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Abstract

The eigenstate thermalisation hypothesis (ETH) is a statistical characterisa-
tion of eigen-energies, eigenstates and matrix elements of local operators in
thermalising quantum systems. We develop an ETH-like ansatz of a partially
thermalising system composed of a spin-1

2 coupled to a finite quantum bath.
The spin-bath coupling is sufficiently weak that ETH does not apply, but suffi-
ciently strong that perturbation theory fails. We calculate (i) the distribution
of fidelity susceptibilities, which takes a broadly distributed form, (ii) the dis-
tribution of spin eigenstate entropies, which takes a bi-modal form, (iii) infinite
time memory of spin observables, (iv) the distribution of matrix elements of
local operators on the bath, which is non-Gaussian, and (v) the intermedi-
ate entropic enhancement of the bath, which interpolates smoothly between
zero and the ETH value of log 2. The enhancement is a consequence of rare
many-body resonances, and is asymptotically larger than the typical eigenstate
entanglement entropy. We verify these results numerically and discuss their
connections to the many-body localisation transition.

1 Introduction

The dynamics of a two-level quantum system coupled to a mesoscale thermal bath is a
canonical problem in physics [1–6]. Examples include solid-state qubits coupled to nuclear
spins [7–10], trapped ions coupled to phonon modes [11–13], superconducting qubits cou-
pled to magnetic defects [14–20], and many-body localised cold atoms coupled to ergodic
inclusions [21,22].

For infinite temperature random matrix baths, the relevant dimensionless parameter is
the reduced coupling g, [23–25]

g :=
Jρ0√
d

(random matrix bath). (1a)

Above J is the coupling strength between the two-level system (henceforth spin-1
2) and

the bath, and ρ0 and d are respectively the density of states at maximum entropy and the
Hilbert space dimension of the bath. The reduced coupling sets the scale of the first-order
(in J) correction to an eigenstate, and is given by the ratio of a typical off-diagonal matrix
element J/

√
d to the typical many-body energy level spacing in the bath 1/ρ0. For a bath

that satisfies the eigenstate thermalisation hypothesis (ETH), the same ratio is given by

g := J
√
ṽ(hS)ρ0 (ETH bath). (1b)
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Figure 1: a) Model : a spin-1
2 intermediately coupled to a many-body quantum bath. b) A

window of the spectrum: Energy levels in the two spin sectors σ =↑ / ↓ of the decoupled
Hamiltonian are denoted above/below the energy axis. Two levels strongly hybridise if
their energy separation is much smaller than the typical matrix element connecting them
(purple collar). Typical levels (blue) do not hybridise, while rare pairs strongly hybridise
and form cat states (red). c) Distribution of spin eigenstate entanglement entropies fEE:
fEE is bi-modal with a mode at S = 0 (S = log 2) due to the blue (red) states in (b).

Here ṽ(ω) is the spectral function of the coupling operator on the bath, and hS is the
energy splitting of the spin at J = 0.

The strong coupling regime (g & 1) is well-studied; here the combined system of the
spin and the bath is expected to obey ETH [26–34] 1. At late times, the spin reaches
thermal equilibrium. At the opposite extreme, in the weak coupling regime (g � 1/d), the
eigenstates of the combined system are described by product states between the spin and
bath up to perturbative corrections, and the spin behaves as an isolated system that does
not thermalise.

We develop a statistical theory of spin observables in both eigenstates and dynamical
experiments the intermediate coupling regime 1/d . g � 1. Although the majority of
eigenstates are nearly product states (blue in Fig. 1b), eigenstate averaged properties are
determined by the minority of states involved in rare many-body resonances (red). These
resonant states are approximately cat states with spin entanglement entropy S close to
log 2. The nearly product and cat eigenstates determine two modes in the distribution of
S across eigenstates (Fig. 1c, Sec. 4.1). In contrast, in an ETH system, the distribution
has a single mode at S = log 2. The spin-bath system thus does not satisfy ETH in the
intermediate coupling regime. It is however partially thermalising, as spin observables only
retain partial memory of initial conditions at late times (Sec. 5).

The spin-bath system functions as a bath with a non-ETH (i.e. non-Gaussian) distribu-
tion of off-diagonal matrix elements (Sec. 6) and an enhanced entropy as compared to the
bare bath (Sec. 7). The entropy of the spin-bath system probed by a second spin (Fig. 2a)
smoothly increases from S = log ρ0 in the weak coupling regime, to S = log(2ρ0) in the
strong coupling regime. We calculate the entropic enhancement ∆S exactly throughout
the intermediate regime

∆S(J) = 2 log

(
[|V ′αβ|]

[|V ′αβ|]J=0

)
, (2)

see Fig. 2b. Above, V ′ is the operator on the bath that appears in the probe-bath interac-
tion, V ′αβ is the off-diagonal matrix element of V ′ between the eigenstates |Eα〉 and |Eβ〉

1Formally holding g finite while taking d → ∞ recovers diagonal ETH and not off-diagonal ETH for
spin observables. See Sec. 4.1.3.
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a) b)

Figure 2: The Spin-ETH model as an ETH-like bath: a) at intermediate coupling, the
Spin-ETH model appears as an effective bath to a second ‘probe’ spin. b) The entropy
of the Spin-ETH model is enhanced from zero to log 2 as the coupling to the first spin is
tuned in the range 1/d . J

√
χ? � 1.

of the spin-bath system at coupling J , and [·] denotes an appropriate average over α, β
within small energy windows.

Our primary analytical tool in the characterisation of the spin-bath system are the
distribution of the fidelity susceptibility. The fidelity susceptibility χα of an initial spin-
bath product state |E0

α〉 = |σ〉|Ea〉 quantifies the first-order correction when a weak spin-
bath coupling is switched on

χα = 〈∂JEα|∂JEα〉|J=0 . (3)

The distribution of fidelity susceptibilities fFS(χ) is determined by the spectral properties of
the bath alone. In Sec. 3, we compute the exact distribution fFS of several Poisson random
matrix ensembles, and for the Gaussian unitary ensemble. For the Gaussian orthogonal,
Gaussian symplectic and ETH cases, we obtain exact forms for the asymptotes of fFS, and
numerically exact forms for the full distribution.

The distribution of fidelity susceptibilities fFS has several universal features. One
feature that is central to our analysis is its heavy tail,

fFS(χ) ∼
√
χ?
χ3
. (4)

The coefficient χ? sets the typical value. For random matrix and ETH baths (Sec. 3), J2χ?
is equal to g2 up to an O(1) constant cβ that depends on the symmetry class of the bath

J2χ? = cβg
2. (5)

More broadly, as the heavy tail is a consequence of near degeneracies in the uncoupled
many-body spectrum, Eq. (4) holds even if the bath does not satisfy ETH 2, and the
dimensionless parameter J√χ? identifies the relevant reduced coupling. We use J√χ? as
the reduced coupling henceforth.

States that contribute to the heavy tail of fFS are resonant with O(1) other product
states. We treat these resonances within a two level resonant model to obtain simple ‘cat-
state’ ansatz for these states (Sec. 4). Several analytical results follow, specifically: (i) the
universal shape of the spin entanglement entropy in eigenstates (Sec. 4.1), characterised
by mean and typical entropies

Smean = 2πJ
√
χ? + · · · (6a)

Smedian = −cm.J
2χ? log cm.J

2χ? + · · · (6b)
2Indeed, Eq. (4) holds for an ensemble of many-body localised systems.
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(here cm. is anO(1) numerical constant), (ii) the infinite time-averaged spin-spin correlation
function (Sec. 5)

〈σzP(t)σzP(0)〉 = 1− 4πJ

√
χ?(0, hS)

6
+ · · · (7)

and (iii) the intermediate enhancement of the bath entropy (Sec. 7)

∆S = −8J
√
χ? log(J

√
χ?) + · · · (8)

(where in each case . . . indicates the presence of corrections which are sub-leading for
J
√
χ? < 1).

2 Model

We consider a partially thermalising system that is composed of a single spin-1
2 (S) that is

weakly coupled by V to a thermal bath (B)

H = H0 + V . (9)

Above H0, the Hamiltonian in the absence of S-E interactions, is given by,

H0 = HS ⊗ 1 + 1⊗HB, (10)

where HS is single spin-1
2 with level splitting hS

HS = 1
2hSσ

z
S, (11)

and HB is the Hamiltonian of a finite many-body quantum bath with density of states ρ0

and dimension d (we use calligraphic letters to denote global operators, and roman letters
to denote those local to the system or bath). See Fig. 1a.

We focus on two classes of well-thermalising baths: (i) random baths with Hamiltonians
drawn from Haar invariant random matrix ensembles (the Spin-RM model), and (ii) a spin
chain with local interactions which satisfies ETH (the Spin-ETH model). We describe
these in turn below.

At several points we will consider eigenstate averaged properties of mid spectrum states.
When numerically evaluating these properties, the average is performed over the middle
25% of the spectrum obtained from exact diagonalisation.

2.1 Random matrix baths

In the Spin-RM model we consider six ensembles of random matrices: the three standard
Gaussian random ensembles (GRE), and three ensembles with the same symmetries, but
which lack level repulsion.

For the GRE case we take

HB ∼ GOE(d), or GUE(d), or GSE(d) (12)

to be a d × d Gaussian random matrix of either real, complex and quaternionic elements
(with Dyson indices β = 1, 2, 4 respectively). These distributions are extensively studied,
see e.g. Ref. [35]. The matrix elements of HB are determined by the one and two point
correlations

[HB,ij ] = 0

[HB,ijHB,kl
∗] =

1

d
δikδjl +

2− β
dβ

δilδjk
(13)

4



SciPost Physics Submission

where [·] denotes ensemble averaging. The eigenvalues HB|Ea〉 = Ea|Ea〉 have mean and
variance

[Ea] = 0, (14a)

[E2
a] =

1

d

[
tr
(
HBH

†
B

)]
= 1 +O(d−1). (14b)

More precisely, the density of states of the bath is set by the Wigner semi-circle law

ρ(E) = ρ0

√
1− E2

4
+O(d−1) (15)

with density of states at maximum entropy ρ0 = d/π.
Throughout we assume that the dimension of the bath is large (d � 1), so that the

mean energy level spacing of the bath is much smaller than the splitting hS of the spin
energy levels, which is in turn smaller than the bandwidth of the bath

ρ−1
0 � hS �

√
[E2

a]. (16)

Eq. (16) holds for a locally interacting many-body quantum bath with L � 1 degrees of
freedom (the bandwidth grows asymptotically as

√
[E2

a] ∝
√
L and the density of states

grows as log ρ0 ∝ L).
We additionally define three “Poisson” ensembles with the same symmetries as the

GRE, but which lack their characteristic level repulsion. These ensembles are of interest as
we find similar results as in the GRE, but the calculations are significantly more tractable.
Specifically, we take

HB = UΛU † (17)

where Λ is a diagonal matrix with independent and identically distributed (iid) elements
Ea drawn from the semi-circle distribution (15), and U drawn from the Haar invariant
ensemble of d × d unitary matrices with elements that are either real (U ∼ CRE(d), the
circular real ensemble), complex (U ∼ CUE(d), the circular unitary ensemble) or quater-
nionic (U ∼ CQE(d), the circular quaternionic ensemble). We refer to these distributions
as P×CRE, P×CUE, and P×CQE respectively. This construction yields ensembles of ma-
trices with Poissonian level statistics, but with the (i) same density of states (15), (ii) same
marginal distribution of matrix elements at large d, (iii) same symmetries, and (iv) same
Haar invariance as GOE(d), GUE(d), and GSE(d) respectively.

We ascribe the distributions P×CRE, P×CUE, and P×CQE indices β = 1, 2, 4 re-
spectively. This labelling differs from the standard one of β = 0 in random matrix theory
because the marginal distribution of the matrix elements is the only relevant quantity here.
Specifically, in the limit of large d, the marginal distribution of the matrix elements for
Poissonian HB is Gaussian with zero mean and the same two point correlations as the
equivalent GRE.

2.2 A many-body quantum system as a bath

In the Spin-ETH model, the bath is a thermalising many-body quantum system with local
interactions. Specifically, we choose HB to describe a weakly disordered Ising model with
longitudinal and transverse fields

HB =

L∑
n=1

(
(−1)nσxnσ

x
n+1 + hnσ

x
n + uΓσzn

)
(18)
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with open boundary conditions σzL+1 = 0. The longitudinal fields hn are iid random
variables drawn from a uniform distribution with mean [hn] = h and variance [h2

n]−[hn]2 =
u2(1− Γ2). Following Refs. [30,36] we set

(h, u, Γ) = (0.8090, 0.9045, 0.9950). (19)

The weak disorder breaks the inversion symmetry of the system, while the small disorder
bandwidth, |hn − h| ≤ δh with δh = u

√
3(1− Γ2) ≈ 0.14, is well below the interaction

energy scale ensuring that there are no presages to localisation.
The alternating ferromagnetic and anti-ferromagnetic couplings ensure that the density

of states ρ(E) is Gaussian at small system sizes, and independent of the choice of h, u, Γ, L
(in contrast, the density of states has a marked asymmetry at accessible systems sizes for
homogeneous couplings). Specifically, HB has density of states

ρ(E) = ρ0e−E
2/(2s2E) (20)

with mean [Ea] = 0 and variance [E2
a] = s2

E = tr
(
H2

B

)
/2L = L(1 + u2 + h2)). The Hilbert

space dimension dimension and density of states at maximum entropy are given by

d = 2L, ρ0 =
d√

2πs2
E

. (21)

Throughout this manuscript, when considering the Spin-ETH model, we set the probe spin
field to

hS =
√
h2 + u2 ≈ 1.21, (22)

so that the probe field is half the value of a typical local field in the Ising chain.

