕F )SU(N−2)
+ 4
)

+ (1 +N)

(
1− ε

2

)
= χAdj

S̃U(N−2)II
+ 2χ(F⊕F )

S̃U(N−2)II

+ 3 + ε . (2.13)

The crucial feature here is the 3 + ε contribution. If instead we repeat the computation for

type I this term becomes 1 + 3ε because of the different sign in front of the Nε term in the

character. The branching rules are summarized in Table 3.

3 Hasse diagrams

Higgs branches of theories with 8 supercharges are hyperKähler cones [51], or symplectic

singularities [52], and as such admit a foliation [53, 54] which can be conveniently described

by a Hasse diagram. Each point of the diagram represents a symplectic leaf of said foliation.

The Hasse diagram represents a partial order between the symplectic leaves, defined by

inclusions in their closures. For any two given leaves which can be compared in this partial

order, we have a transverse slice which describes how the smaller leaf looks as a symplectic

singularity inside the closure of the bigger leaf. If the two leaves are adjacent in the Hasse

diagram, we have a so called elementary transverse slice, which oftentimes has a simple

geometric description as the closure of a minimal nilpotent orbit of a classical group or as

a Klein singularity (this will always be the case for our purposes, see [44, 55] for examples

with more exotic elementary slices).

In [34] the Hasse diagram of symplectic leaves for the Higgs branch of a classical gauge

theory with 8 supercharges is identified with the Hasse diagram of phases of that gauge

theory under partial Higgsing. Each leaf is labeled by the unbroken gauge group in that

phase, and the elementary transverse slices describe the geometry of gauge singlets. We

apply this principle to the Higgs branch of gauge theories with S̃U gauge groups, and in

this section, we derive the Hasse diagrams of Figures 1, 3 and 5 by looking at the chain of

possible Higgsing patterns. As a warm-up we first review that procedure by looking at the

example of SU(Nc) +Nf SQCD.

The Higgs branch of this theory is defined classically as a hyperKähler quotient which

can be written symbolically as

1

2

(
NfFNc +NfFNc

)
−AdjNc , (3.1)

where the factor of 1/2 is due to the fact that when separating fundamentals and antifun-

damentals we are counting half-hypers. The hyperKähler quotient is denoted by the minus

sign in the above equation. Replacing each representation by its dimension, the formula

above yields the quaternionic dimension of the Higgs branch.
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Slice dimH Gauge Theory Global Symmetry

aN N U(1) with N + 1 fundamental hypermultiplets su(N + 1)

cN N O(1) = Z2 with 2N fundamental half-hypermultiplets sp(N)

dN 2N − 3 Sp(1) with 2N fundamental half-hypermultiplets so(2N)

Table 4. List of elementary slices which appear in this paper. These are the closures of the minimal

nilpotent orbits of their global symmetry algebra.

Now we apply the branching rules under the breaking SU(Nc)→ SU(Nc − 1),

Nf

2
[FNc−1 ⊕ 1Nc−1] +

Nf

2

[
FNc−1 ⊕ 1Nc−1

]
−
[
AdjNc−1 ⊕ FNc−1 ⊕ FNc−1 ⊕ 1Nc−1

]
.

(3.2)

Finally, we reshuffle this expression to put it in the form

[Matter fields charged under SU(Nc − 1)]− [Adjoint of SU(Nc − 1)] + [singlets] . (3.3)

The first two terms identify the theory that results after the Higgsing, and the singlets cor-

respond to the transverse slice according to Table 4. The cancellation of the fundamentals

coming from AdjNc by fundamentals coming from matter fields corresponds physically to

the Higgs mechanism, where some of the gauge bosons of the initial theory acquire a mass.

In our example,

1

2

(
(Nf − 2)FNc−1 + (Nf − 2)FNc−1

)
−AdjNc−1 ⊕

[
1

2
(Nf +Nf )− 1

]
1Nc−1 , (3.4)

which means that the remaining theory after Higgsing is SU(Nc−1)+(Nf −2) SQCD, and

the transverse slice is aNf−1 i.e. the (closure of the) minimal nilpotent orbit of su(Nf ). The

slice is identified to be aNf−1 as the coefficient of the singlets of the hyperKähler quotient

of the U(1) gauge theory as described in Table 4.

3.1 Hasse Diagram for O

Let’s proceed with our first disconnected group, and consider a theory with gauge group

O(Nc) plusNf ≥ Nc fields in the fundamental representation. The Hasse diagram is already

shown in [34]; we rederive it here to illustrate the method of characters for disconnected

groups. We use the same procedure shown above to find the transverse slices and resulting

theories after the Higgsing. In order to make sure that we get the full Hasse diagram, we

need to scan over the possible subgroups of O(Nc) and check which symmetry breaking

patterns are possible according to the branching rules of Table 1. Let’s begin by considering

the (potential) breaking O(Nc) → O(Nc − 1) × O(1). Note that since O(2k + 1) can be

written as a direct product, but O(2k) cannot, there is in principle a difference between

choosing Nc odd or even. We take Nc even for now, and shall soon see that this initial

choice doesn’t matter.

NfFO(Nc) −AdjO(Nc) →Nf [(FSO(Nc−1) ⊗ ε⊗ 1)⊕ (1SO(Nc−1) ⊗ 1⊗ ε)]

− [(AdjSO(Nc−1) ⊗ 1⊗ 1)⊕ (FSO(Nc−1) ⊗ ε⊗ ε)] . (3.5)
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Note that the last term coming from the decomposition of the adjoint cannot be

cancelled. This means that under the symmetry breaking pattern under consideration, the

gauge fields have no Goldstone bosons to eat, and therefore the Higgs mechanism cannot

take place. In a similar way, we can check that O(Nc) also can’t break to the subgroup

O(p)×O(q) (with p+ q = Nc).

The next possible breaking to consider is then O(Nc) → O(Nc − 1). This is achieved

taking (3.5) and forgetting the second Z2 representation in each tensor product, as that

was the one corresponding to the O(1) factor. Thus we have

NfFO(Nc) −AdjO(Nc) →Nf [(FSO(Nc−1) ⊗ ε)⊕ (1SO(Nc−1) ⊗ 1)]

− [(AdjSO(Nc−1) ⊗ 1)⊕ (FSO(Nc−1) ⊗ ε)] . (3.6)

We see that this symmetry breaking pattern is possible, and it results in

NfFO(Nc) −AdjO(Nc) → (Nf − 1)FO(Nc−1) −AdjO(Nc−1)⊕Nf1O(Nc−1)︸ ︷︷ ︸
cNf slice

. (3.7)

From this, we conclude that the transverse slice at the bottom of the Hasse diagram

is cNf , and the remaining theory on the symplectic leaf of the Higgs branch is O(Nc −
1) + (Nf − 1)F . Recall that we had chosen Nc even, so now we have an odd number of

colours, O(Nc − 1) = Z2 × SO(Nc − 1). We can therefore consider the potential breaking

Z2 × SO(Nc − 1) → Z2 × O(Nc − 2), where the Z2 representations stay the same and the

branching rules are those in the second part of Table 1. This results in

(Nf − 1)[ε⊗ FSO(Nc−1)]− [1⊗AdjSO(Nc−1)]→ (Nf − 1)[ε⊗ (FO(Nc−2) ⊕ 1O(Nc−2))]

− [1⊗ (AdjO(Nc−2) ⊕ FO(Nc−2))] (3.8)

= (Nf − 1)[(ε⊗ FO(Nc−2))⊕ (ε⊗ 1O(Nc−2))]

− [(1⊗AdjO(Nc−2))⊕ (1⊗ FO(Nc−2))] .

