
SciPost Physics Submission

Thermodynamic limit and boundary energy of the spin-1
Heisenberg chain with non-diagonal boundary fields

Zhihan Zheng1,2, Pei Sun1,2, Xiaotian Xu1,2*, Tao Yang1,2,3,4, Junpeng Cao4,5,6,7, Wen-Li
Yang1,2,3,4

1 Institute of Modern Physics, Northwest University, Xi’an 710127, China
2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China

3 School of Physics, Northwest University, Xi’an 710127, China
4 Peng Huanwu Center for Fundamental Theory, Xi’an 710127, China

5 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China

6 Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
7 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing

100049, China
*xtxu@nwu.edu.cn

Abstract1

The thermodynamic limit and boundary energy of the isotropic spin-1 Heisen-2

berg chain with non-diagonal boundary fields are studied. The finite size scal-3

ing properties of the inhomogeneous term in the T −Q relation at the ground4

state are calculated by the density matrix renormalization group. Based on5

our findings, the boundary energy of the system in the thermodynamic limit6

can be obtained from Bethe ansatz equations of a related model with parallel7

boundary fields. These results can be generalized to the SU(2) symmetric high8

spin Heisenberg model directly.9
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1 Introduction20

The study of quantum integrable models is an interesting subject in the fields of cold21

atoms, quantum field theory, condensed matter physics and statistic mechanics [1–5]. The22
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spin-1/2 Heisenberg model can effectively quantify the spin-exchanging interaction and23

plays an important role in the quantum magnetism and many-body theory. By using24

the Bethe ansatz method, the one-dimensional (1D) spin-1/2 Heisenberg model can be25

solved exactly [6]. The typical spin-exchanging couplings in the 1D spin-1 system are26

characterized by the bilinear biquadratic model, where the Hamiltonian reads27

H =
N∑
k=1

[
J1~Sk · ~Sk+1 + J2(~Sk · ~Sk+1)

2
]
. (1)

Here ~Sk(S
x
k , S

y
k , S

z
k) is the spin-1 operator at site k, N is the number of sites, and the28

periodic boundary condition gives ~SN+1 = ~S1. If J2/J1 = 1, the system (1) has the29

SU(3) symmetry and is integrable. If J2/J1 = −1, the SU(2) symmetry exists, and30

the system is known as the Zamalodchikov-Fateev (ZF) model [7]. The Bethe ansatz31

solution and thermodynamic properties of the ZF model are studied by Takhtajan [8] and32

Babujian [9,10]. If J2 = 0, the system is no longer integrable. Starting from the nonlinear33

sigma model, Haldane conjectures that the excitation of the system has a gap [11, 12]. If34

J2/J1 = 1/3, the Hamiltonian (1) degenerates into a projector operator that is in fact35

the projection onto the sum of the spin-0 and spin-1 subspaces (up to a constant) and36

the ground state is the famous valence bond solid state [13, 14]. If J1 = 0, by using the37

Temperley-Lieb algebra, the system can be mapped into the XXZ spin chain and is also38

integrable [15–17].39

Besides the periodic boundary condition, the integrable open one is also an interesting40

subject, which means that the system has magnetic impurity or the boundary magnetic41

fields [18,19]. In the past few decades, the exact results of high spin models with periodic42

[7–10, 20–24] and parallel boundary fields [25–27] have been extensively studied. It is43

emphasized that the integrable boundary reflection matrix can have non-diagonal elements,44

which means that the boundary fields are unparallel. Then the U(1) symmetry is broken45

and it is very hard to study the exact solution of the system. It is known that the integrable46

systems without U(1) symmetry have many applications in the open string theory and47

the stochastic process of nonequilibrium statistics. Therefore, many interesting works of48

high spin models with non-diagonal boundary reflections have been done [28–33].49

Recently, a systematic method, i.e., the off-diagonal Bethe ansatz (ODBA) is proposed50

to solve the models with or without U(1) symmetry [34]. The eigenvalues and eigenstates51

of several typical integrable models are obtained. The next task is to derive the physical52

quantities in the thermodynamic limit, which is very complicated because the related Bethe53

ansatz equations (BAEs) are inhomogeneous and the traditional thermodynamic Bethe54

ansatz can not be employed. In order to overcome this difficulty, an effective method is to55

study the finite size scaling effects of the inhomogeneous term in the T −Q relation. With56

the help of this idea, the thermodynamic limit, surface energy and elementary excitations57

of spin-1/2 XXZ spin chain with arbitrary boundary fields are studied [35]. The boundary58

energy of the SU(3) symmetric spin-1 chain with generic integrable open boundaries is59

also obtained [36]. However, the corresponding thermodynamic properties of the SU(2)60

symmetric spin-1 Heisenberg model are still missing.61

In this paper, we study the thermodynamic limit and boundary energy of the spin-162

isotropic Heisenberg spin chain with non-diagonal boundary reflections. The finite size63

scaling analysis of the contribution of the inhomogeneous term in the T − Q relation to64

the ground state energy is studied in detail. In the thermodynamic limit, we find that65

most Bethe roots of the reduced BAEs at the ground state form 2-strings, associated with66

certain boundary strings and the rearrangement of the Fermi sea. The different structures67

of Bethe roots in different regimes of model parameters are given explicitly. Based on68
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them, we obtain the boundary energy induced by the boundary magnetic fields. We also69

check the analytic results by the numerical extrapolation, and find that the analytical70

results and the numerical ones coincide with each other very well. The results given in71

this paper can be generalized to the SU(2) symmetric spin-s Heisenberg model directly.72