2.3 Spin-Bath interactions

Throughout our analysis, the interaction may be considered to be generic,

V = J
(
σ+

S ⊗ V
† + σ−S ⊗ V

)
+ Jzσ

z
S ⊗ V ′ (23)

where J, Jz > 0 are coupling constants of comparable size Jz = O(J), σ±S and σzS are the
usual Pauli matrices on the spin, and V, V ′ are operators on the bath with tr

(
V V †

)
=

tr (V ′V ′) = d.
For the purposes of specificity, in numerics, we choose V = V †, V ′ = 0 to yield

V = JσxS ⊗ V. (24)

In the Spin-RM model we set V to be the diagonal matrix Vij = δij(−1)j . In the Spin-ETH
model we choose set V = σxm where m is the mid-chain site m = b(L+ 1)/2c.

3 Weak coupling: J
√
χ? � 1/d

The late time properties of dynamical evolution are captured by the system’s steady states:
the eigenstates |Eα〉. In the weak coupling limit, we characterise each |Eα〉 by a single
quantity, its associated fidelity susceptibility χα. We subsequently obtain a statistical
description of the χα across eigenstates. In the weak coupling regime this may be used
directly to obtain the distribution of spin entanglement entropies across eigenstates in the
Spin-RM and Spin-ETH models.

6



SciPost Physics Submission

3.1 The fidelity susceptibility

The change to each eigenstate upon deviating away from zero coupling is captured by its
fidelity susceptibility. At zero coupling, the eigenstates are simple product states of the
spin and bath

|E0
α〉 = |σ〉|Ea〉 (25)

where α = (σ, a), σ ∈ {↑, ↓}, with associated energies

E0
α = 1

2σhS + Ea. (26)

using ↑= +1 and ↓= −1. For small J, Jz, corrections to the decoupled limit may be
obtained in perturbation theory

|Eα〉 = |E0
α〉+ J |∂JEα〉+ Jz|∂JzEα〉+ . . . . (27)

We may associate a fidelity susceptibility χα to each state, given by the squared norm of
the first order correction in J

χα := 〈∂JEα|∂JEα〉 =
∑
b

∣∣∣∣ Vab
Ea − Eb + σhS

∣∣∣∣2 . (28)

Here Vab = 〈Ea|V |Eb〉 are the matrix elements of the coupling operator V .
When J 6= 0, the eigenstates are entangled states of the spin and bath. The von

Neumann entropy of the spin quantifies the entanglement between the spin and bath,

Sα := −tr (ρ̂α log ρ̂α) , (29)

where ρ̂α is the reduced density matrix of the spin obtained from the eigenstate |Eα〉. For
typical states, we obtain the entropy by expanding ρ̂α to leading order,

ρ̂α =

1− J2χα O
(

g
ρ0hS

)
O
(

g
ρ0hS

)
J2χα

+O

(
g2

ρ0hS

)
+O(g3), (30)

which yields

Sα = J2χα(1− log(J2χα)) +O

(
g2

ρ0hS

)
+O

(
g3
)
, (31)

where g is the reduced coupling (1a). Eqs. (30) and (31) are obtained in Appendix A by
expanding to leading order in two small parameters: (i) the reduced coupling g, and (ii)
the ratio of level spacings to field strengths (ρ0hS)−1 = O(1/d). This provides the leading
order entanglement entropy, which is found to depend on J but not Jz. Intuitively, this
is because this term generates hybridisation between states in the same spin sector and
leaves the reduced density matrix of the spin unaltered.

As (31) holds only in the perturbative limit J2χα � 1, it is useful to estimate the scale
of χα. For typical states we find that J2χα = O(g2). This is seen by noting that χα is
dominated by the terms in the sum (28) with the smallest denominators minb |Ea − Eb +
hS| ≈ 1/ρ0, whereas typical matrix elements are of size |Vab| ≈

√
tr (V V †)/d = 1/

√
d.

Combining these estimates with (28) we obtain

J2χtyp. ≈
(
Jρ0√
d

)2

= g2. (32)

Eq. (32) describes typical values as defined by the median χtyp. = medα χα, or the geometric
mean χtyp. = exp[logχα]. However, we will see that the fidelity susceptibility χα is broadly
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distributed with no convergent arithmetic mean. As a result, χtyp. does not provide a
satisfactory characterisation of the distribution of values χα which we calculate in Sec. 3.2.

The fidelity susceptibility χα is a well known quantity, most often studied as a probe
of ground state phase transitions (see e.g. Refs. [37,38]). Recently, χα and closely related
quantities have been studied for mid-spectrum states in the context of quantum chaos [39–
44]. The fidelity susceptibility is named for its appearance when the fidelity between the
eigenstates of H and H0

Fα(J, Jz) := |〈Eα|E0
α〉| (33)

is expanded in powers of the coupling J . In this case, when Jz = 0, χα sets the leading
order correction

Fα(J, 0) = 1− 1
2J

2χα +O(J4). (34)

As the spin-bath coupling is determined by two parameters, J and Jz, similar suscepti-
bilities may be defined for the quadratic JJz and J2

z terms in the expansion of Fα(J, Jz).
However, as these terms do not contribute to the eigenstate entanglement of the spin, they
are not of interest in the present context.

3.2 The distribution fFS(χ) in Haar invariant random matrix ensembles

In the weak coupling limit we have a one-to-one relationship between the fidelity suscep-
tibility χα, and the entanglement entropy Sα (31). Thus, to obtain the distribution of
entanglement entropies, a quantity of physical interest, it is sufficient to calculate the dis-
tribution of χα. In this section we calculate the distribution of the fidelity susceptibility
χα of the state α = (σ, a), obtained by ensemble averaging

fFS(χ|E, σh) :=
[δ(χ− χα)δ(E − Ea)]

[δ(E − Ea)]
. (35)

This distribution carries two dependencies: the initial energy E of the bath, and σhS the
energy transferred into the bath in order to flip the spin. We perform this calculation for
the Haar invariant ensembles of Sec. 2.1 in the limit of large bath dimension d. We confirm
this calculation with numerics for finite d (Fig. 3).

3.2.1 fFS(χ) for Haar random baths with Poisson level statistics

We begin with the simplest case, where HB is a Haar random matrix with Poisson level
statistics. We obtain an explicit form for fFS before discussing the key features of the
distribution.

We first consider the cumulant generating function

K(t|E, σhS) := log

(∫
dχ eitχ/d fFS(χ|E, σhS)

)
= log

[eitχα/dδ(E − Ea)]
[δ(E − Ea)]

(36)

and substitute in the definition of χα to obtain

K(t|E,ω) = d log

[
exp

(
it

d

∣∣∣∣ Vab
E − Eb + ω

∣∣∣∣2
)]

. (37)

In the Poisson case, at large d, we may treat each matrix element Vab and each energy
level Ea as iid random variables. The ensemble averaging is then straightforward (see
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Figure 3: The distribution fFS(χ) of the fidelity susceptibility in random matrix theory en-
sembles: Numerically calculated distributions of the fidelity susceptibility (solid colours,
error bars indicate 68% confidence interval) are compared with analytic predictions (black,
dotted). The numerical distributions are obtained by histogramming the fidelity suscep-
tibility (28) of mid-spectrum states obtained from exact diagonalisation. In each case
the distribution has been re-scaled by the maximum entropy value χ?(0, hS). The dotted
curves have no fitted parameters in the case of the Poisson (see (39)) and GUE (see (51a))
ensembles. For GOE and GSE the dashed line has the exact limiting behaviour given
by (47) and (49) whereas values of fFS at intermediate values of χ is obtained by a one
parameter fit (details in text). Parameters: hS = 0.1, d = 2048, N = 3000 realisations for
GSE and P×CQE, N = 105 realisations otherwise.

Appendix B) and yields

lim
d→∞

K(t|E,ω) = −
√
−4πitρ(E + ω)2[|Vab|]2

d
. (38)

Inverting the relation (36) we obtain a Levy distribution

fFS(χ|E,ω) = exp

(
−π χ?(E,ω)

χ

)√
χ?(E,ω)

χ3
. (39)

with a characteristic scale set by

χ?(E,ω) = [|Vab|]2ρ(E + ω)2. (40)

χ?(E,ω) sets the typical values of χα. It is the scale obtained from the definition of
χα (28), by approximating the sum with its dominant term, and replacing the numerator
and denominator with their typical values [|Vab|]2 and ρ(E + hS)−2 respectively.

We note that the Levy distribution may be related to the more familiar normal distri-
bution. Precisely, χ has the same distribution as 2πχ?/z

2 for z drawn from the standard
normal distribution z ∼ N

(
µ = 0, σ2 = 1

)
.

Further calculation relates χ?(E,ω) to the parameters of the Spin-RM model. Specifi-
cally, we use that the matrix elements Vab converge on a Gaussian distribution with mean
[Vab] = 0 and variance [|Vab|2] = 1/d. Thus the distribution of the absolute value |Vab| of
the matrix elements has distribution

fME(|Vab|) ∝ |Vab|β−1 exp
(
−1

2dβ|Vab|
2
)

(41)
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and hence a mean

[|Vab|] =

√
2

dβ
·

Γ(1+β
2 )

Γ(β2 )
=:

√
cβ
d
. (42)

In (42) Γ(·) is the gamma function, the Dyson index β = 1, 2, 4 for real, complex and
quaternionic matrix elements respectively, and we have defined the numerical constant cβ
whose value depends only on the symmetry class of the matrix

cβ =


2/π β = 1 (GOE, P×CRE)

π/4 for β = 2 (GUE, P×CUE)

9π/32 β = 4 (GSE, P×CQE).

(43)

Thus, in terms of the bare properties of the Poissonian bath, we have explicit forms for
both the distribution fFS (39) and its typical values χ?

χ?(E,ω) = cβ
ρ(E + ω)2

d
. (44)

In Fig 3 we compare these predictions with numerics. Eq. (40) is the left-most black-
dashed curve plotted in Fig 3. This curve shows good agreement with the correspond-
ing numerically calculated fidelity susceptibility distributions for the Spin-RM model for
P×CRE, P×CUE, and P×CQE baths (the red, purple and brown curves respectively which
lie on top of each other).

3.2.2 fFS for other random matrix baths

We highlight three features of fFS, as calculated for the Poisson case (39). These feature
of fFS found for any choice of thermal bath HB:

i) The heavy tail of the distribution, decaying as fFS ∼ χ
1/2
? /χ3/2 leads to rare, large

values of χα and prevents the convergence of the arithmetic mean.

ii) The rapid decay at small χ . χ? is faster than any power law, to leading order
log fFS ∝ −χ−1.

iii) The scale of typical values χα is set by χ?.

Elaborating on these points:
i) Rare large values: The large values of χα correspond to states where there is an

unexpectedly close resonance which dominates the sum in (28). The effect of such close
many-body resonances gives rise to the χ−3/2 tail irrespective of the choice of random
ensemble HB. To see this, let us approximate

χα ≈
∣∣∣∣ Vab
Ea − Eb + σhS

∣∣∣∣2 (45)

where in each case b is chosen to minimise the denominator. We then write fLS(∆ab) for
the distribution of the energy separation to the nearest level ∆ab = |Ea − Eb + σhS| in
the opposite spin sector, and, as before, fME for the distribution of matrix elements |Vab|.
Within this approximation

fFS =

∫ ∞
0

dV

∫ ∞
0

d∆ δ

(
χ−

∣∣∣∣V∆
∣∣∣∣2
)
fME(V )fLS(∆)

=
1

2χ3/2

∫ ∞
0

dV |V |fME(V )fLS

(
V
√
χ

) (46)

10
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The asymptotic behaviour

fFS(χ|E,ω) ∼

√
χ?(E,ω)

χ3
(47)

then follows from taking the limit

χ?(E,ω) = lim
χ→∞

χ3f2
FS(χ)

=

(
1

2

∫
dV |V |fME(V )fLS(0)

)2

= [|V |]2ρ(E + ω)2.

(48)

Here we have set E = Ea and ω = σhS. We have also used that lim∆→0 fLS(∆) = 2ρ(E),
which holds irrespective of the level statistics with an sector. Note that (48) is in exact
agreement with (40).

ii) Fast decay at small χ: Below the scale of the typical fidelity susceptibility χ . χtyp.

the distribution converges very quickly to zero log fFS ∝ −χ−1 +O(logχ).
In the Poisson case, the strong suppression of fFS at small χ reflects that atypically

small values of χα occur only when each of the iid terms in the sum χα (28) is independently
small. Small values of χ occur because large numbers of the matrix elements Vab are
atypically small, or because large numbers of the energy levels are atypically far from
Ea + σhS.

For the GRE baths the terms in χα are not mutually independent. Instead, spectral
rigidity suppresses the fluctuations on the energy levels so that small χα values occur
only due to small matrix elements. This distinction in the GRE leads only to an O(1)
quantitative change to the small χ behaviour

log fFS(χ|E,ω) ∼ −χ?(E,ω)

χ
×


π Poisson,

βπ2

2cβ
GRE.

(49)

We show how (49) is obtained in Sec. 3.2.3.
iii) Typical value of χα: The scale of typical values χ is set by the peak of the dis-

tribution and unaffected by the heavy tail. Specifically, the geometric mean is given by

χtyp.(E,ω) = exp

(∫
dχfFS(χ|E,ω) logχ

)
= ctyp.χ?(E,ω)

(50)

where ctyp. = O(1) is a numerical constant. For example, in the Poisson ensembles this
constant has value ctyp. = 4πeγ where γ = 0.57721... is the Euler-Mascheroni constant.

3.2.3 fFS(χ) for Gaussian random matrix baths

We extend our analysis to obtain forms for the distribution of fidelity susceptibilities fFS

for HB drawn from one of the GRE ensembles. This extension is desirable as GRE matrices
predict the eigenstate properties of thermalising many body quantum systems.

In Appendix C we calculate fFS exactly for a GUE ensemble (β = 2)

fGUE
FS (χ) = exp

(
−4πχ?