(3.9)

Once again, we see that the necesary cancellations are only possible if we forget about the

Z2, i.e. if we consider the breaking O(Nc − 1)→ O(Nc − 2). With this,

(Nf − 1)FO(Nc−1) −AdjO(Nc−1) → (Nf − 2)FO(Nc−2) −AdjO(Nc−2)⊕(Nf − 1)1O(Nc−2)︸ ︷︷ ︸
cNf−1 slice

.

(3.10)

That is, the second slice at the bottom of the Hasse diagram is cNf−1 and the remaining

theory is O(Nc − 2) + (Nf − 2)F . To complete the Hasse diagram, we need to repeat

the process above the necessary number of times. Note that, as advertised, it doesn’t

matter whether at each step the number of colour is even or odd; even if the decomposition

of the representations looks different, in the end we always have that the breaking is

O(Nc− k)→ O(Nc− k− 1) with transverse slice cNf−k. The chain of Higgsings only stops
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after Nc steps, when we have O(1)→ {1} with a cNf−(Nc−1) transverse slice. The resulting

Higgs branch Hasse diagram is a line, and is depicted in the bottom left of Figure 1.

As a byproduct of this analysis, we can also obtain the Hasse diagram for a theory

with SO(Nc) gauge group and Nf fundamentals.4 The process is completely analogous to

the one above, except there are no Z2 representations making any appearance. At each

step the possible Higgsing is SO(Nc − k) → SO(Nc − k − 1) with transverse slice cNf−k.

The only difference comes after Nc − 2 steps, when the theory we have left is SO(2) with

Nf −Nc + 2 fundamentals. In the O case, there was still one possible nontrivial subgroup

and Higgsing O(2) → O(1) = Z2. On the other hand, now we have SO(2) = U(1), which

has no nontrivial subgroups to be Higgsed to. Therefore the only Higgsing is U(1)→ {1},
with transverse slice a2Nf−2Nc+3. We show this Hasse diagram in the bottom right of Figure

1. The relation between the Hasse diagrams for the O and SO theories is reminiscent of

the relation between U and SU [34, 35], as made clear on the figure.

3.2 Hasse diagram for S̃U(N)I

We now proceed to compute the Higgs branch Hasse diagrams for theories with S̃U(Nc)I
gauge group, and matter content consisting of Nf fields in the (F ⊕ F ) representation

and Nε fields in the ε representation. We do this by considering all the possible Higgsing

patterns, using the branching rules summarised in Table 3. We consider only the case

where Nf is large enough so that we can have complete Higgsing.

Let’s begin with the simple example of S̃U(4)I with 4 fundamentals as an appetizer.

This representation is real, and so the theory has Sp(4) global symmetry. Computing the

Higgsing to S̃U(3)I , we find,

4(F ⊕ F )
S̃U(4)I

−Adj
S̃U(4)I

→ 4
[
(F ⊕ F )

S̃U(3)I
⊕ ε⊕ 1

]
(3.11)

−
[
Adj

S̃U(3)I
⊕ (F ⊕ F )

S̃U(3)I
⊕ ε
]

= 3(F ⊕ F )
S̃U(3)I

⊕ 3 ε−Adj
S̃U(3)I

⊕ 4 · 1︸ ︷︷ ︸
c4 slice

, (3.12)

and we see that the remaining theory is an S̃U(3)I gauge theory with 3 fundamentals and 3

fields in the ε. Since both the (F ⊕F )
S̃U(3)I

and the ε are real representations, this theory

has a Sp(3) × Sp(3) global symmetry. On the other hand, we observe that the transverse

slice at the bottom of the Hasse diagram is c4.

We are now presented with two options regarding how to continue the chain of Higgs-

ings. The gauge fields can either eat the fields in the ε, resulting on the breaking S̃U(3)I →
SU(3), or fields in the (F ⊕ F )

S̃U(3)I
, resulting on the breaking S̃U(3)I → SU(2) × Z2. In

the first case, we find

3(F ⊕ F )
S̃U(3)I

⊕ 3 ε−Adj
S̃U(3)I

→ 6FSU(3) −AdjSU(3) ⊕ 3 · 1︸︷︷︸
c3 slice

. (3.13)

4We are indebted to Amihay Hanany for drawing our attention to the Hasse diagram of that theory.
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0U(Nc)

aNf−1

Nf − 1U(Nc − 1)

aNf−3

2Nf − 4U(Nc − 2)

(Nc − 2)(Nf −Nc + 2)U(2)

aNf−2Nc+3

(Nc − 1)(Nf −Nc + 1)U(1)

aNf−2Nc+1

NfNc −N2
c{1}

0SU(Nc)

aNf−1

Nf − 1SU(Nc − 1)

aNf−3

2Nf − 4SU(Nc − 2)

dNf−2Nc+3

(Nc − 2)(Nf −Nc + 2)SU(2)

NfNc −N2
c + 1{1}

0O(Nc)

cNf

NfO(Nc − 1)

cNf−1

2Nf − 1O(Nc − 2)

(2Nf −Nc + 3)(Nc − 2)/2O(2)

cNf−(Nc−2)

(2Nf −Nc + 2)(Nc − 1)/2O(1)

cNf−(Nc−1)

NfNc −Nc(Nc − 1)/2{1}

0SO(Nc)

cNf

NfSO(Nc − 1)

cNf−1

2Nf − 1SO(Nc − 2)

a2Nf−2Nc+3

(2Nf −Nc + 3)(Nc − 2)/2SO(2)

NfNc −Nc(Nc − 1)/2{1}

Figure 1. Comparison between the Higgs branch Hasse diagram for theories with U(Nc) (top left)

and SU(Nc) (top right) and for theories with O(Nc) (bottom left) and SO(Nc) (bottom right) gauge

groups, with the number of fundamental flavours Nf satisfying Nf ≥ Nc. The green numbers are

the quaternionic dimensions of the leaves, and the red groups are the residual gauge groups.
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From this point onward, we have the already known Higgsing pattern and Hasse diagram

of the SU groups. Let’s then consider the second case,

3(F ⊕ F )
S̃U(3)I

⊕ 3 ε−Adj
S̃U(3)I

→3
[
(F ⊕ F )

S̃U(2)I
⊕ ε⊕ 1

]
(3.14)

+ 3 ε−
[
Adj

S̃U(2)I
⊕ (F ⊕ F )

S̃U(2)I
⊕ ε
]
.

Here we are making an abuse of notation: since the principal extension of SU(2) is trivial,

we have S̃U(2) = SU(2)×Z2, and the (F ⊕F ) representation is in fact reducible and equal

to 2 · FSU(2). Using this,

(3.14) = 4 · FSU(2) ⊕ 5 · ε − AdjSU(2) ⊕ 3 · 1︸︷︷︸
c3 slice

. (3.15)

We conclude that the theory after this last Higgsing splits into two decoupled theories,

one consisting of SU(2) gauge group with 4 flavours and the other of a Z2 gauge group

with 5 fields in the ε. The overall global symmetry is SO(8)× Sp(5).

