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Protection of topological surface states by reflection symmetry breaks down when the boundary of
the sample is misaligned with one of the high symmetry planes of the crystal. We demonstrate that
this limitation is removed in amorphous topological materials, where the Hamiltonian is invariant
on average under reflection over any axis due to continuous rotation symmetry. We show that the
edge remains protected from localization in the topological phase, and the local disorder caused by
the amorphous structure results in critical scaling of the transport in the system. In order to classify
such phases we perform a systematic search over all the possible symmetry classes in two dimensions
and construct the example models realizing each of the proposed topological phases. Finally, we
compute the topological invariant of these phases as an integral along a meridian of the spherical
Brillouin zone of an amorphous Hamiltonian.

See also: online presentation recording

I. INTRODUCTION

Materials with a quasiparticle band gap in the bulk
host protected edge states if they have a nontrivial topol-
ogy. To determine whether an insulator or a supercon-
ductor is topological, one first determines the symmetry
class of the quasiparticle Hamiltonian in this material,
and then evaluates the topological invariant of the Hamil-
tonian’s symmetry class [1, 2]. The topological invariant
stays constant as long as the symmetry is preserved and
the bulk stays gapped. While the specific properties of
the surface states depend on details of the edge, they may
not be removed by any symmetry-preserving surface per-
turbation due to the bulk-boundary correspondence.

The classification of topological phases started with
the Altland-Zirnbauer classes, based on discrete onsite
symmetries: particle-hole, time-reversal, and chiral sym-
metry [3, 4]. Topological crystalline phases were also
classified [5–8], protected by crystal symmetries. The
bulk-boundary correspondence, however, does not apply
to all edges in this case: spatial symmetries such as re-
flection are broken by certain edge orientations [9] and
the edge states may become gapped, as seen in the top
panels of Fig. 1.

When perturbations are introduced to a system with
nontrivial topology, the topological phases may be de-
stroyed if the symmetries are affected. Perturbed sym-
metries present on average are able to provide topolog-
ical protection [10]. Disordered systems that support
topological insulating phases with one exact symmetry
and one or more average symmetries are called statisti-
cal topological insulators [11]. The surfaces of statisti-
cal topological insulators are delocalized and pinned to
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Figure 1. The zero-energy local density of propagating
modes of the class D 8-band model in crystal and amorphous
systems; darker site color indicates higher density. Insets: dis-
persion relation (top) and momentum-resolved spectral func-
tion (bottom) corresponding to straight and tilted edge ter-
minations. The effective lattice constant of the amorphous
system a is given by a = 1/

√
ρ, where ρ is the density of sites

in the system. Plot details in App. A.

the midpoint of a topological phase transition, or crit-
ical point. A crystal surface that respects a crystalline
symmetry on average is still able to host crystalline topo-
logical phases.

Unlike crystals, which break continuous rotation sym-
metry even on average, amorphous systems lack long-
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range order and are therefore on average compatible with
continuous rotations. Strong topological, metallic and in-
sulating phases as well as topological superconductivity
have been studied in amorphous systems both theoreti-
cally [12–17] and experimentally [18–20].

In this work, we devise topological insulator (TI)
phases in amorphous systems that rely on the presence of
two average spatial symmetries: reflection symmetry and
continuous rotation symmetry. The presence of both re-
flection symmetry and average continuous rotation sym-
metry promotes the protection of a crystalline topologi-
cal phase to every edge orientation. We thus demonstrate
that even though the topological phases presented here
have crystalline or quasi-crystalline counterparts, only
amorphous systems have guaranteed protection for all
edge terminations. This study exposes the potential for
realizing topological phases protected by average spatial
symmetries that don’t rely on macroscopic edge details.

The structure of the manuscript is as follows. In Sec. II
we define the basic premise of spatial symmetries in
amorphous systems. In Sec. III we study isotropic contin-
uum systems and identify the symmetry groups contain-
ing reflection symmetry that protect gapless edge states.
In Sec. IV we construct amorphous tight-binding mod-
els, numerically demonstrate critical edge transport, and
compare with a similar system on a regular square lat-
tice. Finally, we formulate bulk topological invariants of
our systems in Sec. V. We conclude in Sec. VI that amor-
phous models relying on spatial symmetries as well as one
or more exact onsite symmetry to protect a topological
phase are statistical topological insulators, provided the
disorder of the amorphous system does not close the bulk
gap.

II. SPATIAL SYMMETRIES IN AMORPHOUS
MATTER

Despite locally breaking all spatial symmetries, amor-
phous matter is generated by a highly symmetric ensem-
ble of Hamiltonians. Specifically, the occurrence proba-
bility of any configuration is invariant under the action
of any element of the Euclidean group. Furthermore, all
structural correlations must decay sufficiently fast with
distance. These conditions require care to satisfy and
cannot be fulfilled by gradually moving sites from their
crystalline positions, as done in e. g. Ref. [21] that stud-
ies topological insulators with structural disorder. While
there are several ways to simulate amorphous matter, we
focus on tight-binding models defined on random graphs.
The simplest way to create an amorphous array of site
positions is choosing a sample of uncorrelated points in
space. In order to reduce the fluctuations of the coor-
dination number, we use a sphere-packing algorithm de-
scribed in App. B instead.

The physics of amorphous systems obeys locality and
homogeneity in the sense that the bulk Hamiltonian is
generated by a local rule [22, 23]. We require that the

onsite and hopping terms only depend on the local envi-
ronment: the configuration of atoms within a finite radius
of the site or bond in question. For our toy models we
take an even simpler case, where terms in the Hamilto-
nian only depend on the relative spatial positions of the
orbitals:

〈r, n| Ĥ |r′,m〉 = Hnm (r− r′) , (1)

where |r, n〉 is the n’th orbital on the site at position r.
While this restriction is not essential, it makes defining
the models easier. Onsite terms have r − r′ ≡ d = 0,
meaning all onsite terms in the bulk are identical. More
generally, we allow H (d) to be a random matrix whose
distribution only depends on the hopping vector d to
account for sources of disorder not captured by the un-
derlying random graph or the simplified local rule. In
this case we demand that the disordered ensemble is in-
variant under each spatial symmetry, whereas the onsite
symmetries are obeyed exactly by each ensemble element.

An isotropic amorphous system has average continuous
rotation symmetry under simultaneous rotation in spin
and real space, meaning that terms in the Hamiltonian
with a rotated local environment are related as:

U(φ)H(d)U(φ)−1 = H(R(φ) · d) (2)

with U(φ) = exp(iφSz), Sz the onsite spin-z opera-
tor, R(φ) = exp(iφLz), Lz = σy the generator of two-
dimensional real space rotations. Simultaneous invari-
ance under continuous rotation and one reflection sym-
metry implies reflection invariance with any normal vec-
tor. The symmetry constraint imposed by a reflection
operator with normal n̂ is:

UMn̂
H(d)U−1

Mn̂
= H(RMn̂

· d) (3)

where RMn̂
= 1 − 2n̂n̂T is the real space orthogonal

action reversing the component in the n̂ direction. Com-
mutation relations of Sz, UM and onsite symmetries are
listed in App. C.