This paper is organized as follows. Section 2 serves as an introduction to the notations73

for the spin-1 Heisenberg model with non-diagonal boundary fields. The ODBA exact74

solution is also briefly reviewed. In Section 3, we focus on the contribution of the inho-75

mogeneous term in the T −Q relation to the ground state energy. In Section 4, by using76

the patterns of Bethe roots of the reduced BAEs, we study the boundary energy of the77

model in the thermodynamic limit. We summarize the results and give some discussions78

in Section 5.79

2 Non-diagonal boundary Spin-1 Heisenberg model80

The spin-1 Heisenberg model with non-diagonal boundary fields is related to the 19-vertex81

R-matrix82

R12(u) =



c(u)
b(u)

d(u)
e(u)

g(u) f(u)

e(u)
g(u)

b(u)
a(u)

b(u)
g(u)

e(u)

f(u) g(u)
e(u)

d(u)
b(u)

c(u)


, (2)

where the non-vanishing elements are83

a(u) = u(u+ η) + 2η2, b(u) = u(u+ η), c(u) = (u+ η)(u+ 2η),

d(u) = u(u− η), e(u) = 2η(u+ η), f(u) = 2η2, g(u) = 2uη, (3)

u is the spectral parameter, and η is the crossing parameter. Here we are dealing with the84

isotropic model, and η can be scaled out. Throughout this paper, we adopt the standard85

notations. For any matrix A ∈ End(V), Aj is an embedding operator in the tensor space86

V⊗V⊗ · · · , which acts as A on the j-th space and as identity on the other factor spaces.87

For any matrix B ∈ End(V⊗V), Bi,j is an embedding operator in the tensor space, which88

acts as an identity on the factor spaces except for the i-th and j-th ones. The R-matrix89

R12(u) satisfies the quantum Yang-Baxter equation (QYBE) [37,38]90

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v). (4)

Besides, the R-matrix (2) also enjoys the properties91

Initial condition : R12(0) = 2η2P12, (5)

Fusion condition : R12(−η) = 6η2 P
(0)
12 , (6)

where P12 is the permutation operator and P
(0)
12 is the projector in the total spin-0 channel.92

The most general off-diagonal boundary reflection on one side of the chain is quantified93

by the reflection matrix obtained in [39,40]94

K−(u) = (2u+ η)

 x1(u) y′4(u) y′6(u)
y4(u) x2(u) y′5(u)
y6(u) y5(u) x3(u)

 , (7)
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where the matrix elements are95

x1(u) = (p− + u+
η

2
) (p− + u− η

2
) +

α2
−
2
η (u− η

2
),

x2(u) = (p− + u− η

2
) (p− − u+

η

2
) + α2

− (u+
η

2
) (u− η

2
),

x3(u) = (p− − u−
η

2
) (p− − u+

η

2
) +

α2
−
2
η (u− η

2
),

y4(u) =
√

2α− e
−iφ− u (p− + u− η

2
), y′4(u) =

√
2α− e

iφ− u (p− + u− η

2
),

y5(u) =
√

2α− e
−iφ− u (p− − u+

η

2
), y′5(u) =

√
2α− e

iφ− u (p− − u+
η

2
),

y6(u) = α2
− e
−2iφ− u (u− η

2
), y′6(u) = α2

− e
2iφ− u (u− η

2
), (8)

p−, α− and φ− are the boundary parameters which measure the strength and direction of96

the boundary field. The reflection matrix K−(u) satisfies the reflection equation (RE)97

R12(u− v)K−1 (u)R21(u+ v)K−2 (v) = K−2 (v)R21(u+ v)K−1 (u)R12(u− v). (9)

The most general off-diagonal boundary reflection at the other side is quantified by the98

dual reflection matrix99

K+(u) = K−(−u− η)
∣∣∣
(p−,α−,φ−)→(p+,−α+,φ+)

, (10)

where p+, α+ and φ+ are the boundary parameters characterizing the strength and direc-100

tion of the corresponding boundary field. The dual reflection matrix K+(u) satisfies the101

dual RE102

R12(v − u)K+
1 (u)R21(−u− v − 2η)K+

2 (v)

= K+
2 (v)R21(−u− v − 2η)K+

1 (u)R12(v − u). (11)

From the R-matrix (2), we construct the single row monodromy matrices T0(u) and103

T̂0(u) as104

T0(u) = R0N (u− θN )R0N−1(u− θN−1) · · ·R01(u− θ1),
T̂0(u) = R10(u+ θ1)R20(u+ θ2) · · ·RN0(u+ θN ), (12)

where {θk, k = 1, · · · , N} are the inhomogeneous parameters, and the subscript 0 means105

the auxiliary space and 1, · · · , N denote the quantum spaces. The single row monodromy106

matrices T0(u) and T̂0(u) are the 3×3 matrices in the auxiliary space V0 and their elements107

act on the quantum space V⊗N . The transfer matrix of the system reads108

t(u) = tr0{K+
0 (u)T0(u)K−0 (u)T̂0(u)}. (13)

