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Abstract

We study the competition between two different topological orders in three
dimensions by considering the X-cube model and the three-dimensional toric
code. The corresponding Hamiltonian can be decomposed into two commuting
parts, one of which displaying a self-dual spectrum. To determine the phase
diagram, we compute the high-order series expansions of the ground-state
energy in all limiting cases. Apart from the topological order related to the
toric code and the fractonic order related to the X-cube model, we found two
new phases which are adiabatically connected to classical limits with nontrivial
sub-extensive degeneracies. All phase transitions are found to be first order.
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1 Introduction

Quantum systems with topological order are an important research field due to their
intriguing physical properties as well as their potential relevance for quantum technological
applications. In two dimensions, these systems are essentially characterized by long-range
entanglement and exotic excitations called anyons [1, 2], which have quantum exchange
statistics distinct from bosons and fermions (see Ref. [3] for a review). These anyonic
particles are at the heart of topological quantum computing [4,5] and have been observed
unambiguously in quantum Hall systems only very recently [6, 7]. Other examples of
physical systems where topologically-ordered states play an important role are frustrated
quantum magnets and synthetic matter in quantum-optical platforms [8–15].

During these last years, topological order in three dimensions (3D) gained a lot of inter-
est. Some properties such as a topology-dependent ground-state degeneracy are very simi-
lar to two-dimensional topological order. Furthermore, in three-dimensional topologically-
ordered systems nontrivial mutual statistics can be found for extended objects like mem-
brane excitations, since point-like anyonic excitations are excluded in 3D. However, in
3D, one must distinguish between two main categories of topologically-ordered long-range
entangled ground states [16, 17] depending on whether their degeneracy is finite [18–21]
or (sub-)extensive with the system size [22–35]. The topological order for systems with
(sub-)extensive ground-state degeneracy are called fracton order. One defining character-
istic of fracton phases is that their elementary excitations have a restricted mobility under
the action of local operators so that fracton phases are considered as attractive candidates
for 3D quantum memories [26].

Paradigmatic examples of these two categories of topological order are the 3D toric
code (TC) model [19, 20], which is a direct extension of the celebrated model introduced
by Kitaev in two dimensions [4] for fault-tolerant quantum computation and has a finite
ground-state degeneracy, and the X-cube model (XC) proposed by Vijay, Haah, and Fu
[28], which has a (sub-)extensive ground-state degeneracy.

In the absence of any local order parameter, the study of transitions between topolog-
ical quantum phases of matter is a challenging problem. In two dimensions, the concept
of anyon condensation [36] and topological symmetry breaking provides a general frame-
work [37] to understand some of these transitions [38–40]. Other salient examples are
the Kitaev’s honeycomb model which exhibits a transition between an achiral topological
phase and a chiral topological phase [41], the string-net model [42] that allows to investi-
gate the competition between different topological achiral phases obeying the same fusion
rules [43–45], or multilayer systems [35, 46]. To our knowledge, similar studies are still
missing in 3D.

The goal of the present work is to investigate the competition between two different
types of topological orders by considering the interplay between the TC and the XC phases
on the cubic lattice. As shown below, the corresponding Hamiltonian can be split into two
commuting parts that are analyzed separately. Interestingly, one of these parts has a self-
dual spectrum. We determine the phase diagram in the full four-dimensional parameter
space using this self-duality as well as high-order series expansions of the ground-state
energy in all limiting cases. Apart from the TC and XC phases, the phase diagram
displays two additional phases, dubbed X- and Z-phases, that are connected to classical
limits with sub-extensive degeneracies. All phase transitions are found to be first order.

The paper is organized as follows: in Sec. 2 we introduce the model and we recall
the main properties of the limiting cases. Then, we show that one can recast the full
Hamiltonian in two sets of commuting operators allowing for a simpler analysis of the
phase diagram which is discussed in Sec. 3. We conclude our findings and give some
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perspectives in Sect. 4.

2 Model

We consider the interplay between the TC and the XC. Microscopic degrees of freedom
are spins-1/2 located on the links of the cubic lattice (see Fig. 1). The corresponding
Hamiltonian is given by

H = HTC +HXC, (1)

with

HTC = −J
!

X − J
!

Z , (2)

HXC = −J
!

X − J
!

Z , (3)

where and represent elementary faces and cubes of the cubic lattice, whereas and
label the two different vertex operators of the TC and XC, respectively (see Fig. 1 for

illustration). Without loss of generality, we assume non-negative couplings J , J , J , and
J for the rest of the paper.