All previous considerations of this section apply to ho-
mogeneous and isotropic systems deep in the bulk. The
vicinity of the edges of the system are, however, distin-
guishable from the bulk through the local environment,
and have lower symmetry. Hence we allow the Hamilto-
nian to depend on the distance from the edge and the
orientation of the edge. For example, near an infinite
edge along the y direction such that the system termi-
nates for x < 0 we let

〈r, n| Ĥ |r′,m〉 = Hedge
nm

(
r− r′, x̂ · r + r′

2

)
. (4)

such that limx→∞Hedge (d, x) = H (d). This local rule
preserves average translation invariance along the edge,
but may break the continuous rotation symmetry (2) of
the bulk. A straight edge still preserves average reflection
symmetry with normal parallel to the edge, so we demand
that Hedge satisfies (3) with fixed x and n̂ = ŷ.



3

III. CONTINUUM SYSTEMS

In the long wavelength limit an amorphous system is
homogeneous and isotropic, resembling a continuum. We
therefore start our analysis by studying continuum mod-
els with reflection and continuous rotation invariance.
First we study the 1D edge theory to identify symmetry
groups capable of protecting gapless edge modes. Next
we construct 2D bulk models in these symmetry classes,
and finally we demonstrate that straight domain walls
host gapless modes as expected.

A. Symmetry groups protecting gapless edges

In order to find continuum models with gapless edges
protected by reflection symmetry, we perform a system-
atic search of the Altland-Zirnbauer symmetry classes.
For each class, we start with a minimal 1D Dirac Hamil-
tonian that respects the onsite symmetries. If mass terms
are allowed in this Hamiltonian, i.e. it is trivial with
only the onsite symmetries, we add a reflection symme-
try. The Hamiltonian is a candidate model if the reflec-
tion symmetry protects the gapless edge by removing all
mass terms.

Consider for example the edge of a class D system,
the minimal two-band edge theory can always be written
as Hedge(k) = kτx + mτy with particle-hole symmetry
acting as complex conjugation, P = K. In the absence of
additional symmetries this model describes the edge of
a trivial system because it is gapped for any nonzero m.
Choosing a unitary reflection symmetry with UM = τz
the symmetry constraint UMHedge(k)U†M = Hedge(−k)
forces m = 0. Hence this choice of reflection symmetry
protects a single pair of counterpropagating gapless edge
modes, and serves as a candidate for the edge theory of
a topologically nontrivial bulk protected by reflection.

We perform the search of the Altland-Zirnbauer classes
using the software package Qsymm [24]. In classes AII,
DIII, CII and C the minimal model of a gappable edge
is 4 × 4, in the rest of the classes it is 2 × 2. We fix a
canonical form of the onsite symmetries, then vary the
reflection-like symmetry using different products of Pauli
matrices σ and τ for its unitary part, also allowing it to
act as an antiunitarity (with complex conjugation) and
as antisymmetry (reversing the sign of the Hamiltonian).
This approach tests every possible reflection-like symme-
try up to basis transformations. In this basis, we have
U2
M = +1. The conventional fermionic reflection oper-

ator that obeys U2
M = −1 is recovered by multiplying

UM with i. This change of the overall phase does not
affect the symmetry constraints on the Hamiltonian and
only reverses commutation and anticommutation of UM
with the antiunitary symmetries. For each choice of the
symmetry group, we generate the most general k-linear
Hamiltonian. If it does not contain k-independent mass
terms capable of opening a gap at half-filling, we note it
as a candidate. When presenting the results in Table I we

Symmetry class UM UP UT UC

AIII τx - - τx

BDI τx τ0 τx τx

D τz τ0 - -

DIII+ σxτz σ0τz iσzτy σzτx
DIII− σzτx

CII σyτy iσyτ0 iσ0τy σyτy

Table I. Symmetry representations of 1D models where a uni-
tary reflection symmetry UM protects gapless edges. σ and
τ are Pauli matrices. Only unitary-inequivalent symmetry
representations are listed.

only list one representative of various reflection operators
related by unitary basis transformations. In the rest of
the manuscript we focus on the more natural symmetry
groups with unitary reflection symmetry, see App. D for
symmetry groups with reflection antisymmetries.

Because we are searching for phases whose surfaces are
driven to a critical point by spatial disorder, we expect
to find protected gapless phases in the presence of strong
disorder in symmetry classes that host nontrivial topo-
logical phases in 1D. This requires the disorder to respect
all non-spatial symmetries in a given class exactly, and
the spatial symmetries on average [11]. In this case the
additional reflection symmetry forces the edge to the crit-
ical point of a topological phase transition. The result of
our search confirms this expectation, we find unitary re-
flection symmetries in classes AIII, BDI, CII, D and DIII.
We observe that in all the chiral classes [UM , C] = 0, and
in all cases [UM ,P] = [UM , T ] = 0 except for one of the
choices for class DIII where {UM ,P} = {UM , T } = 0.
We denote the case with commuting reflection DIII+ and
the case with anticommuting reflection DIII− in the fol-
lowing.

When attempting to extend these symmetries to the
2D bulk, we find that these symmetry representations
do not admit a consistent continuous rotation symmetry
with Sz = ±1/2 (see App. C) in a way that allows a
gapped bulk, so we double the Hilbert-space. We per-
form a systematic search for symmetry representations
by taking the tensor product of each edge symmetry op-
erator with a Pauli matrix, taking Sz as 1/2 times the
product of Pauli matrices and ensuring that the appro-
priate commutation relations are maintained. While this
search is not exhaustive, it produces gapped bulk models
realizing all the edge symmetry classes. The exact forms
of the onsite and spatial symmetries in the bulk are listed
in App. D.

B. Bulk models

We use Qsymm to obtain continuum models in recipro-
cal space (k-space) compatible with the bulk symmetry
representations found in the previous subsection. The
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symmetry constraints have the following form in k-space:

U(φ)H(k)U(φ)−1 = H(R(φ) · k) (5)

UMH(k)U−1
M = H(RM · k) (6)

UCH(k)U−1
C = −H(k) (7)

UPH
∗(k)U−1

P = −H(−k) (8)

UTH
∗(k)U−1

T = H(−k). (9)

We generate all symmetry allowed terms up to linear or-
der in k in 4-band models for classes AIII, BDI and D,
and 8-band models in classes DIII and CII. We also in-
clude one k2 term to ensure proper regularization in the
large k limit (see Sec. V A). We split the Hamiltonian into
k-independent onsite (or mass) terms and k-dependent
hopping terms as H(k) = Hos + Hhop(k), see the ex-
plicit enumeration of all the terms in App. E 1.

