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Abstract1

We propose a novel scheme for the exact renormalisation group motivated by2

the desire of reducing the complexity of practical computations. The key idea3

is to specify renormalisation conditions for all inessential couplings, leaving4

us with the task of computing only the flow of the essential ones. To achieve5

this aim, we utilise a renormalisation group equation for the effective aver-6

age action which incorporates general non-linear field reparameterisations. A7

prominent feature of the scheme is that, apart from the renormalisation of8

the mass, the propagator evaluated at any constant value of the field main-9

tains its unrenormalised form. Conceptually, the scheme provides a clearer10

picture of renormalisation itself since the redundant, non-physical content is11

automatically disregarded in favour of a description based only on quantities12

that enter expressions for physical observables. To exemplify the scheme’s13

utility, we investigate the Wilson-Fisher fixed point in three dimensions at14

order two in the derivative expansion. In this case, the scheme removes all15

order ∂2 operators apart from the canonical term. Further simplifications oc-16

cur at higher orders in the derivative expansion. Although we concentrate on17

a minimal scheme that reduces the complexity of computations, we propose18

more general schemes where inessential couplings can be tuned to optimise a19

given approximation. We further discuss the applicability of the scheme to a20

broad range of physical theories.21
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1 Introduction69

Our mathematical descriptions of natural phenomena contain redundant, superfluous in-70

formation which is not present in Nature. This follows since, for any given problem, we71

always have the basic liberty to re-express the set of dynamical variables in terms of a72

new, perhaps simpler, set. In this respect, our mathematical models fall into equivalence73

classes, where two models are considered to be physically equivalent if they are related by74

a change of variables. Natural phenomena are therefore described by an equivalence class75

of effective theories rather than a specific model. However, in practice, in order to test76

our models against experiment, we would like to find those models that reduce the time77

and effort needed to compute a given physical observable.78

The renormalisation group (RG) provides a framework to iteratively perform a change79

of variables with the purpose of describing physics at different length scales. This, in80

practice, translates into a flow in a space spanned by the couplings which parameterise81

all possible interactions between the physical degrees of freedom. However, due to the82

aforementioned redundancies, this theory space is divided into equivalence classes. As a83

consequence, we do not have to compute the flow of all coupling constants, but instead, we84

only need to compute the flow of the essential coupling constants, which are those even-85

tually appearing in expressions for physical observables. The other coupling constants,86

known as the inessential couplings, can take quite arbitrary values since changing them87

amounts to moving within an equivalence class. It follows, therefore, that an inessential88

coupling is any coupling for which a change in its value can be reabsorbed by a change89

of variables. The prototypical example of an inessential coupling is the one related to a90

simple linear rescaling or renormalisation of the dynamical variables, namely, in a field-91

theoretic language, the wave-function renormalisation. Actually, it is this transformation92

that gives the renormalisation group its name. However, there is an infinite number of93

other inessential couplings related to more general, non-linear changes of variables. As we94

will show explicitly, one is free to specify the values of all inessential couplings instead of95

computing their flow. This freedom can then be exploited to simplify or otherwise opti-96

mise the calculation of physical quantities of interest. In addition, this has the advantage97

that we automatically disentangle the physical information from the unphysical redundant98

content encoded in the inessential couplings. Such possibility has been advocated indepen-99

dently by G. Jona-Lasinio [1] and by S. Weinberg [2]. Although a perturbative approach100

has been put forward in [3], so far, no concrete non-perturbative implementation based on101

general non-linear changes of variables has been realised.102

The purpose of this paper is to arrive at a concrete scheme of this type, with the ex-103

plicit aim of reducing the complexity of computations within the framework of K. Wilson’s104

exact RG [4, 5]. We shall refer to this concrete scheme as the minimal essential scheme.105

Essential schemes can be defined more generally as those for which we only compute the106

running of the essential couplings, having specified renormalisation conditions that deter-107

mine the values of the inessential couplings as functions of the former.108

109

To achieve our aim, in Section 2 we first develop the concept of field reparameter-110

isations in quantum field theory (QFT). These changes of variables can be understood111

geometrically as local frame transformations on configuration space. After introducing112

the notation of a frame transformation for a classical field theory, we present a frame co-113

variant formulation of QFT, where no particular frame is preferred a priori. In this way, it114

becomes manifest that observables are invariant under frame transformations. This leads115

to a precise definition of an inessential coupling and its conjugate redundant operator,116

whose identification is crucial to the concrete implementation of essential schemes. In the117
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rest of the paper, we combine this frame covariant formalism with a generalised version of118

the exact RG.119

In the many years since K. Wilson first conceived of it, the exact RG, a.k.a. the non-120

perturbative functional renormalisation group has become a powerful technique that can121

be used to investigate a wide range of physical systems without relying on perturbation122

theory [6–12]. The fundamental idea consists of introducing a momentum space cutoff123

at the scale k into the theory which allows the high momentum degrees of freedom p2 >124

k2 to be integrated out to obtain an effective action for the low momentum degrees of125

freedom. Its modern formulation is based on an exact flow equation [13,14] for the Effective126

Average Action (EAA) Γk. For our purposes, however, in Section 3 we are led to consider127

the generalised form of the flow of the EAA which incorporates frame transformations128

along the RG flow [8]. It is this equation that allows us to implement essential schemes.129

Moreover, we derive the dimensionless form of the generalised flow equation, where it130

becomes clear that the cutoff scale k is itself an inessential coupling. We notice that the131

RG equations we use can be seen as the counterpart of the generalised flow equations for132

the Wilsonian effective action first written down by F. Wegner [15].133

In order to make contact with the previous versions of the exact RG, in Section 4134

we reduce our general equations to the standard scheme where only a single inessential135

coupling, namely the wave function renormalisation, is specified.136

Having presented the frame covariant formulation of the exact RG, in Section 5 we137

introduce the minimal essential scheme. In this scheme, all the inessential couplings are set138

to zero at every scale along the RG flow. Several comments are in order. Having a scheme139

of this type at hand provides practical advantages as well as a clearer physical picture140

of renormalisation. On the practical side, a major improvement of the minimal essential141

scheme as compared to the standard one is the fact that the form of the propagator142

maintains a simple form along the RG flow. This ensures that the propagating degrees of143

freedom are just those of the corresponding free theory. Conceptually, our scheme may144

also lead to a better understanding of the equivalence of quantum field theories [16–18]145

and the universality of statistical physics models at criticality, building on the insights of146

previous works [1, 2, 15, 19–23]. Moreover, we further develop and take advantage of the147

analogy between frame transformations and gauge transformations [20]. Although, for the148

sake of simplicity, we will treat a single scalar field φ, the generalisation to theories with149

other field content is obvious. As such, the scheme which we develop can be exploited in a150

wide range of areas of theoretical physics where the exact RG is a useful calculation tool.151

