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Abstract

Correlated many-fermion systems emerge in a broad range of phenomena in
warm dense matter, plasmonics, and ultracold atoms. Quantum hydrodynam-
ics (QHD) complements first-principles methods for many-fermion systems at
larger scales. We illustrate the failure of the standard Bohm potential central
to QHD for strong perturbations. We then extend QHD to this regime via the
many-fermion Bohm potential from first-principles. This enables more accu-
rate QHD simulations beyond its common application domain in the presence
of strong perturbations at scales unattainable with first-principles methods.

1 Introduction

Correlated quantum many-fermion systems are currently in the focus of several fields rang-
ing from high-energy-density physics (1) to ultracold fermionic atoms (2) and correlated
materials (3). Progress in all these fields relies on accurate theory and simulations including
quantum Monte Carlo (QMC) (4), density functional theory (DFT) (5; 6), nonequilibrium
Green functions (7), and density matrix renormalization group (DMRG) methods (8).
While remarkable progress was achieved with these methods, their high computational
cost and fundamental bottlenecks significantly restrict their application. For example, the
fermion sign problem complicates the use of QMC (9), or the computational cost renders
DMRG applications in three spatial dimensions infeasible. Therefore, there is a high need
for complementary methods that extend the domain of simulations to length and time
scales relevant for experiments, even at the price of reduced accuracy.

One such method is quantum hydrodynamics (QHD). There has recently been a surge
of activities in a number of research areas including warm dense matter (WDM) (10; 11;
12; 13), plasmonics (14; 15; 16), electron transport in semiconductor devices and thin metal
films (17; 18), reactive scattering (19; 20), cosmology, and dark matter research (21; 22; 23).

QHD complements the aforementioned first-principles methods by enabling simulations
at larger length and longer time scales. The quantum Bohm potential is central to QHD (13;
17). It captures quantum tunneling, spill out, and other non-local effects. Commonly, the
quantum Bohm potential is approximated as

vB(r, t) = −~2/(2m)
[
∇2
√
n(r, t)/

√
n(r, t)

]
(1)

1



SciPost Physics Submission

in terms of the mean density of electrons n(r, t); hereafter called standard Bohm potential.
It is utilized in this form to model phenomena in various many-fermion systems.

While standard QHD has proven useful, we question the validity of the standard Bohm
potential when strong density perturbations are present. These emerge, for example, in
strongly perturbed WDM (24) and quantum plasmas (25; 26). Most notably, this regime
is probed in recent and upcoming X-Ray scattering measurements of matter that is shock-
compressed and laser-excited (27; 28; 29; 30; 31; 32) using the seeding technique discussed
in the conclusions.

In this research report, we therefore extend QHD to the regime of strong density per-
turbations. Our central result is to utilize the many-fermion Bohm potential

ṽB(r, t) = − ~2

2mN

N∑
i=1

fi
∇2
√
ni(r, t)√
ni(r, t)

(2)

where N is the total number of electrons. Specifically, we (1) generate an exact many-
fermion Bohm potential based on exact QMC data, (2) show how the standard Bohm
potential breaks down for strong density perturbations, and (3) highlight how forces –
the key ingredient to QHD – differ greatly in this regime. We highlight the practical
importance of this result by turning our attention to a challenging many-fermion system
– the harmonically perturbed, interacting electron gas at finite temperature – which is
generated and probed in high-energy density physics facilities around the globe.

Utilizing the many-fermion Bohm potential in QHD is motivated by the fact that it
is derived from the exact quantum dynamics of electrons within time-dependent DFT (6)
which provides the crucial link between QHD and interacting many-fermion systems.