For classes AIII, BDI and D, while the minimal 4-band
models have gapped bulk, we find that these systems are
non-generic for the prescribed symmetries. The mini-
mal class BDI model consists of two decoupled blocks
resulting in an additional onsite unitary symmetry, the
class AIII model has an additional time-reversal symme-
try, and the class D model remains decoupled at k = 0
resulting in extra protection for the edge modes. To get
rid of the additional symmetries, we consider a doubled
Hamiltonian:

H8×8(k) =

(
H(k) Hc(k)

Hc(k)† H ′(k)

)
(10)

where H is topological, H ′ is trivial, and Hc is weak.
The forms of the coupling between the two copies, Hc,
are listed in App. E 1. We then confirm that the re-
sulting doubled model remains topological, and the ad-
ditional symmetries are removed. The 8-band CII and
DIII models have no unwanted symmetries, so they are
not doubled.

C. Gapless domain wall modes

To show that the bulk models have the expected edge
physics, we obtain the continuum edge spectra of our
models by considering an infinite 2D system with a do-
main wall. We assign a spatial dependence to the chemi-
cal potential, such that at x = 0 its sign is flipped, mak-
ing the system topological for x > 0 and trivial for x < 0.
Topological edge modes are confined to the interface and
decay exponentially into the bulk.

The continuum model Hcont(k) is obtained from (10)
by replacing ky with a free parameter k and kx with its
real-space form −i∂x. We cast the eigenvalue problem
HcontΨ = EΨ into the form of a system of linear differen-
tial equations A(k)∂xΨ+B(k, x,E)Ψ = 0. We find all the
solutions on the left and right side of the domain wall sep-
arately, using the ansatz ΨL/R(x) = ψL/R exp(−λL/R|x|)
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Figure 2. Domain wall spectra of the continuum models in
classes D, CII and class DIII obtained numerically. For class
DIII, the anticommuting case DIII− is represented. With
reflection symmetry the boundary spectrum is gapless (top
row), while reflection-breaking terms open a gap (bottom
row).

to obtain (A − λL/RB)ψL/R = 0. We solve this general-
ized eigenvalue problem and concatenate the solutions for
ψiL/R into a single matrix W . A global solution needs to

be continuous at x = 0, and it exists if there is a nonzero
linear combination of the left mode vectors ψiL that is
also a linear combination of right mode vectors ψiR. We
therefore obtain the edge spectrum by numerically find-
ing points in the (E, k) plane where W is singular [25].

This analysis shows that all the continuum models we
consider have gapless modes at the boundary between
topologically trivial and non-trivial regions protected by
mirror symmetry, as shown in Fig. 2. Any perturbation
that breaks the reflection symmetry opens a gap, even
if it preserves all the onsite symmetries. The class D
spectrum is representative of the AIII and BDI spectra.
The edge modes of the CII model are doubly degenerate
due to the combination of its reflection and time-reversal
symmetries.

IV. AMORPHOUS SYSTEMS

In this section we demote the exact spatial symmetries
of the continuum models to average symmetries by using
tight-binding Hamiltonians on an amorphous graph, and
demonstrate that the topological protection by reflection
and continuous rotation symmetry persists.

A. Amorphous tight-binding Hamiltonians

In order to extract the scaling behaviour of the edges
of an amorphous system, we construct real space tight-
binding models using the symmetry considerations out-
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lined in Sec. II. While the problem formally looks very
similar to the k-space case replacing k with d, onsite
symmetries behave differently in real space:

UCH(d)U−1
C = −H(d) (11)

UPH
∗(d)U−1

P = −H(d) (12)

UTH
∗(d)U−1

T = H(d). (13)

Hermitian adjoint reverses hoppings, so H(d) is gener-
ally nonhermitian, but obeys a modified hermiticity con-
dition:

H(−d) = H(d)†. (14)

With these modifications, we use Qsymm to generate all

symmetry-allowed hopping terms Hhop(d̂) as first order

polynomials of the components of d̂. The hopping terms
obtained in this way have a sufficiently general depen-
dence on the bond direction for our purposes. The on-
site terms obey the same symmetry conditions as in k-
space, so we use the same Hos as in the previous section.
In order to make the Hamiltonian short-ranged without
changing its symmetries, we make the hoppings decay
exponentially with bond length, see App. F. Again we
consider doubled models in classes AIII, BDI and D, the
results are listed in App. E 2.

B. Transport properties of the amorphous edge

To demonstrate that our amorphous systems are sta-
tistical topological insulators, we show that their trans-
port signatures match those of 1D disordered systems at
the critical point of a topological phase transition. The
transmission amplitudes ti are random variables that de-
pend on the disorder configuration of the system and the
conductivity is given by g =

∑
i |ti|2 [26]. At the critical

point the transmission amplitude distribution universally
obeys α = arccosh(1/|t|) such that α has half-normal
distribution with scale parameter σ that grows with the
edge length L as σ ∝

√
L [27, 28]. The resulting disorder-

averaged conductance has power-law decay g ∝ L−1/2.
We fit the αi obtained from numerical transport cal-

culations on edges of the class D amorphous model with
various edge lengths for several random realizations of
the amorphous system to half-normal distributions (see
App. B). The top panel of Fig. 3 shows the histograms
of α, and the bottom panel shows that we recover the
relation σ ∝

√
L for the standard deviation of α and

g ∝ L−1/2 for the conductance. Here we use a model
with Gaussian distributed onsite disorder only respecting
particle-hole symmetry to show the critical scaling of the
conductance g. We expect that allowing the onsite terms
to depend on the local environment, as is the case for
more detailed models of amorphous matter, would have
a similar effect. While we recover the scaling of σ without
onsite disorder, we find that the intrinsic disorder from
the underlying random graph is too weak to detect the
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Figure 3. Critical transport scaling for the 8-band class D
amorphous system with onsite disorder. Top panel: his-
togram of α for various system sizes L from 93 different amor-
phous system realizations. In red: maximum likelihood esti-
mate fit of a half-normal distribution to the data. Bottom
panel: length dependence of σ, the scale parameter of the
half-normal fits. Inset: average conductance g as a function
of system size. The dashed lines are the L±1/2 fit to the scal-
ing data.

conductance scaling at numerically feasible system sizes,
see App. G.

C. Analogous model on the square lattice

The way we defined our hopping Hamiltonians allows
us to use them on any graph, including regular crystal
lattices. This lets us demonstrate that breaking the ro-
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Figure 4. Band structures of the class D model on periodic
crystal strips for different edge terminations and distance de-
pendences. The left panel shows bands along the reflection
symmetric [1 0] edge, and the right panel shows bands along
the [2 1] edge, that breaks reflection symmetry. Transparency
of the dispersion bands is directly proportional to their par-
ticipation ratio. Plot details in App. A and App. F.

tation and reflection symmetries to a discrete subgroup
opens a gap on reflection asymmetric edges. We calculate
the band structures of periodic crystal strips whose edges
are terminated along different directions and inspect the
dispersion of the edge modes spanning the bulk gap.

Using a sufficiently general model on the square lattice
that breaks all additional symmetries beyond the onsite
and spatial symmetries we prescribe (see App. F) we find
that reflection-breaking edges on the square lattice are
gapped. Fig. 4 compares edges oriented along [1, 0] and
[2, 1], in the first case reflection symmetry of the edge
protects gapless modes, while in the second case it does
not.