From the QYBE (4), RE (9) and dual RE (11), one can prove that the transfer matrices109

with different spectral parameters commute with each other, i.e.,110

[t(u), t(v)] = 0. (14)

Therefore, t(u) serves as the generating functional of all the conserved quantities, which111

ensures the integrability of the system. The model Hamiltonian is generated from the112

transfer matrix t(u) as [19]113
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H = ∂u {ln[t(u)]}
∣∣
u=0,{θk=0}

=
1

η

N−1∑
k=1

[
~Sk · ~Sk+1 − (~Sk · ~Sk+1)

2
]

+
1

p2− − 1
4

(
1 + α2

−
)
η2

[
2p− (α− cosφ−S

x
1 − α− sinφ−S

y
1 + Sz1)− η(Sz1)2

−1

2
α2
−η
[
cos (2φ−)

[
(Sx1 )2 − (Sy1 )

2
]
− (Sz1)2

]
− α−η cosφ− [Sx1S

z
1 + Sz1S

x
1 ]

+
1

2
α2
−η sin (2φ−) [Sx1S

y
1 + Sy1S

x
1 ] + α−η sinφ− [Sy1S

z
1 + Sz1S

y
1 ]

]

+
1

p2+ − 1
4

(
1 + α2

+

)
η2

[
2p+

(
α+ cosφ+S

x
N − α+ sinφ+S

y
N − S

z
N

)
− η (SzN )2

−1

2
α2
+η
[
cos (2φ+)

[
(SxN )2 −

(
SyN
)2]− (SzN )2

]
+ α+η cosφ+ [SxNS

z
N + SzNS

x
N ]

+
1

2
α2
+η sin (2φ+)

[
SxNS

y
N + SyNS

x
N

]
− α+η sinφ+

[
SyNS

z
N + SzNS

y
N

]]

+
η

p2+ − 1
4

(
1 + α2

+

)
η2

+
η

p2− − 1
4

(
1 + α2

−
)
η2

+
1

η

(
3N +

8

3

)
. (15)

Now, we seek the exact solution of the system (15). Let |Ψ〉 be an arbitrary eigenstate114

of t(u) with the eigenvalue Λ(u), i.e.,115

t(u)|Ψ〉 = Λ(u)|Ψ〉. (16)

Using the ODBA method [34] and fusion hierarchy, in the homogeneous limit {θk = 0},116

the eigenvalue Λ(u) can be expressed as the inhomogeneous T −Q relation,117

Λ(u) = −4u(u+ η)Λ( 1
2
,1)(u+

η

2
)Λ( 1

2
,1)(u− η

2
) + 4u(u+ η)δ(1)(u+

η

2
), (17)

Λ( 1
2
,1)(u) = a(1)(u)

Q(u− η)

Q(u)
+ d(1)(u)

Q(u+ η)

Q(u)
+ cu(u+ η)

F (1)(u)

Q(u)
, (18)

where118

a(1)(u) = d(1)(−u− η)

= −2u+ 2η

2u+ η
(
√

1 + α2
+u+ p+)(

√
1 + α2

−u− p−)

(
u+

3η

2

)2N

, (19)

F (1)(u) = (u− η

2
)2N (u+

η

2
)2N (u+

3η

2
)2N , (20)

δ(1)(u) = a(1)(u) d(1)(u− η), (21)

c = 2
[
α−α+ cos(φ+ − φ−)− 1 +

√
(1 + α2

−)(1 + α2
+)
]
, (22)

Q(u) =

2N∏
k=1

(u− uk)(u+ uk + η) = Q(−u− η), (23)

and the 2N parameters {uk|k = 1, · · · , 2N} in Q-function (23) are the Bethe roots. The119

singularity of eigenvalue Λ(u) requires that the Bethe roots should satisfy the BAEs120

a(1)(uk)Q(uk − η) + d(1)(uk)Q(uk + η) + c uk(uk + η)F (1)(uk) = 0, k = 1, · · · , 2N. (24)

5
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The eigenvalue of Hamiltonian (15) reads121

E =

2N∑
k=1

4η

(uk + 3η
2 )(uk − η

2 )
+

1

η
3N +

1

η
E0, (25)

where {uk} should satisfy the BAEs (24) and122

E0 =
8

3
+

2
√

1 + α2
+p+η

p2+ −
η2

4 (1 + α2
+)
−

2
√

1 + α2
−p−η

p2− −
η2

4 (1 + α2
−)
. (26)

Some remarks are in order. If the non-diagonal boundary parameters are α+ = α− = 0, or123

α+ = −α− 6= 0 and φ− = φ+ (which corresponds to the parallel boundary fields case), the124

parameter c in Eq.(22) becomes zero and the corresponding T−Q relation (18) is naturally125

reduced to the conventional diagonal one [28] obtained by the algebraic Bethe Ansatz.1126

For the other case with unparallel boundary fields, the parameter c does not vanish. Thus127

the corresponding T −Q relation has to include a non-vanishing inhomogeneous term for128

any finite N .129

3 Finite size scaling behavior130

The present BAEs (24) are inhomogeneous, thus it is very hard to investigate the thermo-131

dynamic properties of the system by using the traditional thermodynamic Bethe ansatz.132