F. Wegner proved [15] that, at a fixed point of the RG, critical exponents associated152

with redundant operators are entirely scheme-dependent. Section 6 is then devoted to153

the discussion of the fixed-point equations and how the corresponding critical exponents154

can be obtained, contrasting the differences between the standard and (minimal) essential155

schemes. In particular, we pay attention to the identification of the anomalous dimension,156

whose computation presents the most substantial differences with respect to the standard157

case. One of the most prominent results in this Section regards the fact that at a fixed158

point, redundant perturbations are automatically discarded. This makes essential schemes159

a preferred tool to access only the necessary, essential physical content.160

Moving towards actual implementations of essential schemes, it is important to realise161

that, a priori, the EAA may contain all possible terms compatible with the symmetries of162

the model under consideration. However, any concrete application of the exact RG relies163

on approximation schemes that reduce the EAA to a manageable subset of all terms.164

The celebrated derivative expansion [24,25] consists of approximating Γk[φ] by its Taylor165

expansion in gradients of φ. In this manner, in order to obtain approximate beta functions166

with a finite amount of effort, one typically has to truncate the derivative expansion to167
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a given finite order ∂s. At each order s = 0,2,4, . . . one is able to compute physical168

quantities, providing estimates which show convergence as s is increased. To date, this169

program has been carried out in the standard scheme up to order s = 6 for the 3D Ising170

model [26], where furthermore it has been argued that the derivative expansion can have171

a finite radius of convergence. While at order s = 0 the EAA is projected onto the space of172

effective potentials Vk(φ) [27,28], at higher orders, one obtains coupled flow equations for173

an increasing number of independent functions of the field [25, 26, 29–31]. Consequently,174

as the order increases, this program rapidly grows in complexity. The minimal essential175

scheme reduces this complexity order by order in the derivative expansion. In addition,176

while there can be spurious effects due to approximations, those arising from inessential177

couplings will not be present.178

To demonstrate the scheme’s utility, in Section 7 we derive the explicit form of the179

flow equation at order s = 2 of the derivative expansion and in Section 8 we apply it to180

the study of the critical point of the 3D Ising model. In particular, we shall identify the181

Wilson-Fisher fixed point as a globally-defined scaling solution to the exact RG equations182

and calculate the values of the universal critical exponents ν, ω and η. These results are183

obtained by solving the flow equations both functionally and with a polynomial truncation.184

The numerical estimates we obtained for the critical exponents are found to be in good185

agreement w.r.t. the computations performed at order ∂2 in the standard scheme [30,32–186

34]. The simplifications exemplified by this application of the minimal essential scheme187

at order s = 2 of the derivative expansion are expected at all higher orders. This is188

demonstrated in Section 9 by providing a recipe on how to implement the minimal essential189

scheme order by order.190

We devote Sections 10 to a general discussion: here we advocate the possibility of em-191

ploying non-minimal essential schemes in optimisation problems by applying extended192

principle of minimal sensitivity (PMS) studies [35]. After taking the opportunity to193

make general considerations about redundant operators and the generalisability of essen-194

tial schemes, we then discuss the implications entailed for asymptotic safety in quantum195

gravity and for the frame equivalence problem in Cosmology. Conclusions are finally pro-196

vided in Section 11. Appendix A contains a detailed derivation of the frame covariant197

exact renormalisation group equation for the EAA. In Appendix B we show some iden-198

tities related to the generator of dilatations, which are important to express the exact199

renormalisation flow equations in dimensionless variables. In Appendix C we comment200

on the connection between the renormalisation conditions and inessential couplings for201

free theories including the high temperature fixed point and higher-derivative theories.202

Finally, in Appendix D we explicitly calculate the general flow equation at second order in203

derivative expansion in two different ways, i.e. in momentum space and in position space.204

2 Frame transformations in quantum field theory205

2.1 Classical frame transformations206

The classical dynamics of a field theory is encoded in an action Sχ[χ]. This can be207

considered as a scalar function on the configuration spaceM viewed as a manifold, where208

the points are field configurations χ ∶ Rd → R. In this respect, the values of the dynamical209

field variable χ(x) can be considered as a preferred coordinate system for which the action210

takes a particular form. What distinguishes the variable χ as “the field” is that, typically,211

it assumes a straightforward physical significance being an easily accessible observable212

experimentally. From a geometrical point of view, this is equivalent to defining a particular213
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local set of frames onM. The classical dynamics is then defined by the principle that the214

action is stationary, namely215

δSχ

δχ(x) = 0 . (1)

This provides the equations of motion for the field variable χ. However, it could be the216

case that the equations of motion are relatively difficult to solve when written in terms of χ217

and can be simplified by re-expressing the action in terms of different variables φ = φ[χ].218

Provided the map φ[χ] is invertible, such that the inverse map χ = χ[φ] exists, this219

amounts to choosing a different frame. If this is the case, we can solve the equations of220

motion for a new action Sφ[φ], which is related to the action in the original frame by221

Sχ[χ] = Sφ[φ[χ]] . (2)

The solutions to the two equations of motion are then in a one-to-one correspondence222

since invertibility ensures that the Jacobian between the two frames is non-singular. To223

see this correspondence, we observe that (1) can be written as1
224

∫
x1

δφ(x1)
δχ(x)

δSφ[φ]
δφ(x1)

= 0 , (3)

and, as such, the non-singular nature of the Jacobian implies that225

δSφ[φ]
δφ(x) = 0 . (4)

To calculate observables, we should evaluate them on the dynamical shell consisting of226

points on M where (1) is satisfied. However, one should bear in mind that observables227

transform as scalars on M, and therefore, they must transform accordingly.228

In general the map φ[χ] can be non-linear in the field χ. The imposition that φ[χ]229

is invertible in the vicinity of a constant field configuration also restricts the map to be230

quasi-local. Specifically, quasi-local means that if we expand φ[χ] in derivatives of the231

field, the expansion is analytic and thus we can write232

φ(x) ∼
∞
∑
s=0

Ls(χ(x), ∂µχ(x), . . . ) , (5)

where Ls = O(∂s) are local functions of the field and its derivatives at x, involving s233

derivatives. If the series terminates at a finite order then we have strict locality.234