Denoting by σα
i the usual Pauli matrices with α = x, y, z acting on the link i, the

operators of the TC are defined as

X =
"

i∈
σx
i , (4)

Z =
"

i∈
σz
i , (5)

where the products run over the six spins (four spins) of ( ). The XC operators are

X =
"

i∈
σx
i , (6)

Z =
"

i∈
σz
i , (7)

where the products run over the four spins (twelve spins) of ( ). The four operators
(4)-(7) have eigenvalues ±1. We stress that all pairs of operators commute unless they
have different spin flavors and share an odd number of spins. Hence, the Hamiltonian (1)
is not exactly solvable for arbitrary couplings but there are some limiting cases where H
can be solved analytically.

2.1 Limiting cases

These limits are connected to the four different phases present in the phase diagram
discussed in the next section.

TC phase: For J = J = 0, the system reduces to the pure TC which is exactly
solvable [19–21] since [X ,Z ] = 0 for all and . The TC has a finite ground-state
degeneracy which only depends on the genus of the 3D surface [16,18], e.g. , the degeneracy
is 23 on a 3-torus. These ground states have a finite topological entropy and can be seen
as 3D generalizations of the loop soup ground state of the conventional 2D toric code
[19–21]. Furthermore, gapped elementary excitations correspond to point and spatially
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Figure 1: Illustration of the four operators on the cubic lattice which are contained in H.
Left: Operators X and Z of the TC. Right: Operators X and Z of the XC. Note that
we show only one of three possible orientations of the X and Z operators. Red (blue)
operators are multi-spin interactions build by σx

i (σz
i ) Pauli matrices. Here i denotes the

links of the cubic lattice and the spin-1/2 degrees of freedom are indicated by filled black
circles.

extended particles displaying a semionic mutual statistics. In the following, we call the
phase adiabatically connected to the limit where J = J = 0, the TC-phase.

XC phase: For J = J = 0, the system corresponds to the exactly solvable XC [28].
Its ground-state degeneracy depends not only on the topology but also on the geometry
of the system [30, 47]. For instance, on a 3-torus with linear extensions L1, L2, and
L3, the ground-state degeneracy equals 22(L1+L2+L3)−3 [17, 30]. The ground states of the
XC have a topological entanglement entropy which scales sub-extensively with the linear
system size [48, 49] and may again be seen as a generalized loop soup [50]. The XC
is known to display type-I fracton topological order [28], i.e., its elementary excitations
are either immobile or have a dispersion with dimensional reduction upon the action of
local operators. The immobile fracton excitation of the XC corresponds to a single cube
excitation with eigenvalue −1 of one Z . The other elementary excitations of the XC are
one-dimensional particles related to pairs of X operators with eigenvalue -1 at the same
vertex. We call the phase adiabatically connected to the limit where J = J = 0, the
XC-phase.

Classical limits: In the limit where J = J = 0 (J = J = 0), the only operators in
the Hamiltonian are products of σx

i (σz
i ). Eigenstates of H are thus trivial product states

and the ground states are all states with eigenvalues +1 for these operators. For periodic
boundary conditions (3-torus with linear extension L), one finds a non-trivial ground-state
degeneracy 23L

2
for J = J = 0 and 23(L

2−L−1) for J = J = 0. For J = J = 0, the
different ground states are distinguished by a set of non-local commuting operators defined
as product of σz

i on straight lines. For J = J = 0, ground states are distinguished by a set
of non-local commuting operators defined on non-contractible tubes and planar membranes
(details about these operators are given in Appendix A). As a direct consequence, the
ground-state degeneracy of these phases is expected to be robust with respect to small
perturbations in the couplings J , J or J , J . In the following, phases connected to the
two classical limits will be be called X- and Z-phase for obvious reasons.
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2.2 Exact decomposition and self-duality

The essential ingredient to determine the ground-state phase diagram in the full parameter
space relies on another decomposition of the Hamiltonian. Instead of writing H = HTC +
HXC with [HTC,HXC] ∕= 0, one can recast it as H = HA +HB with

HA = −J
!

X − J
!

Z , (8)

HB = −J
!

X − J
!

Z , (9)

and, as can be easily checked, [HA,HB] = 0. Interestingly, the spectrum of HA is exactly
self-dual (up to degeneracies) so that the phase diagram of HA must be symmetric with
respect to the self-dual point J = J . To prove this self-duality, let us introduce the
following pseudospin-1/2 operators τ zv = X defined on the vertices of the original cubic
lattice Λ. Then, it is easy to see that Z acts like

#
v∈ τxv so that HA becomes

Hτ
A = −J

!

v∈Λ
τ zv − J

!

∈Λ

"

v∈
τxv . (10)

which describes a transverse-field spin-1/2 model with eight-spin interactions on a cubic
lattice.