In order to overcome this difficulty, we first analyze the contribution of inhomogeneous133

term in the T −Q relation (18).134

Define the reduced T −Q relation as135

Λhom(u) = −4u(u+ η)Λ
( 1
2
,1)

hom (u+
η

2
)Λ

( 1
2
,1)

hom (u− η

2
) + 4u(u+ η)δ(1)(u+

η

2
), (27)

Λ
( 1
2
,1)

hom (u) = a(1)(u)
Q(u− η)

Q(u)
+ d(1)(u)

Q(u+ η)

Q(u)
. (28)

It should be emphasized that although the non-diagonal boundary parameters {p±, α±}136

except φ± are included in the above reduced T − Q relation (28), the Λhom(u) is not137

the eigenvalue Λ(u) for any finite N but rather that of the transfer matrix with parallel138

boundary fields of the same strength. In the limit N →∞ it will give, however, the correct139

boundary energy (see the following parts of the paper). From the singularity analysis of140

the reduced T −Q relation (28), we obtain the following reduced BAEs141

i
2 − µk
i
2 + µk

pi− µk
pi+ µk

qi− µk
qi+ µk

(
i− µk
i+ µk

)2N

=
M∏
l=1

i− (µk − µl)
i+ (µk − µl)

i− (µk + µl)

i+ (µk + µl)
, k = 1, · · · ,M, (29)

where M = 1, · · · , 2N and we have put η = 1, µk = −iuk − i
2 , p = p+√

1+α2
+

− 1
2 and142

q = − p−√
1+α2

−
− 1

2 for convenience. From the Λhom(u) given by Eq.(27), we obtain the143

reduced energy which is defined as144

Ehom = ∂u {ln Λhom(u)}
∣∣
u=0

= −
M∑
k=1

4

µ2k + 1
+ 3N + E0. (30)

1If the non-diagonal boundary parameters satisfy the condition α+ = α− 6= 0, |φ− − φ+| = π (which
corresponds to the antiparallel boundary fields case), the parameter c in Eq.(22) also becomes zero and
the corresponding T −Q relation naturally degenerates into the conventional diagonal one.
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Solving the reduced BAEs (29), we could obtain the values of reduced Bethe roots {µk}.145

Substituting the Bethe roots into Eq.(30), we obtain the values of Ehom.146

Let us focus on the ground state. The reduced ground state energy can be calculated147

by the reduced BAEs (29). It is well-known that the even N and odd N give the same148

physical properties in the thermodynamic limit. Thus we set N as even. At the ground149

state, the number of Bethe roots in the reduced BAEs (29) is M = N . For simplicity,150

we choose the boundary parameters as p > 0 and q 6= 0,−1. We should note that at the151

points of q = 0,−1, the boundary field is divergent due to the present parameterization of152

the Hamiltonian (15). The distribution of reduced Bethe roots at the ground state in the153

thermodynamic limit is shown in Figure 1. We see that the Bethe roots can be divided154

into six different regimes in the p− q plane.155

1) In the regime I, where p ≥ 1/2, q < −1, −1/2 ≤ q < 0 or q ≥ 1/2, all the Bethe156

roots form 2-strings, i.e., µk = λk± i
2 +O(e−δN ), where λk denotes the position of 2-string157

in the real axis, δ is a small positive number and O(e−δN ) means the finite size correction.158

2) In the regime II, where p < 1/2, q < −1, −1/2 ≤ q < 0 or q ≥ 1/2, besides N − 2159

2-strings, there are two boundary strings, i.e., pi and (p−1)i. The boundary strings mean160

the pure imaginary Bethe roots which are related with the boundary parameters p and161

q [41].162

3) In the regime III, where p ≥ 1/2 and 0 < q < 1/2, besides N − 2 2-strings, there163

are two boundary strings, qi and (q − 1)i.164

4) In the regime IV, where 0 < p < 1/2 and 0 < q < 1/2, besides N − 4 2-strings,165

there are four boundary strings, pi, (p− 1)i, qi and (q − 1)i.166

5) In the regime V, where p ≥ 1/2 and −1 < q < −1/2, besides N − 2 2-strings, only167

the boundary string qi survives and one real Bethe root λ0 appears which is caused by168

the rearrangement of Fermi sea.169

6) In the regime VI, where 0 < p < 1/2 and −1 < q < −1/2, besides N − 4 2-strings,170

there are three boundary strings qi, (q − 1)i, pi and one real root λ0.171

-1 -0.5 0 0.5 1

0.5

1

Figure 1: The distribution of reduced Bethe roots at the ground states with different
boundary parameters p and q.

Because the Bethe roots are different in the different regimes of boundary parameters,172

we shall discuss them separately. In the regime I, where all the Bethe roots are the173

2-strings. Substituting the 2-string solutions into the reduced BAEs (29), omitting the174

7
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exponentially minor corrections and taking the product of all the string solutions, we175

readily obtain176

− i− λj
i+ λj

(p− 1
2)i− λj

(p− 1
2)i+ λj

(p+ 1
2)i− λj

(p+ 1
2)i+ λj

(q − 1
2)i− λj

(q − 1
2)i+ λj

(q + 1
2)i− λj

(q + 1
2)i+ λj

×

(
1
2 i− λj
1
2 i+ λj

3
2 i− λj
3
2 i+ λj

)2N

=

M1∏
l=1

[
i− (λj − λl)
i+ (λj − λl)