V. BULK INVARIANT

We have demonstrated the robustness of gapless edge
modes protected by reflection symmetry in both contin-
uum and amorphous systems. In this section we give
an explicit invariant characterizing the topological phase
without referring to edge properties.

A. Continuum models

We construct the 2D bulk invariants of the rotation
symmetric continuum Hamiltonians from the 1D invari-
ants of the same symmetry class. This is motivated by
the fact that the Hamiltonian on any 1D line in k-space
specifies the Hamiltonian everywhere in the 2D k-space
through rotation symmetry. To relate to 1D invariants
defined on a finite Brillouin zone, we require the Hamil-
tonian to be sufficiently regularized: the eigenvectors of
H(k) must become independent of the direction of k for
the limit |k| → ∞. For example, the quadratic terms

of (E9) dominate the k-space Hamiltonian in this limit,
making it insensitive to the signs of kx and ky. This al-
lows compactification of the R2 momentum space of the
continuum to a sphere S2 by identifying all infinitely far
points to a single point, which we denote k = ∞. We
use a stereographic projection to construct this mapping
from R2 to S2. The Hamiltonian at k = 0, ∞ is invari-
ant under continuous rotations [29, 30] as well as under
all reflection symmetries. Furthermore, the Hamiltonian
on any line connecting these two points determines the
Hamiltonian everywhere on the k-space sphere. There-
fore it is natural to think of the momentum space of an
amorphous material as a spherical Brillouin zone with
North and South poles at k = 0,∞, an axis of rotation
along the ẑ axis, and mirror lines on every meridian.

The invariant in 1D class D is νD1 =
sign [pf H(k = 0) · pf H(k = π)] where pf denotes
the Pfaffian and H(k) = −H(k)∗ is the class D Hamil-
tonian in the Majorana basis. This generalizes to the
2D continuum as νD2 = sign [pf H(0) · pf H(∞)]. This
invariant, however, is only nontrivial if the system has
nonzero Chern number, because exp(iπC) = νD2 [23],
which is not possible with mirror symmetry. To define a
new invariant in the presence of a unitary mirror symme-
try whose eigenvalues are invariant under particle-hole
conjugation (UMP = PUM for U2

M = +1, as is the case
for the model studied in the manuscript) we apply the
above formula to the two reflection sectors separately:

νM = sign [pf H±(0) · pf H±(∞)] (15)

where H± is the Hamiltonian restricted to the ±1 eigen-
subspace of UM . The choice of the reflection sector is
arbitrary, as the product of the invariants for the two
sectors equals νD2 = +1.

To prove that a nontrivial bulk invariant corresponds
to gapless edge states, we consider a system with a
straight edge in the y direction preserving My. Restrict-
ing to zero momentum along the edge (ky = 0) we get
a half-infinite 1D system, whose bulk is described by
H(kx, 0) that is invariant under My for every kx. The
bulk invariant derived above is exactly the reflection-
resolved strong invariant of the 1D system, indicating
zero modes at a real space boundary for each mirror sec-
tor in the nontrivial phase. These zero modes correspond
to the crossing of the edge modes at ky = 0.

To construct the topological invariant in other sym-
metry classes, we follow a similar procedure. The topo-
logical invariants of odd-dimensional systems with chi-
ral symmetry are winding numbers [5]. Therefore, the
bulk invariants of the AIII, BDI, and CII classes is the
winding number of a single reflection sector modulo 2.
In class DIII+ we construct a reflection-resolved Z2 in-
variant analogous to the class DIII Pfaffian invariant.
We summarize the resulting classification of topologi-
cal phases protected by unitary reflection and contin-
uous rotation symmetry in continuum and amorphous
systems in Table II. Because the topological invariant is
an integral along a high-symmetry line in k-space, these
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Symmetry class continuum amorphous

AIII Z Z2

BDI Z Z2

D Z2 Z2

DIII+ Z2 Z2

DIII− 2Z 0

CII 2Z 2Z2

Table II. Classification of topological phases in continuum and
amorphous systems protected by continuous rotation and uni-
tary reflection symmetry. The classification does not include
the strong 2D invariant that is an independent Z2 invariant in
class DIII−. In all other classes reflection symmetry enforces
a trivial strong invariant. For details on how disorder leads to
the distinction between the continuum and amorphous clas-
sification, see App. H.

expressions coincide with the topological invariants of
reflection-protected phases in crystalline materials [31–
33].

B. Effective Hamiltonian of amorphous models

Without translation invariance it is still possible to de-
tect the bulk gap closings that accompany topological
phase transitions through the density of states ρ(E) =

N−1 tr δ(Ĥ − E) of a large finite system with N sites.
Fig. 5 (a) shows the density of states of the class D
amorphous model as the chemical potential µ is tuned
across two phase transitions. We observe two bulk gap
closings, and a small constant density of states in the bulk
gap due to edge states in the topological phase. To gain
even more insight, we introduce the momentum-resolved
spectral function

A(k, E) =
∑
n

〈k, n| δ
(
Ĥ − E

)
|k, n〉 (16)

where |k, n〉 is a plane-wave state localized in the n’th or-
bital with 〈r, n|k,m〉 = N−1/2 exp(ikr)δnm. We use the
spectral function with momentum parallel to the edge to
detect edge states in finite samples, as shown in Fig. 1.
It is also well defined in the k →∞ limit: because our
amorphous samples are isotropic and the sites are always
separated by a finite distance (see App. B), the relative
phase on each bond in the plane wave converges to a uni-
form independent random phase. Fig. 5 (b) and (c) show
that the two gap closings observed earlier are different:
one occurs at k = 0 and the other at k = ∞.

In order to apply the construction of bulk invariants
to amorphous systems, we introduce the effective k-space
Hamiltonian [17, 23] Heff(k) = Geff(k)−1 through the
projection of the single-particle Green’s function onto
plane-wave states:

Geff(k)m,n = 〈k,m| Ĝ |k, n〉 , (17)
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Figure 5. Topological phase transitions of the amorphous
class D model as a function of the chemical potential. (a) Den-
sity of states of a finite amorphous sample. Darker color in-
dicates higher density. (b) Spectral function at k = 0 of
a finite amorphous sample. The spectrum of the effective
Hamiltonian is overlaid in red. (c) Same as (b) but at k = ∞.
(d) Topological invariant νM (solid line). The dashed and dot-
ted lines correspond to sign[pf Heff

+ (0)] and sign[pf Heff
+ (∞)]

respectively, offset along the vertical axis for visual clarity.

where Ĝ = limη→0(Ĥ + iη)−1 is the Green’s function

of the full real space Hamiltonian Ĥ. Fig. 5 shows the
relation to A(k, E). The spectrum of Heff(k) closely fol-
lows the peaks of the spectral function, especially near
the gap closing points. The key properties of Heff are
that it transforms the same way under symmetries as
continuum Hamiltonians discussed before, its gap only
closes when the gap in the bulk Ĥ closes [23], and it is
properly regularized in the k → ∞ limit [17]. Hence,
the bulk invariants defined for continuum systems are
directly applicable to detecting topological phase tran-
sitions in amorphous systems. We show in Fig. 5 (d)
for the class D amorphous model that the bulk invariant
is non-trivial (νM = −1) for intermediate values of the
chemical potential.