As an example of a frame transformation, let us consider a generic action involving up235

to two derivatives of the field236

Sχ[χ] = ∫
x
[zχ(χ)

2
(∂µχ)(∂µχ) + Vχ(χ)] , (6)

this can be re-expressed in the canonical frame where it depends only on a potential237

Vφ(φ) = Vχ(χ(φ)), assuming therefore the simpler form238

Sφ[φ] = ∫
x
[1

2
(∂µφ)(∂µφ) + Vφ(φ)] . (7)

This is achieved by the following transformation239

χ→ χ(φ) , ∂χ(φ)
∂φ

= 1√
zχ(χ(φ))

, (8)

1Hereafter we use the shorthand notation ∫x ∶= ∫ ddx.
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which is the inverse of the transformation240

φ→ φ(χ) , ∂φ(χ)
∂χ

=
√
zχ(χ) . (9)

Thus, provided zχ(χ) is non-singular, we can transform to the canonical frame where241

solutions to the equations of motion will be in a one-to-one correspondence.242

More generally, actions in two different frames will transform as scalars onM, where a243

change of frame is understood as a diffeomorphism fromM to itself. Under an infinitesimal244

frame transformation φ→ φ + ξ[φ], the action transforms as245

S[φ] → S[φ] + ξ[φ] ⋅ δ
δφ
S[φ] , (10)

where, hereafter, we adopt the condensed notation for which a dot implies an integral246

over x such that X ⋅ Y ∶= ∫xX(x)Y (x). For definiteness, we consider the field to have247

a single component, however, the generalisation to a multi-component field φA(x) is248

straightforward since the dot would then also imply a sum over the components X ⋅ Y ∶=249

∑A ∫xXA(x)YA(x).250

The transformation (10) is an infinitesimal classical frame transformation. It is clear251

that, with a bit of work, classical field theory can be formulated in a covariant language252

allowing one the freedom to easily pick different frames to calculate observables. This free-253

dom is analogous to the freedom to pick a particular gauge condition in general relativity,254

which amounts to picking a set of local frames on spacetime. In the rest of this Sec-255

tion, we lift the discussion on frame transformations in order to develop a frame covariant256

formulation of quantum field theory.257

2.2 The principle of frame invariance in QFT258

In quantum field theory (QFT), all physical information is stored in correlation functions.259

In the path-integral formalism, these are functionals Ô[χ̂] of the quantum field χ̂ averaged260

over all possible field configurations (quantum fluctuations), in which each configuration261

is weighted with e−S . Therefore, the most general objects which we wish to compute are262

expectation values of observables Ô given by263

⟨Ô⟩ ∶= N ∫ (dχ̂) Ôχ̂[χ̂] e−Sχ̂[χ̂] , (11)

where N −1 = ∫ (dχ̂) e−Sχ̂[χ̂] and Ôχ̂[χ̂] = Ô is an observable expressed as functional of the264

fields χ̂, which in general can be an n-point function. For example we could be interested265

in an 2-point function of the field in which case266

Ôχ̂[χ̂] = χ̂(x1)χ̂(x2) , (12)

but we could also be interested in products of composite operators at different points in267

space.268

The exact definition of the path integral measure depends on the regularisation. For269

the class of regulators which we employ, it is defined by270

∫ (dχ̂) e−
1
2
χ̂⋅MΛ⋅χ̂ = 1 , (13)

where Λ is the ultraviolet cutoff which we will formally take to infinity or to some scale271

much greater than all relevant physical scales. The two-point function MΛ(x1, x2) can be272

7
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understood as a metric on M which is independent of the field χ̂ and should diverge in273

the continuum limit, namely274

lim
Λ→∞

MΛ →∞ . (14)

In the simplest case, MΛ(x1, x2) = αΛ2δ(x1, x2), where α is a positive constant.275

In practice, the computation of correlation functions is facilitated by the introduction276

of suitable generating functionals. For example, the generating functional Wχ̂[J] of the277

(connected) correlation functions for the field χ̂ is given by278

N eWχ̂[J] ∶= ⟨eJ ⋅χ̂⟩ = N ∫ (dχ̂) eJ ⋅χ̂e−Sχ̂[χ̂] , (15)

where J ⋅ χ̂ is a source term for the field χ̂. Here we are interested in the generalisation279

of (15) where the source J couples instead to a composite operator φ̂ = φ̂[χ̂], such that280

we generate the correlation functions of φ̂ rather than those of χ̂. To ensure that these281

correlation functions contain the same physical information, we take φ̂ = φ̂[χ̂] to define a282

diffeomorphism from M to itself, or phrased differently, a frame transformation from the283

original χ̂-frame to a new φ̂-frame. Therefore, we are led to consider a family of generating284

functionals285

N eWφ̂
[J] ∶= ⟨eJ ⋅φ̂⟩ = N ∫ (dχ̂) eJ ⋅φ̂[χ̂]e−Sχ̂[χ̂] , (16)

for the composite operator φ̂[χ̂], which from now on we call the parameterised field. In286

geometrical terms, (16) makes sense if we understand φ̂(x) as a set of scalars onM labelled287

by the points in real space x. If we were to introduce purely abstract coordinates on M,288

then the gradient of φ̂(x) is a coframe field while the inverse the coframe field is a frame289

field.290

In presence of the source, expectation values are given by291

⟨Ô⟩J = e−Wφ̂
[J]⟨eJ ⋅φ̂Ô⟩ , (17)

and they reduce to (11) by taking J = 0. In practice, given (16), source-dependent expec-292

tation values can be computed as293

⟨Ô⟩J = e−Wφ̂
[J]Ô [χ̂ [ δ

δJ
]] eWφ̂

[J] , (18)

where χ̂[φ̂] is the inverse diffeomorphism of φ̂. Since the observables Ô are scalars onM,294

such that295

Ô = Ôχ̂[χ̂] = Ôφ̂[φ̂] , (19)

we can thus equivalently write (18) as296

⟨Ô⟩J = e−Wφ̂
[J]Ôφ̂ [

δ

δJ
] eWφ̂

[J] . (20)