χ

)√
χ?
χ3

(
1 +

8πχ?
χ

)
. (51a)

11
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Above, we suppress the (E,ω) dependency of fFS and χ? for brevity. We further calculate
fFS for the GOE (β = 1) or GSE (β = 4) cases up to some undetermined numerical
constants (C1,2, C

′
1,2)

fGOE
FS = exp

(
−π

3χ?
4χ

)√
χ?
χ3

(
1 + C1

√
χ?
χ

+ C2
χ?
χ

+O

(
χ?
χ

)3/2)
(51b)

fGSE
FS = exp

(
−9πχ?

64χ

)√
χ?
χ3

(
1 + C ′1

χ?
χ

+ C ′2
χ2
?

χ2

)
. (51c)

The number of undetermined parameters is reduced by enforcing the normalisation con-
dition

∫
dχfFS(χ) = 1:

4πC1 + 4C2 − (π − 2)π3 = 0

8192C ′1 + 768πC ′2 + 135π2 = 0
(52)

where we have neglected sub-leading O(χ?/χ)3/2 corrections in the GOE case. Throughout
the rest of this paper we use the GOE values C1 = 5.29 . . ., C2 = 11.19 . . . determined by
a least square numerical fit.

We compare (51) with numerics in Figure 3. As with the Poisson case, fFS is numer-
ically calculated by averaging over the mid-spectrum states for hS = 0.1 and d = 2048.
In each case there is convincing agreement between the analytic forms (black, dotted)
and numerical calculations (solid colours). These analytic forms are specified with no free
parameters in the case of Poisson (39) and GUE (51a). In the case of GOE and GSE
the parameters C2, C ′2 are fixed by the normalisation condition (52), whereas the remain-
ing free parameters C1, C ′1 are determined by a one-parameter least squares fit. For this
numerical analysis we neglect the sub-leading O(χ?/χ)3/2 corrections in the GOE case.

The full derivation of (51) (Appendix C) is involved, however the asymptotic forms
may be derived in a few lines. The large χ form is obtained exactly as in (47). The the
small χ form, given by (49), we obtain here. We start from the definition of the cumulant
generating function (36). In the GRE case, for d� 1, the matrix elements may be treated
as iid drawn from the distribution (41). The corrections resulting from this approximation
are O(1/d) [45–47], and we neglect them throughout this section. Thus, integrating over
the matrix elements yields

K(t|E, 0) = log

[
exp

(
it

d

∑
b

∣∣∣∣ Vab
E − Eb

∣∣∣∣2
)]

Vab,Eb

= log

[∏
b

(
1−

2it[|V 2
ab|]

βd|E − Eb|2

)−β/2]
Eb

.

(53)

We use the identity log
∏
b g(Eb) =

∑
b log g(Eb) to replace the sum over levels with an inte-

gration over the ensemble averaged density of states
∑

b log g(Eb)→
∫

dE′ρ(E′) log g(E′)+
O(1/d)

K(t|E, 0) = −β
2

∫
dE′ρ(E′) log

(
1−

2it[|V 2
ab|]

βd|E − E′|2

)
. (54)

This replacement is only valid if the density of states is smooth on the scale on which
the summand in (53) varies. That is, if the width of the peak of the summand is much
greater than the level spacing. Note (i) the summand has a single peak with a width ∆E ≈√

2t[|V 2
ab|]/βd (where [|V 2

ab|] = 1/d); (ii) the level spacing is on a scale ρ(E)−1 ∝ d−1. Thus

12
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the sum-to-integral replacement is valid in the limit t � 1. The integral may be further
simplified by assuming the peak of the integrand is much narrower than the bandwidth
(requiring t � d2). In this limit the integrand is sharply peaked at E′ ≈ E allowing use
to substitute ρ(E′)→ ρ(E) and integrate

K(t|E, 0) ∼ −

√
−

2π2itβρ(E)2[|V 2
ab|]

d
(1� t� d2) (55)

As the large t behaviour of K(t|E, 0) sets the small χ behaviour of fFS, by inverting the
Fourier transform we obtain the low χ asymptote

− log fFS(χ|E, 0) ∼
π2βρ(E)2[|V 2

ab|]
2χ

=
βπ2χ?
2cβχ

(56)

where ∼ indicates asymptotic equality in the small χ limit. Combining this GRE result,
with the Poisson result (39) we obtain (49). This shows that the lower tail is sensitive to
both symmetry class, and level statistics.

We make a comment on the scope of this derivation. In obtaining (54), we replaced
the density of states of HB with the ensemble averaged density of states. This replacement
assumes fluctuations on the density of states are negligible. For Poisson level statistics this
assumption is invalid, as samples in which ρ(E + ω) is atypically small make a significant
contribution to the lower tail, and thus (56) does not agree with the previously derived
behaviour of Poissonian Spin-RM models (39). However, this replacement is justified for
GRE matrices exhibit much smaller instance to instance variation on the density of states.

3.2.4 The distribution of χα over states within a sample

The distribution fFS is self averaging. That is, in the limit of large d, the distributions
obtained in this section hold for χα obtained for states within a small energy window
of a single Spin-RM Hamiltonian (specifically an energy window much smaller than the
bandwidth, but much larger than the level spacing). Intuitively, the fidelity susceptibility
of each state is dominated by its coupling to nearby states (which generate large terms in
χα), and is uncorrelated with the properties of energetically distant states [45–47].

3.3 The distribution fFS in ETH systems

We extend our calculation of fFS to the more physical case of a bath that is a locally
interacting, many body quantum system. Specifically, we use eigenstate thermalisation
hypothesis (ETH) to adapt the GRE calculation of fFS (Sec. 3.2) to this setting, and
numerically verify the predicted form of fFS in the Spin-ETH model.

3.3.1 Statement of ETH

ETH describes how isolated quantum systems approach an equilibrium described by quan-
tum statistical mechanics [26–29] (for an overview see Ref. [31] and references therein).
Let HB be a generic, locally interacting, thermalising quantum system. For specificity we
assume HB to be a length L chain of interacting spins-1

2 , such as the Ising chain (18).
ETH provides an ansatz for the matrix elements of a local operator V evaluated in the
eigenbasis of HB

Vab = V̄ (Ea) δab +

√
ṽ(Ea, Eb − Ea)

ρ(Eb)
Rab (57)

13
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where Rab are iid Gaussian random numbers with zero mean [Rab] = 0 and unit variance
[|Rab|2] = 1, V̄ (E) and ṽ(E,ω) are real functions smooth in their arguments, and ṽ(E,ω)
is non-negative. V̄ (E) and ṽ(E,ω) are further determined by physical considerations:
Hermiticity enforces

ṽ(E,ω)ρ(E) = ṽ(E + ω,−ω)ρ(E + ω), (58)

while the one and two-time correlation functions evaluated in the micro-canonical ensemble
are given by

tr (V ρ̂E) = V̄ (E) (59a)

tr
(
eiHtV e−iHtV ρ̂E

)
= V̄ (E)2 +

∫
dω ṽ(E,ω) eiωt (59b)

up to O(1/d) = O(2−L) corrections. Here ρ̂E is a micro-canonical ensemble of energy E
and window width ∆

ρ̂E =
1

NE

∑
a

1E(Ea)|Ea〉〈Ea| (60)

where indicator function 1E(Ea) is given by

1E(E′) :=

{
1 |E − E′| < ∆/2

0 otherwise
(61)

and NE :=
∑

a 1E(Ea) enforces normalisation. The micro-canonical window width ∆ is
chosen to be much smaller than the scale on which ρ(E), V̄ (E) or ṽ(E,ω) vary, but much
greater than level spacing

|∂E ṽ(E,ω)| = O

(
ṽ(E,ω)

L

)
� ∆−1 � ρ(E). (62)

3.3.2 The distribution fFS

The GRE results (Sec. 3.2) are adapted to the ETH setting by repeating the derivations
with the relationship

[|Vab|]2 = cβ[|Vab|2] = cβ
ṽ(Ea, Eb − Ea)

ρ(Eb)
(63)

The resulting distributions are as in GRE case (51) but with a typical scale set by

χ?(E,ω) = cβ ṽ(E,ω)ρ(E + ω) (64)

The cases β = 1, 2, 4, (corresponding to Rab ∈ R,C,H) correspond naturally to the
GOE, GUE and GSE ensembles. Physically these cases describe systems with time reversal
symmetry [T ,H ] = 0 (β = 1, 4), or without (β = 2). The time reversal symmetric cases
are distinguished by whether the anti-unitary time reversal symmetry operator squares to
positive unity T 2 = 1 (β = 1) or negative unity T 2 = −1 (β = 4) [48].

In Fig 4 we numerically verify the form of fFS in the Spin-ETH model with HB given
by the weakly disordered interacting Ising chain (18). The χα are obtained from the mid-
spectrum states of N = 1000 realisations with hS =

√
h2 + u2 ≈ 1.21, and V = σxm for

m = b(L + 1)/2c. The numerically calculated distribution (solid colours) agrees with the
corresponding theoretical predictions (dashed colour) for all values of bath size L (legend
inset). The correct large χ behaviour (47) is observed for all L, whereas there is discrepancy
at small χ between the data and prediction which is disappearing at large L. The small

14



SciPost Physics Submission

●

●
●

●

●
●
●
●●●●●●●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●
●
●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●
●

●

●

●

●

●

●

●
●
●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●

●

●

●

●

●

●

●

●
●
●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●
●
●
●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●●

●

●

●

●

●

●
●
●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●
●
●
●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

● 8 ● 9 ● 10 ● 11 ● 12 ● 13 ● 14

100 101 102 103 104 105

10-3

10-2

10-1

100

101

χ

f F
S
(χ
)
·
2L

Figure 4: fFS in thermalising quantum systems: Numerically calculated distributions of
fFS in the Spin-ETH model (solid points, colour) are compared with analytic predictions
for an ETH system (dotted lines, colour). Each numerical distribution was produced by
histogramming values of χα obtained from the mid-spectrum states. Error-bars indicate
standard error on the mean. The legend shows the bath sizes L, the other parameters are
as in the main text. N = 300 realisations for L = 14, N = 1000 otherwise.

χ discrepancy is a finite size effect which causes the asymptotic log fFS ∼ −χ?/χ decay at
small χ to be cut off by a slower power law behaviour fFS ∼ χk with an exponent k that
grows exponentially in the system size L (see Appendix C). The theory curves are given
by (51b) with χ?(0, hS) given by (64), and

ρ(E + ω) =

[
1

∆NE

∑
ab

1E(Ea)1Ea+ω(Eb)

]
+O(∆), (65)

ṽ(E,ω) =

[
1

∆NE

∑
ab

1E(Ea)1Ea+ω(Eb)|Vab|2
]

+O(∆) (66)

and micro-canonical window width ∆ = 0.1. This yields

χ?(0, σhS) = c1ṽ(0, σhS)ρ(σhS) ≈ 2L × 0.0052. (67)

3.4 The extent of the weak coupling regime

A given spin-bath Hamiltonian is in the weak coupling regime if the perturbative correction
of every eigenstate is small J2χα � 1. Due to the heavy tail of fFS this is a much more
stringent condition than requiring the typical eigenstates to be in the perturbative regime.
Specifically we find

exp
[
log max

α
χα

]
≈ d2χ?, (68)

so that the weak coupling regime corresponds to

J
√
χ? ≈ g �

1

d
. (69)

4 Eigenstate entanglement entropies

We now show how fFS may be used to characterise the statistical properties of the eigen-
states in the intermediate and strong coupling regimes. Specifically, we obtain the distribu-
tion of entanglement entropies fEE(S) and we numerically verify this claim. This is possible
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as (i) χα accurately determines the entanglement entropy in both limit of J2χα � 1, where
the entropy Sα may be calculated in perturbation theory, and J2χα � 1, where Sα = log 2
(ii) the broad distribution of χα ensures only a negligible fraction of states are in neither
of these limits.

Naively χα provides a characterisation of the entanglement entropies Sα only in the
perturbative limit, J√χ? � 1/d, where the series expansion (31) applies. Whilst, at
the opposite extreme, typical eigenstates are strongly hybridised by the interaction when
typical values of J2χα become comparable to unity. This defines the strong coupling
regime, J√χ? & 1, in which the combined system of spin and bath approaches ETH.
Between the strong and weak coupling regimes is the intermediate regime

1

d
. J
√
χ? � 1 (70)

in which the coupling is strong enough to successfully “compete” with the energetic scale
of the unperturbed model (specifically the level spacing), but the coupling remains too
weak to induce the system to full thermalisation. In this regime a finite fraction of levels
are participating in strong “accidental” resonances, with J2χα & 1, despite typical levels
satisfying J2χα � 1.

Accidental resonances occur when two neighbouring levels from opposite sectors, α =
(↑, a) and β = (↓, b), have, by chance, a level separation ∆αβ := E0

α−E0
β which is atypically

small |∆αβ| � ρ−1
0 . In such a situation, this two-level resonance dominates the values of

the χα, χβ , thus we approximate by treating them as equal J2χα ≈ J2χβ ≈
∣∣Vαβ/∆αβ

∣∣2.
These sparse resonances may be treated individually by diagonalising the two level effective
Hamiltonian

Heff. :=

(
∆αβ Vαβ

Vαβ 0

)
= ∆αβ

(
1 J

√
χα

J
√
χα 0

)
. (71)

We refer to this approximation scheme as the two level resonance model. Within this
model, the eigenstates |Eα〉 may be exactly calculated

|Eα〉 =
√
qα|E0

α〉+
√
pα|E0

β〉 (72)

where we have defined the “transition probability”

pα = p
(
J2χα

)
, qα = q

(
J2χα

)
, (73)

where
p(x) := 1− q(x) :=

1

2

(
1− 1√

1 + 4x

)
. (74)

The exact eigenstates of the Spin-ETH model are not given by (72) due to hybridisation
with other states |E0

γ 〉 at first order and higher order corrections. However, these correc-
tions do not significantly correct the statistics of transition probabilities. We discuss the
validity of the two level resonance model in Sec. 8.