At this point, the possible Higgsings are trivial, since there are no more nontrivial

subgroups. We can either Higgs SU(2) → 1 with the fundamental flavours, leaving the

Z2 + 5ε alone (this produces a d4 slice), or Higgs Z2 → 1 with the ε fields (this produces a

c5 slice). Note that the SU(2) + 4F remaining in this transition can also be reached from

the Higgsing of SU(3) + 6F that we obtained in the previous steps. All in all, the Hasse

diagram for the Higgs branch of this theory is depicted in Figure 2.

Generalizing to an arbitrary (large enough) number of fundamentals and fields in the

ε is now straightforward. As before, we begin by writing down the hyperKähler quotient

17

12

7

12

7

4

0

c5

c5

c3

d4

a5d4

c3

c4

S̃U(4)ISp(4)

(F ⊕ F )

S̃U(3)ISp(3) Sp(3)

(F ⊕ F ) ε

SU(2)× Z2SO(8) Sp(5)

F ε

Z2Sp(5)

ε

SU(3)SU(6)

F

SU(2)SO(8)

F

Free hypers

Figure 2. Higgs branch Hasse diagram of S̃U(4)I + 4 (F ⊕ F ). Next to each symplectic leaf, we

write its dimension (in green) and the quiver of the effective theory.
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for the Higgs branch of S̃U(Nc)I +Nf (F ⊕ F ) +Nεε,

Nf (F ⊕ F )
S̃U(Nc)

⊕Nεε−Adj
S̃U(Nc)I

. (3.16)

This theory has Sp(Nf )×Sp(Nε) global symmetry. Similarly to the intermediate step of the

previous example, there are two possible Higgsings, with the ε’s or with the fundamentals.

Applying the branching rules of Table 3 in either case results in

S̃U(Nc)I → SU(Nc) : (3.16)→ NfFSU(Nc) ⊕NfF SU(Nc) (3.17)

−AdjSU(Nc)⊕Nε · 1︸ ︷︷ ︸
cNε slice

S̃U(Nc)I → S̃U(Nc − 1)I : (3.16)→ (Nf − 1)(F ⊕ F )
S̃U(Nc−1)I

(3.18)

⊕ (Nε +Nf − 1)ε−Adj
S̃U(Nc−1)

⊕Nf · 1︸ ︷︷ ︸
cNf slice

The former leads to an effective theory with SU(Nc) gauge group and SU(2Nf ) global

symmetry, whose Hasse diagram is already known. This is the right part of the Hasse

diagram of Figure 3. The latter leads to a theory with S̃U(Nc − 1)I gauge group, Nf − 1

fields in the (F ⊕F ), and Nε +Nf − 1 fields in the ε; thus a Sp(Nf − 1)× Sp(Nε +Nf − 1)

global symmetry. In order to continue the computation of the Hasse diagram, we are once

again presented with two possibilities: Higgsing with the ε fields –this produces a cNε+Nf−1

slice that merges with the right part of the Hasse diagram corresponding to the connected

gauge groups– or with the fundamentals –this produces a cNf−1 slice that continues on the

left side of the Hasse diagram corresponding to the disconnected gauge groups with both

fundamental and ε matter fields–.

The Hasse diagram of Figure 3 is the result of iterating this procedure Nc − 2 times,

until we reach S̃U(2)I = SU(2)×Z2. At this point, as happened with the previous example,

the theory will decouple into an SU(2) gauge theory with Nf −Nc + 2 fundamentals, and

a Z2 gauge theory with Nε + (Nc − 2)(2Nf − Nc + 1)/2 ε’s. We can Higgs each of these

two gauge groups separetly, resulting in the “rectangle” at the top of the Hasse diagram.

3.3 Hasse diagram for S̃U(N)II

The computation of the Hasse diagram of the Higgs branch for theories with SU(2Nc)II
gauge group is very similar to the one we just described in detail for the type I case.

There are only a few key differences that we need to take into account. The first is that

S̃U(2N−1)I is not a subgroup of S̃U(2N)II . This implies that the smallest step we can take

in the chain of Higgsings is S̃U(2N)II → S̃U(2N−2)II . The second is that the fundamental

representation of the type II groups is pseudo-real rather than real, and therefore these

fields will give rise to an SO global symmetry.

As in the type I case, before considering the fully general case, we begin by looking at

a concrete example, S̃U(6)II with 6 fields in the (F ⊕ F ); the resulting Hasse diagram is

depicted in Figure 4. The procedure is the same as before: we begin by writing down

6(F ⊕ F )
S̃U(6)II

−Adj
S̃U(6)II

, (3.19)
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2NcNf −N2
c +Nε + 1 {1}

2NcNf + 4(Nc −Nf )−N2
c − 4 +Nε SU(2)

2NcNf + 6(Nc −Nf )−N2
c − 9 +Nε SU(3)

2NcNf + 8(Nc −Nf )−N2
c − 16 +Nε SU(4)

6Nf − 9 +Nε SU(Nc − 3)

4Nf − 4 +Nε SU(Nc − 2)

2Nf − 1 +Nε SU(Nc − 1)

Nε SU(N)

Z2 Nf (Nc + 2)− Nc
2

(Nc + 3) + 2

SU(2)× Z2
(2−Nc)(Nc−2Nf−3)

2

S̃U(3)I
(3−Nc)(Nc−2Nf−4)

2

S̃U(4)I
(4−Nc)(Nc−2Nf−5)

2

S̃U(Nc − 3)I 3Nf − 3

S̃U(Nc − 2)I 2Nf − 1

S̃U(Nc − 1)I Nf

S̃U(Nc)I 0

c (Nc−2)(2Nf−Nc+1)

2
+Nε

c (Nc−2)(2Nf−Nc+1)

2
+Nε

c (Nc−3)(2Nf−Nc+2)

2
+Nε

c (Nc−4)(2Nf−Nc+3)

2
+Nε

d2(Nf−Nc+2)

a2Nf−2Nc+5

a2Nf−2Nc+7

a2Nf−2Nc+9

d2(Nf−Nc+2)

cNf−Nc+3

cNf−Nc+4

cNf−Nc+5

cNf

cNf−1

cNf−2

cNf−3

cNε

cNf−1+Nε

c2Nf−3+Nε

c3Nf−6+Nε

a2Nf−1

a2Nf−3

a2Nf−5

a2Nf−7

Figure 3. Higgs branch Hasse diagram of S̃U(Nc)I +Nf (F ⊕ F ) +Nε ε for Nf ≥ Nc. The green

numbers are the quaternionic dimensions of the leaves, and the red groups are the residual gauge

groups.
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and apply the branching rules of Table 3 under the breaking S̃U(6)II → S̃U(4)II . After

some cancellations, this results in

4(F ⊕ F )
S̃U(4)II

⊕ 11ε−Adj
S̃U(4)II

⊕(12− 3) · 1︸ ︷︷ ︸
d6 slice

. (3.20)

We see that the remaining effective theory has SO(8) × Sp(11) global symmetry, and the

transverse slice, according to Table 4, is the minimal nilpotent orbit of so(12). Again we

are at a stage where we can proceed with the chain of Higgsings in two ways: either Higgs

with the ε fields –this results in a c11 slice that goes to the right side of the Hasse diagram

corresponding to the SU groups– or with the fundamentals –this results in a d4 slice that

continues in the left of the Hasse diagram corresponding to the disconnected groups–. Note

that since in the disconnected side of the diagram the rank of the gauge group jumps by two,

we will have extra symplectic leaves in the right side of the Hasse diagram. In our example,

the extra leaf is the one of dimension 27, with gauge group SU(3) and global symmetry

SU(6); meanwhile on the left side we jump directly from S̃U(4)II → SU(2) × Z2. As in

the type I case, the disconnected version of the SU(2) group is simply a direct product,

which means that at the top of the Hasse diagram we have a rectangle where the sides

are the transverse slices c18 –corresponding to Higgsing the Z2 with the ε fields– and d4

–corresponding to Higgsing the SU(2) with the fundamentals–.