VI. CONCLUSIONS AND DISCUSSION

We introduced statistical topological insulator phases
in two-dimensional amorphous systems that rely on aver-
age spatial symmetries for protection. We demonstrated
that in the non-trivial phase the edge behaves as a 1D
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critical system of the same symmetry class by observ-
ing power-law scaling of the transport properties. We
found topological invariants characterizing the bulk, and
showed that the critical edge physics is not a result of
fine-tuning, but is protected by the average reflection
symmetry that is present on all straight edges of amor-
phous samples.

Comparing our results to similar work on higher-order
topological insulators in quasicrystals protected by eight
and twelvefold rotation symmetry [23, 34, 35] raises a
natural question: can the amorphous phases protected
by continuous rotation symmetry be described as a limit
of systems with increasingly fine discrete rotation sym-
metry? It also remains an open question how to extend
the topological classification to materials with multiple
atom species.

Superconductivity is known to exist in amorphous thin
films [36]. In the cases where we found new amor-
phous topological phases, however, the reflection symme-
try commutes with time-reversal and particle-hole sym-
metry, while the physical reflection symmetry of s-wave
superconductors anticommutes with onsite unitary sym-
metries. Hence condensed matter realizations of these
symmetry classes are only feasible in the presence of
reflection-odd (e.g. p-wave) pairing. It is possible that
favourable energetics can result in an effective chiral sym-
metry, but such materials would be highly fine-tuned.
Shiba glass systems consisting of atoms randomly de-
posited on surfaces have also been proposed as a platform
for two-dimensional amorphous topological superconduc-
tivity [14]. Engineered systems, so called “topological
simulators”, can serve as an experimental demonstration
of the phenomena studied in this work: the amorphous
class BDI model could be naturally realized in disordered
acoustic and mechanical meta-materials [37–39], while

the other symmetry classes may be realized in a variety
of systems including ultracold atoms [40], photonic crys-
tals [41, 42], or coupled electronic circuit elements [43].

Our findings pave the way for a new classification of
amorphous systems. Because the symmetry groups gen-
erated by continuous rotations are non-abelian in dimen-
sions d > 2, we expect even richer topological classifica-
tion in higher dimensions.
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sler and K. Pöyhönen for useful discussions. D. V. was
supported by NWO VIDI grant 680-47-53, the Swedish
Research Council (VR) and the Knut and Alice Wallen-
berg Foundation. A. A. and H. S. were supported by
NWO VIDI grant 016.Vidi.189.180.

[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological
insulators, Rev. Mod. Phys. 82, 3045 (2010).

[2] X.-L. Qi and S.-C. Zhang, Topological insulators and su-
perconductors, Rev. Mod. Phys. 83, 1057 (2011).

[3] S. Ryu, A. Schnyder, A. Furusaki, and A. Ludwig, Topo-
logical insulators and superconductors: tenfold way and
dimensional hierarchy, New Journal of Physics 12 (2010).

[4] A. Kitaev, Periodic table for topological insulators
and superconductors, AIP Conference Proceedings 1134
(2009).

[5] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu,
Classification of topological quantum matter with sym-
metries, Rev. Mod. Phys. 88 (2016).

[6] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory,
Z. Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig,
Topological quantum chemistry, Nature 547, 298 (2017).

[7] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and
R.-J. Slager, Topological classification of crystalline insu-
lators through band structure combinatorics, Phys. Rev.
X 7, 041069 (2017).

[8] H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry-
based indicators of band topology in the 230 space
groups, Nat. Commun. 8, 10.1038/s41467-017-00133-2
(2017).

[9] L. Fu, Topological crystalline insulators, Phys. Rev. Lett.
106, 106802 (2011).

[10] L. Fu and C. L. Kane, Topology, delocalization via av-
erage symmetry and the symplectic anderson transition,
Phys. Rev. Lett. 109, 246605 (2012).

[11] I. C. Fulga, B. van Heck, J. M. Edge, and A. R.
Akhmerov, Statistical topological insulators, Phys. Rev.
B 89, 155424 (2014).

[12] A. Agarwala and V. B. Shenoy, Topological Insulators
in Amorphous Systems, Phys. Rev. Lett. 118, 236402
(2017).

[13] Y.-B. Yang, T. Qin, D.-L. Deng, L.-M. Duan, and Y. Xu,
Topological amorphous metals, Phys. Rev. Lett. 123,
076401 (2019).
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(E22). The data was obtained for systems containing
2500 sites.

The bottom panels of Fig. 2 are obtained by adding
mirror-breaking terms to the continuum Hamiltonian
models.

Fig. 3 is obtained from the class D model with added
Gaussian noise terms that conserve particle-hole sym-
metry exactly. The amplitude of the noise terms γi is
γi
µ = 0.3 ∗ xi with xi a random number from a normal

distribution with mean 0 and standard deviation 1, and
µ the chemical potential of the topological sector of the
model. The number of sites in the system vary from 5000
to 50000.

The data presented in Fig. 4 and 6 is obtained with
f = 0.2 or f = 1 (as indicated) for the hopping terms o1

and o4 of (E22). The periodic strips all have a width of
100 sites in the non-periodic direction.

Fig. 5 was obtained from a system with 40000 sites.
Fig. 7 is obtained with f = 1.5 for the hopping terms

t and d of (E17) of the non-trivial and trivial sectors of
the AIII model respectively, and o4 of (E18). The class
BDI data is obtained with f = 0.7 for t of (E19) of the
non-trivial sector, and o2 from (E20). The class CII data
is obtained with f = 0.7 for t1 and t4 of (E23). The class
DIII data is obtained with f = 2 for o1 and o4 of (E24).
The periodic strips all have a width of 100 sites in the
non-periodic direction.

Fig. 8 was obtained from the class D model by setting
f = 0.7 for hopping terms t1, d2 and o4 of (E21) and
(E22). The number of sites in the system vary from 5000
to 50000.

Fig. 9 was obtained from systems with 100 sites and
Fig. 10 was obtained from systems with 2500 sites.

Appendix B: Numerical methods

In the numerical calculations we use hard-disk amor-
phous structures [20]. To generate a structure, we ran-
domly add atomic sites in a fixed volume from an un-
correlated uniform distribution. Treating atoms as hard
disks, we reject new sites closer than a fixed distance to
existing sites, and this procedure is performed until the
goal density is reached. This procedure reduces density
fluctuations and avoids sites that are very close to each
other, matching the distance distribution function of a re-
alistic amorphous system more closely than independent
uniformly distributed points. We include hopping terms
in the Hamiltonian for bonds connecting each site to a
maximum number of N neighbours falling within a max-
imum bond length R. The values of N and R are chosen
such that the exponentially decaying hopping amplitudes
to further neighbours can be safely neglected, resulting
in a sparse Hamiltonian.