2 Theory

We begin with the non-relativistic, many-particle Hamiltonian of interacting fermions

Ĥ = T̂ + V̂ee + V̂ , (3)

where T̂ denotes the kinetic energy operator, V̂ee the electron-electron interaction and V̂
the external potential including the ionic background. The solutions are N -particle wave
functions that are antisymmetric and normalized. For the sake of clarity we consider only
spin-unpolarized systems. A formally exact and computationally feasible solution to the
quantum dynamics of electrons is given within time-dependent DFT (6). Here, a set of N
time-dependent Kohn-Sham (KS) equations

i~
∂

∂t
φi(r, t) =

[
− ~2

2m
∇2 + vS(r, t)

]
φi(r, t) , (4)

yields the exact time evolution of the electronic density, n(r, t) =
∑

i fi|φi(r, t)|2, in terms
of the single-particle KS orbitals φi(r, t), where fi denotes an occupation function. This
is achieved by the KS potential, vS(r, t) = v(r, t) + vH[n](r, t) + vXC[n](r, t), which exactly
mimicks the electron-electron interaction within a mean-field description. Here, v denotes
the external potential, vH[n] the classical electrostatic (Hartree) potential, and vXC[n] the
exchange-correlation potential.

Now, the time-dependent KS equations are reformulated into a set of coupled QHD
equations by the following steps: (1) we insert the amplitude-phase representation of the
KS orbitals (33), φi(r, t) =

√
ni(r, t) exp [iSi(r, t)], into the time-dependent KS equations;
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(2) we use the expression for the mean orbital density, n̄(r, t) =
∑

i fini(r, t)/N , and
velocity, v =

∑
i fivi/N , where we introduce ni(r, t) = |φi(r, t)|2, as the KS orbital

density and vi = ∇Si(r, t)/m, as the KS orbital velocity; (3) we introduce density and
velocity fluctuations ni = n̄+ δni and vi = v + δvi. These steps yield the formally exact
QHD equations

∂n̄

∂t
+

1

N

∑
i

fi∇ · (nivi) = 0 , (5)

m
∂v

∂t
= −∇ṽB −

1

n
∇Pe +

1

n
∇ · σe + eE−∇vXC , (6)

where we have not yet made any assumptions about velocity and density fluctuations. In
Eq. (6), e is the absolute value of the electron charge, Pe = 1

2m∂αδp
2
iα the electronic pressure

term (with δpi = mδvi), σe = 1
m∂γδpiαδpiγ with γ 6= α the electronic viscous stress-tensor,

and E = −∇ [v + vH] the electric field due to the Hartree and external potentials. The
first equation is the continuity equation, whereas the second is the momentum conservation
equation. Notice that the many-fermion Bohm potential emerges naturally. These QHD
equations are equivalent to the time-dependent KS equations.

The QHD equations are turned into computationally feasible practice by employing
approximations to (1) the exchange-correlation functional vXC, (2) the equation of state
Pe, (3) the viscous stress-tensor σe, and (4) setting 1

N

∑
i fi∇· (nivi) = ∇· (n̄v) in Eq. (5)

where the averaged fluctuations of a flux 〈δj̄〉 = 〈δniδvi〉 are assumed to be negligible
compared to the mean value j̄ = n̄v. Using approximations to the equation of state and
the viscous stress-tensor enables QHD to go beyond the length and time scales that are
attainable in time-dependent DFT calculations. On the other hand, practical calculations
spanning a large range of length and time scales are performed with classical hydrodynamics
simulations. These, however, completely neglect quantum non-locality effects. As discussed
below, these quantum effects become increasingly relevant for high-energy-density sciences
due to ongoing and recent developments in experimental and diagnostic capabilities.