With this in mind, generalizing to a S̃U(2Nc)II + Nf (F ⊕ F ) + Nεε (with Nf large

enough) requires no extra thinking. We only need to repeat the computation above a few

times to obtain the result in Figure 5.

37

32

27

20

19

14

9

0

c18

c18

c11

d4

a5

a7

d4

d4

d6

S̃U(6)IISO(12)

(F ⊕ F )

S̃U(4)IISO(8) Sp(11)

(F ⊕ F ) ε

SU(2)× Z2SO(8) Sp(18)

F ε

Z2Sp(18)

ε

SU(4)SU(8)

F

SU(3)SU(6)

F

SU(2)SO(8)

F

Free hypers

Figure 4. Hasse diagram of S̃U(6)II + 6(F ⊕F ). Next to each symplectic leaf, we write its quater-

nionic dimension (in green) and the quiver of the effective theory corresponding to the transverse

slice from that leaf to the top leaf.
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4NcNf − 4N2
c + 1 +Nε {1}

4NcNf − 4Nf − 4N2
c + 8Nc − 4 +Nε SU(2)

4NcNf − 6Nf − 4N2
c + 12N2

c − 9 +Nε SU(3)

4NcNf − 8Nf − 4N2
c + 16Nc − 16 +Nε SU(4)

12Nf − 36 +Nε SU(2Nc − 6)

10Nf − 25 +Nε SU(2Nc − 5)

8Nf − 16 +Nε SU(2Nc − 4)

6Nf − 9 +Nε SU(2Nc − 3)

4Nf − 4 +Nε SU(2Nc − 2)

2Nf − 2 +Nε SU(2Nc − 1)

Nε SU(2Nc)

Z2 2NcNf + 2Nf − 2N2
c − 5Nc + 4

SU(2)× Z2 (Nc − 1)(2Nf − 2Nc + 1)

S̃U(4)II (Nc − 2)(2Nf − 2Nc + 3)

S̃U(2Nc)II 0

S̃U(2(Nc − 1))II 2Nf − 3

S̃U(2(Nc − 2))II 4Nf − 10

S̃U(2(Nc − 3))II 6Nf − 21

c(Nc−1)(2Nf−2Nc+3)+Nε

c(Nc−1)(2Nf−2Nc+3)+Nε

c(Nc−2)(2Nf−2Nc+5)+Nε

d2(Nf−2Nc+2)

a2Nf−4Nc+5

a2Nf−4Nc+7

a2Nf−4Nc+9

a2Nf−5

a2Nf−7

a2Nf−9

a2Nf−11

a2Nf−13

a2Nf−1

a2Nf−3

d2(Nf−2Nc+2)

dNf−2Nc+4

dNf−2Nc+6

dNf−6

dNf−4

dNf−2

dNf

c2Nf−1+Nε

c4Nf−6+Nε

c6Nf−15+Nε

cNε

Figure 5. Higgs branch Hasse diagram of S̃U(2Nc)II +Nf (F ⊕F ) +Nεε for Nf ≥ 2Nc. The green

numbers are the quaternionic dimensions of the leaves, and the red groups are the residual gauge

groups.
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4 Magnetic quivers

In [1, 28] we began the study of the Higgs branch of the 4d N = 2 discrete gauged SQCD-

like theories of type I and II. In this section we attempt to find a magnetic quiver, i.e

a 3d N = 4 theory whose Coulomb branch is equal to the Higgs branch of the S̃U(N)

gauge theory. We conjecture that the Higgs branch of the 4d N = 2 S̃UI(N) gauge theory

with Nf (F ⊕ F ) hypermultiplets is the wreathed quivers drawn in Figure 8. We check

our conjecture performing the computation of the corresponding Coulomb branch Hilbert

series on a selection of examples. Our main tool will be the monopole formula that was

initially introduced in [31]. The generalization of this formula in the context of wreathed

quivers was performed in [39].

We start with a short review of the monopole formula of [39] before applying it to the

theories of interest. We work out with full details the S̃U(3)I case with Nf = 3 while we

just report the result for S̃UI(N) with N > 3. The type II theories are discussed in Section

4.4.

4.1 Review of the monopole formula

We consider a 3d N = 4 simply laced quiver with unitary nodes and only bifundamental

hypermultiplets, and a finite subgroup Γ of the automorphisms of that quiver. We call V

the set of vertices of the quiver; to each vertex v ∈ V is associated a unitary gauge group

U(nv). We call E the set of (unoriented) edges e = {v, v′} of the quiver, which correspond

to hypermultiplets in bifundamental representations connecting the gauge nodes v and v′.

The gauge group of the initial quiver is G =
∏
v∈V U(nv). Wreathing the quiver by Γ

means promoting the gauge group to the wreath product G o Γ – see [39] for a reminder of

the definition of this operation.5

Following [31, 39] the (unrefined) Coulomb branch Hilbert series associated to Γ takes

the form

HSΓ(t) =
1

|WΓ|
∑
m∈Zr

∑
γ∈WΓ(m)

t2∆(m)

det(1− t2γ)
, (4.1)

where WΓ := W o Γ ⊆ Sr+1 is given by the extension of W =
∏
v∈V Snv by the symmetry

Γ of the quiver. Here r = −1 +
∑

v∈V nv denotes the total rank of the quiver gauge theory

that we are considering, while m denotes the magnetic charge that takes value in the lattice

Zr. For any m ∈ Zr we call WΓ(m) = {w ∈ WΓ | w ·m = m}. Finally ∆(m) denotes the

conformal dimension, defined by

2∆(m) =
∑

{v,v′}∈E

nv∑
i=1

n′v∑
j=1

|mv,i −mv′,j | −
∑
v∈V

nv∑
i=1

nv∑
j=1

|mv,i −mv,j | . (4.2)

When Γ = {1} is the trivial group, (4.1) reproduces the standard monopole formula of [31].

Henceforth we consider quivers which possess a Z2 automorphism, and we set Γ = Z2.

5It should be noted that in the particular case of a symmetry permuting a bouquet of U(1) gauge nodes,

the wreathing operation coincides with the discrete gauging of [56–58].
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1 2 3 2 1

1 1

Z2

Figure 6. Magnetic quiver for SQCD with gauge group S̃U(3)I and 3 (F ⊕ F ). The red dashed

lines show the Z2 action on the legs of the quiver.

