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Abstract

The Quantum Approximate Optimization Algorithm (QAOA) by Farhi et al.
is a quantum computational framework for solving quantum or classical opti-
mization tasks. Here, we explore using QAOA for Binary Linear Least Squares
(BLLS); a problem that can serve as a building block of several other hard
problems in linear algebra, such as the Non-negative Binary Matrix Factor-
ization (NBMF) and other variants of the Non-negative Matrix Factorization
(NMF) problem. Most of the previous efforts in quantum computing for solv-
ing these problems were done using the quantum annealing paradigm. For
the scope of this work, our experiments were done on noiseless quantum sim-
ulators, a simulator including a device-realistic noise-model, and two IBM Q
5-qubit machines. We highlight the possibilities of using QAOA and QAOA-
like variational algorithms for solving such problems, where trial solutions can
be obtained directly as samples, rather than being amplitude-encoded in the
quantum wavefunction. Our numerics show that even for a small number of
steps, Simulated Annealing can outperform QAOA for BLLS at a QAOA depth
of p ≤ 3 for the probability of sampling the ground state. Finally, we point out
some of the challenges involved in current-day experimental implementations
of this technique on cloud-based quantum computers.
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1 Introduction

The application of quantum computing to hard optimization problems is a candidate
where quantum computing may eventually outperform classical computation [1–6]. At the
time of writing this paper, Noisy Intermediate Scale Quantum (NISQ) computers [5] are
being developed by several firms and research groups [7–13]. The two main approaches to
quantum optimization are (i) the Quantum Annealing (QA) physical heuristic [6] and (ii)
Quantum Approximate Optimization Algorithm (QAOA) [4] on the gate-model quantum
computer [1].

In this paper, we explore and propose the use of QAOA for hard problems in linear
algebra. In particular, we focus on the problem of Binary Linear Least Squares (BLLS)
[14–16], a subroutine for solving certain types of Non-negative Matrix Factorization (NMF)
problems [17, 18], for example, the problem of Non-negative Binary Matrix Factorization
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(NBMF) [17,19]. These are linear dimensionality reduction (LDR) tools useful in machine
learning for learning a basis that would be used to model data [20], such as learning
facial features in computer vision [21], topic modeling in documents [22] and properties
of astronomical objects [23, 24]. Furthermore, BLLS and its variant (binary compressive
sensing [25]) have applications in signal processing [16, 25], image processing [15, 26] and
can be a building block for other problems in linear algebra [27–32]. We hope that our work
provides insights to fellow researchers to further explore the use of NISQ era methods [4,33]
for problems in linear algebra and numerical computation. The outline of our results are
as follows :

• The technique seems to scale well in optimizing the expectation value as the problem
size n increases (for a fixed QAOA circuit depth p). This corresponds to getting ‘good
solutions’ fast but not necessarily the most optimal one (refer Section 3.4.2).

• The probability of finding the optimal solution appears to drop exponentially as the
problem size increases (for a fixed QAOA circuit depth p). QAOA outperformed
random sampling, but was beaten by Simulated Annealing. Further and extensive
tests would be require to show if QAOA can deliver a quantum advantage for this
criterion (refer Section 3.4.4).

• The Implicit Filtering (ImFil) classical optimizer backend [34] used for optimizing
the QAOA parameters is robust to shot-noise (refer Sections 3.4.1, 3.4.3 and 3.4.6)

• Given a specific realistic quantum hardware noise model, a dense device coupling
map would drastically reduce the errors in approximating the expectation value for
this problem, when compared against a sparse one (refer Section 3.4.5).

• When compared against older quantum devices, the newer ones seem to be getting
better at approximating the expectation value for a given set of QAOA parame-
ters. However, the results they produce are still very noisy for QAOA to function
effectively (refer Sections 3.4.1 and 3.4.7).

In Section 2, we cover the necessary background and related work for our paper. Section
3.1 is about formulating the BLLS problem into a classical Ising problem and Section 3.2
goes over the details of the gates required for the QAOA ansatz. The experiments, results
and discussion are detailed in Sections 3.3, 3.4 and 3.5 respectively. We finally conclude our
paper in Section 4. We also have Appendices to complement and support the information
in the main paper.

2 Background and Related Work

2.1 Background

2.1.1 The Binary Linear Least Squares (BLLS) problem

Given a matrix A ∈ Rm×n, an unknown column vector of variables x ∈ {0, 1}n and a
column vector b ∈ Rm (Where m > n). The linear BLLS problem is to find the x that
would minimize ‖Ax− b‖ the most. In other words, it can be described as:

arg min
x

‖Ax− b‖ (1)

The motivation behind choosing the BLLS problem as a target problem is twofold:
firstly, it is an NP-Hard problem [16] that makes it a relevant target for potential speedup.
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Secondly, it can act as a building block for other hard problems in linear algebra, such as
the Non-negative Binary Matrix Factorization [17]. One reason why one may view BLLS
a building block for other problems is because multiple binary variables can be clubbed
together for a fixed point approximation of a real variable [18,27–30,35]. Amongst these,
there are some problems that are NP-hard for which an approximate solution would be
acceptable [18,35]. In these cases, QAOA may be able to provide an improvement in finding
approximate solutions against classical solvers and increase the probability of sampling the
best solution.

2.1.2 Non-negative Matrix Factorization (NMF) and variants

NMF is a linear dimensionality reduction (LDR) tool that helps in data analysis. Given
a matrix V ∈ Rm×n

≥0 of n data points of dimension m , NMF extracts a basis W ∈ Rm×r
≥0

containing r elements such that the linear space spanned by the basis W approximates
the datapoints in V as best as they can [20]. In other words, for some matrix H ∈ Rr×n≥0 ,
V ≈W ×H. The restrictions to non-negative number makes the factored matrices sparse
and easily interpretable for certain domains where non-negative feature vectors do not
apply [20]. Few such examples are :

Computer Vision: NMF is useful for facial recognition as the problem suffers
from high dimensionality of data. Here, NMF can extract a set of features W from the
input/training data (matrix V ). Then for an image unseen by the model before (test),
represented by column vector v∗, we’ll use W and see if we can find some non-negative
column vector h∗ such that v∗ ≈W × h∗. NMF is found to be more robust than another
LDR technique, Principal Component Analysis or PCA (which doesn’t restrict the data
to be non-negative), for image occlusions [21].

Astronomy: NMF has applications in astronomy primarily due to astrophysical
signals being non-negative. As an example, NMF was used on spectroscopic observations
[23] and the direct imaging observations [24] in order to study the common properties of
astronomical objects and post-process astronomical observations.

Text Mining/Topic Modeling: Here, text documents can be converted into non-
negative column vectors. One way to do this is by considering a dictionary of m words.
Each matrix element Vij in the dataset V would denote the number of occurrences of the
ith word in the jth document. Applying NMF, a basis of topics W can be generated
along with the matrix H that suggests the importance of each of the basis topics for each
document (i.e. column) in V . This is useful to automate the extraction of abstract topics
in a given set of documents [22].

The downside of NMF is that the factorization NP-Hard in the general case [36].
Non-negative Binary Matrix Factorization (NBMF) is a specialized version

of the NMF problem; where entries in matrix H are restricted as H ∈ {0, 1}r×n. Here
the matrix H is even sparser than in the general NMF [17]. The features learnt by the
matrix W would be more holistic against those in NMF. As an example, In facial feature
extraction, NMF is able to learn parts of faces from a given dataset , whereas the features
extracted by NBMF are closer to a complete face [17].