]2 [ i− (λj + λl)

i+ (λj + λl)

]2
×2i− (λj − λl)

2i+ (λj − λl)
2i− (λj + λl)

2i+ (λj + λl)
, j = 1, · · · ,M1. (31)

Taking the logarithm of above Eq.(31), we obtain177

2πIj = W (λj ;M1) + θ2p−1(λj) + θ2p+1(λj) + θ2q−1(λj) + θ2q+1(λj), j = 1, · · · ,M1, (32)

where178

W (λj ;M1) = θ2(λj) + 2N [θ1(λj) + θ3(λj)]

−
M1∑
l=1

[2θ2(λj − λl) + 2θ2(λj + λl) + θ4(λj − λl) + θ4(λj + λl)] , (33)

Ij is the quantum number, θn(x) = 2 arctan(2x/n) and M1 = N/2. The ground state is179

characterized by the set of quantum numbers180

{Ij} = {1, 2, · · · ,M1}. (34)

Solving the reduced BAEs (32) and substituting the values of Bethe roots into Eq.(30),181

we obtain the reduced ground state energy as182

Ehom = −2

M1∑
j=1

1

λ2j + 1
4

+
3

λ2j + 9
4

+ 3N + E0 ≡ G(λj ;M1). (35)

Now, we are ready to characterize the contribution of inhomogeneous term in the T−Q183

relation (18) at the ground state by the quantity184

Einh = Ehom − Eg, (36)

where Ehom is the reduced ground state energy given by (35) and Eg is the actual ground185

state energy (25) of the Hamiltonian (15). The ground state energy Eg can be obtained186

by two methods. One is solving the inhomogeneous BAEs (24) directly and the other is187

density matrix renormalization group (DMRG) [42–44]. We have checked that the ground188

state energy E obtained by these two methods are the same.189

In Figure 2(a), we give the values of Einh versus the system size N in the regime I. The190

red circles are the data calculated from Eq.(36) and the blue solid line is the fitted curve.191

From the fitted curve, we find that Einh and N satisfy the power law relation Einh = γNβ.192

Due to the fact that β < 0, the value of Einh tends to zero when the system size N tends193

to infinity. Therefore, in the thermodynamic limit, the inhomogeneous term in the T −Q194

relation (18) can be neglected at the ground state and Ehom = Eg. The inset shows the195

distribution of Bethe roots with N = 10.196

In the regime II, substituting the N − 2 2-strings, two boundary strings µM−1 = pi197

and µM = (p− 1)i into the reduced BAEs (29) and taking the logarithm, we have198

2πIj = W (λj ;M2) + θ2q−1(λj) + θ2q+1(λj)− θ1−2p(λj)− θ2p+1(λj)

−θ3+2p(λj)− θ5−2p(λj)− 2θ3−2p(λj), j = 1, 2, · · · ,M2, (37)

8
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Figure 2: The values of Einh versus the system size N . The data can be fitted as Einh =
γNβ. Due to the fact β < 0, when the size of system N → ∞, the contribution of the
inhomogeneous term tends to zero. Here (a) p = 1.1370, q = −1.0821, γ = 0.06203 and
β = −0.9407 in regime I; (b) p = 0.3263, q = −1.8931, γ = 0.2371 and β = −1.052 in
regime II; (c) p = 0.2428, q = 2.3735, γ = 0.6236 and β = −0.8384 in regime III; (d)
p = 0.4453, q = 0.3789, γ = 2.234 and β = −1.087 in regime IV; (e) p = 0.8410, q =
−0.6990, γ = 0.715 and β = −1.219 in regime V; (f) p = 0.3971, q = −0.7985, γ = 4.912
and β = −1.429 in regime VI. The insets show the distribution of Bethe roots with N = 10.

where W (λj ;M2) is given by Eq.(33) with the replacing of M1 by M2, M2 = N/2− 1 and199

the quantum numbers are200

{Ij} = {1, 2, · · · ,M2}. (38)

The corresponding reduced ground state energy reads201

Ehom = G(λj ;M2) +
4

p2 − 1
+

4

(p− 1)2 − 1
, (39)

where G(λj ;M2) is given by Eq.(35) with the replacing of M1 by M2.202

The procedure in the regime III is similar and reduced ground state energy is203

Ehom = G(λj ;M2) +
4

q2 − 1
+

4

(q − 1)2 − 1
. (40)

In the regime IV, substituting the string solutions including four boundary strings into204

Eq.(29) and taking the logarithm, we have205

2πIj = W (λj ;M3)− θ1−2p(λj)− θ2p+1(λj)− θ3+2p(λj)− θ5−2p(λj)− 2θ3−2p(λj)

−θ1−2q(λj)− θ2q+1(λj)− θ3+2q(λj)− θ5−2q(λj)− 2θ3−2q(λj), j = 1, 2, · · · ,M3, (41)

where M3 = N/2− 2 and the quantum numbers are206

{Ij} = {1, 2, · · · ,M3}. (42)

The reduced ground state energy is207

Ehom = G(λj ;M3) +
4

p2 − 1
+

4

(p− 1)2 − 1
+

4

q2 − 1
+

4

(q − 1)2 − 1
. (43)
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In the regime V, the logarithm form of the BAEs are208

2πIj = W (λj ;M4) + θ2p−1(λj) + θ2p+1(λj)− θ3+2q(λj)− θ3−2q(λj)− 2θ1−2q(λj)