We use the software package Kwant [45] to generate
the lattice Hamiltonians and for transport calculations.
The transmission eigenvalues are obtained via the calcu-
lation of the scattering matrix using Kwant. The trans-

Symmetry class UM UP UT

A τ0 - -

AI τ0 - τx

D τ0 τ0 -

AII σ0τ0 - σ0τy

C σ0τ0 σ0τy 0

Table III. Symmetry representations of 1D models where a
reflection antisymmetry (that anticommutes with the Hamil-
tonian) with unitary part UM protects gapless edges. σ and
τ are Pauli matrices. Only unitary-inequivalent symmetry
representations are listed.

mission amplitudes ti are given by the singular values of
the transmission block of the scattering matrix. Pfaffians
are calculated using Pfapack [46]. The numerical density
of states, momentum-resolved spectral function, and ef-
fective Hamiltonian calculations are performed using the
kernel polynomial method [17, 23, 47, 48].

Appendix C: Commutation relations of the
symmetry operators

In real space, conjugating a rotation with a mirror re-
sults in a rotation in the opposite direction:

MR(φ)M−1 = R(−φ). (C1)

Demanding that there are no nontrivial onsite unitary
symmetries, this implies for the unitary parts that

UMe
iφSzU−1

M eiφSz = eiα(φ)
1. (C2)

Differentiating with respect to φ and setting φ = 0 yields

UMSzU
−1
M = −Sz + α′1 (C3)

where α′ = dα/dφ|φ=0. As the spectra of the two sides
need to be equal, and the spectrum of Sz consists of only
integer or half-integer values, we find that α′ ∈ Z. Re-
defining Sz → Sz − (α′/2)1 the symmetry constraint on
the Hamiltonian does not change, and we find that Sz
and UM anticommute. This also implies that the spec-
trum of Sz is symmetric and trSz = 0, which is also a suf-
ficient condition for the anticommutation with UM , hence
we assume trSz = 0 in the rest of the manuscript with-
out loss of generality. Similar calculation shows that dis-
crete onsite antiunitary (anti)symmetries (particle-hole
and time-reversal) anticommute with Sz, and chiral sym-
metry commutes with Sz in the absence of unitary sym-
metries.

Appendix D: Details of symmetry representations

Besides the unitary mirror symmetries listed in the
main text, we find several cases where a reflection an-
tisymmetry (an operator that reverses k and the energy)
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Symmetry class UM UP UT UC Sz

AIII σxτy - - σxτ0
1
2
σ0τz

BDI σxτx σ0τx σxτx σxτ0
1
2
σ0τz

CII ρyσyτy iρzσyτ0 iρzσ0τy ρ0σyτy
1
2
ρzσ0τy

D σxτx σ0τx - - 1
2
σ0τz

DIII− ρzσxτz ρxσ0τz iρxσzτy ρ0σzτx
1
2
ρ0σyτz

Table IV. Symmetry representations of 2D bulk models with
unitary reflection and rotation symmetry. ρ, σ and τ are
Pauli matrices. The chemical potential terms are µσzτz for
the 4-band models, µρzσzτ0 for CII and µρzσ0τz for DIII.

protects gapless edge states in continuum models. Since
combinations of the reflection-like symmetry with any of
the onsite symmetries is also a reflection-like symmetry
providing the same protection, we omit such repetitions
when listing the results in Table III. We consider the
results in classes A, AI and AII an artefact of using con-
tinuum models with perfect translation invariance, and
expect that these are not viable for an amorphous sys-
tem since they localize in the presence of disorder that
makes the reflection antisymmetry only an average sym-
metry [49].

The result of the search for 2D symmetry representa-
tions compatible with the edge symmetries is not unique:
we pick one of several unitary equivalent choices for each
Altland-Zirnbauer symmetry class. The specific forms of
the symmetry representations that define the models in
App. E are listed in Table IV.

For the 4-band models, we define the basis space of
the unitary parts of the symmetry operators as the direct
product σ ⊗ τ , with σ and τ as Pauli matrices in sublat-
tice and spin space respectively, such that the chemical
potential terms of the models are µσzτz. For the 8-band
models, the basis space is extended to ρ⊗ σ ⊗ τ , where
ρ is also a Pauli matrix. For the doubled AIII, BDI and
D models we extend the symmetries by multiplying with
ρ0 = 12.

Appendix E: Model Hamiltonians

1. Continuum Hamiltonians

The onsite Hamiltonians in both the continuum and
amorphous bulk models are given by:

Hos
AIII = µσzτz + λσyτz (E1)

Hos,c
AIII = λ1σzτz + iλ2σyτz (E2)

Hos
BDI = µσzτz (E3)

Hos,c
BDI = λ1σzτz + iλ2σyτz (E4)

Hos
D = µσzτz (E5)

Hos,c
D = λ1σzτz + iλ2σ0τ0 (E6)

Hos
CII = µρzσzτ0

+ λ1ρzσxτ0

+ ρxσ0 · (λ2τz + λ3τx)

(E7)

Hos
DIII = µρzσ0τz

+ λ1ρyσyτ0

+ λ2ρxσxτx

+ λ3ρzσzτy

+ λ4ρxσyτ0

+ λ5ρyσyτy

(E8)

where the Pauli matrices σ and τ act on the electron-hole
and the angular momentum degrees of freedom respec-
tively. In the doubled models we assign different param-
eter values in the two diagonal blocks.

The doubled k-space models have the following hop-
ping terms:

Hhop
AIII(k) = tnσzτz(k

2
x + k2

y)

+ (t1σz − t2σy)τxkx

+ (t1σz + t2σx)τyky

(E9)

Hhop,c
AIII (k) = (β1σz + β2σy)τxkx

+ (β1σz + β∗2σy)τyky
(E10)

Hhop
BDI(k) = tnσzτz(k

2
x + k2

y)

+ tσz(τxkx + σzτyky)
(E11)

Hhop,c
BDI (k) = o1σz(τxkx + τyky)

+ io2σy(τxkx + τyky)
(E12)

Hhop
D (k) = tnσzτz(k

2
x + k2

y)

+ t1σz(τxkx + τyky)

+ t2σ0(−τykx + τxky)

+ dσx(τxkx + τyky)

(E13)

Hhop,c
D (k) = io1σy(τxkx + τyky)

+ o2σz(τxkx + τyky)

+ o3σx(−τykx + τxky)

+ o4σ0(−τykx + τxky)

(E14)
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The k-space CII and DIII models have hopping terms
of the form:

Hhop
CII (k) = tnρzσzτ0(k2

x + k2
y)

+ t1(ρzσzτzkx + ρ0σ0τxky)

+ t2(ρzσ0τxkx − ρ0σ0τzky)

+ t3(ρxσ0τ0kx + ρyσzτyky)

+ t4(ρxσxτ0kx + ρyσxτyky)

(E15)

Hhop
DIII(k) = tnρzσ0τz(k

2
x + k2

y)

+ dρ0σyτxkx + ρ0σ0τyky)

+ t(−ρ0σxτ0kx + ρ0σzτzky)

+ o1(ρyσzτzkx + ρyσ0τ0ky)

+ o2(ρxσ0τykx + ρxσyτ0ky)

+ o3(ρxσzτzkx + ρxσxτ0ky)

+ o4(ρyσ0τykx − ρyσyτxky).