BLLS can be used in order to solve the NBMF variant by using the alternating least
squares method [37].
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Algorithm 1 Alternating least squares for NBMF (pseudocode)

1: procedure MAIN(V ) . V is the matrix to be factorized
2: Randomly initialize the matrix H ∈ {0, 1}r×n
3: while not converged do
4: for row i from 1 to m do
5: (Wi)

T ← arg minWT
i
‖V T

i −HT (Wi)
T ‖2 such that W ∈ Rm×r

≥0

6: end for
7: for column j from 1 to n do
8: Hj ← arg minHj

‖Vj −WHj‖2 such that H ∈ {0, 1}r×n
9: end for

10: end while
11: return W ,H
12: end procedure

In Algorithm 1, line 5 is solved classically since efficient algorithms exist for it [38], it’s
line 8 that is solved using BLLS (where QAOA would be applied).

In the past, quantum annealing was used as a subroutine within this algorithm to solve
NBMF and other NMF related problems [17, 18]. Based on our work with this paper,
QAOA can be an alternative to quantum annealing for NBMF, which can be explored in
the future.

2.1.3 Quadratic Unconstrained Binary Optimization (QUBO)

The QUBO objective function is as follows,

F (q) =
∑
a

vaqa +
∑
a<b

wabqaqb (2)

where qa ∈ {0, 1}, va and wab are real coefficients for the linear and quadratic parts of
the function respectively. The QUBO objective function is NP-hard in nature [39]. One
salient feature of this objective function is that many application domain problems map
naturally to QUBO [17, 18, 27, 40, 41]. In the process of applying BLLS to gate model
quantum devices, we use the QUBO formulation as an intermediate stage of expressing
the problem.

2.1.4 The Quantum Approximate Optimization Algorithm (QAOA)

In 2014 Farhi et al. proposed an algorithm that uses both quantum and classical com-
putation for solving optimization problems [4]. The potential advantage of using this
algorithm is that it can be implemented by using low depth quantum circuits [42], making
it suitable for NISQ devices. We here briefly summarize the QAOA formalism applied to
binary optimization problems. For the required preliminaries of quantum computing, the
authors recommend the textbook by Nielsen and Chuang [1].

One popular method of encoding an optimization problem to be solved using QAOA,
is to first formulate the problem as an Ising Objective function.

F (σ) =
∑
a

haσa +
∑
a<b

Jabσaσb (3)

where σa = 2qa − 1 (4)

Here σa ∈ {−1, 1}, h and J are coefficients associated with individual and coupled binary
variables respectively. The Ising model is a popular statistical mechanics model, associated
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Algorithm 2 Quantum Approximate Optimization Algorithm for minimization (pseu-
docode )

1: procedure MAIN(B̂, Ĉ, p) . The main routine of the algorithm
2: β ← {∅}, γ ← {∅}, expt val← ∅, best res← ∅
3: Pick at random β ∈ [0, π]p, γ ∈ [0, 2π]p

4: while (β, γ) can be further optimized, or a limit is reached do
5: Initialize res set← {∅}
6: for a fixed number of shots do
7: res set← res set ∪ QAOA(B̂, Ĉ, β, γ, p)
8: end for
9: From res set, calculate the expectation value and store in expt val

10: Based on the expt val, pick new 2p angles (β, γ) by classical optimization
11: end while
12: From the final res set, set the result with lowest energy, best res← min(res set)
13: return best res
14: end procedure
15: procedure QAOA(B̂, Ĉ, β, γ, t)
16: Initialize n qubits, |ψ〉 ← |0〉⊗n
17: Apply Hadamard transform, |ψ〉 = 1/

√
2n(|0〉+ |1〉)⊗n

18: j ← 1
19: while j ≤ t do

20: |ψ〉 ← e−iγjĈ |ψ〉
21: |ψ〉 ← e−iβjB̂ |ψ〉
22: j ← j + 1
23: end while
24: Measure |ψ〉 in standard basis and store in a classical register o
25: return o
26: end procedure

primarily with ferromagnetism [43]. Because it has been shown to be NP-Complete in
nature [44, 45], the objective function associated with it can be used to represent hard
problems [46]. It is important to note here that we still don’t know if quantum computing
can help solve NP-Complete problems efficiently [47]. Our hope for quantum algorithms,
at the very least, is to be able to compete with classical heuristics when it comes to certain
classes of hard problems.

The problem then would be to maximize or minimize Eqn(3), depending on how it is
set up. The (classical) Ising Hamiltonian, which naturally maps the Ising objective Eqn(3)
to qubits, can be expressed as:

Ĉ =
∑
a

haσ̂
(z)
a +

∑
a<b

Jabσ̂
(z)
a σ̂

(z)
b (5)

where σ̂(z)
a = (⊗a−1

i=1 Î)⊗ (σ̂(z))⊗ (⊗ni=a+1Î) (6)

and σ̂(z) =

(
1 0
0 −1

)
(7)

Here, indices a, b, i label the qubits, n is the total number of qubits, σ̂(z) is the Pauli Z
operator and I is the identity operator. The other type of Hamiltonian in the QAOA
process is a summation of individual Pauli X operators for each qubit involved in the

6



SciPost Physics Submission

process, which intuitively represents a transverse field in the Ising model:

B̂ =
∑
a

σ̂(x)
a (8)

where σ̂(x)
a = (⊗a−1

i=1 Î)⊗ (σ̂(x))⊗ (⊗ni=a+1Î) (9)

and σ̂(x) =

(
0 1
1 0

)
(10)

In QAOA, the qubits are first put in a uniform superposition over the computational basis
states by applying a Hadamard gate, which maps |0〉 → (|0〉 + |1〉)/

√
2, on every qubit.

Then, the Hamiltonian pair Ĉ and B̂ is applied p number of times using a set of angles γ
and β, where, for 1 ≤ l ≤ p, each γl ∈ [0, 2π] and βl ∈ [0, π] 1 [4]. The expectation value
of the Hamiltonian Ĉ with respect to the resultant state |ψ(γ, β)〉 is calculated as

C(γ, β) = 〈ψ(γ, β)| Ĉ |ψ(γ, β)〉 (11)

A classical black-box optimizer then uses the expectation value as its input and suggests
new γ and β sets (of length p each). The hope is that as the number of qubits (more
specifically, variables) n involved in the optimization increases, if for circuit depth p� n
we are able to efficiently sample the best solution, we would have an advantage in using
QAOA over classical methods. Although Algorithm 2 is a summary of the QAOA method,
we recommend readers the original paper [4] for further details.

2.1.5 Implicit filtering optimization

As mentioned before, QAOA requires us to give it the sets of angles γ and β in order to
manipulate the state of the quantum system. The most common way to do this is to use
classical black-box optimization techniques that do not need the derivative information
of the problem [9, 48, 49]. Since the expectation value C(γ, β) of the objective function
cost (or energy) would be approximate in nature, we need an optimization technique that
can handle noisy data. The technique of our choice for this work is the Implicit Filtering
algorithm [34].

In essence, Implicit Filtering or ImFil is a derivative-free, bounded black-box optimiza-
tion technique that accommodates noise when it tries to suggest the best parameters to
minimize the objective function. Various other techniques for noisy optimization exist,
such as Bayesian Optimization [50], COMPASS [51], SPSA [52], etc. However, we found
Implicit Filtering the best for our current efforts. For further details, we recommend the
book by C.T Kelly on the topic [34].

2.2 Related work

One of the first applications of quantum computing for solving problems in the field of
linear algebra is the HHL algorithm for solving a system of linear equations [53]. This
was followed by works for solving linear least squares [54], preconditioned system of linear
equations [55], recommendation systems [56] and many others [57–60]. Although the
classical counterparts of the above mentioned algorithms run in polynomial time, the
quantum algorithms mentioned above run in the polylog time complexity (provided the
problem is well conditioned).