3 Results

As the central result of this work we demonstrate the relevance of the many-fermion Bohm
potential for the QHD equations (5) and (6), whereas in all prior works the standard
Bohm potential was used. First, we generate a many-fermion Bohm potential using KS-
DFT based on exact QMC calculations of the harmonically perturbed, interacting electron
gas. Then we show that the standard Bohm potential differs both qualitatively and quan-
titatively from ṽB to a great extent for strong density perturbations. Finally, we illustrate
how these deviations yield vastly different forces. We, hence, argue that these lead to a
different quantum plasma dynamics when used in the QHD equations. Agreement to bet-
ter than 50% in the resulting forces is achieved only for small density perturbations when
|δn| . 10−3 n0 or q > 2 qF . This is further analyzed in the Supplemental Material (34).
The use of the many-fermion Bohm potential now renders QHD valid for the regime of
strong density perturbations. While approximations to the pressure and viscous stress-
tensor also influence the accuracy of the QHD equations, we focus on the many-fermion
Bohm potential. It primarily determines the accurate inclusion of quantum effects, e.g.,
tunneling and spill-out, that are crucial for the aforementioned applications.

An important application that is highly relevant for high-energy-density physics is the
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Figure 1: Electronic density for two different amplitudes A, at rs = 2 and θ = 1. QMC
results (red circles) are compared to KS-DFT data for different XC-potentials: solid green:
SCAN; dashed black: LDA; dotted blue: non-interacting fermions (vXC = 0).

harmonically perturbed, interacting electrons gas. It is described by the Hamiltonian

Ĥ = ĤUEG +

N∑
i=1

2A cos (ri · q) , (7)

where ĤUEG denotes the Hamiltonian of the uniform electron gas with periodic boundary
conditions. We choose the x-axis along q with q = nqmin, qmin = 2π/L, L = (N/n0)

1/3,
and n0 the number density of electrons.

The electronic states described by Eq. (7) are generated in recent WDM experiments
(see Conclusions 4 for further details). The amplitude A in Eq. (7) controls the character
of the KS orbitals. Tuning A changes the the KS orbitals from plane waves to strongly
localized wave packets. Moreover, by varying both A and the wave number q, we tune
the density gradients from small to large. The relevant parameter space is spanned by
the density parameter rs = a/aB and the degeneracy parameter θ = kBT/EF , where a is
the mean inter-electronic distance, aB the first Bohr radius, T the temperature, and EF
the Fermi energy. For the remainder of this paper we choose rs = 2 and θ = 1. This
corresponds to the WDM and quantum plasma regime (1; 4).

The construction of the many-fermion Bohm potential relies on accurate KS orbitals.
We generate orbitals using KS-DFT for various amplitudes 10−3 ≤ A ≤ 1 corresponding to
the range from weak to strong perturbations. We assess their accuracy by comparing them
with the exact result provided by QMC calculations. Details of the KS-DFT and QMC
calculations are provided in Appendix A and Appendix B, respectively. The electronic
densities for A = 1 and A = 0.02, using various exchange-correlation approximations
(non-interacting fermions, LDA (35), and SCAN (36)) are illustrated in Fig. 1, where
qmin = 0.84qF . The comparison with the QMC data (red circles) confirms that the KS-
DFT calculations using the SCAN functional provide the KS orbitals that virtually yield
the exact density.

We now construct an exactmany-fermion Bohm potential by inserting these KS orbitals
into Eq. (2). The results are shown in the top panel of Fig. 2. They are ordered in
increasing perturbation strength (A = 0.02, 0.1, 0.5). At the top we compare the many-
fermion Bohm potential (thick green) with the standard Bohm potential (dashed blue). We
observe significant differences for all amplitudes, and profound qualitative differences at
high perturbation strength (A = 0.5). To better understand the origin of these differences,
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Figure 2: Upper panel: Comparison of the exact many-fermion Bohm potential (thick
green) with the standard Bohm potential (dashed blue) at rs = 2 and θ = 1. Additionally,
the TF free energy density (red squares, scaled) and the contributing KS orbitals (thin red
(dark) and orange (light) lines) are illustrated. The contribution of orbitals is scaled by a
factor two (three) at A = 0.02 (A = 0.1 and A = 0.5). Lower panel: Comparison of the
forces from the many-fermion Bohm potential (green) with forces from the standard Bohm
potential (dashed blue). We also display the TF pressure (squares) and the density profile
(grey circles). Note the scaling.