The source J could be viewed as a physical external field that couples linearly to φ̂.297

In this interpretation, however, we would be considering a model where Sχ̂[χ̂] is replaced298

by Sχ̂[χ̂] − J ⋅ φ̂[χ̂], resulting in a physical dependence on the choice of frame. In this299

paper, instead, we will adopt the principle of frame invariance, meaning that we will300

work within a frame covariant (or other words reparameterisation, or field-redefinition301

covariant) formalism where physical quantities are independent of the choice of frame.302

Consequently, in this formalism all physical couplings, possibly including a coupling h ⋅ χ̂303

to an external field h, should be part of the action Sχ̂, and the source J shall be viewed304

merely as a device to compute correlation functions such that, after differentiatingWφ̂[J],305
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we are ultimately interested in taking J = 0. Physical quantities are therefore obtained by306

the frame covariant expression2
307

⟨Ô⟩ = e−W[J]Ô [ δ
δJ

] eW[J]∣
J=0

, (21)

with the final result being a frame invariant quantity. For example the 2-point functions308

is obtained by309

⟨χ̂(x1)χ̂(x2)⟩ = e−W[J]χ̂ [ δ

δJ(x1)
] χ̂ [ δ

δJ(x2)
] eW[J]∣

J=0
, (22)

The advantage of working with a frame covariant setup is that the complexity of310

computing certain physical quantities may be reduced by the choice of a specific frame.311

For many quantities such as the correlation functions of the physical field χ̂ e.g. (22),312

the specific choice of the frame may simply be φ̂ = χ̂. However, for universal quantities313

computed in the vicinity of a continuous phase transition in statistical physics, or quantities314

which are computed at vanishing external field, such as S-matrix elements in particle315

physics, it may be that the specific choice of φ̂ is non-trivial. What is important is that in316

principle we can compute any observable in any frame. Then in practice we can exploit317

the frame where computations become most manageable.318

2.3 Change of integration variables319

In addition to the freedom of fixing a frame by choosing a particular φ̂[χ̂] which couples320

to the source, we are also at liberty to make a change of integration variables in the321

corresponding functional integral (16). Under this change of variables, φ̂[χ̂] transforms as322

a set of scalars on M and Wφ̂[J] is hence invariant. Of course, we are at liberty to make323

φ̂ the integration variable and therefore we can equivalently write324

eWφ̂
[J] = ∫ (dφ̂) e−Sφ̂[φ̂] eJ ⋅φ̂ , (23)

where325

e−Sφ̂[φ̂] = e−Sχ̂[χ̂[φ̂]] det
δχ̂[φ̂]
δφ̂

(24)

has transformed as a density. However, since these transformations leave W[J] invariant,326

it is entirely immaterial whether we perform this transformation (or any other change of327

integration variables) or not. Furthermore, the expectation value of an observable (i.e.328

what we mean by ⟨ . . . ⟩) can also be defined in a covariant way as329

⟨Ô⟩ ∶= N ∫ (dφ̂) Ôφ̂[φ̂] e−Sφ̂[φ̂] , (25)

which is equivalent to the previous definition (11). In this paper, by a frame transforma-330

tion, we always refer to a change in the field which couples to the source, rather than a331

change of integration variables.332

2From now on we can suppress the φ̂ subscripts from W[J] ≡ Wφ̂[J], Ô[φ̂] ≡ Ôφ̂[φ̂] etc. whenever we
are discussing a generic frame and no confusion can arise.
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2.4 Effective actions333

GivenW[J], other generating functionals, related toW[J] by transformations and/or the334

addition of further sources, can be considered. For example, the one-particle irreducible335

(1PI) effective action Γ[φ] is obtained by the Legendre transform336

Γφ̂[φ] = −Wφ̂[J] + φ ⋅ J , (26)

where φ = ⟨φ̂[χ̂]⟩J is the mean parameterised field. Equivalently, Γ[φ] can be defined by337

the solution to the integro-differential equation338

N e−Γ[φ] = ⟨e(φ̂−φ)⋅
δ
δφ

Γ[φ]⟩ , (27)

with φ-dependent expectation values given by339

⟨Ô[χ̂]⟩φ = eΓ[φ]⟨e(φ̂−φ)⋅
δ
δφ

ΓÔ[χ̂]⟩ . (28)

For our purposes, we will be interested in a particular class of generating functionals340

that generalise the 1PI effective action in the presence of an additional source K(x1, x2) for341

two-point functions. In the next Section we will identify K(x1, x2) with a cutoff function,342

but for now, we view it simply as an additional source independent of φ. Its inclusion343

leads to a modified effective action344

N e−Γ[φ,K] = ⟨e(φ̂−φ)⋅
δ
δφ

Γ[φ,K]− 1
2
(φ̂−φ)⋅K ⋅(φ̂−φ)⟩ . (29)

so that K- and φ-dependent expectation values can be defined by345

⟨Ô⟩φ,K = eΓ[φ,K]⟨e(φ̂−φ)⋅
δ
δφ

Γ[φ,K]− 1
2
(φ̂−φ)⋅K ⋅(φ̂−φ)Ô⟩ . (30)

We will also denote the expectation value of an operator Ô by dropping the hat, such that346

347

O[φ,K] ≡ ⟨Ô⟩φ,K . (31)

2.5 Functional identities348

An infinite set of identities can be derived systematically by taking successive derivatives349

of (29) and (30) with respect to φ and K and using the identities obtained from lower350

derivatives. Here we will obtain those identities which we will make explicit use of in the351

rest of the paper. First, taking one derivative of (29) with respect to φ one finds that352

(K + Γ(2)[φ,K]) ⋅ (φ − ⟨φ̂⟩φ,K) = 0 , (32)

where Γ(2)[φ,K] denotes the second functional derivative of Γ[φ,K] with respect to φ.353

Thus, assuming the invertibility of K + Γ(2)[φ,K], one has that φ is again the mean354

parameterised field355

φ = ⟨φ̂⟩φ,K . (33)

Taking a further derivative of (33) with respect to φ one finds that the two-point function356

is given by357

Gx1,x2[φ,K] ∶= ⟨(φ̂(x1) − φ(x1))(φ̂(x2) − φ(x2))⟩φ,K

= 1

Γ(2)[φ,K] +K
(x1, x2) . (34)