However, there are some caveats with such kind of algorithms [61]. Among the many
caveats, we’d like to emphasize on the two that affect the practicality of their utility in the

1this is true as long as all possible variable combinations have obj. function costs that are ≥ 1 in
magnitude
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near future. Firstly, they require fault tolerant quantum computers whereas, at the time
of writing this paper, we have just entered the NISQ era [5]. Secondly, for the algorithms
focused on linear system of equations [53, 55, 57] and least squares [54, 58], the output
data is encoded as a normalized vector of a quantum state |x〉 (which means that the
probability amplitudes of the basis states encode the data). This means that we need an
efficient method to prepare the input data as a quantum state [61–64]; and the output will
be a quantum state as well, which means it wouldn’t be available for us in the classical
world directly by performing measurement in the standard computational basis. This can
be mitigated by either measuring the final state in a basis of our choice if our goal is to
know some statistical information about x [53,65] or learning certain values in x (though
that will eliminate the exponential speedup [61]).

With respect to quantum annealing, O’Malley and Vesselinov’s paper in 2016 [27]
was one of the first that proposed to solve linear least squares. Other works in this
domain were for solving specific NMF problems [17–19], polynomial system of equations
[28], underdetermined binary linear systems [66] and polynomial least squares [30]. It’s
hard to speculate about speedups analytically with (i) D-wave’s noisy implementation
of quantum annealing [67] and (ii) the problem of exponential gap-closing between the
problem Hamiltonian’s ground state and its excited states [68]. In the work by O’Malley
and Vesselinov [17], they used a time to target benchmark in which classical solvers (Tabu
search [69] and Gurobi [70] in their comparison) have to match or find better solutions
than the ones returned by quantum annealing (not necessarily the optimal solution) in
the same amount of time. The D-wave quantum annealer was able to beat those classical
solvers for the benchmark, but the authors also mention that a combination of the two
classical techniques would probably perform better than the D-wave by compensating
for each other’s shortcomings. The other important result in subsequent papers [18, 19]
was to show that combining reverse and forward annealing improved results over just
using forward annealing for most cases. Golden and O’Malley saw an improvement of
12% over forward annealing [19], but that came at the price of having at least 7 reverse
annealing runs per QUBO (which was reported to have the quantum runtime of 29 forward
anneals). It is important to note that certain quantum inspired algorithms may perform
just as well or better than quantum annealers for such highly dense problems in terms
of variable interactions [71]. The above mentioned quantum annealing techniques use the
classical Ising model’s diagonal Hamiltonian for problem formulation. This means that
measuring the post annealing quantum state in computational basis gives us a bitstring
which directly encodes the vector x (which we hope to be the best solution to Eqn(1)) ,
unlike a lot of gate-model algorithms like the ones mentioned above [53–55, 57, 58] that
encode the normalized solution vector in the amplitudes of |x〉. The exception to this
rule is the work by An and Lin, where they explore using adiabatic quantum computing,
not based on the Ising model, to produce amplitude encoded results for linear system of
equations [72].

NISQ-compatible algorithms for efficiently solving linear algebra problems are highly
desirable as of the time of writing this paper. The work by Chen et. al [73] proposes a
hybrid algorithm that uses quantum random walks for solving a particular type of linear
system, producing a classical result in O(n log n). However, the closest related works to
ours are the recent papers that employ variational algorithms [72, 74–76]. The major
difference however, is that, in those papers : i) The output is encoded as the vector of
probability amplitudes of the quantum state |x〉 and ii) The problems explored thus far
are convex in nature and solved in polynomial time classically.

We in this paper implement QAOA on similar problems which were implemented on
D-wave’s quantum annealer previously, and therefore briefly mention a comparison here.
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The standard QAOA circuit strategy can be seen as similar to a bang-bang quantum
annealing schedule, where cost and driver Hamiltonians are alternated. The Quantum
Alternating Operator Ansatz extends this with more general operators [77] than available
to Ising Hamiltonian annealers. Furthermore, QAOA is a gate-based quantum computa-
tional algorithm, a type of framework which promises universal programmability in terms
of mapping an arbitrary problem graph to a qubit layout, even if the latter is not all-to-all
connected. Conversely, in quantum annealing architectures mapping the logical problem
qubits to a graph of physical hardware qubits can be a significant challenge in the gen-
eral case [78]. Our work is certainly not the first in applying QAOA to various relevant
computational problems, and we refer the reader to a small list of examples [79–81]; in
this work, we make an attempt to highlight some of the salient features and challenges of
QAOA in the context of problems applicable to linear algebra and numerical analysis.

3 QAOA for BLLS

Before we go deeper, we here set the context of how QAOA will be used in this work.
Rather than treating QAOA as an approximation algorithm with theoretical guarantees
for the quality of solution obtained, it is used as a heuristic supported by empirical results.

3.1 Problem formulation

O’Malley and Vesselinov first gave a QUBO formulation for the BLLS problem [27]. The
details of how that is done is in Appendix A. Referring back to Eqn(1), if A ∈ Rm×n,
b ∈ Rm and x ∈ {0, 1}n, we can refine Eqn(2) to be

F (x) =
∑
j

vjxj +
∑
j<k

wjkxjxk (12)

where vj =
∑
i

Aij(Aij − 2bi) (13)

and wjk = 2
∑
i

AijAik (14)

Which means that the number of qubits depends only upon the size of the column vector
x. All the rows in Matrix A and vector b are preprocessed classically in order to produce
the coefficients of the QUBO problem.

By the equivalence stated in Eqn(4), we can then convert the problem into an Ising
objective function (plus an offset value, irrelevant for optimization)

F (σ) =
∑
j

hjσj +
∑
j<k

Jjkσjσk + offset (15)

where σj = 2xj − 1 (16)

3.2 Mapping to quantum gates

Using the h,J coefficients from Eqn(15) along with the mapping to a quantum Ising
Hamiltonian given in Eqn(6) we get:

Ĉ =
∑
j

hj σ̂
(z)
j +

∑
j<k

Jjkσ̂
(z)
j σ̂

(z)
k (17)
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Because the individual components of Eqn(17) commute, we can express the Hamiltonian
simulation of Ĉ with an angle γl as follows

e−iγlĈ =
∏
j

e(−ihjγl)σ̂
(z)
j

∏
j<k

e(−iJjkγl)σ̂
(z)
j σ̂

(z)
k (18)

Similarly, the exponential of hamiltonian B can be broken down as

e−iβlB̂ =
∏
j

e(−iβl)σ̂
(x)
j (19)

In order to realize Eqn(18) and Eqn(19), we use the following gates

Rx(ω) = e−i
ω
2
σ̂(x)

=

(
cosω/2 −i sinω/2
−i sinω/2 cosω/2

)
(20)

Rz(ω) = e−i
ω
2
σ̂(z)

=

(
e−iω/2 0

0 eiω/2

)
(21)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (22)

While Eqn(20) is the only gate needed to realize Eqn(19), Eqn (21) alone can merely
help with the single qubit components of Eqn(18). For the components that require two
qubit interaction, the following gate combination (expressed diagrammatically) is used as
a template

e(−iJ1,2γl)σ̂
(z)
1 σ̂

(z)
2 = • •

Rz(2γlJ1,2)

(23)

While Eqn(23) shows the ZZ interactions for adjacent qubits, this strategy can be gener-
alized to any pair of qubits in the system. Appendix B provides an example of a QAOA
circuit for BLLS.

3.2.1 For IBM Q specific gates

Our experiments were done on IBM Q devices (ibmq london and ibmq athens) available to
us through the IBM Q Network. The former has the following basis gates {U1, U2, U3,CNOT, I}
and the latter has {CX, ID,RZ, SX,X}. Although most of these gates are defined and
established in the literature well [1], we need to elaborate more on U1, U2 and U3 as they
are IBM Q specific gates.