Formula (4.1) can be more efficiently evaluated after exploiting the Weyl group sym-

metry. We introduce the Casimir factors PWΓ
6

PWΓ
(t;m) =

1

|WΓ|
∑

γ∈WΓ(m)

1

det(1− t2γ)
. (4.3)

This way the formula (4.1) can be recast in the following form

HSΓ(t) =
∑

m∈Weyl(GoΓ)∩Zr
PWΓ

(t;m)t2∆(m) , (4.4)

where G =
∏
v∈V U(nv) is the initial gauge group and the sum is taken over the magnetic

weights in the principal chamber Weyl(Go Γ).

4.2 Example: the S̃U(3)I case

We start from the magnetic quiver for the Higgs branch of 4d N = 2 SQCD with gauge

group SU(3) and Nf = 3 flavours. The Γ = Z2 is implemented with a wreathing on the legs

of the quiver as schematically shown in Figure 6. Note that the quiver has a full Z2 × Z2

automorphism group, each factor exchanging two identical legs; we just wreath with the

diagonal subgroup Γ. This is justified by the generalization to Nf > N , see Figure 8.

In order to check this conjecture we compute the Coulomb branch Hilbert series using

formula (4.1). We believe it is useful to provide the full details of the computation for that

example as this is the first time (4.1) is evaluated on a non-trivial wreathed quiver.

• To each gauge node of the quiver we associate the magnetic weights as follows:

c d1, d2
g1, g2, g3 f1, f2

e

a b

(4.5)

The total rank r of the gauge group is 11 − 1 = 10, and the sum over the magnetic

charges is over elements of the form

m ∼= (a, b, c, d1, d2, e, f1, f2, g1, g2, g3 = 0) ∈ Zr+1 (4.6)

6Note that for WΓ = SN this definition coincides with the definition of the Casimir factors PU associated

to unitary gauge groups, that were introduced in [31].
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so this is indeed a sum over Zr (see Section 2.4.3 of [59] for detailed explanation

about the choice of lattice).

• The Weyl group W is the product of the Weyl groups of the simple gauge groups,

namely

W = S1 × S1 × S1 × S2 × S1 × S2 × S3 ⊂ S11 (4.7)

• The wreathing group is Γ = Z2. It is generated by the permutations that exchange

simultaneously a↔ b, c↔ e and di ↔ fi (i = 1, 2). Then the group WΓ = W o Γ ⊂
S11 has order |WΓ| = 48.

• The expression (4.2) gives the following conformal dimension for the case at hand

2∆(m) =
3∑
i=1

(|a− gi|+ |b− gi|) +
2∑
i=1

(|c− di|+ |e− fi|) +
2∑
i=1

3∑
j=1

(|di − gj |+ |fi − gj |)

−
2∑

i,j=1

(|di − dj |+ |fi − fj |)−
3∑

i,j=1

|gi − gj | . (4.8)

We now work out formula (4.4), splitting it into six contributions, one for each gener-

alized wall of the Weyl chamber.

• The interior of the chamber is defined by the inequality a < b. In that case, for any

m satisfying this inequality, WΓ(m) = W (m) so the Casimir factors correspond to

those of W , and we get the contribution

H1(t) =
(1− t2)

(1− t2)4

∑
a<b

∑
c

∑
d1≤d2

∑
e

∑
f1≤f2

∑
g1≤g2≤0

PU(d)PU(f)PU(g)t2∆(a,b,c,d1,d2,e,f1,f2,g1,g2,0) .

(4.9)

Note that we factored out the Casimir terms for the four U(1) nodes, giving (1−t2)−4

in the denominator, and we include a (1 − t2) in the numerator to account for the

decoupled U(1). In (4.9) and all similar equations below, all sums run over the

integers Z.

• Then we go on the wall of the chamber defined by a = b. Now to avoid over counting

we have to be in the interior of that wall, which we define by the inequality c < e. In

that case clearly WΓ(m) = W (m), so the contribution is

H2(t) =
(1− t2)

(1− t2)4

∑
a

∑
c<e

∑
d1≤d2

∑
f1≤f2

∑
g1≤g2≤0

PU(d)PU(f)PU(g)t2∆(a,a,c,d1,d2,e,f1,f2,g1,g2,0) .

(4.10)

• The third (respectively the fourth) contributions are defined by a = b, c = e and

d2 < f2 (respectively d2 = f2 and d1 < f1). This uses a lexicographic order to find a

fundamental chamber relative to the fugacities of the non-abelian groups U(2). Again
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these constraints guarantee that (a, b, c, d1, d2, e, f1, f2) 6= (b, a, e, f1, f2, c, d1, d2) so

WΓ(m) = W (m) and the contributions are

H3(t) =
(1− t2)

(1− t2)4

∑
a

∑
c

∑
f1≤f2

∑
d1≤d2<f2

∑
g1≤g2≤0

PU(d)PU(f)PU(g)t2∆(a,a,c,d1,d2,c,f1,f2,g1,g2,0) ,

(4.11)

H4(t) =
(1− t2)

(1− t2)4

∑
a

∑
c

∑
f1≤f2

∑
d1<f1

∑
g1≤g2≤0

PU(d)PU(f)PU(g)t2∆(a,a,c,d1,f2,c,f1,f2,g1,g2,0) .

(4.12)

• We now reach the regions where (a, b, c, d1, d2, e, f1, f2) = (b, a, e, f1, f2, c, d1, d2). In

that case we can no longer use the standard Casimir factors PU for the U(2) nodes.

Consider first the fifth region, defined by

a = b c = e d1 = f1 d2 = f2 f1 < f2 . (4.13)

As the factor S3 in W is unaffected, we keep the PU Casimir term for it. Let us

denote W ′ = W/S3 = S1 × S1 × S1 × S2 × S1 × S2 ⊂ S8. For a weight m satisfying

(4.13), W ′Γ(m) does not depend on m, so we can factor out from (4.1) a prefactor

1

|W ′Γ|
∑

γ∈WΓ(m)

1

det(1− t2γ)
=

1 + 6t4 + t8

(1− t2)8 (1 + t2)4 . (4.14)

Therefore the fifth contribution is

H5(t) = (1−t2)
1 + 6t4 + t8

(1− t2)8 (1 + t2)4

∑
a

∑
c

∑
f1<f2

∑
g1≤g2≤0

PU(g)t2∆(a,a,c,f1,f2,c,f1,f2,g1,g2,0) .

(4.15)

In that expression the four U(1) gauge nodes Casimirs are accounted for in (4.14).

• Finally the last region is defined by

a = b c = e d1 = f1 d2 = f2 f1 = f2 . (4.16)

and for such an m we get

1

|W ′Γ|
∑

γ∈WΓ(m)

1

det(1− t2γ)
=

1− t2 + 4t4 − t6 + t8

(1− t2)8(1 + t2)4(1 + t4)
. (4.17)

This gives the contribution

H6(t) = (1−t2)
1− t2 + 4t4 − t6 + t8

(1− t2)8(1 + t2)4(1 + t4)

∑
a

∑
c

∑
f1

∑
g1≤g2≤0

PU(g)t2∆(a,a,c,f1,f1,c,f1,f1,g1,g2,0) .