Similarly, if one introduces $τ zv = Z defined on vertices of the cubic lattice $Λ spanned
by the center of each elementary cube of Λ, the operator X acts like

#
v∈ $τxv so that HA

becomes
H!τ

A = −J
!

v∈!Λ

"

v∈
$τxv − J

!

v∈!Λ

$τ zv . (11)

Since Λ and $Λ are both cubic lattices, the spectrum of Hτ
A and the one from H!τ

A are
obtained from the other by exchanging J ↔ J . As a consequence, the spectrum of HA

is invariant under this exchange and, hence, self-dual. Of course, the mapping described
above does not preserve the degeneracies of the spectrum. Thus, the self-duality of HA

is only exact, up to degeneracies. For a very similar discussion in two dimensions, see
Refs. [51, 52].

In contrast, HB is not self-dual as can be directly seen in the series expansions of the
ground-state energy given in Appendix B.

3 Phase diagram

The decomposition of H into two commuting parts ([HA,HB] = 0) allows one to build
the full phase diagram from the ones of HA and HB, separately. We emphasize that this
decoupling implies that the phase diagram only depends on the two ratios J /J and J /J
driving the transition of HA and HB, respectively.

The self-duality ofHA implies that if there is only one transition point, it can only occur
at the self-dual point where J /J = 1 ≡ ηA. The ground-state energy of HA computed
perturbatively in the limit where one of the coupling dominates is displayed in Fig. 2. (see
Appendix B for analytical expressions).

Similarly, assuming the existence of a unique transition point in the phase diagram of
HB, we determined its position by extrapolating the crossing point of high-order series
expansions for the ground-state energy in both limiting cases J ≪ J and J ≪ J (see
Appendix B). We found a transition point at J /J ≃ 1.012 ≡ ηB (see Fig. 2).
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Figure 2: Ground-state energy per vertex of HA (left panel) and HB (right panel) obtained
from high-order series expansions. Bare series of even orders from 2 to 10 are shown as
solid lines from light to dark colors. Vertical dotted lines indicate the phase transition
points ηA and ηB. Lower insets: zoom of the ground-state energy close to the phase
transition points. Crosses indicate the intersection points of the series expansions at order
6, 8, and 10. Upper inset: Crossing points as a function of the inverse order. Thin solid
line serves as a guide to the eyes.

We stress that ηA and ηB are associated to first-order transitions. Hence, assuming a
unique transition point for HA and HB, we obtain the complete phase diagram of H shown
in Fig. 3 which contains four distinct phases separated by first-order transition lines. For
small J /J and J /J the system is in TC-phase. For large J /J and J /J , one gets the
fractonic XC-phase. In the limit J /J ≫ 1 and J /J ≪ 1, one finds a phase essentially
driven by the two operators consisting of σx

i , i.e., the X-phase. Similarly, when J /J ≪ 1
and J /J ≪ 1, the phase is mainly determined by the two operators consisting of σz

i ,
namely, the Z-phase.

Interestingly, we emphasize that a direct transition between the XC- and the TC-phase
requires a fine-tuning of the parameters.

4 Conclusions

In this work we investigated the competition between the two most paradigmatic repre-
sentatives of 3D topological order. An exact decomposition of the system allows for a
quantitative determination of the ground-state phase diagram in the full parameter space.
Apart from the TC- and XC-phase, the phase diagram contains two additional phases, the
X- and Z-phase, that are connected to limiting cases where operators with either σx

i or σz
i

Pauli matrices dominate. In the purely classical limits, we find non-trivial sub-extensive
ground-state degeneracies which are robust perturbatively. However, a better understand-
ing of the quantum nature of the X- and Z-phases would be valuable but it is beyond the
scope of the present work.

In the derivation of the full phase diagram we assumed that HA and HB display a
single phase transition which is found to be first order. Unfortunately, the existence
of intermediate phases can not be ruled out by our approach. Although we consider
unlikely the existence of intermediate phases, an unbiased numerical investigation would
be valuable.
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Figure 3: Ground-state phase diagram of H as a function of J /J and J /J . Vertical
and horizontal lines correspond to ηA and ηB (see text). Topological TC- and XC-phase
are displayed in blue and gray, whereas the X- and Z-phase are shown in green and brown,
respectively.
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the grant SCHM 2511/11-1.

A Ground-state degeneracy of X- and Z-phase

In this appendix we compute the ground-state degeneracy (GSD) of the X- and Z-phase
in the classical limit on a 3-torus.