U1(λ) =

(
1 0
0 eiλ

)
(24)

U2(λ, φ) =

(
1/
√

2 −eiλ/
√

2

eiφ/
√

2 ei(λ+φ)/
√

2

)
(25)

U3(θ, φ, λ) =

(
cos θ/2 −eiλ sin θ/2

eiφ sin θ/2 ei(λ+φ) cos θ/2

)
(26)

10
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We can implement Eqn(20) and Eqn(21) [82] as

Rx(ω) = U3(ω,−π
2
,
π

2
) (27)

Rz(ω) = U3(π, 0, π)U1(−ω
2

)U3(π, 0, π)U1(
ω

2
) (28)

Another practical consideration to be taken is the qubit connectivity of a real quantum
computer. As the number of qubits increase, it is safe to assume that full connectivity
between physical qubits is not feasible to engineer. This means that for distant-qubits to
interact with each other, we would need logical qubit replacement using SWAP operations.
Appendix C elaborates on this with a demonstration with IBM Q gates.

3.3 Experimental methods

The dataset used in our experiments was randomly generated (seeded for reproducibility)
consisting of A ∈ R40×n, b ∈ R40 and x ∈ {0, 1}n where n ∈ {3, 4, 5, 9, 10} is the size of the
problem. Due to the exponential nature of simulating quantum computation on classical
hardware and the limited resources in our hands, we decided to limit our problem sizes
to 10 qubits. Instead of allocating computational resources to even larger qubit numbers,
we focus on: i) increasing the number of problem instances we average over, ii) comparing
exact wavefunction versus bitstring-sampling experiments, iii) comparing QAOA perfor-
mance (waveform) with Simulated Annealing and random sampling. All values for A in
the dataset are generated by uniformly sampling floating point approximations of real
values in the interval [−1.0, 1.0), and then rounding the values to 3 decimal places. For
each value of n, we generate 100 test cases with 40 cases in which Ax∗ = b, where the best
solution x∗ is sampled randomly and b← Ax∗. The other 60 cases have Ax∗ 6= b, where b
is generated similarly to A and the best solution x∗ is found by going through all 2n pos-
sible values for x. This is done to cover both scenarios of the least squares problem. The
matrix A is a sparse matrix having density of 0.2, this was done because sparse matrices
have a lot of applications in numerical computation and machine learning [83–85].

We use the QISKIT [86] SDK to write our own implementation of the QAOA algo-
rithm. As mentioned before, ImFil [34] is our black-box optimizer of choice. The only
parameter of ImFil we choose to control here is the budget, which governs the maximum
iteration limit. The rest of the ImFil parameters for our experiments use their default
values. Similarly, unless explicitly stated, all qiskit parameters values taken are default as
well. In the later sections, the term Quantum Virtual Machine (QVM) is used to denote
classical simulators broadly (unless specified to be of a particular kind). Similarly, the
term Quantum Processing Unit (QPU) is used to denote a quantum device. All classical
simulations were conducted on standard x86-64 based laptops. Following is a list of the
main experiments we conducted, with a few slightly-modified ones described later on in
the results section as applicable.

3.3.1 Experiments with no noise

Our first set of experiments on the dataset were done on a simulator with the statevector
QVM, giving us the exact waveform. This means that we are able to compute the exact
expectation value C(γ, β) for the set of angles γ and β. These experiments help assess the
performance of QAOA in a perfectly noiseless environment for a large dataset.

The above set of experiments were done for p =1, 2 and 3 with random starting
points: 20 for p =1, 40 for 2 and 60 for 3 (seeded for reproducibility). Our preliminary
study suggested a budget of 200 iterations for p = 1, 2 and 400 iterations for p = 3
respectively. This ensured that at least 70% of our tests converged within the budget
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while being computationally feasible. At the end of the process, for each problem, the
best result from all the starting points is chosen and recorded.

3.3.2 Experiments to compare no noise and shot-noise performance

For our next set of experiments, we use measurement based results on the simulator.
Each circuit is run a number of times, specified by the ‘shots’ parameter. This means
that the expectation value we get for a given γ and β is approximate in nature. Thus,
while quantum circuit simulation itself is noiseless and deterministic in producing the same
wavefunction before taking each shot, a finite number of shots is sampled from the resulting
wavefunction output probability distribution, introducing a stochastic component. In a
real quantum device, one is always limited to this finite tomography, as one has no direct
access to the qubit register’s quantum wavefunction.

Since in a real quantum device, we do not have access to the qubit register’s waveform,
simulations with shot-noise are important to conduct. Each experiment was done 10 times
per shot value. The shot values chosen for these experiments are in the set {2i|n − 2 ≤
i ≤ n+ 2, i ∈ Z}. We chose this range in order to observe the performance in the limit of
perfectly reproducing the wavefunction.

Also, the problem instances chosen for this set of experiments are a random subset
of the original dataset. For each problem size n ∈ {3, 4, 5, 9, 10}, we randomly choose 5
problems of the 100 problems (while maintaining the 2 : 3 ratio of the problems by their
type). This is done because doing the shot-noise experiments on the original dataset would
be computationally infeasible for the limited computational resources at our disposal, since
each shot-noise experiment is at least 50 times slower than its statevector counterpart.

The parameters of these experiments have also been modified accordingly. They were
done for p =1, 2 and 3, for a budget of 200 iterations with random starting points: 5 for
p =1, 10 for 2 and 15 for 3 (seeded for reproducibility), with the best result being chosen
and recorded. For fair comparison, this subset of problem instances was also run with the
statevector QVM for the same parameters.

3.3.3 Experiments on an IBM Q device

Based on the results of the first two sets of experiments, we design our experiments for the
5 qubit IBM Q devices ‘ibmq london’ and ‘ibmq athens’ . In a real device like this one,
the qubits face decoherence issues, coherent gate errors, control errors, incoherent gate
errors, leakage, cross-talk, readout noise and more. The first set of IBM Q experiments
was to run QAOA for problems with n =5, for parameters p =1, budget of 200 iterations
and a shot value of 1024. The reason for choosing these parameters for QAOA is to take
into account the gate depth limitation and noisy computation, thus choosing the minimal
number of qubits while still covering a non-trivial problem graph structure, which can still
be easily verified with classical methods at this size. The next set of experiments was to
take the γ and β from the results of the statevector experiments done in Section 3.3.2
(where n = 5) and to try and recreate the distribution and expectation values using the
quantum computer.

3.4 Results

Two metrics we use here to quantify the performance of QAOA in the simulations are (i)
the probability of sampling the best possible solution (or the ground state of Hamiltonian
Ĉ) and (ii) the relative error εr of the expectation value C(γ, β) (from Eqn(11)) with
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respect to the ground state energy Egs. We define εr as

εr =

∣∣∣∣C(γ, β)− Egs
Egs

∣∣∣∣ (29)

We note that εr is zero when the expectation value is exactly equal to the groundstate
energy, and can grow beyond 1 depending on the spectral width as compared to the
groundstate cost.
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Figure 1: One instance of convergence behaviour for the QAOA optimization routines run
on an exact statevector simulator, shot-noise simulator with 25 = 32 shots, and two 5-qubit
IBM Q processors : ibmq london (QPU 1) and ibmq athens (QPU 2) with 210 = 1024
shots each. The problem in question has 5 binary variables mapped to 5 qubits and is done
for a QAOA depth of p = 1. All C(γ, β) values dealing with shot-noise (QVM and QPU)
are approximate in nature. For comparison, we include the exact ground state energy.
The data in the figure is a result of the experiments described in Sections 3.3.2 and 3.3.3.