10



SciPost Physics Submission

Then, varying (29) with respect to K at fixed φ we obtain the functional identity [13,14]358

δΓ[φ,K]∣
φ
= 1

2
TrG[φ,K] ⋅ δK , (35)

where Tr stands for the trace of a two-point function TrX ∶= ∫xX(x,x). Taking a func-359

tional derivative of (30) with respect to φ and using the previously derived identities we360

obtain361

⟨(φ̂ − φ) Ô⟩φ,K = G[φ,K] ⋅ δ
δφ
O[φ,K] . (36)

There are two special configurations of the source K(x1, x2). First, if we take K = 0362

then Γ[φ,0] = Γ[φ] is the 1PI effective action. If additionally Γ[φ] is evaluated at its363

stationary point φmin the expectation values (30) reduce to the frame invariants (11).364

Secondly, if we take K(x1, x2) = MΛ(x1, x2), where MΛ is the metric that defines the365

measure (13), then the two-point source term produces a delta function in the path integral366

as the continuum limit (14) is taken, and we have367

lim
Λ→∞

Γ[φ,MΛ] = S[φ] , (37)

where S[φ] = Sφ̂[φ] is given by (24). Furthermore, the expectation values are given by368

the mean-field expression369

lim
Λ→∞

⟨Ô⟩φ,MΛ
= Ô[φ] . (38)

It is these two limits that make Γ[φ,K] a useful generating functional for the exact RG370

since one can realise Wilson’s concept of an incomplete integration by allowing K to371

interpolate between the limits.372

2.6 Inessential couplings and active frame transformations373

Although in a particular frame the microscopic action may assume a relatively simple374

form, e.g. Sχ̂[χ̂] = ∫x [1
2(∂µχ̂)(∂µχ̂) +

1
2m

2χ̂2 + 1
4!λχ̂

4], the generating functionals will typ-375

ically be very complicated. As a consequence of this, expanding the generating functionals376

in a typical operator basis, we will find an infinite set of non-vanishing coupling constants377

gi. These couplings can be viewed coordinates on theory space. Different choices of the378

operator basis in terms of which we expand the generating functionals, therefore, corre-379

spond to different coordinate systems on theory space (for a discussion on the geometry380

of theory space see [36]). In a frame covariant formalism, we are free to make frame trans-381

formations without affecting physical observables even though the form of the generating382

functionals will change. Consequently, any change in the coupling constants3 gi → gi + δgi383

which is equivalent to a frame transformation gives a theory that is physically equivalent384

to the original theory. Put differently, there are directions in theory space along which all385

physical quantities remain unchanged. These directions form ‘sub-manifolds of constant386

physics’ in theory space. Locally in theory space, we can therefore work in a coordinate387

system {gi} = {λa, ζα} adapted to these sub-manifolds where λa are the essential couplings388

which will appear in expressions for the physical observables (11). The remaining cou-389

plings ζα are therefore the inessential couplings. It follows that changing the values of390

the inessential couplings ζ → ζ + δζ is equivalent to the change induced by a local frame391

transformation392

φ̂[χ̂] → φ̂[χ̂] − ξ̂[χ̂] +O(ξ̂2) , (39)

3Here we are using δ to denote a variation with respect to the couplings keeping field variables fixed.

11



SciPost Physics Submission

where ξ̂[χ̂] = Φ̂[χ̂] ζδζ. For the generating functionals W[J], Γ[φ] and Γ[φ,K] one finds393

that they transform respectively as394

W[J] → W[J] − J ⋅ ξ[J] +O(ξ2) , (40)

Γ[φ] → Γ[φ] + ξ[φ] ⋅ δ
δφ

Γ[φ] +O(ξ2) , (41)

Γ[φ,K] → Γ[φ,K] + ξ[φ,K] ⋅ δ
δφ

Γ[φ,K] −TrG[φ,K] ⋅ δ
δφ
ξ[φ,K] ⋅K +O(ξ2) , (42)

where ξ[J], ξ[φ] and ξ[φ,K] are expectation values395

ξ[J] = ⟨ξ̂[χ̂]⟩J , (43)

ξ[φ] = ⟨ξ̂[χ̂]⟩φ , (44)

ξ[φ,K] = ⟨ξ̂[χ̂]⟩φ,K . (45)

In (42) the form of the term involving the trace comes from using the identity (36) with396

Ô = ξ̂.397

In the case of the 1PI effective action Γ[φ] we note that (41) has the same form as the398

classical frame transformation (10). This means that a derivative of Γ[φ] with respect to399

an inessential coupling gives400

ζ
∂

∂ζ
Γ[φ] = Φ[φ] ⋅ δ

δφ
Γ[φ] , (46)

for some Φ[φ]. We see explicitly that the frame transformation is proportional to the401

equation of motion as in the classical case. This is the origin of the statement that one402

can use the equations of motion to calculate the running of essential couplings [2]. However,403

in what follows we will work with the EAA, which has the form of Γ[φ,K] where K is404

chosen to be a cutoff function. In this case, therefore, we have that405

ζ
∂

∂ζ
Γ[φ,K] = Φ[φ,K] ⋅ δ

δφ
Γ[φ,K] −TrG[φ,K] ⋅ δ

δφ
Φ[φ,K] ⋅K . (47)

We see that this transformation includes a loop term in addition to the tree-level term406

which vanishes on the equation of motion. The operator on the r.h.s. of (47) is the re-407

dundant operator conjugate to the inessential coupling ζ. Every inessential coupling is408

therefore conjugate to a redundant operator which is in turn determined by some (quasi-409

)local field Φ(x) which characterises the frame transformation. From a geometrical point410

of view, a derivative with respect to an inessential coupling can be understood as an “av-411

eraged” Lie derivative. While Γ[φ] is in this sense a scalar, the averaged Lie derivative412

of Γ[φ,K] is non-linear due to the presence of K. From this point of view, (47) can be413

understood as an active frame transformation (or active reparameterisation), where the414

functional form of Γ[φ,K] is modified leaving φ and K fixed. An active frame transforma-415

tion is therefore equivalent to a change in the values of the inessential couplings keeping416

the essential couplings fixed. Different frames are therefore fully characterised by specify-417

ing values of the inessential couplings. The analogy with gauge fixing in general relativity418

is then clear: the frame transformations are analogous to gauge transformations while419

conditions that specify the inessential couplings are analogous to gauge fixing conditions.420