−θ1 (λj − λ0)− θ1 (λj + λ0)− θ3 (λj − λ0)− θ3 (λj + λ0) , j = 1, 2, · · · ,M4, (44)

where M4 = N/2 − 1 and the quantum numbers are {Ij} = {1, 2, · · · ,M4}. We shall209

note that the quantum number corresponding to the real Bethe root λ0 is 0. The reduced210

ground state energy reads211

Ehom = G(λj ;M4) +
4

q2 − 1
− 4

λ20 + 1
. (45)

Similarly, the reduced ground state energy in the regime VI is212

Ehom = G(λj ;M5) +
4

p2 − 1
+

4

(p− 1)2 − 1
+

4

q2 − 1
− 4

λ20 + 1
, (46)

where M5 = N/2− 2.213

Substituting the reduced ground state energies in different regimes into Eq.(36), we214

obtain the values of Einh, which are shown in Figures 2(b)-(f). According to the finite215

size scaling analysis, we see that the inhomogeneous term indeed can be neglected at216

the ground state in the thermodynamic limit. Due to the existence of inhomogeneous217

term in BAEs.(24), it is hard to analytically calculate the finite size correction for the218

present off-diagonal boundary reflections along the lines given in references [45–47]. We219

shall note that the diagonal case is tractable along the lines of A. Klumper et al. [46]220

and J. Suzuki [47]. The finite size correction O(N1) for the bulk and O(N0) term for the221

boundaries to the ground state energy do not depend on the orientations of the boundary222

fields. The true finite size correction terms are probably of order O(N−1) and are out of223

reach for the inhomogeneous/off-diagonal case. Due to higher order correction terms, the224

effective exponents β determined in the paper differ from −1.225

4 Boundary energy226

In this section, we study the physical effects induced by the boundary magnetic fields and227

compute the boundary energy in the thermodynamic limit [18, 33, 48–50]. As mentioned228

above, we can calculate the boundary energy based on the string hypothesis of the reduced229

BAEs (29), then the numerical analysis allows us to obtain the boundary energy induced230

by the boundary fields.231

The values of Bethe roots at the ground state are determined by the quantum numbers232

{Ij}. Thus we define the counting function as Z(λj) =
Ij
2N . In the thermodynamic limit,233

the Bethe roots can take the continuous values and we have Z(λj) → Z(u). Taking the234

derivative of Z(u) with respect to u, we obtain235

dZ(u)

du
= ρ(u) + ρh(u), (47)

where ρ(u) is the density of Bethe roots and ρh(u) means the density of holes in the real236

axis. Again, the distribution of Bethe roots in different regimes are different. We should237

consider them separately. In regime I, from the BAEs (32) with the constraint N → ∞238
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and using Eq.(47), we obtain the density of states as239

ρ(u) =
dZ(u)

du
− 1

2N
[ρh(u) + δ(u)]

= a1(u) + a3(u) +
1

2N
[a2(u) + a2p−1(u) + a2p+1(u) + a2q−1(u) + a2q+1(u)]

− 1

2N
[ρh(u) + δ(u)]−

∫ ∞
−∞

[2a2(u− v) + a4(u+ v)] ρ(v)dv, (48)

where240

an(u) =
1

2π

n

u2 + n2

4

,

ρh(u) =
1

2N

[
δ
(
u− λh1

)
+ δ

(
u+ λh1

)
+ δ

(
u− λh2

)
+ δ

(
u+ λh2

)]
. (49)

We should note that the presence of delta-function in Eq.(48) is due to that λj = 0 is the241

solution of BAEs (32), which should be excluded because it makes the wavefunction vanish242

identically [51]. Note that two holes λh1 and λh2 are introduced to ensure the magnetization243

satisfying244

M

N
= 2

∫ ∞
−∞

ρ(u)du = 1. (50)

Thus the holes are located at the infinities in the real axis.245

With the help of Fourier transformation246

F̃ (ω) =

∫ ∞
−∞

eiωuF (u)du, F (u) =
1

2π

∫ ∞
−∞

e−iωuF̃ (ω)dω, (51)

from Eq.(48), we obtain247

ρ̃(ω) = ρ̃g(ω) + ρ̃0(ω) + ρ̃1(ω) + ρ̃2(ω), (52)

where248

ãn(ω) = e−
n|ω|
2 , ρ̃g(ω) =

ã1(ω) + ã3(ω)

1 + 2ã2(ω) + ã4(ω)
, ρ̃0(ω) =

1

2N

ã2(ω)− 1

1 + 2ã2(ω) + ã4(ω)
,

ρ̃1(ω) =


1

2N

ã2p+1(ω)− ã1−2p(ω)

1 + 2ã2(ω) + ã4(ω)
, 0 < p <

1

2
,

1

2N

ã2p−1(ω) + ã2p+1(ω)

1 + 2ã2(ω) + ã4(ω)
, p >

1

2
,

ρ̃2(ω) =



− 1

2N

ã1−2q(ω) + ã−2q−1(ω)

1 + 2ã2(ω) + ã4(ω)
, q < −1

2
,

1

2N

ã2q+1(ω)− ã1−2q(ω)

1 + 2ã2(ω) + ã4(ω)
, −1

2
< q <

1

2
,

1

2N

ã2q−1(ω) + ã2q+1(ω)

1 + 2ã2(ω) + ã4(ω)
, q >

1

2
.