3.4.1 Optimization trajectory for QAOA

In Figure 1, we see an example of how QAOA with ImFil performs on a BLLS problem. As
the iterations progress, the fluctuations in the energy expectation value also reduces. This
happens either till the black box optimizer converges to a solution (depending on default
internal parameters in our case) or the iterations have reached the maximum threshold
(governed by the budget). Here the experiments done with the statevector QVM, which
has access to the exact energy expectation value, sets the baseline for the other modes
of experiments. One interesting thing you will see is that the statevector QVM can not
always converge to the ground state energy Egs. This is because the results are computed
for QAOA depth p = 1. For low circuit depth p, no guarantees are known to converge
to the exact groundstate. As an upper bound, Farhi’s theorem [4] states that C(γ, β)
can reach Egs as p → ∞, in the general case, assuming the optimal circuit angles are
known. While our simulations containing shot-noise due to measurement do relatively
well against statevector results, the experiments on a real quantum device are mixed. At
the time of writing, the IBM Q devices we tested on did not approximate the theoretically-
optimal QAOA result distribution very well, but it still finds the best solution every time.
This means they failed to converge using expectation values C(γ, β) they produced, but
randomly happened to sample the ground state during the process. We have discussed
this further in Section 3.4.7 and have included the results for reference.
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Figure 2: Comparison of converged final relative error εr (median), for p ∈ {1, 2, 3}, as a
function of problem size n ∈ {3, 4, 5, 9, 10}. Simulations performed with access to the exact
wave form (statevector QVM) done on 100 problem instances per n with an optimization
budget of 200 iterations for p ∈ {1, 2} and 400 iterations for p = 3. The dashed curves in
the plot are fitted to the experimental data. The information presented in this figure is
the output of experiments described in Section 3.3.1.

3.4.2 QAOA results with no noise

Before we study the results of QAOA for BLLS with shot-noise, it is important to evaluate
the theoretical performance of the same without any noise at all. Figure 2 shows the
relative error growth with respect to the problem size n for the experiments described
in Section 3.3.1. We use Median as measure of central tendency and Median Absolute
Deviation (MAD) for our error bars. Simulations larger than p = 3 take a lot more time
for the complete dataset and were computationally infeasible for this project.

Using the information from the medians calculated, we attempt to fit curves for dif-
ferent values of p. Based on the curve fit, we find that the growth in εr to be polynomial
in nature (as described by εr = a× nb, where a and b are coefficients, see Appendix E for
details). This polynomial growth may be partly attributed to some spin configurations
with energies close to the ground state. You can see that going from p = 1 to p = 2
decreases the relative error moderately. The difference in performance between p = 2 and
p = 3 is more modest, particularly for the larger problem sizes n. There may be room for
further improvement if we allow a larger simulation time budget, for example by tighten-
ing the classical optimizer’s convergence parameters and increasing the number of initial
starting points for the optimizer. Further rigorous experimentation would be required to
draw definite conclusions about the scaling based on such numerics.

3.4.3 No noise vs Shot-noise optimization

Figure 3 shows us how QAOA with ImFil performs for the parameters described in Section
3.3.2 for statevector and measurement based results for 2n+2 shots. We have 5 different
problem instances per n ∈ {3, 4, 5, 9, 10}. The reason for choosing 2n+2 shots for this
comparison was to try and see if the optimizer could replicate the statevector results given
plentiful shots. In subsequent figures, we’ll be showing the performance of the optimizer
with fewer number of shots.

We can see the similarities between the top and bottom plots in Figure 3. The main
difference however, seems to be the result and error bar overlap between the results of
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Figure 3: Comparison of converged final relative error (median), for p ∈ {1, 2, 3}, as a
function of problem size n ∈ {3, 4, 5, 9, 10}, done on 5 problem instances per n with a
budget of 200 iterations. (TOP) shows the results from the optimization having access to
the exact waveform (statevector simulator), while (BOTTOM) shows the results using a
shot-noise simulator with 2n+2 shots. For drawing the bottom plot, we use the best angles
found using shot-based optimization and used the statevector QVM for one more run at
those angles in order to compute the exact expectation value and corresponding relative
error. These results are from the experiments described in Section 3.3.2.

p =1 and 2. While the two lines are close to each other in the statevector results uptil
problem size of 9, the measurement-based results for the two parameters are extremely
close to each other (when considering median and MAD). This could be attributed to the
noise due to approximate results, or due to the small number of experiments we average
over, as detailed in Section 3.3.2.

Another effect of the smaller dataset here is that the relative error’s growth doesn’t
seem fully monotonic to the problem size, unlike in Section 3.4.2. However, it still shows
a general upward trajectory. Finding optimal parameters for p = 4 and upwards become
computationally infeasible due to the time required, even for the smaller dataset we worked
with in Figure 3. This can be attributed to the search space growing rapidly as p is
increased [4].
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3.4.4 Probability of sampling the ground state
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Figure 4: Comparison of success probabilities of sampling the ground state, for QAOA at
depths p = 1, 2, 3 , Simulated Annealing and random sampling. (TOP) shows the success
probability per-query and (BOTTOM) shows the cumulative success probability after 10
queries. The box plots indicate the nature of the experimental results (with medians
as triangles) while curves in the figure are fitted to them. The QAOA results are from
the statevector (no noise) experiments as described in Section 3.3.1 and the approach for
comparing it with Simulated Annealing and random sampling is described in Section 3.4.4.

We compare the probability of sampling the ground state of the BLLS problem (henceforth
also referred to as the success probability) for QAOA with two classical methods: random
sampling and Simulated Annealing. For the Simulated Annealing experiments, we chose 10
steps, an exponential decay schedule, and ran it on problem sizes n from 3 to 20 (with 100
problems per n). The choice of 10 steps was made in order to make a reasonable comparison
against our QAOA results, given the size of the problem and the QAOA depths considered.
For this problem size, Simulated Annealing is very cheap computationally on a classical
computer, as compared to simulating the quantum circuit with a classical computer. This
allows us to consider statistics of a larger number of random problems per n. See Appendix
E for further details.

The success probabilities for QAOA are calculated from the outputs of the statevector
experiments described in Section 3.3.1. More specifically, these would be the success
probabilities from sampling the optimized waveform |ψ(γ, β)〉.

While the success probability of uniform random sampling is easy to calculate per
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query as 1/2n, things are not as straightforward with Simulated Annealing. The main
reason being that Simulated Annealing requires k number of steps to arrive at a result.
Assigning k = 1 would be equivalent to random sampling, but by this logic, assigning
k > 1 would yield us a cumulative success probability for random sampling.

Thus, our proposed comparison method assumes an effective probability Peff which
is the success probability per query for Simulated Annealing. This Peff is not directly
observed, but calculated by extrapolation from Simulated Annealing run on k > 1 steps.
After k steps, the cumulative success probability would be:

cumulative success prob. = 1− (1− Peff)k (30)

Doing a curve fit modeled on Eqn(30) for the results of Simulated Annealing with k =
10 steps yields us the value of Peff which would be the effective success probability, for
Simulated Annealing, per query. Conversely, curve fits were done on the QAOA per query
success probabilities and were extrapolated to cumulative probabilities for 10 queries. This
can be conceptualized as the success probability of measuring the ground state at least
once from an optimized QAOA quantum state when prepared and measured 10 times. The
resulting information is plotted in Figure 4 along with the box plots from the experiments.
We refer the interested reader to Appendix E for the details.