consider contributions of the individual KS orbitals with a maximum and a minimum in
the central region (orange and red lines). The former lead to a stronger many-fermion
Bohm potential in the density depletion region at the edges, whereas the latter yield a
weaker many-fermion Bohm potential in the central region where electrons accumulate.
The important point to note is that the contribution from individual orbitals does not
depend on the amplitude of the orbital density, but on its shape as is apparent from
Eq. (2). This means that the contribution of a highly curved orbital can be critical, even
if the corresponding occupation number may be relatively small.

Next, we relate these differences to the relevant energy scale in the QHD equations. We
compare against the ideal part of the free energy density, fTF[n(r)] = δFid[n]/δn(r) = µ
(red squares), which is a common approximation to the pressure in the QHD equations (13;
17) in terms of the Thomas-Fermi (TF) free-energy functional. The top panel of Fig. 2
shows that the ideal part of the free energy density has about the same order of magnitude
as the quantum Bohm potential throughout highlighting the importance of the many-
fermion Bohm potential.

Now we assess the impact of using the many-fermion Bohm potential, instead of the
standard Bohm potential, for simulating quantum dynamics. We compute the force due
to the pressure of a quantum Bohm potential from n(r)∇VB, where VB is the either
the standard Bohm potential vB or the many-fermion Bohm potential ṽB. To assess the
importance of the observed differences, we compare them with the force due to TF pressure,
∇PTF = n(r)∇fTF[n(r)]. The lower panel of Fig. 2 demonstrates that the forces differ
distinctly. At small perturbation strength the maximum deviation of the forces is already
50%. This deviation further increases with a stronger perturbation amplitude. At A = 0.5,
they differ substantially, and the standard Bohm potential fails to even yield a qualitative
description. In the central region they are also qualitatively very different. Furthermore,
the comparison with the TF force highlights the relative importance of the force due to
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Figure 3: Left: Ratio of the forces between the exact many-fermion Bohm potential
(ṽB) and the standard Bohm potential (vB) at rs = 2 and θ = 1 for increasing density
perturbation amplitudes A. Right: Ratio of the forces due to the quantum Bohm potential,
ṽB, and the TF pressure.

ṽB. At A = 0.02, the TF force is about four times stronger than the force due to both
variants of the quantum Bohm potential. With increasing perturbation strength, the force
due to the many-fermion Bohm potential becomes more relevant. At A = 0.5, it is close
to the TF force in the central region, whereas it even exceeds the TF force in the density
depletion regions close to the edges.

Next, in Fig. 3, we provide a more detailed comparison of the forces. On the left, we
show the ratio of the forces due to the many-fermion Bohm potential and the standard
Bohm potential, whereas on the right, we show the ratio of the force due to ṽB with the
TF force at A = 0.1, 0.3, 1.0. We infer that, in general, the standard Bohm potential
differs from the exact many-fermion Bohm potential by at least a factor of two throughout
(left panel). For a small perturbation amplitude, A = 0.1, the standard Bohm potential
significantly overestimates (up to fifty times) the exact many-fermion Bohm potential in
the central region and underestimates it by a factor of two in the density depletion region.
At larger amplitudes (A = 0.3 and A = 1.0), the differences in both the density depletion
region and in the central region increase. Finally, in Fig. 3 (right), we assess the relative
importance of the quantum Bohm potentials. We deduce that the force due to the many-
fermion Bohm potential is dominant in the density depletion regions, when A & 0.3, with
a maximum value of the density increase of |δn| & 0.6 n0. In conclusion, the many-fermion
Bohm potential leads to a substantially different quantum dynamics of correlated many-
fermion systems which has not been explored in any prior work.