2.7 Passive frame transformations421

Instead of active frame transformations, we can consider passive frame transformations,422

namely those which are characterised by simply expressing Γ[φ,K] in terms of different423
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variables. These will not be simply related to active frame transformations since, for a424

non-linear function Φ[φ] ≠ ⟨Φ[φ̂]⟩. However, if we consider a linear frame transformation425

of the form426

φ̂′′ = c ⋅ φ̂′ , (48)

where c is a field independent two-point function, one has that φ′′ = c ⋅ φ′. From this427

property, we have the simple identity428

Γφ̂′[φ
′, cT ⋅K ⋅ c] = Γφ̂′′[c ⋅ φ

′,K] , (49)

where cT is the transpose of c. These linear passive frame transformations will help us429

to make contact with more standard derivations of the exact RG equation and clarify the430

transition from dimensionless to dimensionful variables. More generally, they expose the431

fact that a linear transformation of K and φ which keeps φ ⋅K ⋅ φ invariant is equivalent432

to a frame transformation.433

3 Frame covariant flow equation434

We will now write down RG flow equations for a frame covariant EAA. These will take435

a generalised form which will allow us to make arbitrary frame transformations along an436

RG trajectory. The equations can be written both in dimensionful variables, where the437

cutoff scale k is made explicit or in dimensionless variables, where we work in units of438

k and hence all the quantities including the coordinates y ∶= kx are dimensionless. The439

dimensionful version (56), along with more general flow equations which incorporate field440

redefinitions along the flow, has been derived previously in [8].441

3.1 Dimensionful covariant flow442

In dimensionful variables, the frame covariant effective average action is obtained by in-443

troducing a cutoff scale k in two independent manners. Firstly, we identify K = Rk with444

an additive IR cut off Rk which suppresses fluctuations below momentum scales p2 ≃ k2
445

and vanishes in the ultraviolet (UV) for momenta p2 ≫ k2. In position space the regulator446

is a function of the Bochner-Laplacian ∆ = −∂µ∂µ such that4
447

Rk(x1, x2) = k2R(∆/k2)δ(x1, x2)

= k2∫
p
R(p2/k2) eipµ(xµ1−x

µ
2 ) , (50)

where R(p2/k2) is the dimensionless cutoff function which vanishes in the limit p2/k2 →∞,448

while for p2/k2 → 0 it has a non-zero limit R(0) > 0, ensuring the suppression of IR modes.449

Secondly, one allows the parameterised field φ̂ itself to depend on k. This leads to the450

following frame covariant effective average action451

N e−Γk[φ] ∶= ⟨e(φ̂k−φ)⋅
δ
δφ

Γk[φ]− 1
2
(φ̂k−φ)⋅Rk ⋅(φ̂k−φ)⟩ , (51)

which is the effective action (29), where the source for the two-point functions K is now452

specified to be given by the cutoff function Rk and where φ̂ = φ̂k[χ̂] is the k-dependent453

parameterised field. Therefore an equivalent definition is454

Γk[φ] = Γφ̂k[φ,Rk] , (52)

4Where we adopt the following notation ∫p ∶= ∫ ddp

(2π)d .
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where the k dependence of Γk[φ] comes from both the k dependence of the regulator Rk455

and the parameterised field φ̂k. We can then define k- and φ-dependent expectation in456

the usual manner, namely457

⟨Ô⟩φ,k = eΓk[φ]⟨e(φ̂k−φ)⋅
δ
δφ

Γk[φ]− 1
2
(φ̂k−φ)⋅Rk ⋅(φ̂k−φ)Ô⟩ , (53)

such that in this case the general identity (33) implies458

φ = ⟨φ̂k⟩φ,k . (54)

Here we anticipate that letting the parameterised field φ̂k to be itself k-dependent, allows459

for the possibility of eliminating all the inessential coupling constants from the set of460

independent running couplings. This, in a nutshell, will be what we define later as an461

essential scheme. In this respect, we recognise that the redundant operators assume the462

following form463

ζ
∂

∂ζ
Γk[φ] = Φk[φ] ⋅

δ

δφ
Γk[φ] −TrGk[φ] ⋅

δ

δφ
Φk[φ] ⋅ Rk , (55)

where Gk[φ] = (Γ(2)
k [φ] + Rk)−1 is the IR regularised propagator. The exact RG flow464

equation obeyed by the frame covariant EAA (51) is then given by465

(∂t+Ψk[φ] ⋅
δ

δφ
)Γk[φ] =

1

2
TrGk[φ] (∂t + 2 ⋅ δ

δφ
Ψk[φ]) ⋅ Rk , (56)

where t ∶= log(k/k0), with k0 some physical reference scale, and466

Ψk[φ] ∶= ⟨∂tφ̂k[χ̂]⟩φ,k (57)

is the RG kernel which can be a general quasi-local functional of the field φ. The flow467

equation (56) follows directly from using (35), which accounts for the k dependence of Rk,468

while the remaining terms arise due to the k-dependence of φ̂k, which therefore assume469

the form of an infinitesimal frame transformation. In Appendix A we give a more detailed470

derivation of (56) which generalises the derivation of the flow for the EAA presented471

in [13].472

Now the question arises as to how Ψk[φ] should be determined. Evidently, we can473

arrive at a closed flow equation for Γk[φ] by specifying Ψk[φ] to be determined by Γk[φ]474

in some explicit manner. This is the approach pursued in other works [37, 38] in order to475

describe bound states through flowing bosonisation and exploited in [39–42] to describe476

hadronisation in QCD. The alternative, which we shall pursue, is instead to specify renor-477

malisation conditions that constrain the form of Γk[φ] by fixing the values of the inessen-478

tial couplings and solve the flow equation for the essential couplings and for parameters479

appearing in Ψk[φ] to determine the form of the frame transformation.480

Let us note that, if we wish to impose a symmetry on Γ[φ] under some transformation481

of φ such as φ→ −φ, then one should impose that Ψk[φ] transforms in the same way as φ.482

This requirement grants that the RG flow preserves the symmetry of the theory. Thus, if483

we want that Γk[−φ] = Γk[φ], we should then impose that Ψk[−φ] = −Ψk[φ].484

As a final comment, let us now consider the limits k → 0 and k = Λ → ∞. In the485

limit k → 0 the regulator Rk(x1, x2) vanishes and thus we recover the 1PI effective action486