(E16)

2. Real space Hamiltonians

For the real-space models the onsite Hamiltonian are
identical to the onsite terms found in the previous sec-
tion.

The double model hopping Hamiltonians have the
form:

Hhop
AIII

(
d̂
)

= tnσzτz

+ itσz(τxdx + τydy)

+ idσy(τxdx + τydy)

(E17)

Hhop,c
AIII

(
d̂
)

= o1σz(iτxdx + iτydy)

+ o2σ0(iτydx + iτxdy)

+ o3σy(τxdx + τydy)

+ o4σx(−iτydx + iτxdy)

(E18)

Hhop
BDI

(
d̂
)

= tnσzτz + itσz(τxdx + τydy) (E19)

Hhop,c
BDI

(
d̂
)

= io1σz(τxdx + τydy)

+ io2σy(τxdx − τydy)
(E20)

Hhop
D

(
d̂
)

= tnσzτz

+ it1σz(τydx − τxdy)

+ it2σ0(τxdx + τydy)

+ idσx(τxdx + τydy)

(E21)

Hhop,c
D

(
d̂
)

= io1σz(τxdx + τydy)

+ io2σy(τxdx + τydy)

+ io3σx(τydx + τxdy)

+ io4σ0(τydx − τxdy).

(E22)
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Figure 6. Band structures of the class D model on periodic
crystal strips for different edge terminations and distance de-
pendences. Top panels are bands along the reflection sym-
metric [1 0] edge, and bottom panels are bands along the
reflection asymmetric [2 1] edge. Transparency of the disper-
sion bands is directly proportional to their participation ratio∑

i |ψi|4, where ψi is the real space wavefunction of site i of
the system. Plot details in App. A.

The 8-band CII and DIII models have hopping terms:

Hhop
CII

(
d̂
)

= tnρzσzτ0

+ it1(ρzσ0τzdx + ρ0σ0τxdy)

+ it2(ρzσ0τxdx − ρ0σ0τzdy)

+ it3(ρxσzτ0dx + ρyσzτydy)

+ it4(ρxσxτ0dx + ρyσxτydy)

(E23)

Hhop
DIII

(
d̂
)

= tnρzσ0τz

+ id(ρ0σyτxdx + ρ0σ0τydy)

+ it(−ρ0σxτ0dx + ρ0σzτzdy)

+ io1(ρyσzτzdx + ρyσ0τ0dy)

+ io2(ρxσ0τydx + ρxσyτ0dy)

+ io3(ρxσzτzdx + ρxσxτ0dy)

+ io4(ρyσ0τydx − ρyσyτxdy).

(E24)

Appendix F: Removing additional symmetries of
square lattice models

We find that because the nearest-neighbour square
lattice is bipartite, it has inherent sublattice (chiral)
symmetry that stabilizes an additional pair of counter-
propagating edge modes at k = π. When studying mod-
els on the square lattice, we include second and third
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nearest-neighbour bonds to remove this chiral symmetry
and the additional modes.

We find that if every hopping decays the same way
with the bond length, even the edges of a crystalline sam-
ple that break reflection behave like the edge of a fully
isotropic continuum sample that has protected modes for
every orientation close to k = 0. Hence without chang-
ing the symmetry properties we include a different decay
constant in the prefactor for each term:

Hhop(d) =
∑
i

e−fi·|d|αiH
hop
i

(
d̂
)

(F1)

where i runs over the linearly independent hopping

terms [24] in Hhop(d̂) =
∑
i αiH

hop
i (d̂). Fig. 6 and Fig. 7

illustrate the importance of this consideration.
The band structures of the chiral class models are all

gapped for edge orientations that break reflection sym-
metry, as seen in Fig. 7. For the class AIII model, Fig. 7
shows that the case is similar to the class D crystal
bands: the more general distance dependence (absence
of a global prefactor related to the bond lengths before
each of the hopping terms) is required to open the gap
along reflection asymmetric edges. For the class BDI
model, the reflection asymmetric edges are gapped even
without the more general distance dependence, as seen
in Fig. 7, but it does increase the size of the gap. The
situation is similar for the CII model, where the more
general distance dependence of the hopping opens a gap
only on reflection asymmetric edges.

Appendix G: Transport scaling

Fig. 8 shows the transport scaling of the class D amor-
phous model without onsite disorder. The scaling arises
from the intrinsic noise of the random graph. The bot-
tom panel shows that we recover the relation σ ∝

√
L for

the standard deviation of α. The conductance data in the
inset shows that the noise due to the physical random-
ness of the amorphous system has a much weaker effect
on localizing the modes compared to the noise originat-
ing from terms added to the model as in Fig. 3. The
conductance relation g ∝ L−1/2 is not recoverable with
the numerically accessible edge lengths, as it is only valid
for g � 1.

Appendix H: Bulk invariant for chiral classes

In this section we construct invariants classifying con-
tinuum and amorphous systems protected by continuous
rotation and unitary reflection symmetry.

1. Classes AIII, BDI and CII

In the presence of chiral symmetry, the band-flattened
Hamiltonian Q(k) can be rearranged into two off-

diagonal blocks in the basis where C = τz [3, 5]:

Q(k) =

(
0 q(k)

q†(k) 0

)
. (H1)

As [Sz, C] = 0 we can simultaneously diagonalize the two
operators and choose Sz = szτz where sz is diagonal.
A mirror operator UM anticommutes with Sz and we fix
U2
M = +1 in the following, this can always be achieved by

choosing its overall phase. A mirror either commutes or
anticommutes with C, here we assume [UM , C] = 0 as we
found in Sec. III A that all symmetry groups protecting
gapless edges have this property. In this case UM takes a
block-diagonal form with diagonal blocks m and m′, both
of which square to +1 and anticommute with sz, guar-
anteeing that the spectrum of sz is symmetric. Because
of this, m (also m′) is only nonzero between opposite sz
eigenvalues, an appropriately chosen block-diagonal ba-
sis transformation that preserves the form of C and Sz
makes it proportional to σx in each |sz| sector. Hence
there is always a basis where m = m′ = σx ⊗ 1 and the
symmetry constraint is m q(k) m−1 = q(RMk).

This allows to decompose q(k) into even/odd mirror
sectors q±(k) with respect to a mirror operator that
leaves k invariant [50], and to assign an individual wind-
ing number along a mirror-invariant line:

n± = − 1

2π

∫ ∞
−∞

dk
d

dk
arg det q±(kn̂) (H2)

where the sectors are with respect to the reflection op-
erator with normal orthogonal to n̂. Due to the regular-
ization of the Hamiltonian the integral is along a closed
loop, hence quantized to integers, n± ∈ Z. The twofold
rotation symmetry C2 = exp

(
iπ2Sz

)
reverses k and for

integer or half-integer spin commutes or anticommutes
with UM respectively. For the integer case this means
for the winding numbers that n+ = n− = 0 making the
invariant trivial, while in the half-integer case n+ = −n−
meaning that the total winding n vanishes. So in the half-
integer Sz case we can select either one of the reflection-
resolved windings to define a nontrivial topological in-
variant nM = ±n±. As argued in Sec. V A this implies
the presence of nM zero modes in each mirror sector at
k = 0 on any straight edge. In class CII time rever-
sal symmetry imposes Kramers-degeneracy making nM
even.