As Figure 4 suggests, the success probability for all methods decrease exponentially
as the size of the problem increases. The comparison of QAOA with uniform random
sampling for BLLS corroborates with previous work done on applying QAOA to a different
problem [9]. Even with p =1, QAOA performs much better than uniform random sampling.
Simulated Annealing on BLLS however, yields a higher success probability than QAOA
at depth p = 3 when n > 8 (for 10 steps). This empirical result is supported by the
theoretical work on QAOA for MAXCUT [87] which indicates that there exists classes of
graphs for which quantum advantage is not possible for p < 6. Another work focusing on
numerical simulations on MAXCUT problems suggests any QAOA advantage would need
quantum computers to have in the order of hundreds of qubits at the very least [88]. That
being said, while our result is interesting, it is not conclusive on its own. As future work,
we recommend testing on larger problems, for higher p and different simulated annealing
steps and schedules.

It is one thing to calculate probability, it is another to sample the best solution (or
ground state) from a quantum state after QAOA. Figure 5 displays the number of exper-
imental instances where we sample the ground state, at least once, for a particular set
of parameters, across various problem sizes and instances (for shot-noise experiments in
Section 3.3.2). We contrast this with the analytical results of getting the ground state by
uniform random sampling. Here, we see that for optimization done with upto 2n shots,
QAOA has a clear advantage over random sampling. This can be explained by the mech-
anism of QAOA, which selectively amplifies those bitstring sampling probabilities which
have the lowest energy, while suppressing those with higher energy. In this way, the success
probabilities may be greatly enhanced over the naive random sampling from the uniform
probability distribution.

3.4.5 Effect of noise on expectation value

While Figure 1 indicates to us that the current generation of devices are unable to do the
entire variational optimization procedure for this problem very effectively, studying the
effects of noise on approximating C(γ, β) for a particular set of angles gives us information
that may be useful for future research and development. Here, we investigate the impact
of noise by approximating a problem’s expectation value on a noiseless waveform simulator
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Figure 5: In this bar graph, we collect the number of experiment instances in which we
observe the exact ground state bitstring, at least once (on the Y axis) for n ∈ {3, 4, 5, 9, 10}.
Each n has 5 problem instances, which is repeated 10 times for a given shot value. We
compare the QAOA shot-noise simulator experiments (color-coded with the number of
binary variables, n), with the results one would expect randomly sampling from a uniform
distribution shots times (black bars, labeled with rand, x-axis positioning corresponding
to its colour-labeled partner). The QAOA data in this figure comes from sampling the
circuit with optimized angle sets γ∗ and β∗, after acquiring them by optimizing for a
QAOA depth of p = 3 and a budget of 200 iterations, as described in Section 3.3.2.

(statevector QVM), a quantum device (QPU), and a range of increasingly noisy simulations
in between the two.

In order to do this, we first need a template for the noise model that we can use to
make QVMs (for noisy classical simulations). What IBM Q allows through Qiskit [86] is
to produce a simplified approximate noise model based on the properties of a real QPU
(ibmq athens in our case). We take this extracted noise model as our template and
scale each of the quantum and readout errors down in powers of two (upto 2−7 for our
experiment). Then, from our problem set of 5 variables, we randomly choose 30 problems
where the ground state bitstrings do not have all zeros or ones in them. The reason being
that all-zeros or all-ones bitstrings might be comparatively easier to sample from a QAOA
circuit. For our selected problems, we take the (γ, β) pairs responsible for producing the
best C(γ, β) in their noiseless waveform simulations (circuit depth of p = 1), and use them
with the various scaled noise models and the device to approximate the expectation value.
In order to reduce the effect of shot noise, we calculated the expectation value with 8192
shots. Since actual devices are limited by qubit connectivity, this also needs to factor in
our noisy simulations as it increases the gate operations and the overall circuit depth (see
Section 3.2.1 and Appendix C). This information about how physical qubits are connected
is referred to as a coupling map of a device. For our experiment, all noisy simulations
were done either assuming all-to-all connectivity, or with the device limited-coupling map
restriction.

Figure 6 plots the relative errors of C(γ, β) (with respect to the problem ground state)
for the noiseless waveform, quantum device and noisy simulation expectation values that
interpolate between the two. Though our approximation of the device noise model often
does not mimic the exact effect of the device noise on expectation values, for the scope
of this work, it serves its purpose well since the true device result and the unscaled noise
model results are not wildly divergent. From the figure, we see that for this type of a
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Figure 6: (TOP) Comparison of relative error εr with respect to the scaled noise model
simulations for a typical 5 qubit problem instance (log scale). Noiseless waveform simu-
lation as well as QPU results are also plotted for reference. (BOTTOM) Relative error
factor εr/ε

0
r with respect to the scaled noise model simulations (log scale). Here, ε0

r refers
to the relative error observed in the case of the noiseless wavefunction simulator and εr/ε

0
r

measures εr as a factor of ε0
r . Values plotted on the y axis are medians (error bars are

in Median Absolution Deviations) calculated from the values of the 30 selected 5 qubit
problems. The QPU result in the bottom plot has a MAD of 1.04. Both plots are made
with results from a QAOA depth of p = 1, for device-limited coupling map restrictions
(QPU conn.) and all-to-all connectivity (ideal conn.).

problem (and parameters), the relative error in C(γ, β) that we observe while using the
device is ≈ 2.5 times the relative error of waveform simulations, statistically speaking. An
in-depth study on the effect of various noise types would be required to make a definite
statement on the effect of noise on QAOA (as it relates to this problem).

Another observation we can make is the how an ideal coupling map, where every qubit
is connected to every other qubit, gives us significantly better results than the device’s
qubit map , for the very same noise model. This is mainly due to the additional SWAP
gates needed for each qubit to interact with all the other qubits for the latter.
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3.4.6 Effect of shot number on optimization
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Figure 7: Relative error of the optimized QAOA output distribution (y-axis), as a function
of number of shots (x-axis), for a problem instance of the n = 5 case. Circles indicate
median, and we plot the error-bars (using MAD) when approximating the expectation
value with a finite number of shots. QVM:shot-noise refers to the values after the shot-noise
optimization and QVM:exact denotes the relative error found after noiseless statevector
optimization and is ≈ 0.2. The QAOA depth for all values in the plot is p = 1. Data
represented in the figure is an output of an experiment done in Section 3.3.2.

For QAOA to become practical, the shot number chosen for the computation has to be far
less than the number of eigenstates for our cost Hamiltonian (2n for our case). For this
work, we chose not to randomly guess a shot number value but rather get an understanding
of the optimization performance for a set of shot numbers in {2i|n− 2 ≤ i ≤ n+ 2, i ∈ Z}.
We hope this helps all future research work in finding better estimates for the least amount
of shots required for QAOA, especially for these type of applications. In Figure 7 we see
the optimization result for a problem instance where n = 5. The shot optimization is
compared with noiseless statevector optimization. Here it is important to point that we
optimized using the stochastic blackbox (using a given shot number) and then calculate
the exact expectation value using the wavefunction (i.e, with the statevector QVM) in
order to assess the true value of relative error. For the most part, our experiments show
that as the problem size increases, we see the optimizer do well even with 2n−2 shots.
This seems to indicate that the number of shots required to get a good optimization may
not be exponential in terms of the problem size, or at least with a smaller exponent than
applying random sampling from a uniform distribution. Further research is needed.

3.4.7 IBM Q device performance

We briefly mentioned our results on the quantum processors in Section 3.4.1. The good
news is that the IBM Q devices were always able to find the best solution for our opti-
mization experiments. But that came at the price of taking 1024 shots for each QAOA
iteration, which is relatively expensive for a problem size of 5 qubits. When we lowered
the shot number, the optimal bitstring was not always sampled and the convergence de-
teriorated further. The immediate cause of why the optimization process on the device
was not close to the simulation results, is the inability of the device to approximate the
distribution of the measured bitstrings (for a given circuit).