4 Conclusions and Outlook

For a degenerate quantum many-particle system with Bose statistics in the condensate,
the Madelung decomposition leads to the Gross-Pitaevski equation. Here, the exactness
of the standard Bohm potential can be proven (11). For fermionic systems, such a proof
does not exist. A trivial exception is the case when the amplitudes of all orbitals coincide
and the system is mapped onto a single orbital (11).

In this work, we carried out the very first investigation of the quantum Bohm poten-
tial for a correlated many-fermion system based on first-principles data from QMC and
KS-DFT. Despite its long history in quantum mechanics since its derivation by Bohm in
1952 (33) and its importance as a computational device in QHD, this has not been at-
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tempted before. Our key result highlights the very limited applicability of the standard
Bohm potential which is used in virtually all previous works of QHD. We showed that it
is only valid for a very weakly perturbed electron gas (|δn| . 10−3 n0) or at very large
wave-numbers (q > 2 qF ). Likewise, we demonstrated that the many-fermion Bohm poten-
tial is needed to model nonlinear phenomena in quantum plasmas and WDM. We further
illustrated the significance of the force produced by the many-fermion Bohm potential for
QHD simulations.

We anticipate that taking into account the many-fermion Bohm potential in quantum
fluid approaches will play a significant role for many upcoming high-energy-density physics
experiments. Strongly perturbed WDM states are generated and probed, for example,
using THz lasers with an intensity of 600 kV/cm that corresponds to a perturbation am-
plitude of A ' 0.3 (27) and using free electron lasers with intensities of up to 1022 W/cm2

that lead to A ≈ 2 (25). Likewise, it was recently demonstrated in an experiment (37) that
spatially modulated WDM is created by laser pumping of a sample with a pre-designed,
periodic grating structure. The induced WDM states can be characterized in-situ with the
small-angle x-ray scattering technique using femtosecond X-Ray free-electron laser pulses
on a spatial resolution of nanometers.

Another exciting application of QHD is inertial confinement fusion (38) where strongly
inhomogeneous electronic states emerge in the heating of shock-compressed fuel capsules.
Of particular interest is the effect the many-fermion Bohm potential has on the shock
behavior in high-energy density applications using lasers or pulsed power. The presence
of higher-order spatial derivatives of the density produces a dissipative-like effect on the
shock structure, shearing the interface and broadening the shock front. Other interest-
ing applications include non-linear wave phenomena and instabilities in quantum plas-
mas (13). We also expect the many-fermion Bohm potential to impact the field of nano-
plasmonics (14; 15; 16) where simulations of large nano-clusters are routinely performed
with QHD. Moreover, the many-fermion Bohm potential might enable quantum dynamics
simulations of cold atom experiments that study transport properties (2). We also spec-
ulate that the force field generated by the many-fermion Bohm potential can be utilized
as a computationally inexpensive neural-network surrogate model as it was done, e.g., for
the free energy functional in KS-DFT (39; 40) and the local field correction in QMC (41).

Finally, the many-fermion Bohm potential awaits exciting applications in cosmology.
These approaches are based on an observation made by de Broglie pointing out that quan-
tum mechanical effects are entirely equivalent to a conformal transformation of the back-
ground metric (42; 43). This leads to a representation of the non-local Bohm potential of
all the particles in the Universe as an effective cosmological constant (21). Therefore, this
outlines an interesting line of future research.
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A KS-DFT simulation details

The KS-DFT calculations were performed with GPAW (44), which is a real-space imple-
mentation of the projector augmented-wave method. A k -point grid of 12× 12× 12 using
Monkhorst-Pack sampling of the Brillouin zone (k-points) was used. At θ = 1, 180 or-
bitals (with the smallest occupation number of about 10−4) were used for a total of 14
electrons. The grid spacing was set to 0.15 for 10−3 ≤ A ≤ 1 and 0.3 qF . q . 2.53 qF .
The Hamiltonian of electrons is given by the sum of the standard (unperturbed) uniform
electron gas Hamiltonian and the potential energy term corresponding to external pertur-
bation. Several exchange-correlation (XC) functionals were used: the standard LDA func-
tional by Perdew-Zunger for degenerate electrons (45), the GDSMFB functional which is
a parametrization of the LDA of the homogeneous electron gas at finite temperature (46),
PBE (47), PBEsol (48), AM05 (49), and the meta-GGA functional SCAN (36). The
ab-initio quality of the KS-DFT calculations was validated with first-principles quantum
Monte Carlo (QMC) calculations. We found that SCAN reproduces the exact QMC data
more accurately than any of the other XC functionals. Only in the limit of a weak pertur-
bation, the tested XC functionals yield agreement, as they reduce to the zero-temperature
limit of the LDA.