The winding number invariant we found for contin-
uum systems is integer valued, suggesting that it is pos-
sible for the edge to host more than one pair of counter-
propagating modes. In the presence of disorder, however,
an even multiple of the minimum number of symmetry-
allowed counter-propagating mode pairs always local-
izes [11]. In classes AIII and BDI (CII) this renders edges
of systems with even nM (nM/2) insulating, and those
with odd nM (nM/2) indistingushable through trans-
port probes. Therefore, rather than the winding number
nM ∈ Z itself being our invariant for amorphous systems,
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Figure 7. Band structures of the chiral models on periodic crystal strips for different edge terminations and hopping relations.
Solid lines indicate bands recorded along the reflection symmetric [1 0] edge, and dashed lines along the reflection asymmetric
[2 1] edge. The different hopping relations are distinguished by different values of f from (F1), see App. F.

we identify its parity νM ∈ Z2 as the mirror invariant in
classes AIII and BDI:

νM = nM mod 2, (H3)

and the parity of half of nM ∈ 2Z in class CII:

νM =
nM
2

mod 2. (H4)

We calculate the Z2 invariant for the effective Hamil-
tonian of the amorphous models in all the chiral sym-
metry classes as the chemical potential µ is tuned across
two topological phase transitions, the result is shown in
Fig. 9. For the numerical calculation we discretize the
integral in equation (H2) as

nM ≈ −
1

2π

∑
i

Im log

(
det q±(ki+1n̂)

det q±(kin̂)

)
(H5)

where ki is a discrete set of k-values in increasing or-
der and with cyclic indexing. To address numerical
integration to infinity, we choose the parametrization
k = tan(φ/2) where φ corresponds to the latitude in
stereographic projection ranging from −π to π. We use
10 evenly spaced values for φ in the numerical calcula-
tions, we show the results in Fig. 9.

2. Class DIII

In this section we show that the above invariant, while
well defined in classes DIII±, in class DIII+ it always
vanishes, and in class DIII− its parity is determined by
the strong Z2 invariant of class DIII. For class DIII+ we
introduce a different Z2 invariant that is independent of
the strong invariant.

We start by deriving general symmetry constraints.
We choose the onsite symmetry representation as C = τz,
T = τyK and P = τxK, in this basis the Hamiltonian has
the off-diagonal form of (H1) with q(k) = −q(−k)T [5].
This form of the symmetries is invariant under basis
transformations of the block-diagonal form diag (u, u∗)
which allows to bring spin operator to the diagonal form

Sz = diag (sz,−sz). For half-integer Sz the combination
C2T leaves k invariant and acts as σzq(k)σz = q(k)T .
We find for the mirror operator that it takes a block-
diagonal form M = diag (m,±m∗) where the ± stands
for the commuting ([UM ,P] = [UM , T ] = 0) and anti-
commuting ({UM ,P} = {UM , T } = 0) case. As m anti-
commutes with sz it is only nonzero in the off-diagonal
blocks connecting opposite spin eigenvalues. In a sin-
gle |sz| 6= 0 sector sz ∝ σz, and m has off-diagonal
blocks µ and µ†, these can be diagonalized by a basis
transformation that in this sector acts as diag (1, µ). For
class DIII+ (DIII−) we bring the reflection operator to
the form m = σx (m = σy) which imposes the con-
straint σxq(k)σx = q(k) (σyq(k)σy = q(k)). We trans-
form to a basis where m = σz using u = exp(iπ/2σy)
(u = exp(iπ/2σx)), in this basis q± are the diagonal
(off-diagonal) blocks of q and the C2T constraint reads
q+(k) = q−(k)T (q±(k) = q±(k)T ). In DIII+ this implies
det q+(k) = det q−(k)T , meaning that the winding is the
same in both sectors, however, the total winding always
vanishes in class DIII, so the reflection-resolved windings
also vanish.

We write the 1D class DIII Z2 strong invariant [5]
adapted to the compactified k-space as

ν =
Pf q(∞)

Pf q(0)
exp

(
− i

2

∫ ∞
0

dk
d

dk
arg det q(kn̂)

)
. (H6)

This is also the strong 2D invariant, as the k-space sphere
only has two time-reversal invariant momenta at k = 0
and ∞. In class DIII− q has off-diagonal blocks q± and
q+(k) = −q−(k)T for k = 0 and ∞, meaning pf q(k) =
(−1)n(n−1)/2 det q+(k) where n is the size of a reflection
block. Using that q±(k) = −q∓(−k)T for all k, adding
and subtracting the winding iπn+ in the exponential, and
noting that the winding of the phase of the determinant
between two points can only differ from the difference in
the phases at the endpoints by a multiple of 2π, we find

ν = eiπnM , (H7)

showing that the parity of nM , hence the protection of
gapless edges in the presence of disorder, is given by the
strong invariant.
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Figure 8. Critical transport scaling for the 8-band class D
amorphous system without onsite disorder. Top panel: his-
togram of α for various system sizes L from 59 different amor-
phous system realizations. In red: maximum likelihood esti-
mate fit of a half-normal distribution to the data. Bottom
panel: length dependence of σ, the square root of the scale
factors of the half-normal fits. Inset: average conductance g
as a function of system size. The dashed line indicates the
L1/2 fit to the data.

We define an invariant for class DIII+ in terms of the
reflection-resolved class DIII Z2 invariant:

ν± =
pf q±(∞)

pf q±(0)
exp

(
− i

2

∫ ∞
0

dk
d

dk
arg det q±(kn̂)

)
.

(H8)
As follows from the relations derived above, the invariant
is the same for both sectors and we define the mirror
invariant as νM = ν±. This also shows that in class DIII+

the strong invariant is always trivial in the presence of
reflection symmetry.
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Figure 9. The bulk invariant ν as a function of the chemi-
cal potential µ calculated using the effective Hamiltonian for
chiral models AIII, BDI, and CII. Top panels: the bulk spec-
tra of the effective Hamiltonians. States at k = 0 are in
red, states at k = ∞ are in blue, and states at intermediate
k are in varying shades of purple. Bottom panels: winding
number invariants (H5) obtained by dividing the integration
space into 20 (AIII, CII) or 50 (BDI) segments.
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Figure 10. The bulk invariant ν as a function of the chemical
potential µ calculated using the effective Hamiltonian for the
DIII model in the commuting (DIII+) and anticommuting
(DIII−) cases. Top panels: the bulk spectra of the effective
Hamiltonians. States at k = 0 are in red, states at k = ∞ are
in blue, and states at intermediate k are in varying shades of
purple. Bottom panels: the DIII Z2 mirror-resolved strong
invariant (H8) shown for the DIII+ case (in orange). For the
DIII− case, the DIII Z2 strong invariant (H6) is shown in
green, and the winding number invariant is shown in purple.
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