Within the two-level resonance model the eigenstate entanglement entropies may be
exactly calculated

Sα = S(J2χα) (75)

where we have defined

S(x) := −p(x) log p(x)− q(x) log q(x). (76)

To build confidence in this picture of the eigenstates we make some sanity checks. We
note that (75) reproduces (31) in the weak coupling limit, and approaches Sα = log 2 for
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Figure 5: Values of (Sα, χα): The entanglement entropy of Sα of a eigenstate of the Spin-
ETH model as a function of the fidelity susceptibility of the corresponding eigenstates of
H0 (J = 0). For each value of the coupling J (coloured points, J values in legend), N = 200
points corresponding to randomly selected mid-spectrum eigenstates are shown. Inset a
histogram of data aggregated across many diagonalisations showing the distribution within
the grey boxed region of the main plot. Each column of cells in the inset is normalised to
sum to unity. Parameters L = 12, other parameters as in Fig. 4.

strong hybridisation J2χα � 1. As fFS decays rapidly for χ . χ?, for J2χ? � 1 that
all mid-spectrum eigenstates will have Sα ≈ log 2 consistent with the spin-bath system
approaching ETH in this limit.

For further affirmation we look to numerics. To numerically verify (75) using the Spin-
ETH model: (i) we diagonalise the decoupled Hamiltonian H0 and calculate the fidelity
susceptibility χα for each state; (ii) we then diagonalise H = H0 + V and calculate the
von Neumann entropy of the probe spin Sα for each state; and (iii) we identify eigenstates
|Eα〉 of H and the eigenstates |E0

α〉 of H0 by globally maximising the objective function∏
α

∣∣〈Eα|E0
α〉
∣∣2 3. The pairs (J2χα, Sα) we obtain are plotted in Fig 5 (coloured points, J

values inset), each series of data consists of N = 200 mid spectrum states from a single
diagonalisation. These points are to be compared with the function S(J2χα) as given
by (76) (black dashed line). As expected the agreement is exact in the limits of large and
small J2χα, corresponding to ETH value Sα = log 2 and the perturbative limit respectively.
The deviation of Sα from S(J2χα) is only apparent over a small O(1) region highlighted
by the grey box.

The inset in Fig 5 is a density plot of f(Sα|J2χα), the conditional probability of ob-
taining a value of the von-Neumann entanglement entropy Sα given a fixed value of J2χα.
From the density plot it is apparent that the typical deviation of Sα from S(J2χα) is signif-
icantly smaller than a single decade, and thus, to a reasonable degree of approximation, we
may take Sα to be given by S(J2χα), as in (75). The distribution f(Sα|J2χα) shown in this
plot is calculated using (J2χα, Sα) aggregated from the mid-spectrum states of N = 100
diagonalisations with log J drawn uniformly and iid from the interval log J ∈ [−10, 2].

4.1 Distribution of eigenstate entanglement entropies

Using the distribution of fidelity susceptibility fFS(χ), and the two level resonance model for
the entanglement entropy Sα = S(J2χα), we now calculate the distribution of entanglement

3This is a “maximum-weight-matching” problem which can be solved in O(d3) time by e.g. the Blossom
algorithm
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Figure 6: Distribution of entanglement entropies: The distribution of spin entanglement
entropies in the L = 12 Spin-ETH model is numerically extracted for coupling strengths
(values of J

√
χ?(0, hS) inset in lower panel). a) data for each coupling strength is plotted

(solid colours) together with the predicted analytic form (78) (dashed line). b) data from
the upper panel is collapsed in accordance with (80), and plotted with the theoretical curve
(black dashed line). N = 800 realisations per data series.

entropies

fEE(S|J,E, hS) =

∫
dχfFS(χ|E, hS) δ(S − S(J2χ)) (77)

and show it to agree well with numerical calculations of fEE. We analyse this distribution
highlighting two quantitative features. The first is a simple universal form at entropies
above the typical value S � S(J2χ?). The second is a separation of mean and typical
entanglement entropies, which is due rare resonances dominating the mean.

4.1.1 Universal form for fEE

We extract the distribution of entanglement entropies by performing the integral (77)

fEE(S|J,E, hS) = fFS

(
x(S)

J2

∣∣∣∣E, hS

)
1

J2S′(x(S))
(78)

The typical entanglement entropy S � S(J2χ?), the distribution of fidelity susceptibilities
is well approximated by its limiting form

fFS =

√
χ?
χ3

+O

(
χ?
χ2

)
, (79)

yielding a correspondingly simplified distribution of entanglement entropies

fEE(S|J,E, hS) =
J
√
χ?

x(S)3/2S′(x(S))
+ O(J2χ?). (80)

We comment on the shape of the distribution fEE. The bi-modality of the distribution
follows from the compression of the long tail of fFS onto the bounded interval Sα ∈ [0, log 2],
producing a second mode at maximal entropy S = log 2. This is in addition to the dominant
mode at S ≈ 0, which contains the median, and corresponds to the single mode of fFS.
Secondly we note that (80) implies a scaling collapse of fEE(S|J,E, hS) upon dividing by
J
√
χ?.
In Fig. 6 we numerically verify (78) and (80). We plot the distribution fEE of spin eigen-

state entanglement entropies in the Spin-ETH model for bath size L = 12. In Fig. 6a a his-
togram of numerically calculated Sα values is plotted (solid lines) for mid-spectrum states
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Figure 7: Mean and median eigenstate entanglement entropy of the spin as a function of
coupling strength: three panels of the same data which plot the analytic form (81a) (no
fit parameters) for the mean entanglement entropy (black dashed) with numerical data
(coloured solid points). The panels (a), (b) and (c) are plotted to emphasise the lower tail,
crossover region, and upper tail respectively (note the change in y-axis for (c)). As the
median is asymptotically separated from the mean in the lower tail we additionally plot
this quantity in the left panel. The analytic form for the median (82a) is shown (black
dotted) together with numerical data (coloured hollow points). N = 2000 realisations per
data point for L ≤ 10, N = 300 for L = 11, 12, N = 10 for L = 13.

for various values of J√χ?. The values of, J
√
χ?(0, hS) (inset, lower panel) are calculated

using (67). These numerical estimates of fEE are compared with the analytic form (78)
(dotted lines) calculated using fFS as in (51b). The predicted and measured curves agree
exactly in the intermediate coupling regime (J

√
χ?(0, hS) � 1), whereas there is some

discrepancy associated with crossover into the strong coupling regime (J
√
χ?(0, hS) & 1)

due to the inexact nature of the two-level resonance model. In Fig. 6b we show the pre-
dicted scaling collapse by plotting the same data but vertically re-scaled by J

√
χ?(0, hS).

The re-scaled data collapses onto the form predicted by (80) (black, dashed line) for en-
tropies above the typical value S � S(J

√
χ?). As the typical value becomes comparable

to S = log 2 the lower mode disappears, and fEE has a single mode close to the thermal
entropy S = log 2.

In Figs. 7 and 8 we compare the analytic and numerical calculations of the mean,
median and variance of the entanglement entropy (using the same diagonalisations as
Fig 6). The three panels of Fig. 7 show the same [Sα] data plotted to emphasise the
agreement at small, intermediate and large values of J√χ? respectively. Good agreement
is found between the analytic (dashed lines) and numerically calculated values of [Sα] (solid
colour points) across all values of J√χ?. There is deviation at large J√χ? (Fig 7), where
the numerical data peels off from the theoretical curve. The magnitude of this deviation
decreases exponentially decreasing with L.

4.1.2 Limit of weak coupling J2χ? � 1: separation of mean and typical be-
haviour

We now extract the analytical form of the limiting behaviours of the mean [Sα], median
medα Sα, and variance Var(Sα) of the entanglement entropies within the two level reso-
nance model.

We first consider the mean entanglement entropy in the weak coupling limit. In the
limit of small J√χ? we may replace fFS with its large χ asymptotic form (79) and expand
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Figure 8: Variance of the eigenstate entanglement entropies of the spin: the numerically
ensemble averaged variance (coloured points) is plotted as a function of J

√
χ(0, hS) for mid-

spectrum states of the Spin-ETH model for different L (legend inset). Data corresponds
to the same realisations as Fig. 7. The theoretical curve (black dashed) is calculated from
the distribution (78).

in powers of J√χ?

[Sα] =

∫
dχfFS(χ|E, hS)S(J2χ) (81a)

= 2πJ
√
χ? +O(J2χ?) (81b)

The behaviour of the mean in the weak coupling limit may be contrasted by the asymp-
totically faster decay of the median

medα Sα = S(J2 medα χα) (82a)

= (1− log cm.J
2χ?)cm.J

2χ? +O(J4χ2
?) (82b)

where cm. := medα χα/χ? is some O(1) constant. The asymptotic separation of the mean
(solid coloured circles) and median (hollow coloured circles) is visible in Fig. 7a.

We may also obtain the variance from the same approach. First we calculate the second
moment of the entanglement entropy

[S2
α] =

∫
dχfFS(χ|E,ω)S2(J2χ) = cv.J

√
χ? +O(J2χ?). (83)

where cv. =
∫∞

0 dxS(x)x−3/2 = 1.91755 . . .. This yields a variance

Var(Sα) = [S2
α]− [Sα]2 = cv.J

√
χ? +O(J2χ?). (84)

4.1.3 Limit of strong coupling J2χ? � 1

The distribution fFS decays rapidly for χ . χ?, as such we may expand S(x) = log 2 −
1/(8x) +O(x−2) yielding

[Sα] = log 2− ca.

8J2χ?
+O(J2χ?)

−2 (85)

where ca. = χ?[χ
−1
α ] is an O(1) numerical constant. Following the same approach for the

variance yields

Var(Sα) =
c′v.

64J4χ2
?

+O(J2χ?)
−3 (86)
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where c′v. = χ2
?Var(χ−1) is again an O(1) constant.

We note that (85) agrees with ETH; in contrast Var(Sα) is smaller than the ETH
prediction of Var(Sα) ∝ (J2χ?)

−1. This discrepancy follows from the O(1/d) scale of the
off-diagonal elements of the density matrix (30), which holds in the limit of fixed J√χ? as
d → ∞. In this limit we do not recover the off-diagonal ETH for spin observables. The
fluctuations predicted by ETH are obtained only in the regime J/hS held fixed as d→∞,
when the off-diagonal elements of the density matrix ρ̂α are O(1/

√
d).

5 Infinite time memory in dynamical evolution

The Spin-ETH model consists of a few level system weakly coupled to a thermal bath, and
is thus a prototypical setting for applying Fermi’s Golden Rule (FGR), which predicts the
exponential decay two-time correlators. However, in the weak and intermediate coupling
regime, the spin maintains appreciable memory of its initial conditions even at infinite time,
a feature not captured by FGR. We show that the two-level resonance model provides a
quantitative description of this infinite time memory.

5.1 Strong coupling limit J
√
χ? � 1

Let us recall the predictions of FGR. Consider a system prepared in an eigenstate |E0
α〉 =

| ↑〉|Ea〉 of the decoupled Hamiltonian H0. Dynamical evolution under the full Hamiltonian
H will cause population to leak from |E0

α〉 into a set of target states |E0
β〉 = | ↓〉|Eb〉 at

the target energy Eb ≈ Ea + hS (and subsequently on-wards into states |E0
γ 〉 = | ↑〉|Ec〉).

FGR states that the rate Γα of population leakage out of the state |E0
α〉 is set by the size

of the typical matrix element, and the density of states at the target energy

Γ↑(Ea) = 2π|J Vab|2ρ(Ea + hS)

= 2πJ2ṽ(Ea, hS)
(87)

using ETH ansatz (57).
The decay of the initial state populations causes a decay in two-time correlations.

For specificity we consider the connected zz correlator evaluated with an initial infinite-
temperature state

Czz(t) :=
1

2d
tr
(

eiH t (σz ⊗ 1) e−iH t (σz ⊗ 1)
)

(88)

The FGR does not account for the finite nature of the bath, and thus predicts indefinite
exponential decay of correlations

logCzz(t) = −γt+O(t2/L) (89)

with an exponential decay rate (derived in Appendix D)

γ =
2πJ2

d

∑
σ

∫
dEρ(E)ṽ(E, σhS). (90)

For the Spin-ETH model studied in the manuscript, evaluating (90) numerically yields
γ/J2 = 1.64 . . ..
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5.2 Intermediate and weak coupling J
√
χ? � 1

In contrast to the indefinite exponential decay predicted by the FGR, in the the weak and
intermediate coupling regime J√χ? . 1 many eigenstates of the system are only weakly
entangled. These cause the spin to maintain appreciable memory of its initial state at
infinite time. This infinite memory can be quantified in the infinite time average of the
spin-spin correlator

Czz = lim
t→∞

1

t

∫ t

0
dt′Czz(t

′) =
1

2d

∑
α

〈Eα|σz|Eα〉2. (91)

where the second equality is obtained by expanding in the eigenbasis. Only eigenstates
which are close to product states contribute to Czz, which is thus approximately propor-
tional to the fraction of eigenstates in the lower mode of fEE. More precisely, we may
evaluate (91) within the two level resonance model

〈Eα|σz|Eα〉2 =
(
1− 2p(J2χα)

)2
=

1

1 + 4J2χα
. (92)

We obtain an analytic form for the infinite time correlator by first ensemble averaging

[〈Eα|σz|Eα〉2] =

∫
dχf(χ|Ea, σhS)

1

1 + 4J2χ
(93)

(where α = (a, σ)), and subsequently summing over possible states α to obtain

Czz =
1

2d

∑
σ∈↑,↓

∫
dE ρ(E)

∫
dχfFS(χ|E, σhS)

1

1 + 4J2χ
. (94)

The weak coupling behaviour of Czz is given by

Czz = 1− 4πJ

√
χ?(0, hS)

6
+ O(J2χ?(0, hS)) + O(L−1/2). (95)

To recover (95) we consider the following quantity K which must be shown to have value
K = 4π/

√
6:

K = lim
J→0

1− Czz
J
√
χ?(0, hS)

= lim
J→0

1

2d

∫
dE ρ(E)

∫
dχ
∑
σ∈↑,↓

fFS(χ|E, σhS)√
χ?(0, hS)

4Jχ

1 + 4J2χ
.