(4.18)
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The Hilbert series (4.1) for the case at hand is the sum of these six contributions. Evaluating

each of them perturbatively, we find

HS(t) = 1 + 21t2 + 20t3 + 336t4 + 560t5 + 3850t6 + 7812t7 + 34643t8 + 73900t9

+252132t10 + 535920t11 + 1533810t12 + 3177876t13 + 8011642t14 + 16049712t15

+36748014t16 +O
(
t17
)
. (4.19)

The Higgs branch Hilbert series for this theory has been evaluated exactly in [28] using

the Molien-Weyl integration formula for disconnected groups [60], giving the result

1

(1− t)20(1 + t)16(1 + t2)8(1 + t+ t2)10

(
1 + 6t+ 34t2 + 144t3 + 647t4 + 2588t5+

9663t6 + 31988t7 + 97058t8 + 268350t9 + 687264t10 + 1628374t11 + 3598201t12+

7421198t13 + 14364220t14 + 26130494t15 + 44837750t16 + 72656468t17 + 111456702t18+

162010222t19 + 223544610t20 + 292994926t21 + 365233973t22 + 433158422t23+

489154949t24 + 526027956t25 + 538960928t26 + ... + palindrome + ...+ t52
)
.

All computed orders in (4.19) agree with the above expression, giving a strong evidence that

the wreathed quiver of Figure 6 can be considered to be a magnetic quiver for the S̃U(3)I
gauge theory with 3 (F ⊕ F ). We note that the evaluation of the corresponding refined

Hilbert series does not present any conceptual obstruction, although the computational

cost quickly becomes prohibitive. We did check the equality of the refined Hilbert series

up to order t4.

Folded quiver and twisted compactification

In this paragraph, we denote by C the Coulomb branch of the 3d N = 4 theory defined by

the wreathed quiver of Figure 6 and by H the Higgs branch of the 4d N = 2 S̃U(3)I gauge

theory with 3(F ⊕ F ) matter. We now consider the following three claims:

(α) The exact Hilbert series of C and H are equal.

(β) The Hasse diagrams of C and H as symplectic singularities agree.

(γ) The symplectic singularities C and H are isomorphic.

The logical implications between these statements is (γ) =⇒ (β) =⇒ (α). The computation

performed above strongly suggests that (α) holds. Based on that result, and on physical

intuition regarding charge conjugation, we conjecture that (γ) holds as well. If this is

correct, then (β) should also be correct, and in combination with the results of Section 3,

it means that we have identified the Hasse diagram for C, see the middle column of Table 5.

It is interesting to compare this Hasse diagram with the Hasse diagram of a third quiver,

namely the non simply laced quiver

1 2 3 1 (4.20)
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1 2 3 2 1

1 1

1 2 3 2 1

1 1

1 2 3 1

10

5

0

d4

a5

8

3

0

10

5
d4

c3

d4

c2

c2

6

3

0

d3

c3

Table 5. Comparison of the Hasse diagrams for a quiver with a Z2 symmetry and the corresponding

wreathed and folded quivers.

obtained by folding, presented in the last column of Table 5. The Hasse diagram is obtained

from the quiver subtraction algorithm (see [40] for a similar computation).

We note that the quiver (4.20) arises naturally as follows. Consider the following brane

web, where vertical lines represent NS5 branes, horizontal lines represent D5 branes and

circles represent (p, q)-seven-branes with appropriate charges:

(4.21)

This represents the 5d N = 1 theory SU(3) with 6 fundamental hypers, with masses set to

zero, and finite gauge coupling. This brane web has a Z2 × Z2 symmetry (the first factor

being the reflection with respect to a vertical axis, and the second factor a reflection with

respect to a horizontal axis). In particular, the diagonal Z2, which is a rotation of angle

π in the plane of the brane web, should correspond to charge conjugation in the SU(3)

theory [17]. The magnetic quiver associated to this brane web is

1 2 3 2 1

1 1

(4.22)
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Z2

1
2

N − 1

N
N − 1

2
1

1

1

Figure 7. Wreathed quiver for SQCD-like theories with gauge group S̃U(N)I and N flavours. The

automorphism group of this quiver is Z2 × Z2, but we wreath only a Z2 subgroup, as made clear

by the generalization to higher number of flavors in Figure 8.

It has a SU(6)×U(1) global symmetry. We can compactify this 5d theory on a circle with

a Z2 twist, corresponding to charge conjugation, to obtain a N = 2 theory in 4d, following

[17]. Then the SU(6) factor in the global symmetry is broken to Sp(3), and the U(1) factor

is completely broken. The magnetic quiver, which is derived using the rules of Appendix

B of [61], is (4.20).

This construction sheds light on the difference between the wreathed and the folded

quivers from the 4d perspective. In the first case, charge conjugation is gauged, which

means that inequivalent configurations in the original theory are declared to be equivalent.

Mathematically, the operation on the Higgs branch is a quotient, and the dimension is

unchanged. In the second case, charge conjugation is involved in twisted compactification:

mathematically, the operation on the Higgs branch is a reduction to fixed points of the

discrete action, and accordingly the dimension is changed. We conclude this section with

an observation of an apparent conflict with a conjecture of [39], which states that the

Hasse diagram of a folded quiver should be a subdiagram of the Hasse diagram of any

corresponding wreathed quiver. The diagrams of Table 5 contradict this conjecture (which

was based on observation of a few examples), and it would be interesting to study this

point further.

4.3 Type I – general case

Based on the computation performed for the S̃U(3)I case we can infer the general form

of the wreathed magnetic quiver for theories of type I, see Figure 8. When Nf = N

this reduces to the quiver of Figure 7, where the Z2 action is picked from the Z2 × Z2

automorphism group of the quiver by continuation from the Nf > N case.

For N ≥ 4 the explicit evaluation of the Coulomb branch Hilbert series for Nf =

N , associated to the conjectured wreathed quiver, turns out to be computationally quite

involved. Due to this obstruction we checked our conjecture only for the case N = 4, where

the application of the formula (4.1) gives

1 + 36t2 + 1114t4 + 24717t6 + 417276t8 + o(t8) . (4.23)

We observe that this expression perfectly matches with the first orders of the expansion

of the Higgs branch Hilbert series for SQCD with gauge group S̃U(4)I and eight flavours,
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Z2

1
2

N − 1
1

N

N

N

N
N − 1

2
1

1

2Nf − 2N − 1

Figure 8. Wreathed quiver for SQCD-like theories with gauge group S̃U(N)I and Nf > N flavours.

There is a single Z2 action which flips the whole quiver about the horizontal axis. The global

symmetry of this wreathed quiver is Sp(Nf ).

that was computed in [28].

4.4 Type II

In the previous sections, we have provided the magnetic quivers for theories with one of

the types of disconnected gauge groups that we have discussed in this article, S̃U(N)I .

Currently we have no candidate for a possible magnetic quiver of a theory with S̃U(N)II
gauge group. To understand why the type II groups pose a much bigger problem than the

type I groups, let’s look into the logic that led us to the wreathed quiver in Figure 6.

Two of the main characteristics of the Higgs branch of SQCD-like theories with S̃U

gauge groups groups are that, on the one hand, its dimension is the same as for their

connected cousins SU, while on the other hand the global symmetry is modified due to

the reality properties of the fundamental representation. In particular, for Nc = 4 with 4

F ⊕ F the quaternionic dimension of the Higgs branch is 17, and the global symmetry is

SU, Sp or SO in the connected case, type I and type II respectively.