20



SciPost Physics Submission

We shall use the Quantum Volume (QV) [89] measure for comparing the devices we ran
experiments on. In short, it is a scalar number which quantifies the largest square quantum
circuit (depth = width) that the QPU can successfully implement. When we consider a
pair of (γ, β) angles obtained after noiseless optimization; ibmq athens, a device with a
QV of 32, comes closer to the actual probability distribution compared to the distribution
produced by ibmq london with a QV of 16. For reference, we provide an example of this
in Appendix D for the readers. However, even the QPU with QV of 32 wasn’t able to
efficiently do its part in the variational procedure. And while this result is not surprising for
QAOA on the current generation of cloud accessible quantum computing devices [90–93],
it is important to emphasize on it particularly for readers from other domains who may
be interested in QAOA for their own applications.

It is important to take into account the entire context here. Firstly, the problem graph
of our use case is fully connected. Due to the sparse connectivity of the on-chip qubits in
the device, logical qubits have to be swapped around a number of times for them to be
able to entangle with each other (for the ZZ interactions of our problem). This makes
the median gate depth for the final (transpiled) circuits to be about 42 for ibm london

(t-shaped coupling map) and 38 for ibm athens (linear coupling map) . Since two qubit
gate fidelity is still low (at the time of writing), the error propagates across the circuit.
Secondly, due to the large circuit depth on the real device, we need to take decoherence
into account. Thirdly, readout-errors were not considered here and they have significant
impact on the noise in the qubit measurement results. It should also be emphasized that
in this work, we primarily focused on how to model the BLLS problem using QAOA.
Thus, the experiments on the real devices were done “as is”, in order to demonstrate the
near-term implementability, without any error mitigation [94]. This could be looked at
for future work.

3.5 Discussion

We can see the various possibilities and potential advantages QAOA may provide in solving
BLLS and similar problems. However, there are challenges that need to be addressed.
These are both theoretical and practical in nature.

One theoretical challenge is the proper pre-processing of the problem Hamiltonian by
scaling and shifting the coefficients of the objective function, such that we optimally make
use of the parameter space βl ∈ [0, π], γl ∈ [0, 2π] (most of the problems in the dataset did
not suffer from this issue, as we found the default scaling to work well already). However,
scaling the problem way beyond necessity also creates issues as the energy landscape is
periodic in nature [4]. Thus, one possible way is to use scaling as a heuristic within the
QAOA process, and treat it as a hyperparameter to optimize over.

Another challenge, which is both theoretical and practical in nature, is the full con-
nectivity in our problem and in most hard optimization problems in general [95]. Com-
putationally non-trivial problems typically require a high degree of graph connectivity
(for instance, planar graphs are easy to solve classically [96]). Simultaneously, a high
connectivity poses a challenge in quantum chip implementation because not all gatesets
implement non-nearest neighbour interactions natively. Those need then be implemented
effectively by means of a swap network approach [93]. For future work, one option is to
modify the problem formulation by not considering the ZZ interactions of a pair of qubits,
if its coefficient’s magnitude falls below a user defined threshold. This can potentially
make it easier for QAOA to run, but its effectiveness in finding the ground state would
come under scrutiny. Nonetheless, it can make for interesting future work. Also, error mit-
igation techniques and readout error correction will also help in improving the results [93].
It would take a combination of the above mentioned approaches to improve performance
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on a real device.
Challenges aside, we observe the effects of noise on producing the expectation value for

a set of (γ, β) angles. Although we see that a device with QV of 32 is able to do a closer
approximation of the expectation value (for QAOA depth of p = 1) than a device with a
QV of 16, it is still not good enough for the variational optimization procedure. We also
see the potential of a better coupling map for significantly improving the results for the
very same noise model. Thus, the solution for improving the results for problems in this
application domain need not be considered in unidimensional terms (improving the noise
only or coupling only).

One of the next steps would be to explore if QAOA can be valuable in applications
that require BLLS as a subroutine, such as NBMF [17]. Another step can be to try the
BLLS problem on other types of quantum computers [9–13] to see how different hardware
implementations fare. Finally, from a practical standpoint, it may also be beneficial to ap-
ply a modified QAOA-like ansatz based on just nearest-neighbor connected CNOT gates,
along with a larger number of parameters [97, 98], or apply a SWAP-network QAOA ap-
proach [93]. This may potentially lead to faster convergence and better QPU performance
for architectures with limited connectivity.

4 Conclusion

In this work, we described the implementation of a binary optimization problem, rele-
vant to hard problems in linear algebra, on a gate-based quantum computer via a QAOA
approach suitable for NISQ devices. In our simulations, we show how Simulated Anneal-
ing with small number of steps can outperform QAOA for p ≤ 3 in terms of sampling the
ground state for BLLS type problems. We show that the ImFil optimizer backend performs
well under shot noise for this problem type. From our experiments on IBM Q cloud-based
quantum processors and simulations with noise models, we conclude that although ma-
chines with a Quantum Volume of 32 are starting to better approximate the noiseless
simulation results, it is still challenging to implement linear-depth, high-connectivity cir-
cuits on the latest hardware available when it comes to variational optimization for this
type of a problem. We expect a future experimental implementation would benefit greatly
from gate-error mitigation techniques and post-processing readout errors. It would fur-
thermore be very interesting to see what other hard problems in linear algebra may be
implemented using the QAOA ansatz and what their expected performance would be.
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A Detailed QUBO Formulation for Binary Linear Least Squares

In this section of the Appendix, we describe the method by which O’Malley and Vesselinov
[27] formulated the Binary Linear Least Squares (BLLS) problem. This QUBO formulation
will be converted into its equivalent Ising objective function and used in QAOA. Let us
begin by writing out Ax−b which would help us in minimizing x and thereby solve Eqn(1)

Ax− b =


A11 A12 ... A1n

A21 A22 ... A2n
...

...
...

...
Am1 Am2 ... Amn



x1

x2
...
xn

−

b1
b2
...
bm

 (31)

Ax− b =


A11x1 +A12x2 + ...+A1nxn − b1
A21x1 +A22x2 + ...+A2nxn − b2

...
Am1x1 +Am2x2 + ...+Amnxn − bm

 (32)

Taking the 2 norm square of the resultant vector of Eqn(32), we get

‖Ax− b‖22 =
m∑
i=1

(|Ai1x1 +Ai2x2 + ...+Ainxn − bi|)2 (33)

Because we are dealing with real numbers for A and b, (|.|)2 = (.)2

‖Ax− b‖22 =

m∑
i=1

(Ai1x1 +Ai2x2 + ...+Ainxn − bi)2 (34)

And thus, the coefficients in Eqn(2) are found by expanding Eqn(34), which gives us
Eqn(13) and Eqn(14). You will notice that there is a constant value from Eqn(34) that
we leave out of Eqn(13) and Eqn(14). Because this value is not a coefficient for any of
the variables, we can’t optimize over it and it’s left as is, which is ‖b‖22. Also, the ground
state energy (QUBO) for when ‖Ax∗ − b‖2 = 0 where x∗ is the best solution, is −‖b‖22.

B Example QAOA Circuit for BLLS

Let us consider a simple problem, without loss of generality, to demonstrate how quantum
circuits for BLLS can be designed. Consider the following problem, Find x ∈ {0, 1}3 such
that ‖Ax− b‖ is minimized, where

A =

 2 1 1
−1 1 −1
1 2 3

 (35)

and b =

3
0
3

 (36)

This particular problem is more appropriately categorized as a linear system of equations
(A ∈ Rn2

) and has a solution x∗ = (1, 1, 0)T , such that Ax∗ = b or ‖Ax∗ − b‖2 = 0.
However, our problem formulation does not change.
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In order to solve this problem using QAOA, we require 3 qubits. Using the formulation
process detailed in the Appendix A and Eqn(12), the QUBO formulation we get is

F (x) = −12x1 − 12x2 − 13x3 + 6x1x2 + 12x1x3 + 12x2x3 (37)

The constant value that didn’t make it to the QUBO here is ‖b‖22 = 18. Converting the
QUBO into Ising using Eqn(16), we get

F (σ) = −1.5σ1 − 1.5σ2 − 0.5σ3 + 1.5σ1σ2 + 3σ1σ3 + 3σ2σ3 (38)

The offset when going from QUBO to Ising is -11. Therefore, the Ising ground state for
this problem is −18− (−11) = −7. Now let us assume that we are designing a circuit for
QAOA where p = 1. So for a given pair of angles (β, γ) a circuit would look like the one
shown down below in Eqn(39).