(53)

Then the ground state energy (35) can be expressed as249

Eg = −2N

∫ ∞
−∞

[ã1(ω) + ã3(ω)] ρ̃(ω)dω + 3N + E0 = Neg + es, (54)
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where eg is the ground state energy density which is the same as that for the periodic250

boundary condition [9],251

eg = −2

∫ ∞
−∞

[ã1(ω) + ã3(ω)]2

1 + 2ã2(ω) + ã4(ω)
dω + 3 = −1, (55)

and es is boundary energy252

es = 2π − 4 + E0 + e1 + e2, (56)

e1 =


−
∫ ∞
−∞

[ã1(ω) + ã3(ω)]
ã2p−1(ω) + ã2p+1(ω)

1 + 2ã2(ω) + ã4(ω)
dω, p >

1

2
,

−
∫ ∞
−∞

[ã1(ω) + ã3(ω)]
ã2p+1(ω)− ã1−2p(ω)

1 + 2ã2(ω) + ã4(ω)
dω, 0 < p <

1

2
,

(57)

e2 =



∫ ∞
−∞

[ã1(ω) + ã3(ω)]
ã−2q−1(ω) + ã1−2q(ω)

1 + 2ã2(ω) + ã4(ω)
dω, q < −1

2
,

−
∫ ∞
−∞

[ã1(ω) + ã3(ω)]
ã2q+1(ω)− ã1−2q(ω)

1 + 2ã2(ω) + ã4(ω)
dω, −1

2
< q <

1

2
,

−
∫ ∞
−∞

[ã1(ω) + ã3(ω)]
ã2q−1(ω) + ã2q+1(ω)

1 + 2ã2(ω) + ã4(ω)
dω, q >

1

2
.

(58)

Now, we consider the regime II. The boundary strings pi and (p− 1)i can give rise to253

the rearrangement of Bethe roots in Fermi sea. From BAEs (37), the density of states254

ρp(u) is obtained as255

ρp(u) = a1(u) + a3(u)−
∫ ∞
−∞

[2a2(u− v) + a4(u− v)] ρp(v)dv

+
1

2N
[a2(u)− a1−2p(u) + a2p+1(u) + a2q−1(u) + a2q+1(u)− δ(u)]

− 1

2N
[2a2p+1(u) + 2a3−2p(u) + a3+2p(u) + a5−2p(u)] . (59)

In order to show that there exist the stable boundary bound states, we denote the deviation256

between ρp(u) and ρ(u) as δρp(u) = ρp(u)− ρ(u). From Eqs.(48) and (59), we obtain257

δρp(u) = − 1

2N
[2a2p+1(u) + 2a3−2p(u) + a3+2p(u) + a5−2p(u)]

−
∫ ∞
−∞

[2a2(u− v) + a4(u− v)] δρp(v)dv. (60)

Taking the Fourier transformation of Eq.(60), we have258

δρ̃p(ω) = − 1

2N

2ã2p+1(ω) + 2ã3−2p(ω) + ã3+2p(ω) + ã5−2p(ω)

1 + 2ã2(ω) + ã4(ω)
. (61)

The energy deviation δep induced by the density deviation δρ̃p(ω) can be expressed as259

δep = −2N

∫ ∞
−∞

[ã1(ω) + ã3(ω)] δρ̃p(ω)dω +
4

p2 − 1
+

4

(p− 1)2 − 1

= 2

∫ ∞
0

e−(p+1)ω

1 + e−ω
dw + 2

∫ ∞
0

e−(2−p)ω

1 + e−ω
dω +

2

p(p− 1)
< 0. (62)

Because of δep < 0, the boundary strings are stable. Then we conclude that in this regime,260

the ground state energy of the system is Eg = Neg + es + δep. The total spin along the261

z-direction is Sz = −
∫∞
−∞ δρp(u) = 3/4.262
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Next, we consider the regime III where boundary strings are qi and (q−1)i. Similarly,263

the energy deviation δeq between this case and that without boundary strings is264

δeq = −2N

∫ ∞
−∞

[ã1(ω) + ã3(ω)] δρ̃q(ω)dω +
4

p2 − 1
+

4

(p− 1)2 − 1

= 2

∫ ∞
0

e−(q+1)ω

1 + e−ω
dw + 2

∫ ∞
0

e−(2−q)ω

1 + e−ω
dω +

2

q(q − 1)
< 0. (63)

Due to the fact δeq < 0, we know that the ground state energy is Eg = Neg + es + δeq265

and the total spin along the z-direction is Sz = 3/4.266

In the regime IV, we combine the results (62) and (63), and conclude that the ground267

state energy with boundary strings pi, (p− 1)i, qi and (q− 1)i equals to Eg = Neg + es +268

δep + δeq.269

Then, we consider the regime V where besides the N − 2 2-string, there also exist one270

real Bethe root λ0 and a single boundary string qi. Taking the thermodynamic limit of271

BAEs (44), we obtain the density of states ρλq(u) as272

ρλq(u) = a1(u) + a3(u)− 1

2N
[a1 (u− λ0) + a1 (u+ λ0) + a3 (u− λ0) + a3 (u+ λ0)]