=
π

d

∫
dE ρ(E)

∑
σ∈↑,↓

√
χ?(E, σhS)

χ?(0, hS)

=
2π

d

∫
dE ρ(E)

√
ρ(E)

ρ(0)
+O(L−1/2)

(96)

Here, in the second line we have substituted (94), and in the third line we have used that
fFS ∼ χ1/2

? /χ3/2 at large χ, and performed the resulting integral
∫

dxx−3/2 4x/(1 + 4x) =
2π. To obtain the final line we have then used

χ?(E, σhS) = cβ ṽ(E, σhS)ρ(E + hS)

= cβ ṽ(0, hS)ρ(E) +O(L−1/2)

= χ?(0, hS)ρ(E)/ρ(0) +O(L−1/2).

(97)
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Figure 9: Finite time correlations in the Spin-ETH model for coupling strength J = 0.1
and different system sizes L (legend). The correlator Czz(t) initially decays exponentially
with FGR setting the decay rate (black dashed line). For a finite bath, the ensemble
averaged correlations (coloured solid lines) saturate to a finite value which we extract
numerically (coloured dashed lines). Individual trajectories (coloured translucent lines)
exhibit small oscillations around this value. The numerically extracted saturation values
are compared with theoretical values in Fig 10.
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Figure 10: Infinite time correlations: The infinite time spin correlations Czz are plotted
for the Spin-ETH model. The predicted theoretical form (black dashed) crosses over from
Czz → 1 as J → 0 to Czz → 0 as J

√
χ?(0, hp) � 1. The small J asymptote (95) is

also shown (black dotted). The theoretical forms show good agreement with numerically
extracted values (coloured solid lines, L values on legend, inset). The region enclosed
within the grey box where Czz crosses over between its limiting values is shown (plot
inset). N = 1000, 100, 10 realisations per data point for L = 11, 12, 13 repsectively and
N = 3000 for L ≤ 10.

Performing the Gaussian integral in the final line of (96) we obtain the desired result
K = 4π/

√
6, and hence (95) follows.

In Figs 9 and 10 we numerically verify the saturation values Czz of the two-time spin
correlator, (94) and (95) in the Spin-ETH model. In Fig 9, for bath of size L (legend
inset) we show a sub-sample of N = 4 trajectories (translucent colours) and the sample
mean value of Czz(t) (solid colours),. These trajectories track the FGR prediction (89)
at early times (black dashed) before converging to the ensemble averaged infinite time
value (dashed colour). The convergence from below is related to the well known ‘dip’
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and ‘ramp’ features of the spectral form factor in Gaussian random matrices systems [35].
In Fig. 10 the numerically calculated infinite time saturation values Czz (solid colours)
are compared with theoretical predictions (94) (black dashed). The agreement is good
throughout the plot range. The weak coupling approximation (95) (black dotted), also
shows good agreement for J√χ? � 1.

6 Off-diagonal matrix elements of operators on the bath

In the weak and intermediate regimes, the spin-bath system does not satisfy ETH. However,
operators on the bath do satisfy an ETH-like ansatz in which off-diagonal matrix elements
within a small spectral window have a non-Gaussian distribution. This distribution deforms
smoothly between the weak coupling limit (J√χ? � 1/d), wherein ETH is satisfied on the
bath (but not the combined spin-bath system), and the strongly coupled limit (J√χ? & 1)
where the entire spin-bath system approaches ETH.

Consider the weak coupling regime. A local operator V on the bath satisfies ETH (57)
with the random numbers Rab being Gaussian distributed [49–54]. Two arguments help see
why the Rab are Gaussian distributed in ETH: (i) the distribution of the Rab is constrained
only by [Rab] = 0 and [R2

ab] = 1, and the standard normal distribution is the maximum
entropy distribution with this property (i.e. deviation from normality would imply the
existence of additional constraints) and (ii) under fairly weak assumptions (violated in the
case of e.g. localisation), Gaussian distributed elements represent the only perturbatively
stable situation. To see this consider a weak perturbation to the bath HB → H ′B =
HB + ∆H. Let the energy scale |∆H| of this perturbation be much larger than the level
spacing, but much smaller than the local bandwidth so that only states for which V̄ (E)
and ṽ(E,ω) have essentially the same value hybridise. Consider the matrix elements of V
in the new eigenbasis: the functions V̄ (E) and ṽ(E,ω) are unaltered from (57), but the
Rab coefficients linearly superpose:

Rab → R′ab =
∑
cd

UacRcdU
†
db. (98)

Above, U , the unitary which maps from the unperturbed to the perturbed eigenbasis,
superposes unperturbed levels with small energy separations |Ea −Eb| . |∆H|. As R′ab is
a weighted sum of the Rab, by the central limit theorem, it is normally distributed.

At zero coupling the bath satisfies ETH. However, the combined spin-bath system does
not, as the off-diagonal matrix are not Gaussian distributed. The matrix elements of 1⊗V
evaluated between eigenstates α = (a, σ) and β = (b, τ) of H are given by

Vαβ := 〈Eα|1⊗ V |Eβ〉

= V̄ (Eα) δαβ +

√
ṽ(Eα,Eβ − Eα)

2ρ(Eβ)
R αβ

(99)

Above 2ρ(E) is the density of states of the combined spin-bath system. In (99), and
throughout this section, we neglect the O(L−1) correction to the energy density of the
system from the spin so that V̄ (Ea) = V̄ (Eα) + O(L−1). In decoupled limit J → 0, the
random matrix elements are given by

R αβ =
√

2δστRab. (100)

The R αβ are strongly non Gaussian: half the elements R αβ are exactly zero, whereas half
are Gaussian distributed with twice the variance predicted by ETH. In the strong coupling
regime the R αβ will be Gaussian distributed with [R αβ] = 0, [|R αβ|2] = 1 as required.
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We characterise the crossover between the strong and weak coupling regimes by eval-
uating the distribution of off-diagonal matrix elements on the bath within the two-level
resonance model. Consider the matrix element Vαβ between the two eigenvectors of the
first spin and bath

|Eα〉 =
√
qα|E0

α〉+
√
pα|E0

γ 〉
|Eβ〉 =

√
qβ|E0

β〉+
√
pβ|E0

δ 〉.
(101)

Here the |E0〉 are product states of the spin and bath, with the subscripts α = (σ, a),
β = (τ, b), γ = (−σ, c) and δ = (−τ, d).

There are two distinct cases of off-diagonal elements to consider: the even case σ = τ ,
and the odd case σ = −τ . Taking the even case first, we use the ETH ansatz (57) to obtain
the matrix element

V
(e)
αβ = 〈Eα|1⊗ V |Eβ〉

=
√
qαqβ〈E0

α|1⊗ V |E0
β〉+
√
pαpβ〈E0

γ |1⊗ V |E0
δ 〉

=

√
ṽ(Eβ − Eα)

2ρ0
R (e)
αβ

(102)

where the random coefficient

R (e)
αβ := Rab

√
2qαqβ +Rcd

√
2pαpβ (103)

has mean and variance

[R (e)
αβ] = 0, [|R (e)

αβ|
2] = 2[qαqβ + pαpβ]. (104)

We now obtain the distribution for R (e)
αβ . Let fN(R|µ, σ2) denote the usual normal distribu-

tion of mean µ and variance σ2. The Rab are distributed as fN(R|0, 1), while pα = p(J2χα)
with χα distributed according to fFS(χ). Thus,

f
(e)
OD(R ) =

∫∫
dχdχ′fFS(χ)fFS(χ′)fN

(
R |0, v(e)(J2χ, J2χ′)

)
(105)

where for brevity we have defined v(e)(x, y) = 2q(x)q(y) + 2p(x)p(y). It is readily verified
that this distribution has the mean and variance in (104).

Repeating this calculation for the odd case, we obtain R (o)
αβ with mean and variance

[R (o)
αβ ] = 0, [|R (o)

αβ |
2] = 2[qαpβ + pαqβ], (106)

and corresponding distribution

f
(o)
OD(R ) =

∫∫
dχdχ′fFS(χ)fFS(χ′)fN

(
R |0, v(o)(J2χ, J2χ′)

)
(107)

with v(o)(x, y) = 2q(x)p(y) + 2p(x)q(y).
In sum, the distribution of off-diagonal elements R αβ is given by,

fOD(R ) =
1

2

(
f

(e)
OD(R ) + f

(o)
OD(R )

)
. (108)

The distribution fOD is plotted for different values of J√χ? in Fig. 11. As J is tuned
through the intermediate regime fOD interpolates smoothly between the weak coupling
limit of fOD(R )→ 1

2fN(R |0, 2)+ 1
2δ(R ) where ETH is satisfied within each spin sector, and

the strong coupling limit of fOD(R )→ fN(R |0, 1) where the combined system approaches
ETH. At intermediate values, fOD is visibly non-Gaussian.
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Figure 11: Distribution fOD(R ) of the off-diagonal matrix elements of operators on the
bath: Eq. (107) is plotted for different values of J√χ? from the intermediate regime
(values in legend, inset). The dotted lines show the limiting cases of weak coupling,
where fOD(R )→ 1

2fN(R |0, 2) + 1
2δ(R ), and strong coupling fOD(R )→ fN(R |0, 1) (where

fN(R |µ, σ2) is the normal distribution).

7 The entropy of the bath

In the intermediate regime, the effective density of states of the bath is enhanced by the
partial thermalisation of the spin, ρ(E) ≤ ρeff ≤ 2ρ(E). We characterise this smooth
enhancement with the matrix element entropy ∆S = log(ρeff/ρ(E)) which describes the
effective entropy of the bath as felt by a second, weakly coupled, probe spin.

Introduce a second ‘probe’ spin with field h′S coupled to the bath in the same manner
as the first, with a weak coupling constant J ′ and bath operator V ′ (here and throughout
this section primed variables relate to the second spin). This second spin sees an “effective
bath” composed of HB together with the first spin, see Fig. 2a. Applying the results of
Secs. 3.2 and 3.3, the hybridisation of the states at energy E is quantitatively characterised
by the scalar quantity J ′2χ′?(J,E , h′S) where

χ′?(J,E , ω) := [|V ′αβ|]2ρ′(E + ω)2. (109)

Here ρ′(E) = 2ρ(E) + O(L−1) is the density of states of the combined (first) spin+bath.
We may also use (64) to define an effective density of states

χ′?(J,E, ω) = cβ ṽ
′(J,E, ω)ρeff(E + ω) (110)

where ṽ′ is the spectral function of V ′.
At weak coupling, χ′?(0,E , ω) is given by (44). At strong coupling to the first spin, the

typical fidelity susceptibility is twice its J = 0 value χ′?(J,E , ω) = 2χ′?(0,E , ω). Recall-
ing (64), we understand the factor two growth of χ′? as an enhancement of the effective
bath density of states ρeff due to strong hyrbidisation with the first spin, or equivalently as
a log 2 enhancement of bath entropy S = log ρeff [25,55,56]. It is thus natural to define the
entropic enhancement of the bath at intermediate values by the matrix element entropy

∆S(J,E , h′S) := log

(
χ′?(J,E , h′S)

χ′?(0,E , h′S)

)
(111a)

=2 log

(
[|V ′αβ|]

[|V ′αβ|]J=0

)
(111b)
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As before, [|V ′αβ|] is the mean absolute value of the matrix elements averaged over levels α
and β taken from small windows about the energies E and E +hS respectively. [|V ′αβ|]J=0

is the same quantity evaluated for zero coupling to the first spin J = 0.
We recast the matrix element entropy ∆S in terms of more familiar objects: it is the

Renyi entropy of order n = 1/2 associated to the R αβ . Specifically, as the R αβ square to
one [|R αβ|2] = 1, we may define the normalised “probability distribution” Pαβ = |R αβ|2/N
where N is a normalisation constant, and α, β are restricted to the aforementioned energy
windows. The Renyi entropy of order n associated to this distribution is

Hn(P ) =
1

1− n
log

∑
αβ

P n
αβ

 . (112)

Comparing (112), (111a) and (99) we see that

∆S(J,E , hS) = H1/2(P )− H1/2(P )
∣∣
J=0

. (113)

We now evaluate the matrix element entropy. Starting from (113) with Pαβ = |R αβ|2/N
we may perform the R -average using distribution of off-diagonal matrix elements (107) to
obtain

∆S = 2 log

(∫∫
dχdχ′fFS(χ)fFS(χ′)k(J2χ, J2χ′)

)
(114)

where, for brevity, we have suppressed the dependencies of ∆S and fFS, and defined the
kernel

k(x, y) :=
√
p(x)p(y)+q(x)q(y) +

√
p(x)q(y)+q(x)p(y). (115)

Eq. (114) is exact within the two level resonance model, but cannot be straightforwardly
simplified to a closed form expression. However, in the asymptotic limits of weak and strong
coupling simpler forms may be extracted (see Appendix E), yielding respectively

∆S = −8J
√
χ? log(J

√
χ?) +O(J

√
χ?) (116a)

∆S = log 2 +O
(
(J2χ?)

−2
)
. (116b)

The matrix element entropy ∆S calculated here determines χ′?, which in turn sets the
large χ′ tail of the distribution of the fidelity susceptibilities χ′(α,τ) of the product states
|τ〉|Eα〉 to switching on the coupling J ′. χ′(α,τ) is defined in precise analogue to (28)

χ′(α,τ) :=
∑
β

∣∣∣∣∣ V ′αβ
Eα − Eβ + τh′S

∣∣∣∣∣
2

(117)

The χ′(α,τ) have distribution f ′FS with asymptotic tail

f ′FS(χ′) ∼

√
χ′?
χ′3

. (118)

As ∆S increases, this tail shifts to larger χ. By direct application of the results of Secs. 4
and 5, χ′(α,τ) determines the universal shape of the distribution of entanglement entropies
of the second spin at weak and intermediate coupling (80) (J ′2χ′? � 1), and the saturation
value of two time correlators of the second spin (95). As we have set the second spin to
be in the weak coupling regime, there is no corresponding enhancement of the bath felt

27



SciPost Physics Submission

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●
●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●
●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●
●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●
●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●
●

● ● ● ● ●

● 6

● 7

● 8

● 9

● 10

● 11

● 12

● 13

10-6 10-5 10-4 10-3 10-2 10-1 100

0

1
2

1

J χ* (0, hS)

/
lo
g
2

a.