The results of this circuit will be used to calculate the expectation value C(γ, β). Based
on the expectation value, a new pair of β and γ will be calculated using a classical black
box optimization algorithm (like ImFil). These new angles will be fed into another such
circuit till the optimization loop converges.

|0〉 H Rz(−3γ) • • • • Rx(2β)

|0〉 H Rz(−3γ) Rz(3γ) • • Rx(2β)

|0〉 H Rz(−γ) Rz(6γ) Rz(6γ) Rx(2β)

(39)

The results from Eqn (39) would be classical bitstrings when measured in the standard
basis. In order to calculate the energy or cost of a particular bitstring with respect to
the Ising Cost function Eqn(3), we would first need to substitute a 1 for each 0 and -1
for each 1 in the bitstring. In short, this is because σ̂(z) describes a quantum state to
have an energy of +1 for |0〉 and -1 for |1〉 (in arbitrary units). For our example, if we
measure a bitstring ξ to be {ξ1 = 0, ξ2 = 0, ξ3 = 1} the equivalent Ising set would be
{σ1 = 1, σ2 = 1, σ3 = −1}. Using Eqn(38), we get back an energy of -7. This way, we can
calculate C(γ, β) for diagonal Ĉ Hamiltonians by averaging the energies of all measured
bitstrings.

C Implementing Two-Qubit Interactions on a QPU

As mentioned in Section 3.2.1, most practical quantum computers would not have all to
all qubit connectivity. But if the problem that we need to solve on a quantum device
requires dense connectivity (such as the BLLS), we need SWAP gates for allowing distant
qubits to interact with one another. Let us first describe the SWAP gate in its matrix
form

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (40)
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Figure 8: A typical instance of QAOA-circuit optimized probability distributions of the
measured qubit bitstring output. We compare the result for IBM Q devices : ibmq london

(TOP) and ibmq athens (MID) versus the qiskit shot-based simulator (BOTTOM), for
the same problem instance for a total of 10240 shots. This figure represents data from an
experiment done in Section 3.3.3.

Diagrammatically, we can decompose it with CNOT gates as

SWAP
× • •

=

× •

(41)

To illustrate how this takes place, consider a hypothetical device where every qubit is only
connected to the adjacent qubit in a line. Thus in order to realize the gates described on
the LHS of Eqn(42), one way is to SWAP between the top and the middle qubit so that
it could interact with the bottom qubit.

• • • • • •
= • • • •

Rz(ω) U1(ω2 ) U3(π, 0, π) U1(−ω
2 ) U3(π, 0, π)

(42)

After our desired two-qubit interaction takes place, the top and middle qubits are
swapped again, returning the logical qubits to their original place. Of course, there are
other methods (involving SWAP) that the compiler may take to realize the original unitary
operations to be performed. In Eqn(42), we also show the decomposition of the Rz gate
as defined in Eqn(28).

D Probability Distribution of Running a QAOA Circuit for
BLLS on a Real QPU

Figure 8 shows an example of the distribution we get from running a QAOA circuit
with optimized (and fixed) β and γ angles. We run the circuit for a total of 10240
shots on a noiseless QVM (1024 shots over 10 queries to the QPU), the ibmq london and
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Table 1: Curve fit details for various QAOA depths from Figure 2 where the curve modeled
is of the type: a × nb for b = 0.85. All numerical values are rounded to a precision of 4
decimal places.

QAOA Depth Coeff. a Fit Error

p = 1 0.0419 0.0852

p = 2 0.0226 0.0911

p = 3 0.0187 0.1911

ibmq athens QPUs. The simulation suggests a few bitstrings with a high probability of
being measured (with the ground state having the highest) With ibmq athens we see the
QPU noise damping the highest probability strings, whereas the distribution from the
ibmq london quantum processor being more evenly spread out, with the ground state not
having a significantly high probability of being measured. This can be attributed partially
to ibmq athens has a Quantum Volume (QV) [89] of 32 as opposed to ibmq london’s QV
of 16. Other factors that may have made a difference are the coupling map of the devices,
and a shorter gate depth for the former.

E Curve fit and Simulated Annealing details

E.1 Curve fit

In this part, we describe the details about the curve fits that appear in Figure 2 and 4.
We found that for Figure 2, the polynomial curve of type a× nb for b = 0.85 fits the data
moderately well, Table 1 shows further information. We can see from Table 1, that the fit
error (a relative error value) doubles when we go from p = 2 to p = 3. However, when we
explored other values for the exponent, we discovered that b ≈ 1.26 reduces the fit error
of QAOA depth p = 3 the most to about 0.13, but increases the error fit of p = 1 and 2
to about 0.22 and 0.17 respectively. On the other end, a value of b ≈ 0.65 reduces the fit
error for p = 1 the most to about 0.04 but raises p = 2 and p = 3 to around 0.12 and 0.26
respectively. Thus the b = 0.85 value is a compromise that works the best for all QAOA
depths we consider in this paper. Further research on more problem sizes n may help to
fit better growth curves and get a more definitive value for the exponent b.

The per query and cumulative success probability curves for QAOA and Simulated
Annealing as seen in Figure 4 fits the curve type 1 − (1 − a/2bn)k well (which turns out
to be just a/2bn for k = 1). For Simulated Annealing, we fix a = 1 such that Peff → 1 as
n → 0, this is because a ≈ 0.63 when its value is calculated in the curve fitting process,
which prevents Peff being 1 at n = 0. The increase in error when a = 1 is negligible for
the Simulated Annealing curve. However, it is not so negligible in the case of QAOA, and
therefore we don’t fix the value of a to 1. This results in the per-query curves to go above
1 and cumulative curves to be less than 1 (after reaching 1) for n < 3. We consider this
to be a modeling artifact and fix the success probability to 1 for n < 3 for both cases.

E.2 Simulated Annealing Experiments

The Simulated Annealing results referenced in Section 3.4.4, Figure 4 and Table 2 were
conducted for BLLS problems of sizes 3 to 20. An initial and final temperature of T0 =
100 and Tf = 0.01 (in arbitrary units) were chosen respectively. We define and use a
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Table 2: Curve fit details for various QAOA depths from Figure 4 where the curve modeled
is of the type: 1 − (1 − a/2bn)k at k = 1 for QAOA and k = 10 for Simulated Annealing
(and extrapolated to k = 10 and k = 1 respectively for plotting purposes). All numerical
values are rounded to a precision of 4 decimal places.

Optimization Method Coeff. a Coeff. b Fit Error

QAOA, p = 1 1.5968 0.3967 0.0655

QAOA, p = 2 1.7127 0.3090 0.0247

QAOA, p = 3 1.8926 0.3013 0.0380

Sim. Anneal (1st attempt) 0.6359 0.1397 0.0217

Sim. Anneal (selected for plot) 1 0.1786 0.0312

exponential decay schedule with temperature at iteration i as

Ti = T0

(Tf
T0

)i/k
(43)

Each problem was run 1000 times with a set of randomization seeds for initialization of
the Monte Carlo process. Each Simulated Annealing run was done with k = 10 steps.
Our (cumulative) success probability is the count of all the runs where we end up with
the ground state divided by 1000.
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