When looking for a magnetic quiver, a natural starting point is the known magnetic

quiver for the SU groups, which in the Nc = 3 case is depicted in (4.22). This has the

correct dimension, but the wrong global symmetry for our purposes. We also have its folded

version, the non-simply laced quiver in (4.20); this has the correct global symmetry Sp(3),

but the incorrect dimension. With this in mind, the introduction of wreathed quivers in

[39] quickly leads to a potential candidate for the magnetic quiver of S̃U(3)I , since the

wreathing construction preserves the dimension, while modifying the global symmetry in

the same way as the folding. This candidate is the one in Figure 6, and it turned out to

be the correct one.

However, for the type II groups the puzzle is significantly more complicated. Our

analysis shows that starting from the magnetic quiver of SU(4), none of the possible ways

to wreath a Z2 gives rise to the expected global symmetry. This has been confirmed by
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Hilbert series computations. Thus, as stated above, we have no candidate for the magnetic

quiver of S̃U(Nc)II . It is of course possible that such a magnetic quiver may be found as

a wreathing of a completely different quiver, perhaps including not only unitary nodes; or

from an altogether different route.

5 Conclusions

In this article we analyzed several aspects of 4d N = 2 theories with disconnected gauge

groups. In particular we studied how the global structure of these groups affects the Hasse

diagrams for the Higgs branch of supersymmetric gauge theories. The main difference with

respect the connected case is that these diagrams are characterized by the presence of bifur-

cations, physically corresponding to scalar fields transforming in different representations

of the gauge group getting a VEV.

Moreover, in the second part of the paper, we moved a further step towards the un-

derstanding of the Higgs branch of the 4d N = 2 SQCD like-theories with S̃U(N)I gauge

group providing a candidate for a magnetic quiver that turns out to be a wreathed quiver.

Our analysis also suggests that a magnetic quiver for type II theories is not a wreathed

quiver of type discussed in [39] or, to the best of our knowledge, any other type 3d N = 4

quiver appearing in the literature. We leave the identification of this quiver for future

investigation.

This naturally leads to a wealth of open problems, the most prominent of which being

the connection between the two parts of this work, namely the Hasse diagrams and the

magnetic quivers. To the best of our knowledge, the algorithms of quiver subtraction

leading to Hasse diagrams has not been extended to wreathed quivers. The present work

thus offers an infinite family of data points that could serve as a basis to understand how

quiver subtraction applies to those quivers. In particular, it should be noted that the Hasse

diagram for a wreathed quiver seems not to contain in general the Hasse diagram of the

associated folded quiver, as shown in Table 5. This point needs to be investigated further.

A brane realization of theories with S̃U(N) gauge groups, possibly along the lines of [62–65]

would be an important step forward.
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A The groups S̃U(N) and their characters

A.1 Definition of S̃U(N)

The groups. We are interested in semidirect products SU(N)oΘZ2, defined by a group

morphism Θ : Z2 → Aut(SU(N)). There are essentially two inequivalent choices for Θ, see

Table 2 in [28]. For g ∈ SU(N), we define ΘI
+1(g) = ΘII

+1(g) = g and

ΘI
−1(g) = (g−1)T = g , ΘII

−1(g) = −JN (g−1)TJN = −JNgJN , (A.1)

where the bar denotes complex conjugation and the matrix J2N reads

J2N :=

(
0 −IN×N

IN×N 0

)
. (A.2)

Moreover we note that ΘII
−1 is defined only for N even. When we discuss both cases

together, we simply use the letter Θ. Spelling out the definition of the semidirect product,

the group S̃U(N)I,II is the Cartesian product SU(N)× Z2 with group law defined by

(g, ε) · (g′, ε′) = (gΘε(g
′), εε′) . (A.3)

Explicitly, we can write S̃U(N)I,II as a union of two connected components

S̃U(N)I,II = {(g, 1) | g ∈ SU(N)} ∪ {(g,−1) | g ∈ SU(N)} (A.4)

with the product rules

(g, 1) · (g′, 1) = (gg′, 1) (A.5)

(g, 1) · (g′,−1) = (gg′,−1) (A.6)

(g,−1) · (g′, 1) = (gΘ(g′),−1) (A.7)

(g,−1) · (g′,−1) = (gΘ(g′), 1) . (A.8)

From this we also have

(g, ε)−1 = (Θε(g
−1), ε) . (A.9)

and

(g′, ε′) · (g, ε) · (g′, ε′)−1 = (g′Θε′(g)Θε(g
′)−1, ε) . (A.10)

The Lie Algebra. The Lie algebra of S̃U(N)I,II is

g = {X ∈ gl(N,C) | Tr(X) = 0 and X +X† = 0} . (A.11)

The involutions ΘI,II
−1 on S̃U(N)I,II descend to involutions on the Lie algebra defined by

θI−1(X) = −XT , θII−1(X) = JNX
TJN . (A.12)

This is also valid on the complexified Lie algebra, where the condition that X +X† = 0 is

dropped. We can rewrite equation (A.10) for (g, ε) = (1 +X, 1) ≡ 1 +X with X ∈ g, and

get the adjoint representation of S̃U(N)I,II :

(g, ε) ·X · (g, ε)−1 = gθε(X)g−1 . (A.13)
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It is useful to compute the trace of θI,II , and this can be done by expressing it on

any basis of g. We use as a basis {(Aij)1≤i<j≤N , (Bij)1≤i<j≤N , (Ci)1≤i<N} with (Aij)kl =

δikδjl− δjkδil, (Bij)kl = i (δikδjl + δjkδil) and (Ci)kl = i (δikδil − δi+1,kδi+1,l). The matrices

A are eigenvectors of θI with eigenvalue +1 and the matrices B and C are eigenvectors

with eigenvalue −1, so

Tr
(
θI
)

= 1−N . (A.14)

For θII withN = 2n even, we note that the matrices A and B are permuted (with signs) and

the eigenvectors are Ai,i+n and Bi,i+n with eigenvalue +1. Finally there is a contribution

+1 from θII(Cn) =
∑

1≤i<N Ci, so the trace of θII is 2n+ 1:

Tr
(
θII
)

= 1 +N . (A.15)

A.2 Maximal tori and Cartan Subgroups

Before writing characters for representation of a Lie group G, it is necessary to pick a

subgroup which is parametrized by a collection of variables zi (called fugacities, which

can assume continuous or discrete range). For connected compact Lie groups, there is

an obvious choice, which is a maximal torus U(1)r where r is the rank of the group.

The situation is much less clear when one considers disconnected groups. For general

considerations, we refer the reader to [66, Chapter VII] and [67, Chapter I] for a discussion

of the various Cartan subgroups, and to the series of papers by Lusztig starting with [68]

for characters of disconnected groups. The case of S̃U(N)I,II is discussed more specifically

in [69].

Here we simply give a brief and explicit exposition of the situation in the simplest non

trivial case of S̃U(3)I , the generalization to S̃U(N)I,II being straightforward.