The relative error of the results obtained using different XC functionals compared to
the QMC data is given in Fig. 4 for A = 1 and A = 0.02. The corresponding total density
is presented Fig. 1 of the manuscript. The case A = 1 corresponds to a strong-perturbation
regime with a minimum density of n ' 0.03 n0 close to the edges of the simulation box
and with a maximum density of n ' 3 n0 in the center. The case A = 0.02 corresponds
to the weak-perturbation regime with a density maximum n ' 1.04 n0 and minimum
n ' 0.96 n0. From Fig. 4 we infer that the inclusion of XC effects by using the LDA signif-
icantly improves upon the fully non-interacting case (no XC functional) with a maximum
error of about 4.7% in the central region for A = 1. However, using GGA functionals
does not improve over the LDA results. The exact QMC data are reproduced remarkably
well by the SCAN functional with an accuracy better than 1.43 %. We conclude that it is
crucial to go beyond both LDA and GGA in order to obtain an accurate density when the
perturbation is strong. A further analysis of this observation will be presented elsewhere.
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Figure 4: Relative error of the density using different XC functionals compared to the
QMC data at θ = 1 and rs = 2.

B QMC simulation details

We use the standard path integral Monte Carlo (PIMC) method (4) without any nodal
restrictions on the thermal density matrix. Therefore, the simulations are computationally
expensive due to the fermion sign problem (9), but exact within the given Monte Carlo
error bars. We have used P ∼ 102 primitive imaginary-time propagators, which is fully
sufficient to ensure convergence at these parameters. Additional details on the simulation
of the harmonically perturbed electron gas at finite temperature can be found in Refs. (4).
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1 KS-DFT results for the many-fermion Bohm potential

The Role of Correlations and Thermal Excitations. In the manuscript we presented
data for interacting electrons at finite temperature at rs = 2 and θ = 1. Although it
is clear that the shape of the Bohm potential is determined by both correlations and
thermal excitations, a natural question arises: Does the failure of the standard Bohm
potential solely result from the effect of electronic correlations or from effects due to thermal
excitations? The answer to this question is that the standard Bohm potential does not
adequately describe the many-fermion quantum Bohm potential when the perturbations
are strong regardless of the degree of correlations and thermal excitations. In principle,
one can consider various rs and θ combinations to show that. However, it is unpractical
as the conclusion will always be valid only for the considered rs and θ pairs. Instead, we
analyze this question as follows: First, we exclude the impact of thermal excitations by
considering the zero-temperature limit θ → 0 (i.e., setting θ = 0.01) and showing that the
main conclusion above is valid. Next, we exclude correlation effects by switching off the
electron-electron interaction and showing that the main conclusion of the paper regarding
the standard Bohm potential holds in this case as well. As a representative case we choose
A = 0.1.

In Fig. 1, the Bohm potentials for the strongly degenerate case are shown at θ = 0.01.
The figure illustrates that the deviation of the standard Bohm potential (dashed blue) from
the many-fermion quantum Bohm potential (green) is not solely due to thermal excitations.

Then, in Fig. 2, the Bohm potentials for a non-interacting, i.e., ideal electron gas are
shown. This figure illustrates that the failure of the standard Bohm potential is not solely
an effect of the electron-electron interaction.