+
1

2N
[a2(u) + a2p−1(u) + a2p+1(u)− 2a1−2q(u)− a3+2q(u)− a3−2q(u)− δ(u)]

−
∫ ∞
−∞

[2a2(u− v) + a4(u− v)] ρλq(v)dv. (64)

Denote the deviation between ρλq(u) and ρ(u) as δρλq(u) = ρλq(u)− ρ(u). From Eqs.(48)273

and (64), the value of δρλq(u) reads274

δρλq(u) = − 1

2N
[a1 (u− λ0) + a1 (u+ λ0) + a3 (u− λ0) + a3 (u+ λ0)]

− 1

2N
[a1−2q(u)− a−1−2q(u) + a3−2q(u) + a3+2q(u)]

−
∫ ∞
−∞

[2a2(u) + a4(u)] δρλq(v)dv. (65)

Taking the Fourier transformation of Eq.(65), we obtain275

δρ̃λq(ω) = − 1

2N

ã1−2q(ω)− ã−1−2q(ω) + ã3−2q(ω) + ã3+2q(ω)

1 + 2ã2(ω) + ã4(ω)
− 1

N

cos(ωλ0)e
− |ω|

2

1 + e−|ω|
. (66)

Then the deviation of energy δeλq induced by δρ̃λq(ω) is given by276

δeλq = −2N

∫ ∞
−∞

[ã1(ω) + ã3(ω)] δρ̃λq(ω)dω +
4

q2 − 1
− 4

λ20 + 1

= 2

∫ ∞
0

e−(2+q)ω

1 + e−ω
dω − 2

∫ ∞
0

eqω

1 + e−ω
dω − 2

1 + q
< 0. (67)

Due to δeλq < 0, the ground state energy in this regime is Eg = Neg + es + δeλq and the277

total spin along the z-direction is Sz = 3/4.278

In the regime VI, there are N − 4 2-string, one real Bethe root λ0 and three boundary279

strings qi, pi and (p − 1)i. Combining the results (62) and (67), we obtain the ground280

state energy as Eg = Neg + es + δep + δeλq.281
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Figure 3: Boundary energies versus the boundary parameters p and q. The coloured
curves are those calculated from the analytical expression (68) and the red points
are those obtained from the DMRG. The values of q at the red points are q =
−2.6,−2.1,−1.7,−1.3,−0.7,−0.5,−0.25, 0.35, 0.7, 1.15, 1.5 and 1.8.

After tedious calculation, we find that the boundary energy eb for all the regimes in282

Figure 1 can be expressed as283

eb =


−2

p
− 2

q
+ 2π − 4 + E0, p > 0, q > 0 or q < −1,

−2

p
− 2

q
+ 2π csc(qπ) + 2π − 4 + E0, p > 0, −1 < q < 0.

(68)

The boundary energies with different boundary parameters p and q calculated by the

0 50 100 150 200

1.5

2

2.5

3 DMRG data
Fitting curve
Asymptotic value

Figure 4: The values of eb(N) versus the system size N . The red points are the DMRG
results with N = 4, 14, 24, · · · , 194. The data can be fitted as eb(N) = aNβ + c, where
a = 6.7308, β = −1.0046 and c = 1.5460. Due to the fact β < 0, when the system size
N → ∞, the values of eb(N) tend to the asymptotic value c, which gives the boundary
energy. Here the boundary parameters are chosen as p = 0.3 and q = 0.7.

284

analytical expression (68) are shown in Figure 3 as the coloured solid lines. Now we check285

the correction of expression (68) by the numerical simulation with DMRG algorithm, and286

the results are shown in Figure 3 as the red points. Specifically, for each red point that287

is for the given boundary parameters p and q, we first calculate the ground state energy288

Eg(N) of the model (15) with the system size N = 10(n− 1) + 4 and n = 1, 2, · · · , 20 by289
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using the DMRG method. Then we consider the physical quantity290

eb(N) = Eg(N)−Neg, (69)

where eg = −1 is the ground state energy density of the system with periodic boundary291

conditions. Obviously, in the thermodynamic limit, the value of eb(N → ∞) gives the292

boundary energy. In Figure 4, we show how to extrapolate the boundary energy, where293

the red points are the numerical values of eb(N), the blue solid line is the fitting curve,294

and the red solid line is the extrapolated boundary energy. From the fitting curve, we295

find that the eb(N) and N satisfy the power law relation, i.e., eb(N) = aNβ + c. Due296

to the fact that β < 0, the values of eb(N) tend to the asymptotic value c when the297

system size N tends to infinity. Therefore, in the thermodynamic limit, the asymptotic298

value c determines the boundary energy. Repeating this process, we obtain the boundary299

energies with other values of boundary parameters. As shown in Figure 3, the analytical300

and numerical results agree with each other very well.301

5 Conclusions302

In this paper, we have studied the thermodynamic limit and boundary energy of the303

isotropic spin-1 Heisenberg chain with generic integrable non-diagonal boundary reflec-304

tions. It is shown that the contribution of the inhomogeneous term in the associated305

T − Q relation (18) (due to the unparallel boundary fields) at the ground state can be306

neglected when the system size N tend to infinity. Then we calculate the analytical expres-307

sion of boundary energy (68) in the thermodynamic limit based on the string hypothesis308

of the reduced BAEs (29).309
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