In order to access the GSD of the X-phase and the Z-phase in the classical limit on a
3-torus of dimensions L1×L2×L3 we describe the operators whose eigenvalues distinguish
between the different ground-states. Importantly, these operators are non-local. As shown
below, we found that log2GSD obeys an area law, contrasting with the linear behaviour
of the XC-phase [17, 30] and the constant value of the TC-phase [19–21].

A.1 X-phase

In the X-phase the relevant operators are products of σz
i operators which act on straight

lines which form a non-contractible loop (see Fig. 4 for illustration). Since all these
operators are independent and mutually commute, there are

log2GSD = L1L2 + L2L3 + L3L1, (12)

loops on the 3-torus.
We checked these expressions numerically, on small finite systems.

A.2 Z-phase

In the Z-phase there are two types of operators whose eigenvalues distinguish between the
different ground-states, planes of σx

i which are precisely halfway in between the lattice
planes and non-contractible tubes of σx

i which correspond exactly to the action of X -
operators along a straight line. Two plane-operators correspond exactly to the product of
the tube operators inside a layer, so not all tube operators inside a layer are independent.
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Figure 4: Illustration of a non-local “line”-operator corresponding to the product of σz
i

along the blue line assuming periodic boundary conditions.

These non-local tube and plane operators are illustrated in Fig. 5. In total, we have
%

i Li

“plane” operators and
%

i<j(Li − 1)(Lj − 1) “tube” operators. Accordingly, one gets

log2GSD =
!

i

Li +
!

i<j

(Li − 1)(Lj − 1). (13)

Figure 5: Illustration of non-local tube and plane operators assuming periodic boundary
conditions. Left: Tube operators, which correspond to the action of X along a straight
line. Right: Plane operators, which correspond to the action of σx

i on all sites in the
indicated plane.

B Series expansions

In this Appendix, we give high-order series for the ground-state energy per vertex and
briefly comment on the methods to derive them.

We computed several high-order series expansions using the Löwdin method [53].
This method has been applied successfully in related contexts like the robustness of

effective cluster states in measurement-based quantum computation [54] as well as topo-
logical string net phases [55]. Furthermore, the application of the Löwdin method to
perturbed topological models is well described in Ref. [56] and we therefore focus on the
central aspects for the current problem. Here we perform the series expansion separately
for HA and HB and calculate the ground-state energy for all perturbative limits of HA

and HB. The series expansions of the ground-state energy of the original Hamiltonian
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(1) are then simply given by the sum of the ground-state energies of HA and HB in the
appropriate limits. We stress that the obtained series for the ground-state energy are valid
for the entire ground-state manifold in all considered limits. This is a direct consequence
from the fact that ground states of the same manifold are only connected by non-local
operators so that the degeneracy remains intact in any finite order of perturbation theory.

The calculation is most efficiently done via a full graph decomposition using a linked-
cluster expansion. Since HA and HB only contain multi-spin interactions linking multiple
degrees of freedom, a natural formulation of the linked-cluster expansion is therefore in
terms of hypergraphs [57]. A hypergraph is a generalization of a graph where edges
can link more than two vertices. Technically, we generate all linked subclusters up to
a given size [58, 59] and sort them into isomorphism classes of hypergraphs using their
König representation [60, 61]. During this procedure non-contributing subclusters are
discarded as early as possible using heuristics adapted from Refs. [62, 63]. This allows us
to determine the ground-state energy per vertex for HA and HB in the four perturbative
limits up to order 10. The corresponding series for the full problem HA+HB can then be
straightforwardly extracted.

For the ground-state energy of HA per vertex up to order ten, we find

eJ ≪J
0,A =− J − J2/J

16
− 71J4/J3

28672
(14)

− 5357137J6/J5

16184770560
− 15573579216301097J8/J7

235160106814144512000

− 23772819421675595994611334959J10/J9

1465811223338361510040279449600000
.

Because of the exact self duality the series in the opposite limit J ≪ J is easily obtained
by exchanging J and J in the above expression.

For the ground-state energy of HB per vertex up to order ten we obtain

eJ ≪J
0,B =− 3J − 3J2/J

16
− 195J4/J3

28672
(15)

− 7052113J6/J5

6936330240
− 2392948067252749J8/J7

10853543391422054400

− 587976702639540348694715843J10/J9

9971504920669125918641356800000
,

eJ ≪J
0,B =− 3J − 3J2/J

16
− 3J3/J2

128
(16)

− 195J4/J3

28672
− 4455J5/J4

1605632

− 14445391J6/J5

12138577920
− 286541706167J7/J6

489427461734400

− 21431205246868721J8/J7

70548032044243353600

− 168555204498462277414651J9/J8

1016907553098541396131840000

− 4306666634113068997936331017J10/J9

45806600729323797188758732800000
.
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