Now, as we have established that the deviation of the standard Bohm potential from
the correct many-fermion quantum Bohm potential is not just due to thermal excitations
or the electron-electron interaction, we proceed to analyze the deviations with respect to
the wave number of the perturbation.

Small wave numbers: q ≤ 0.5 qF . For q = 0.5 qF we illustrate a comparison of the
quantum Bohm potentials (top panel) and their induced forces (bottom panel) in Fig. 3
(where N = 64). We observe significant deviations of the standard Bohm potential (dashed
blue) from the many-fermion quantum Bohm potential (green). The difference in the forces
is up to about 50%. In Fig. 4, we further decrease the wavenumber to q = 0.3 qF (where
N = 256). As illustrated, this does not lead to a better agreement, but to larger deviations.
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Figure 1: Comparison of the quantum Bohm potentials in the zero-temperature limit at
rs = 2 and θ = 0.01. The deviations of the standard Bohm potential (dashed blue) from
the exact many-fermion quantum Bohm potential (green) are not just due to thermal exci-
tations. The individual contribution of orbitals with one maximum in the center (orange)
and with more that one maximum (red) are also illustrated.

Figure 2: The same as in Fig. 1, but for the non-interacting, i.e., ideal electron gas.

However, comparing Fig. 1 with Fig. 4, we notice that with decreasing wave number (from
q ' 0.84 qF to q ' 0.3 qF ) also the magnitude of the quantum Bohm potentials decreases
from the order of 10−2 Ha to the order of 10−3 Ha. This illustrates that the quantum
Bohm potential becomes less important in the long wavelength limit as quantum tunneling
becomes less important.

Large wave numbers: q > qF . Results for larger wave numbers, q > qF , are shown in
Fig. 5. In the top panel we illustrate the quantum Bohm potentials for q ' 1.68 qF and in
the bottom panel for q ' 2.53 qF . At q ' 1.68 qF , we observe significant deviations of the
standard Bohm potential from the many-fermion quantum Bohm potential in the density
depletion regions. As the wave number increases further to q ' 2.53 qF , the deviations
decrease. This observation is in agreement with the fact that, in the limit q � qF , —
which is equivalent to the single-particle limit — the standard Bohm potential becomes
exact.

When is the standard Bohm potential applicable? As mentioned in the manuscript,
the standard Bohm potential is accurate in the limit of weak perturbations. This is demon-
strated in Fig. 6, where the quantum Bohm potentials of the correlated electron gas are
illustrated for A = 10−3. In this case, the maximum deviation in the density from the
mean density is about |δn| ' 1.8× 10−3 n0.
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Figure 3: Comparison of the quantum Bohm potentials (top panel) and their induced
forces (bottom panel) at q = 0.5 qF (rs = 2 and θ = 0.01). The deviations between the
standard Bohm potential (dashed blue) and the many-fermion quantum Bohm potential
(green) persist. The total electron density (grey circles) and the individual contribution
of orbitals with one maximum in the center (orange) and with more that one maximum
(red) are also illustrated. Note scaling.

Figure 4: The same as in Fig. 3, but for q = 0.3 qF .
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Figure 5: Comparison of the quantum Bohm potentials at q ' 1.68 qF (top panel) and at
q ' 2.53 qF (bottom panel) (rs = 2 and θ = 1), where we illustrate the standard Bohm
potential (dashed blue) and the many-fermion quantum Bohm potential (green). We also
illustrate the contribution of the orbitals (black) scaled by the factor five (twelve) in the
top (bottom) panel.

Figure 6: Comparison of quantum Bohm potentials of the correlated electrons gas in the
limit of weak perturbation (θ = 1 and rs = 2). The deviations of the standard Bohm
potential (dashed blue) from the exact many-fermion quantum Bohm potential (green) are
shown. The individual contribution of orbitals with one maximum in the center (orange)
and with more that one maximum (red) are also illustrated.
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