Let us define the diagonal and anti-diagonal matrices

D(z1, z2, z3) =

 z1 0 0

0 z2 0

0 0 z3

 A(z1, z2, z3) = −

 0 0 z1

0 z2 0

z3 0 0

 . (A.16)

The minus sign is there to ensure that detD(z1, z2, z3) = detA(z1, z2, z3) = z1z2z3. We

have

D(z1, z2, z3) ∈ SU(3)⇐⇒ A(z1, z2, z3) ∈ SU(3)⇐⇒ |z1| = |z2| = |z3| = z1z2z3 = 1

(A.17)

Obviously we have a group morphism T = U(1)2 → SU(3) given by (z1, z2) 7→ D
(
z1,

z2
z1
, 1
z2

)
.

T has two interesting properties:

A. It is a maximal torus7 of SU(3).

B. It is a large Cartan subgroup [67] of SU(3), i.e. it is equal to the set of elements that

normalize a certain maximal torus (namely itself) and fixes the fundamental Weyl

chamber.

7A maximal torus is a compact, connected, abelian subgroup.
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C. Any element in SU(3) is conjugate to at least one element of T .

We want to see how this can be extended to S̃U(3). The crucial point is that the three

properties A, B and C are not equivalent in the context of disconnected groups.

In SU(3), T is still a maximal torus. The corresponding large Cartan subgroup is

the set of elements g ∈ S̃U(3) such that g−1Tg = T and g−1Bg = B where B is the set

of elements of the form (M, 1) with M upper triangular. We find that the large Cartan

subgroup is given by

T+ = {ϕ(z1, z2, ε) | z1, z2 ∈ U(1) , ε = ±1} , (A.18)

where we have defined

ϕ(z1, z2, ε) =


(
D
(
z1,

z2
z1
, 1
z2

)
, 1
)

if ε = 1(
A
(
z1,

z2
z1
, 1
z2

)
,−1

)
if ε = −1 .

(A.19)

The product rules give

ϕ(z1, z2, ε) · ϕ(y1, y2, η) =

{
ϕ(z1y1, z2y2, εη) if ε = 1

ϕ(z1y2, z2y1, εη) if ε = −1 .
(A.20)

This means that ϕ is an injective group morphism U(1)2oZ2 → S̃U(3) where the semidirect

product U(1)2 o Z2 is defined by

(z1, z2, ε) · (y1, y2, η) =

{
(z1y1, z2y2, εη) if ε = 1

(z1y2, z2y1, εη) if ε = −1 ,
(A.21)

so that the semidirect product can be identified with the wreath product U(1) oS2. Clearly,

this group is not Abelian, and as a consequence its image T+ by ϕ is not Abelian either.

A natural Abelian subgroup of U(1) oS2 is T = U(1)2 considered above. This is in fact

the small Cartan subgroup [67] associated to T , defined as the centralizer of T , which in

the present case is equal to T . Clearly this is not relevant for our study of the disconnected

component of S̃U(3).

Another natural Abelian subgroup is U(1) × Z2 where the first factor is the diagonal

subgroup of T . Its image in S̃U(3) is

T 0 = {ϕ(z, z, ε) | z ∈ U(1) , ε = ±1} . (A.22)

Property C fails here: clearly not every element of S̃U(3) is conjugate to an element of

T 0. Note however that every element of the disconnected part of S̃U(3) is conjugate to

an element of the disconnected part of T 0. This property is crucial in establishing a Weyl

integration formula over S̃U(3) [60].

Finally, consider the subgroup

T = {ψ(z1, z2, ε) | z1, z2 ∈ U(1) , ε = ±1} , (A.23)
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Group F ⊕ F character

T = T− z1 + z2
z1

+ 1
z2

+ z2 + z1
z2

+ 1
z1

T+
(

1+ε
2

) (
z1 + z2

z1
+ 1

z2
+ z2 + z1

z2
+ 1

z1

)
T 0 (1 + ε)

(
z + 1 + 1

z

)
T

(
1+ε

2

) (
z1 + z2

z1
+ 1

z2
+ z2 + z1

z2
+ 1

z1

)
Table 6. Character for the F ⊕ F representation of S̃U(3) for various fugacity subgroups.

Group Adjoint Character

T 2 +
z2
1
z2

+ z1z2 +
z2
2
z1

+ z1
z2
2

+ 1
z1z2

+ z2
z2
1

T+
(

1+ε
2

) (
2 +

z2
1
z2

+
z2
2
z1

+ z1
z2
2

+ z2
z2
1

)
+ ε
(
z1z2 + 1

z1z2

)
T 0 (1 + ε)

(
1 + z + z−1

)
+ ε
(
z2 + z−2

)
T

(
1+ε

2

) ( z2
1
z2

+ z1z2 +
z2
2
z1

+ z1
z2
2

+ 1
z1z2

+ z2
z2
1

)
+ 2ε

Table 7. Character for the adjoint representation of S̃U(3) for various fugacity subgroups.

where we have defined

ψ(z1, z2, ε) =

(
D

(
z1,

z2

z1
,

1

z2

)
, ε

)
. (A.24)

The product rules give

ψ(z1, z2, ε) · ψ(y1, y2, η) =

{
ψ(z1y1, z2y2, εη) if ε = 1

ψ(z1y
−1
1 , z2y

−1
2 , εη) if ε = −1 .

(A.25)

This means that ψ is an injective group morphism U(1)2oZ2 → S̃U(3) where the semidirect

product U(1)2 o Z2 is defined by

(z1, z2, ε) · (y1, y2, η) =

{
(z1y1, z2y2, εη) if ε = 1

(z1y
−1
1 , z2y

−1
2 , εη) if ε = −1

(A.26)

This is a different from (A.21). In (A.21) the Z2 acts on U(1)2 by permuting the two factors,

while here is inverts elements in both factors and preserves the order. The subgroup T is

not a Cartan subgroup, as it does not preserve the fundamental Weyl chamber. However

its matrices are all diagonal, and therefore is well suited for deriving branching rules.

A.3 Characters

A representation of S̃U(N) is a vector space V with a group morphism ρ : S̃U(N)→ GL(V ).

Picking a basis for V , a finite dimensional representation is given by matrices ρ(g, 1) and

ρ(g,−1) for each g ∈ SU(N), satisfying the product rule ρ(g, ε)ρ(g′, ε′) = ρ(gΘε(g
′), εε′).

The character χ of this representation is the trace of these matrices: χ(g, ε) = Tr(ρ(g, ε)).

Note that using (A.10) we have χ(g, ε) = χ(g′Θε′(g)Θε(g
′)−1, ε) for any g, g′, ε and ε′.
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In particular

χ(g, 1) = χ(hgh−1, 1) (A.27)

χ(g,−1) = χ(hgΘ−1(h)−1,−1) (A.28)

χ(g, 1) = χ(hΘ−1(g)h−1, 1) (A.29)

χ(g,−1) = χ(hΘ−1(g)Θ−1(h)−1,−1) (A.30)

In order to express these characters we pick a diagonal form g = Diag(z1, . . . , zN ),

as explained in the previous subsection. Let’s see what the constraints above tell us

about the function χ(zi, ε), taking the case of type I to illustrate. The third lines says

that the character for ε = 1 is invariant under z → z−1. The second line says that

χ(g,−1) = χ(hghT ,−1) for any h ∈ SU(N). In particular for h = Diag(hi) with |hi| = 1

this gives χ(zi,−1) = χ(h2
i zi,−1). In other words, χ(zi,−1) can not depend on the zi at

all! Therefore it is a pure number that can be evaluated for zi = 1.

References
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