Γ0[φ] = Γ[φ] where φ̂[χ̂] = φ̂0[χ̂]. In the opposite limit instead, making reference to (13),487

we can identify MΛ(x1, x2) by488

RΛ(x1, x2) ∼MΛ(x1, x2) . (58)

Thus, Γk=Λ[φ] ∼ Sφ̂∞[φ] where Sφ̂∞ is given by (24). After giving an initial condition for489

the flow at k = Λ, the flow equation will then evolve towards the 1PI effective action while490

transforming the frame from φ̂Λ to φ̂0.491
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3.2 Dimensionless covariant flow492

In order to uncover RG fixed points, we need to work in units of the cutoff scale k such493

that the RG flow, expressed in terms of dimensionless couplings gi, obey an autonomous494

set of equations495

∂tgi = βi(g) . (59)

The passage to dimensionless variables can be done either by a passive frame transfor-496

mation or by an active one. The active way, however, is more elegant and makes it also497

evident that the scale k itself is simply an inessential coupling. To this end we define498

N e−Γt[ϕ] = ⟨e(ϕ̂t−ϕ)⋅
δ
δϕ

Γt[ϕ]− 1
2
(ϕ̂t−ϕ)⋅R⋅(ϕ̂t−ϕ)⟩ , (60)

where we use ϕ to denote the dimensionless fields and the subscript t instead of k to499

emphasise that there is no explicit dependence on k. In (60) the dimensionless regulator500

R = R(∆) is understood as a function of the dimensionless Laplacian viewed as a two501

point function ∆(y1, y2) ∶= −∂2
y1
δ(y1 − y2) where y1 and y2 are dimensionless coordinates.502

The expectation values of observables are given by503

⟨Ô⟩ϕ,t = eΓt[ϕ]⟨e(ϕ̂t−ϕ)⋅
δ
δϕ

Γt[ϕ]− 1
2
(ϕ̂t−ϕ)⋅R⋅(ϕ̂t−ϕ)Ô⟩ . (61)

It is convenient to introduce the generator of dilatations ψdil as504

ψdil(y) ∶= −yµ∂µϕ(y) −
d − 2

2
ϕ(y) , (62)

in which the first term accounts for the rescaling of the coordinates and the second accounts505

for the rescaling of the field. In particular, if we have a term Ξ[ϕ] = O(ϕn, ∂s) in the action,506

such that Ξ[ϕ] has canonical dimension n(d − 2)/2 + s − d, one can show that507

ψdil ⋅
δ

δϕ
Ξ[ϕ] = − (n(d − 2)/2 + s − d) Ξ[ϕ] . (63)

In Appendix B we give the derivation of this equation. By defining the dimensionless RG508

kernel ψt as509

ψtot
t [ϕ] ∶= ψt[ϕ] + ψdil[ϕ] ∶= ⟨∂tϕ̂t[χ̂]⟩ϕ,t , (64)

where ψtot
t denotes the total dimensionless RG kernel incorporating the dilatation step of510

the RG transformation, the dimensionless flow equation is given by511

(∂t + ψtot
t [ϕ] ⋅ δ

δϕ
)Γt[ϕ] = Tr

1

Γ
(2)
t [ϕ] +R

⋅ δ
δϕ
ψtot
t [ϕ] ⋅R . (65)

The form of (65) makes it clear that an RG transformation is nothing but an active frame512

transformation which includes a dilatation step where the conjugate inessential coupling513

is k itself. This is inline with the observations made in [43] that show a direct relation514

between the flow of EAA and the anomaly due to the breaking of scale invariance.515

To arrive at a more familiar form of the trace, we notice that the following identity516

holds517

Tr
1

Γ
(2)
t [ϕ] +R

⋅ δ
δϕ
ψdil[ϕ] ⋅R = 1

2
Tr

1

Γ
(2)
t [ϕ] +R

⋅ Ṙ , (66)

where518

Ṙ(∆) ∶= 2(R(∆) −∆R′(∆)) = ∂tRk∣k=1 , (67)
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which we prove in Appendix B. Using (66), it is then straightforward to show that (65)519

is (56) recast in dimensionless variables. In particular, the passive transformation (48) is520

given by521

ϕ̂(y) = k−(d−2)/2φ̂(k−1y) =∶ (cdil ⋅ φ̂)(y) , (68)

and thus cdil(y, x1) = k−(d−2)/2δ(k−1y − x1). The form of (62) then results from differenti-522

ating (68). Finally, let us then denote a dimensionless redundant operator by523

ζ
∂

∂ζ
Γt = T (Γt)Φ[ϕ] ∶= Φ[ϕ] ⋅ δ

δϕ
Γt[ϕ] −Tr

1

Γ
(2)
t [ϕ] +R

δ

δϕ
Φ[ϕ] ⋅R , (69)

where T (Γt) is understood as a Γt-dependent linear operator which acts on Φ[ϕ]. Then524

the flow equation can be concisely written as525

−∂tΓt[ϕ] = T (Γt)(ψt[ϕ] + ψdil[ϕ]) . (70)

This form makes it explicit that the RG flow is simply a frame transformation.526

3.3 Relation to Wilsonian flows527

Let us end this Section by making contact with generalised flow equations for the Wilsonian528

effective action. If we relax the constraints on Rk such that we no longer view it as529

a regulator, one can obtain the flow equations for the Wilsonian effective action Sk by530

taking the limit Rk →∞. In particular, replacing the Rk → αRk and taking α →∞ while531

denoting Γk[φ] → Sk[φ], the generalised flow equation (56) reduces to532

(∂t+Ψk[φ] ⋅
δ

δφ
)Sk[φ] = Tr

δ

δφ
Ψk[φ] , (71)

apart from a vacuum term which we neglect, while a redundant operator is given by533

ζ
∂

∂ζ
Sk[φ] = Φ ⋅ δ

δφ
Sk[φ] −Tr

δ

δφ
Φ[φ] . (72)

These are the expressions for the generalised flow equation and redundant operators first534

written down in [15]. The reason we obtain the flow for the Wilsonian effective action in535

the limit Rk →∞ is simple: this is due to the fact that the regulator term induces a delta536

function in the functional integral such that Γφ̂k[φ,K] → Sφ̂k[φ].537

The flow equation (71) has been used to demonstrate scheme independence to different538

degrees [20–23]. However, in the flow equation (71), one has to introduce a UV-cuff into539