● ● ● ● ● ●
● ●

● ●
●

●

●

●

●
● ●

●

●
●

●
● ●

●
●

●

● ●

●

●

●

●

● ●

●

●

● ●
● ● ●

● ● ●
● ●

●

●

●

●

●

●

● ●

● ● ● ● ●
● ● ●

●
●

●

●

●

●

●

●
●

●

● ●

● ●
●

●
● ● ●

●

●

●

●

●

●

●
●

●

● ● ● ● ● ● ●

● ●

●

●

●

●

●

●

●
●

●
● ●

● ● ● ● ●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

● ●

●
●

●

●

●

● ●

●

10-6 10-5 10-4 10-3 10-2 10-1 100

0

1
2

1

J χ* (0, hS)

/
lo
g
2

b.

Figure 12: Entropic enhancement of the bath: two numerical measures of the entropic
enhancement of the bath (coloured points, L values inset) are compared with the theoretical
prediction (114) (solid black). Upper panel: we extract ∆S as defined by (111b). Lower
panel: we extract ∆S as defined by (111a) with χ? extracted using (119). For very small
sizes (lower panel L = 6, 7) there is significant disagreement once the coupling J becomes
large. Number of realisations per data point: in the upper panel N = 10, 1000, 2000
and N = 6000 for L = 13, 12, 11 and L ≤ 10 respectively; in the lower panel N =
100, 1000, 3000, 104, and N = 105 for L = 13, 12, 11, 10 and L ≤ 9 respectively.

by the first spin due to the presence of the second spin. If both spins are intermediately
coupled, a self consistent treatment is required.

In Fig 12 we numerically verify that the fidelity susceptibilities of the second spin (117)
are distributed as (118) with the enhancement to the typical fidelity susceptibility χ′? =
exp(∆S) χ′?|J=0 determined by the matrix element entropy (114). We do this in two
equivalent ways one less direct measure with low statistical noise, and one more direct
measure with greater statistical noise. In each case we find good agreement with the
theoretical prediction. In Fig 12a we plot ∆S as defined by (111b) with [|V ′αβ|] extracted
by diagonalising the spin-ETH model for different values of coupling J to the first spin and
averaging over realisations and mid-spectrum states. Statistical error bars are smaller than
plot points. The deviation from the theoretical curve is decreasing with L. The ∆S > log 2
seen at small L reflects the deviation from ETH exhibited by particularly small baths.

In Fig 12b we extract ∆S as defined by (111a) directly from the distribution of fidelity
susceptibilities χ′(α,τ). We extract the tail coefficient estimate χ′?(J,E , hS), in accordance
with (118), by aggregating values of χ′(α,τ) from the mid-spectrum states of many real-
isations into a large data set (of size N). We sort this sample into descending order
χ′1 > χ′2 > . . . > χ′N , and use the identity (derived in App. F)

logχ′? =
1

M

M∑
n=1

logχ′n + 2 log

(
M

2eN

)
+O

(
M

N

)
+O

(
1√
M

)
. (119)

which holds for any M ≤ N . The corrections are minimised by restricting the partial
sum to the M = O(N2/3) largest values, specifically we use M = bN2/3/10c. Eq. (111a)
converts the extracted values of χ? into values of the matrix element entropy, ∆S , which
are plotted (coloured points) for different systems size (legend inset). The numerically
extracted values of ∆S show good agreement with the theoretical prediction (114) (black
solid line). The theory curve is calculated using fFS(χ) as extracted for the ETH bath in
Sec. 3.3, specifically fFS given by (51b), with χ?(0, σhS) given by (67).
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8 Discussion

We have developed an ETH-like ansatz of a spin coupled to a finite quantum bath (the
Spin-ETH model), this applies in the weak and intermediate regimes where the spin only
partially thermalises with the bath. In the intermediate regime, the fraction of states
that form many-body resonances determines eigenstate-averaged properties such as the
mean spin entanglement entropy, as well as physical observables, such as infinite-time
memory and the combined entropy of the spin-bath system as probed by a second spin.
Previous analyses of small systems interacting with mesoscopic quantum baths [25,55,57–
60] overlooked these important effects of many-body resonances.

Applicability of the two level resonance model: Our results hinge on the two level
resonance model. It may be surprising that the predictions of this model agree closely with
exact-diagonalisation numerics, as it assumes the eigenstates of the Spin-ETH model to be
given by a superposition of two eigenstates in the decoupled (J = 0) limit,

|Eα〉 =
√
pα|σ〉|Ea〉+

√
qα|−σ〉|Eb〉, (120)

and estimates the coefficients pα, qα within first order degenerate perturbation theory.
Accounting for hybridisation with other states at first order, as well as higher order terms,
corrects the bath states, and leads to a more refined ansatz

|Eα〉 =
√
pα|σ〉|Ẽa〉+

√
qα|−σ〉|Ẽb〉. (121)

However, providing J � hS, the cross term
√
pαqα〈Ẽa|Ẽb〉 � pα〈Ẽa|Ẽa〉, qα〈Ẽb|Ẽb〉 (122)

is negligible due to conservation of energy. Thus, this more refined ansatz yields the same
results as presented in the main text.

Connections to the many-body localisation finite-size crossover: Refs. [32, 53]
found that an ETH-like ansatz (specifically the matrix elements of local operators sat-
isfying (57) but with non-Gaussian Rab) applied on the thermal side of the finite-size
many-body localisation (MBL) crossover. The authors argued that this feature related to
sub-diffusive thermalising behaviour. Our results suggests an alternate explanation based
on the lack of thermalisation of local subsystems. Specifically, the Spin-ETH model satis-
fies an “ETH-like” ansatz with non-Gaussian matrix elements in the weak and intermediate
regimes (see Fig. 11, and Sec. 6) similar to that of Refs. [32, 53]. This non-Gaussianity
goes hand-in-hand with the eigenstates having local entropies that are either close to their
thermal values (due to the formation of many-body resonances) or close to zero. Indeed,
consistent with this explanation, bi-modal distributions of local entanglement entropies
over eigenstates have previously been reported (See Fig. 9 of Ref. [61]) on the putative
thermal side of the numerical MBL transition. A resonance based mechanism is in line
with recent proposals that the numerical MBL-thermal crossover occurs when the MBL
phase is destabilised by many-body resonances [62, 63], and not by rare thermal regions,
as has largely been assumed [23,25,55,56,58,64–66].

Connections to the Rosenzweig-Porter model: Our results also connect to the
Rosenzweig-Porter (RP) model, though they do not correspond to the well-studied de-
localisation transitions [67–71]. Instead, they correspond most closely to RP models in
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which the typical off-diagonal matrix element and typical level spacing scale together (as
1/d, where d is the dimension). Thus, within the RP terminology, the intermediate regime
of the Spin-ETH model is localised, as the exact eigenstates |Eα〉 have significant overlap
with only a finite number of the J = 0 eigenstates |E0

α〉. However, as we have shown, in
the Spin-ETH model this is sufficient to lead to the entropic enhancement of the bath.

Extensions to this work: We have focused on the infinite time properties of the system,
characterised by eigenstate properties, time averaged correlations, and the properties of
the system as an effective bath. It would be interesting to extend our analysis to describe
the finite bath corrections to the finite time decay of correlation functions, providing a
link between our work and previous random matrix models of decoherence [72–75], and
Loschmidt echos [76–82].

A particularly relevant direction for future investigation is extending our analysis to
the problem of multiple spins coupled to the bath. We treated the simplified case in Sec. 7
in which the second spin is in the weak coupling regime. However, extension to the case
where the ‘effective bath’ seen by the second spin is enhanced by the presence of the first
spin and vice versa is necessary to study the regime where multiple spins are coupled in
the intermediate regime.

Moreover, while we have focused on coupling a two-level system, or spin-1/2, to a bath,
it would be useful to obtain results for higher dimensional qudits, and even pairs of large
weakly coupled baths. The latter case in particular could prove relevant to the RG studies
of the MBL transition [83–89], which currently treat pairs of thermal regions as either in
the weak or strong coupling regimes. This is a poor approximation at large d where these
regimes are asymptotically separated.

Finally, while we have focused on infinite temperature properties of the Spin-ETH
system, we expect our results are generalisable to the finite temperature. A subtlety which
must be accounted for is the distinct density of states available in the ↑ and ↓ sectors.
When this feature is correctly accounted for, at the crossover from the intermediate to
strong coupling regimes, the two modes of fEE(S) should combine into a single mode at
the thermal entropy Sth. < log 2.
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A Calculation of ρ̂α in perturbation theory

In this appendix we provide a step by step derivation of the reduced density matrix in (30)
which is calculated to quadratic order in perturbation theory.

Recall the unperturbed Hamiltonian H0. Consider an arbitrary eigenstate projector of
this Hamiltonian

P 0
α := |E0

α〉〈E0
α|. (123)
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Upon introducing a perturbation H0 → H = H0 + V the perturbed eigenstate projectors
are given to infinite order in perturbation theory by

Pα =
∞∑
n=0

P (n)
α =

∞∑
n=0

(−1)n+1
∑

kj≥0 : k0+k1+...+kn=n

S (k0)
α VS (k1)

α VS (k2)
α · · · S (kn−1)

α VS (kn)
α

(124)
where the sum is taken over non negative integers kj such that

∑n
j=0 kj = n, and we have

denoted
S (0)
α = −P 0

α, and S (n>0)
α = R n

α (125)

where R α is the projected resolvent

R α := lim
z→E0

α

(1− P 0
α)

1

H0 − z
(1− P 0

α) =
∑
β 6=α

P 0
β

E0
β − E0

α

. (126)

Eq. (124) is a corollary of the more general results derived in Chapter 2 of Ref. [90], results
which are here simplified by restricting to the case that H is Hermitian and all eigenvalues
are non-degenerate (i.e. that each P 0

α has rank 1).
Writing out the two leading corrections in (124) explicitly we have

P (1)
α =− R αVP 0

α − P 0
αV R α

P (2)
α =R αV R αV Pα + R αVP 0

αV R α + P 0
αV R αV R α

− R 2
αV P 0

αV P 0
α − P 0

αV R 2
αV P 0

α − P 0
αV P 0

αV R 2
α

(127)

As we are interested only in the reduced density matrix on the spin, we will now trace out
the bath ρ̂α := trE (Pα). In order simplify the explicit expressions we obtain we denote

χα :=
∑
b

∣∣∣∣ Vab
Ea − Eb + σhS

∣∣∣∣2 = O(g2/J2), χ′α :=
∑
b6=a

∣∣∣∣ V ′ab
Ea − Eb

∣∣∣∣2 = O(g2/J2) (128)

We then substitute in form of the interaction V (23) and simplify. We consider a state
α = (↑, a) as in the main text

trE

(
P 0
α

)
= | ↑〉〈↑ | (129a)

trE

(
P 0
αV R α

)
= J

Vaa
hS
| ↑〉〈↓ |

= O

(
g

ρ0hS

)
| ↑〉〈↓ | (129b)

trE

(
P 0
αV R αV R α

)
= JJ ′

∑
b

VabV
′
ba

hS(Eb − Ea − hS)
+
∑
b 6=a

V ′abVba
hS(Eb − Ea)

 | ↑〉〈↓ |
= O

(
g

ρ0hS

)
| ↑〉〈↓ | (129c)

trE

(
R αVP 0

αV R α

)
= J2

∑
b

∣∣∣∣ Vab
Ea − Eb + hS

∣∣∣∣2 | ↓〉〈↓ |+ J ′
2
∑
b6=a

∣∣∣∣ V ′ab
Ea − Eb

∣∣∣∣2 | ↑〉〈↑ |
+ JJ ′

∑
b 6=a

VabV
′
ba

(Ea − Eb)(Ea − Eb + hS)
| ↓〉〈↑ | (129d)

+ JJ ′
∑
b 6=a

V ′abVba
(Ea − Eb)(Ea − Eb + hS)

| ↑〉〈↓ |
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= J2χα| ↓〉〈↓ |+ J ′
2
χ′α| ↑〉〈↑ |+O

(
g2

ρ0hS

)
| ↓〉〈↑ |+O

(
g2

ρ0hS

)
| ↑〉〈↓ |

(129e)

trE

(
P 0
αVP 0

αV R 2
α

)
= trE

(
P 0
αV R 2

α

)
tr
(
P 0
αV
)
| ↑〉〈↓ |

= JJ ′
V 2
aa

h2
S

| ↑〉〈↓ |

= O

(
g2

ρ2
0h

2
S

)
| ↑〉〈↓ | (129f)

trE

(
P 0
αV R 2

αVP 0
α

)
=

J2
∑
b

∣∣∣∣ Vab
Ea − Eb + hS

∣∣∣∣2 + J ′
2
∑
b 6=a

∣∣∣∣ V ′ab
Ea − Eb

∣∣∣∣2
 | ↑〉〈↑ |

= J2χα| ↑〉〈↑ |+ J ′
2
χ′α| ↑〉〈↑ | (129g)

Combining the above terms as in (127) provides an explicit form for ρ̂α given in (30)

ρ̂α =

1− J2χα O
(

g
ρ0hS

)
O
(

g
ρ0hS

)
J2χα

+O

(
g2

ρ0hS

)
+O(g3), (130)

and hence the entanglement entropy

Sα = −tr (ρ̂α log ρ̂α) = −(1− J2χα) log(1− J2χα)− J2χα log J2χα +O

(
g2

ρ0hS

)
+O(g3),

(131)
expanding to leading order yields (31) in the main text.

B Calculation of the distribution fFS for a Poisson bath

In this appendix we provide a step-by-step derivation showing in detail how (39) is obtained
from the starting from (36). Our starting point is the definition of the fidelity susceptibility

χα =
∑
b

∣∣∣∣ Vab
Ea − Eb + σhS

∣∣∣∣2 . (132)

where α = (a, σ). In the case of a Poisson bath we may treat each of the energy levels as
iid drawn from the density of states, and each of the matrix elements as iid drawn from
some distribution. Thus we obtain the cumulant generation function (37)

K(t|E,ω) := d log

[
exp

(
it

d

∣∣∣∣ V

E − Eb + ω

∣∣∣∣2
)]

V,Eb

. (133)

Writing this out explicitly as an energy integral, and using that K(t|E,ω) = K(t, E+ω, 0)
to set ω = 0 without loss of generality, we obtain

K(t|E, 0) = d log

[
1

d

∫ ∞
−∞

dE′ρ(E′) exp

(
it

d

∣∣∣∣ V

E − E′

∣∣∣∣2
)]

V

. (134)
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We then change variables to x = |V |2/(d|E − E′|2); Taylor expand the density of states
about E; and collect the V averages. Step by step this gives

K(t|E) = d log

[
1

2d

∫ ∞
0

dx
V eitx√
dx3

{
ρ

(
E +

V√
xd

)
+ ρ

(
E − V√

xd

)}]
V

(135)

= d log

[
1

d

∫ ∞
0

dx
V eitx√
dx3

{
ρ(E) +O

(
V 2ρ′′(E)

xd

)}]
V

(136)

= d log

(∫ ∞
0

dx eitx
{

[|V |]ρ(E)

(xd)3/2
+O

(
[|V |3]ρ′′(E)

(xd)5/2

)})
. (137)

To make further progress we use the following result of Fourier analysis (see e.g. Ref [91])∫ ∞
0

dx
eitx

xn+1/2
= Γ(1

2 − n)(−it)n−
1
2 for n ∈ N, (138)

to obtain

K(t|E, 0) = d log

(
1−

√
−4πiρ(E)2[|V |]2t

d3
+O

(
[|V |3]ρ′′(E)t3/2

d5/2

))
. (139)

Above, the unity term in the argument of the logarithm follows from the requirement that
K(t = 0|E) = 0. Expanding to leading order provides the desired result (38)

K(t|E, 0) = −
√
−4πiρ(E)2[|V |]2t

d
+O

(
tρ(E)2[|V |]2

d

)
. (140)

C Calculation of the distribution fFS for a GUE bath

C.1 Set-up

In this appendix we adapt the approach of Ref. [39] to calculate the distribution of the
fidelity susceptibility fFS, defined in (35), of the fidelity susceptibility, defined in (28).

Specifically we assume the matrix elements Vab in (28) are the elements of a d × d
Gaussian Random matrix V drawn with Dyson index β. Specifically Vab ∈ R,C,H for β =
1, 2, 4 respectively, and the matrix V is drawn from a distribution ∝ exp

(
−βtr

(
V 2
)
/4σ2

)
with σ2 = 1/d. The matrix elements of V are Gaussian random numbers with mean
[Vab] = 0 and two-point correlations

[VabVcd
∗]V = σ2

(
δacδbd +

2− β
β

δadδbc

)
. (141)

For now β is left general, and we proceed in generality as far as possible, but ultimately
we only complete calculation is only in the cases β = 2. The eigenvalues Ea in (28) are
the eigenvalues of a separate random matrix, the “bath hamiltonian” in the main text,
here denoted R. R is drawn iid from the same distribution as V . As the target energy
Ea + σhS is arbitrary, for the purposes of simplifying the calculation we set it to zero. We
will discuss afterwards how the result we obtain is generalised to different target energies.

According to the arguments presented in the main text, we expect that at asymptoti-
cally large χ the distribution decays as

fFS(χ|E,ω) ∼ χ
1/2
?

χ3/2
where χ?(E,ω) = ρ(E + ω)2[|Vab|]2 (142)
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with ρ(E) and a given by (15) and (42) respectively.
As the upper tail of fFS, set by χ?, flows off to infinity in the limit of large d, we will

calculate the distribution of the reduced susceptibility x = χ/χ?, providing a well behaved
large d limit. Specifically we calculate

fRS(x) = χ? fFS(xχ?|E,−E). (143)

where for simplicity, additionally set ω = −E so that E+ω is a mid-spectrum energy, how-
ever the calculation below is easily extended to generic energies to obtain the result (142).

C.2 Calculation of fRS(x)

The distribution of fRS(x) can be written as

fRS(x) =

[
δ

(
x− χ

χ?

)]
E,V

=

[
δ

(
x− 1

χ?

∑
b

|Vab|2

|Eb|2

)]
E,V

=
1

2π

∫
dt

[
exp

(
−it

(
x− 1

χ?

∑
b

|Vab|2

|Eb|2

))]
E,V

.

(144)

where in the final equality we have substituted the integral representation of the δ-function.
Performing the integration over the Gaussian distributed matrix elements Vab we obtain

fRS(x) =
1

2π

∫
dte−itx

[∏
b

(
1− 2itσ2

χ?β|Eb|2

)−β/2]
E

=
1

2π

∫
dte−itx

∏
b

(
|Eb|2

|Eb|2 − 2itσ2

χ?β

)β/2
E

(145)

where β = 1, 2, 4 for matrix elements Vab which are real, complex and quaternion respec-
tively. We then use that detR =

∏
bEb for a Gaussian random matrix R, and swap the

average over eigenvalues, for an ensemble averaging of R

fRS(x) =
1

2π

∫
dte−itx


 detR2

det
(
R2 − 2itσ2

χ?β

)
β/2


R

. (146)

We next use the Gaussian integral result

1 =

(
β

2π

)β/2 ∫
M

dzi exp
(
−β

2 z
∗
i zi

)
(147)

where for β = 1, 2, 4 the integral is over real M = R, complex M = C, and quaternion
M = H respectively. This integral is well known for real and complex zi, and holds also
for quaternions [92]. From this relation we obtain

1

(detA)β/2
=

(
β

2π

)dβ/2 ∫
Md

dz exp
(
−β

2 z
†Az

)
(148)

for any positive definite matrix A. Inserting (148) into (146) one obtains

fRS(x) =
1

2π

∫
dte−itx ·

(
β

2π

)dβ/2 ∫
Md

dz ei|z|2tσ2/χ?
[
(detR2)β/2 exp

(
−β

2 z
†R2z

)]
R
.

=

(
β

2π

)dβ/2 ∫
Md

dz δ
(
x− |z|2σ2/χ?

) [
(detR2)β/2 exp

(
−β

2 z
†R2z

)]
R

(149)
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where in the second line we have performed the t integral. As the ensemble of R is Haar
invariant, the integrand depends only on |z|, thus we may use the relation perform the
angular/phase part of the z-integral. Specifically:∫

Md

dz · g(|z|) =

∫ ∞
0

rdβ−1dr ·
∫

dΩ · g(r) = Sdβ−1 ·
∫ ∞

0
rdβ−1dr

=
2 · πdβ/2

Γ(dβ/2)

∫ ∞
0

rdβ−1dr · g(r)

(150)

where Sn = 2π(n+1)/2/Γ(n+1
2 ) is the surface are of an n-sphere, which lives in n + 1

dimensional space. Using (150) to simplify (149) we obtain

fRS(x) =
2(β/2)dβ/2

Γ(dβ/2)

∫ ∞
0

dr rdβ−1δ
(
x− r2σ2/χ?

) [
(detR2)β/2 exp

(
−β

2 r
2u†R2u

)]
R

=
2(β/2)dβ/2

Γ(dβ/2)
·
(
xχ?/σ

2
)dβ/2

2x
·
[
(detR2)β/2 exp

(
−βxχ?

2σ2
u†R2u

)]
R

(151)
where is u is an arbitrary fixed unit vector which we set to u = (1, 0, 0, · · · ), and in the
second line we have then subsequently performed the radial integral.

To make further progress we decompose R into: a scalar y ∈ R, a d− 1 element vector
v ∈Md−1 and a (d− 1)× (d− 1) random matrix R′, which is of the same symmetry class
as R

R =

[
y v†

v R′

]
. (152)

We may correspondingly decompose the average over R into and average over y, v,R′

[g(R)]R =
1

Z

∫
dR e−

β

4σ2
tr(R2) · g(R)

=
1

Z

∫
dR′ e−

β

4σ2
tr(R′2) ·

∫
dv e−

β

2σ2
v†v ·

∫
dy e−

β

4σ2
y2 · g

([
y v†

v R′

])
=

[
g

([
y v†

v R′

])]
y,v,R′

(153)

where Z is a normalisation constant. In addition we use the relation

detR2 = detR′
2
(
y − v†R′−1

v
)2
. (154)

Inserting (152), (153), (154) into (151) we then obtain

fRS(x) =
2(β/2)dβ/2

Γ(dβ/2)
·
(
xχ?/σ

2
)dβ/2

2x
·
[
(detR′

2
)β/2

∣∣∣y − v†R′−1
v
∣∣∣β exp

(
−βxχ?

2σ2
(y2 + v†v)

)]
y,vR′

.

(155)
The exponential terms in (155) can be scaled out by using the property

[f(y)e−ay
2
]y =

[
1√

1 + 4aσ2/β
f

(
y√

1 + 4aσ2/β

)]
y

(156)

which is obtained using the substitution y → y′ = y
√

1 + 4aσ2/β, and similarly

[f(v)e−av
†v]v =

[
1

(1 + 2aσ2/β)β(d−1)/2
f

(
v√

1 + 2aσ2/β

)]
v

(157)
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Using (156) and (157) to simplify (155) we obtain

fRS(x) =
2(β/2)dβ/2

Γ(dβ/2)
·
(
xχ?/σ

2
)dβ/2

2x
· 1√

1 + 2xχ?
· 1

(1 + xχ?)β(d−1)/2

×

(detR′
2
)β/2 ·

∣∣∣∣∣ y√
1 + 2xχ?

− v†R′−1v

1 + xχ?

∣∣∣∣∣
β

y,vR′

=
(dβ/2)dβ/2

Γ(dβ/2)
· 1

x
√

1 + 2xcβd/π2
·

(
xcβd/π

2
)dβ/2

(1 + xcβd/π2)β(d−1)/2

×

(detR′
2
)β/2 ·

∣∣∣∣∣ y√
1 + 2xcβd/π2

− v†R′−1v

1 + xcβd/π2

∣∣∣∣∣
β

y,vR′

(158)

where in the second line we have simply subsitituted σ2 = 1/d and χ? = cβd/π
2 We can

simplify this slightly by noting that in the limit of large d(
xcβd/π

2
)β(d−1)/2

(1 + xcβd/π2)β(d−1)/2
∼ exp

(
− βπ2

2cβx

)
(159)

and by Stirling’s formula

Γ(dβ/2) ∼
√

4π

dβ

(
dβ

2e

)dβ/2
(160)

where in all cases ∼ denotes asymptotic equality in the limit of large d. Thus

fRS(x) ∼edβ/2√
4π
· 1

x
√

2xcβd/π2
· exp

(
− βπ2

2cβx

)(detR′
2
)β/2 ·

∣∣∣∣∣ y√2
− v†R′−1v√

xcβd/π2

∣∣∣∣∣
β

y,vR′

.

(161)
As argued in the main text, large values of χα are dominated by the “most resonant” term
in the sum. To make this statement precise, let

Rα :=

∣∣∣∣ Vab
Ea − Eb + σhS

∣∣∣∣2 (162)

where α = (σ, a) and b is chosen as to minimise the denominator. Exactly analogous
to (35) we define the distribution of this quantity as

fR(R|E, σhS) :=
[δ(R−Rα)δ(E − Ea)]B

[δ(E − Ea)]B
, (163)

Which is related precisely to fFS by

lim
χ→∞

fFS(χ|E, σhS)

fR(χ|E, σhS)
= 1. (164)

From this it follows, by the arguments in the main text, that

fR(χ) ∼
√
χ?
χ3
, (165)

and thus
f(x) ∼ x−3/2. (166)

36



SciPost Physics Submission

Using (166) to simplify the x-independent constants in (161) we find

fRS(x) ∼ 1

x3/2
· exp

(
− βπ2

2cβx

)
[

(detR′2)β/2 ·
∣∣∣∣y − v†R′−1v√

xcβd/(π2
√

2)

∣∣∣∣β
]
y,vR′[

(detR′2)β/2 · |y|β
]
y,vR′

.
(167)

To make further progress we consider the cases β = 1, 2, 4 individually.

C.2.1 fFS for GUE

The simplest case is GUE matrices (β = 2). Expanding the quadratic in (167), noting that
the cross term, which is odd in y thus integrates to zero, and substituting cβ=2 = π/4 one
finds

fRS(x) = exp

(
−4π

x

)
· 1

x3/2
·
(

1 +
8π

x

)
(168)

where the coefficient 8π on the second term in the brackets is determined by enforcing that
the distribution is normalised

∫
dxfRS(x) = 1.

C.2.2 fFS for GSE

Following the same approach for (β = 4), expanding (167) and performing the y-integrals,
and substituting cβ=4 = 9π/32 one finds

fRS(x) = exp

(
− 9π

64x

)
· 1

x3/2
·
(

1 +
C

x
+
C ′

x2

)
(169)

where by normalisation we determine that 8192C ′ + 768Cπ + 135π2 = 0. However this
leaves the remaining degree of freedom undetermined. Unfortunately we have been unable
to determine the values of C,C ′ exactly.

C.2.3 fFS for GOE

For GOE (β = 1), we set cβ=1 = 2/π, however the terms inside the brackets are not easily
expanded

fRS(x) = exp

(
−π

3

4x

)
· 1

x3/2
·

[
|detR′| ·

∣∣∣∣y − v†R′−1v√
xd
√

2/π3

∣∣∣∣]
y,vR′

[|detR′| · |y|]y,vR′
. (170)

however by performing the y−integral we obtain

fRS(x) = exp

(
−π

3

4x

)
· 1

x3/2

1 +

[
|detR′| · g

(
v†R′−1v√
x
√

2/π3

)]
v,R′

[|detR′|]v,R′

 . (171)

where g(z) = e−z
2/4−1+(

√
πz/2) Erf(z/2). As we expect the R′ average to be dominated

by the cases where R′ is close to singular, (i.e. |R−1| large), in which regime g(z) ∝
|z|+O(z0), we anticipate that the sub-leading terms come in powers of x−1/2:

fRS(x) = exp

(
−π

3

4x

)
· 1

x3/2

(
1 +

C

x1/2
+
C ′

x
+ . . .

)
. (172)
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D Fermi’s Golden Rule

In this appendix we show that Fermi’s Golden rule (FGR) predicts an exponential decay
of the infinite temperature correlator two-time connected correlator

Czz(t) := tr
(

eiH tσze−iH tσz%̂0

)
= e−γt (173)

The calculation is a little more complex than simply resolving the trace over the initial
states |E0

α〉 and asserting that each one has an amplitude which is decaying at the FGR rate.
By conservation of probability one must also consider the influx of amplitude generated
by states from the opposite spin sector, this correction leads to an O(1) pref factor on the
FGR.

The decay rate we calculate in this section sets the exponential decay of correlations.
We note that the same value of γ is obtained for a treatment of the spin dynamics using
the Lindblad equation of motion.

To apply FGR we first rearrange the correlator into the form

Czz(t)=

(∑
στ

στPσ|τPτ

)
−

(∑
στ

σPσ|τPτ

)(∑
τ

τPτ

)
(174)

where the sum is over σ, τ ∈ {↑, ↓} where ↑, ↓ are taken to have numerical values +1,−1
respectively, and the probabilities are given by the expectation values

Pσ = 〈Πσ(0)〉%̂0 (175a)
Pσ|τ (t) = 〈Πσ(t)Πτ (0)〉%̂0/〈Πτ (0)〉%̂0 . (175b)

where Πσ(t) is the projector onto a spin sector in the Heisenberg picture. By rearrang-
ing (174) is recast as

Czz(t) = 1− P↑|↓(t)− P↓|↑(t). (176)

To apply Fermi’s Golden rule we decompose this into their different energy contributions
Pσ|τ (t) =

∫
dE pσ|τ (t, E) where pσ|τ (t, E)dE is the probability that the spin is in state

σ with bath energy in the range [E,E + dE], given the boundary condition pσ|τ (0, E) =
δστρ(E)/d. Fermi’s golden rule states that

∂tpσ|τ (t, E) = Γ−σ(E + σhS)p−σ|τ (t, E + σhS)− Γσ(E)pσ|τ (t, E) (177)

where the decay rate Γσ(E) = 2πJ2ṽ(E, σhS) is determined by (87), and the two terms
respectively account for the decays of −σ states into the σ sector and vice verse. The
solution is given by

pσ|−σ(t, E) =
ρ(E + σhS)

2d

(
1− Γ−σ (E)

Γ+
σ (E)

)(
1− e−Γ+

σ (E)t
)

(178)

where we have denoted Γ±σ (E) = Γσ(E)±Γ−σ(E+σhS) (note Γ±σ (E−σhS) = ±Γ±−σ(E)).
Thus we obtain

Czz(t) = 1− 1

2d

∑
σ

∫
dEρ(E + σhS)

(
1− Γ−σ (E)

Γ+
σ (E)

)(
1− e−Γ+

σ (E)t
)

= 1− 1

2d

∑
σ

∫
dEρ(E)

(
1 +

Γ−σ (E)

Γ+
σ (E)

)(
1− e−Γ+

σ (E)t
) (179)
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Expanding logCzz(t) in powers of t we obtain

logCzz(t) =
∑
n

κnt
n

n!

= C ′zz(0)t+ 1
2

(
C ′′zz(0)− C ′zz(0)2

)
t2

+ 1
6

(
C ′′′zz(0)− 3C ′′zz(0)C ′zz(0) + 2C ′zz(0)3

)
t3 + . . . .

(180)

where
κ1 = C ′zz(0)

κ2 =
(
C ′′zz(0)− C ′zz(0)2

)
κ3 =

(
C ′′′zz(0)− 3C ′′zz(0)C ′zz(0) + 2C ′zz(0)3

)
...

(181)

One finds κ1 = O(L0), whereas higher order terms are suppressed, this follows as the
density of states ρ(E) is asymptotically narrower than the scale on which Γσ(E) varies,
specifically, κ2 = O(L−1) and κn>2 = O(L−n). We may thus neglect the sub-leading terms
in the large system limit. Thus we have

logCzz(t) = −γt+O(t2/L) (182)

where

γ = −C ′zz(0) =
1

2d

∑
σ

∫
dEρ(E)

(
Γ+
σ (E) + Γ−σ (E)

)
=

2πJ2

d

∑
σ

∫
dEρ(E)ṽ(E, σhS)

(183)
which is the value (90) quoted in the main text. For the Spin-ETH model studied in the
main text we find numerically

γ = J2 × 1.64 . . . (184)

E Asymptotic form of the matrix element entropy

In this appendix we show the matrix element entropy has the limiting small J behaviour

∆S(J,E , h′S) ∼ −8J
√
χ?(E , h′S) log

(
J
√
χ?(E , h′S)

)
(185)

given as (116a) in the main text. Here and throughout this section ∼ is used to denote
asymptotic equality, and we assume we have already taken the limit of large dimension
d → ∞ while holding χ? fixed i.e. J2χ? may be tuned arbitrarily small without leaving
the intermediate regime. Here the matrix element entropy is defined by

∆S := 2 log

(∫
dχ

∫
dχ′fFS(χ)fFS(χ′)K(J2χ, J2χ′)

)
(186a)

K(x, y) :=
√
p(x)p(y) + q(x)q(y) +

√
p(x)q(y) + q(x)p(y) (186b)

p(x) := 1− q(x) :=
1

2

(
1− 1√

1 + 4x

)
. (186c)

(114) in the main text, where for brevity we have suppressed dependency on E , h′S.
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In the limit of J → 0 the integral converges to unity, and hence ∆S = 0. It is useful
to separate off this limiting value

∆S = 2 log

(
1 +

1

2
I

)
= I +O(I)2 (187a)

I := 2

∫
dχ

∫
dχ′fFS(χ)fFS(χ′)

(
K(J2χ, J2χ′)− 1

)
(187b)

We then proceed by making a substitution s = 2
√
χ?/χ to obtain

I = 2

∫ ∞
0

ds

∫ ∞
0

ds′fs(s)fs(s
′)

(
K

(
4J2χ?
s2

4J2χ?

s′2

)
− 1

)
. (188)

where the distribution of the s is given by

fs(s) = fχ

(
4χ?
s2

)
·
∣∣∣∣dχds

∣∣∣∣ = 1 +O(s) (189)

and decaying − log f(s) ∼ s2 at large s.
Consider the integral I, we note two properties of its integrand K − 1: (i) in the limit

of small J the integrand K − 1 tends to zero everywhere except for the neighbourhood
of the lines s = 0 and s′ = 0; (ii) in the limit of small J the derivative ∂sK is non zero
only in the neighbourhood of s = 0, and similarly the derivative ∂s′K is non zero only in
the neighbourhood of s′ = 0. With these properties, one can see that the small J limit
of I is the same for any choice of distribution fs(s) which is smooth in the vicinity of 0,
and preserves the value of fs(0). As a result we are at liberty to choose a much “nicer”
distribution to work with. We choose

fs(s) =

{
1 for s ∈ [0, 1]

0 otherwise
(190)

to obtain

I ∼ I ′ := 2

∫ 1

0
ds

∫ 1

0
ds′
(
K

(
4J2χ?
s2

4J2χ?

s′2

)
− 1

)
. (191)

From here we continue by substituting p = p(4J2χ?/s
2) and p0 = p(4J2χ?) to obtain

I ′ = 2

∫ 1/2

p0

dp

∫ 1/2

p0

dp′fp(p)fp(p
′)
(√

pp′ + (1− p)(1− p′) +
√
p(1− p′) + p′(1− p)− 1

)
.

(192)
Where the distribution of p is given by

fp(p) =

∣∣∣∣dsdp

∣∣∣∣ =
J
√
χ?

p3/2(1− p)3/2
(193)

and we have set
p0 = 4J2χ? +O(J4χ2

?). (194)

We then consider the limit c := limp0→0 I
′(p

1/2
0 log p

1/2
0 ) writing q := 1 − p, q′ := 1 − p′,

q0 := 1− p0 for brevity

c = lim
p0→0

1/2

p
−1/2
0 log(p

1/2
0 )

∫ 1/2

p0

dp

∫ 1/2

p0

dp′

(√
pp′ + qq′) +

√
pq′ + qp′ − 1

p3/2q3/2p′3/2q′3/2

)
(195a)

= lim
p0→0

2

p
−3/2
0 log(p

1/2
0 )

∫ 1/2

p0

dp

(√
pp0 + qq0 +

√
pq0 + p0q − 1

p3/2q3/2p0
3/2q0

3/2

)
(195b)
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= lim
p0→0

2

p
−5/2
0 log(p

1/2
0 )

∫ 1/(2p0)

1
dr

(√
rp2

0 + (1− rp0)q0 +
√
rp0q0 + p0(1− rp0)− 1

r3/2p
3/2
0 (1− rp0)3/2p0

3/2q0
3/2

)
(195c)

= lim
p0→0

2

p
−5/2
0 log(p

1/2
0 )

∫ 1/(2p0)

1
dr

( √
1 + r

r3/2p
5/2
0

)
(195d)

= lim
p0→0

2

p
−5/2
0 log(p

1/2
0 )
· log p0

p
5/2
0

(195e)

= 4 (195f)

where: in the second line we have applied l’Hôpitals rule, differentiating with respect to
p0; in the third line substituted p = rp0; in the fourth line expanded the integrand to
leading order term in p0; in the fifth line performed the integral and kept the result to
leading order in p0 before taking the limit.

Combining (187), (191), (194) and (195) we obtain the desired result in the limit of
small J

∆S ∼ I ∼ I ′ ∼ 4
√
p0 log

√
p0 ∼ 8J

√
χ? log J

√
χ?. (196)

F Estimator for χ?

In this appendix we give a statistical estimator for obtaining χ? from a sample of N values
χα drawn iid from the distribution fFS. Specifically we show that

logχ? =
1

M

M∑
n=1

logχn + 2 log

(
M

2eN

)
+O

(
M

N

)
+

(
1√
M

)
. (197)

where χ1 > χ2 > . . . > χN are the rank ordered χα, and setting M = O(N2/3) minimises
the sub-leading corrections. This estimator has asymptotic error O(N2/3) which we believe
may be the minimum possible asymptotic error.

The χα are drawn from the distribution fFS, which is given to leading and first sub-
leading order by

fFS(χ) =
χ

1/2
?

χ3/2
+ a

χ?
χ2

+O

(
χ

3/2
?

χ5/2

)
. (198)

Consider the quantities v1 < v2 < . . . < vN defined by

vn =

(
χ

1/2
n

2χ
1/2
?

− c

4

)−1

. (199)

The vn are distributed according to

fv(v) = fFS(χ) ·
∣∣∣∣dχdv

∣∣∣∣ = 1 +O(v2). (200)

Intuitively, in the vicinity of v = 0 the distribution fv behaves like the uniform distribution

fu(u) =

{
1 for u ∈ [0, 1]

0 otherwise
. (201)

41



SciPost Physics Submission

This can be made precise in the sense of the following result[
1

M

M∑
n=1

log vn

]
=

[
1

M

M∑
n=1

log un

]
+O

(
M2

N2

)
(202)

where the u1 < u2 < . . . < uN are a rank ordered sample of values drawn iid from fu.
Using (202) to relate to expectation values of calculated under the uniform distribution

is useful, as it is significantly more simple to work with. In particular the mariginal
distribution of the smallest M values of a sample of size N is given by

fu,M (u) =

M∑
n=1

N !

M(n− 1)!(N − n)!
un−1(1− u)N−n (203)

(this is a standard result of Order statistics, see for example, Section 5.4 of Ref. [93]) from
which it is readily calculated that[

1

M

M∑
n=1

log un

]
=

∫ 1

0
log u fu,M (u)du = HM −HN − 1 = log

(
M

N

)
+O

(
1

N

)
(204)

where Hn =
∑n

k=1 1/k = γ+log n+O(1/n) is the nth harmonic number, and γ the Euler-
Mascheroni constant. Lastly we note that while (204) describes the ensemble averaged
value, for any individual sample there will additionally be statistical noise

1

M

M∑
n=1

log un =

[
1

M

M∑
n=1

log un

]
+O

(
1√
M

)
. (205)

We are now able to arrive at our desired result

1

M

M∑
n=1

logχn =

[
1

M

M∑
n=1

logχn

]
+O

(
1√
M

)
(206a)

= logχ? +

[
2

M

M∑
n=1

log

(
2

vn
+
c

2

)]
+O

(
1√
M

)
(206b)

= logχ? + 2 log 2−

[
2

M

M∑
n=1

log vn

]
+O

(
1

M

[
M∑
n=1

vn

])
+O

(
1√
M

)
(206c)

= logχ? + 2 log 2−

[
2

M

M∑
n=1

log un

]
+O

(
M

N

)
+O

(
1√
M

)
(206d)

= logχ? + 2 log 2− 2 log

(
M

N

)
+ 2 +O

(
M

N

)
+O

(
1√
M

)
. (206e)

Where in the second line we have substituted vn (199); in the third line we have expanded
the argument of the logarithm in powers of c; in the fourth line we have substituted
Eq. (202) and evaluated the summation in the correction term; in the fifth line we have
substituted Eq. (204). It is then a matter of simple rearrangement to obtain Eq. (197).
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