Ψk[φ] in order to regularise the trace. One advantage of the flow equations (56) is that540

the regulator Rk is disentangled from the RG kernel Ψk[φ], meaning that the trace will541

be regularised for any Ψk[φ] provided Rk decreases fast enough in the large momentum542

limit.543

4 The standard scheme544

4.1 Wetterich-Morris flow545

As an example, in this Section, we focus on the simple case where one eliminates only a546

single inessential coupling, namely the wavefunction renormalisation Zk which is conjugate547
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to the redundant operator T (Γk)ϕ. The removal of Zk then introduces the anomalous548

dimension of the field,549

ηk = −∂t log(Zk) , (73)

and it is a necessary step to uncover fixed points with a non-zero anomalous dimension.550

As with the transition to dimensionless variables, Zk can be eliminated by an active551

frame transformation or by a passive transformation. By either method, we arrive at the552

Wetterich-Morris equation in the presence of a non-zero anomalous dimension [13,14]. By553

the active method, this is achieved by simply setting554

Ψk[φ] = −
1

2
ηkφ , (74)

from which we can infer that555

φ̂k = Z1/2
k φ̂0 , (75)

where we choose to impose Z0 = 1 as the boundary condition. Following the passive route556

instead, we begin with the EAA Γφ̂0,k
[φ0] = Γ[φ0, ZkRk] which is given explicitly by557

N e
−Γ

φ̂0,k
[φ0] = ⟨e(φ̂0−χ0)⋅ δδφ0

Γ
φ̂0,k

[φ0]+
Zk
2

(φ̂0−χ0)⋅Rk ⋅(φ̂0−χ0)⟩ . (76)

The flow equation is now given by558

∂tΓφ̂0,k
[φ0] =

1

2
Tr

1

Γ
(2)
φ̂0,k

[φ0] +ZkRk
⋅ ∂t(ZkRk) , (77)

which is the standard form of the Wetterich-Morris equation, apart from making the559

dependence on the wavefunction renormalisation explicit. Then we make the passive560

change of frames (48) to eliminate Zk from the flow equation by setting φ0 = Z
−1/2
k φ,561

where (49) implies that Γk[φ] = Γφ̂0,k
[Z−1/2

k φ]. The flow equation (77) can then be recast562

in the form563

(∂t −
1

2
ηkφ ⋅

δ

δφ
)Γk[φ] =

1

2
TrGk[φ] ⋅ (∂tRk − ηkRk) , (78)

which is now manifestly independent of Zk and is equal to (56) with Ψk given by (74).564

The fact that the terms proportional to ηk in (78) have the form of a redundant coupling565

then simply reflects the fact that Zk was inessential. In dimensionless variables the flow566

equation (78) is given by (65) where ψt = −1
2ηkϕ.567

4.2 Renormalisation conditions568

We have arrived at the flow equation (78) without having specified the inessential coupling569

Zk. This means that we have the freedom to impose a renormalisation condition that570

constrains the form of Γk[φ] by fixing the value of one coupling to some fixed value.571

Solving the flow equation (78) under the chosen renormalisation then determines ηk as a572

function of the remaining couplings. In terms of Γφ̂0,k
[φ0], this is equivalent to identifying573

Zk with one coupling. A typical choice is to expand the Γφ̂0,k
[φ0] in fields and in derivatives574

and then identify Zk with the coefficient of the term 1
2 ∫x(∂µφ0)(∂µφ0). In terms of Γk[φ]575

this fixes the coefficient of ∫x(∂µφ)(∂µφ) to be 1/2. However, this choice is not unique.576

One can instead expand Γk[φ] only in derivatives such that577

Γk[φ] = ∫
x
[Vk(φ) +

1

2
zk(φ)(∂µφ)(∂µφ)] +O(∂4) , (79)
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where Vk(φ) and zk(φ) are functions of the field and then choose the renormalisation578

condition579

zk(φ̃) = 1 , (80)

for a single constant value of the field φ(x) = φ̃. The essential scheme which we present in580

the next sections is based on renormalisation conditions that generalise (80).581

Before arriving at this generalisation, let us first scrutinise the choice (80) for the582

renormalisation condition to trace the reasoning behind it. To this end we note that zk(φ̃)583

is the inessential coupling conjugate to the redundant operator (69) in the case where584

Φ = 1
2ϕ, as it is clear from (78), namely585

1

2
T (Γt)ϕ = 1

2
ϕ ⋅ δ

δϕ
Γt[ϕ] −

1

2
TrGt[ϕ] ⋅R . (81)

In general, the redundant operator is a complicated functional of ϕ since it depends on586

the form of Γt[ϕ]. However, at the Gaussian fixed point Γt = K with587

K[ϕ] ∶= 1

2
∫
y
(∂µϕ)(∂µϕ) , (82)

one has that (81) reduces to the free action itself588

1

2
T (K)ϕ = 1

2
∫
y
(∂µϕ)(∂µϕ) + constant , (83)

apart from a vacuum term. The fact that K is invariant under shifts ϕ(y) → ϕ̃ + ϕ(y)589

then reveals why we were free to choose the renormalisation point ϕ̃. Thus any of the590

renormalisation conditions (80) will fix the same inessential coupling at the Gaussian591

fixed point. As we elaborate on in Appendix C, one can also fix inessential couplings at592

an alternative free fixed point by imposing an alternative renormalisation condition to593

eliminate Zk. This makes it clear that the renormalisation condition (80) is intimately594

related to the kinematics of the Gaussian fixed point (82). Here we are discussing only a595

single inessential coupling. However, in general there is an infinite number of inessential596

couplings and we would like to impose renormalisation conditions to eliminate all of them.597

We may then ask whether there is a practical way to do so. In the next Section, we will598

present the minimal essential scheme which achieves this aim.599

5 Minimal essential scheme600

Our aim in this Section is to find a scheme that imposes a renormalisation condition601

for each inessential coupling ζα by fixing them to some prescribed values. In order to602

solve the flow equations when applying multiple renormalisation conditions, we allow ψt603

to depend on a set of gamma functions {γα}, where we must include one gamma function604

for each renormalisation condition. The gamma functions, along with the beta functions605

for the remaining running couplings, are then found to be functions of the remaining606

couplings. For example, instead of fixing ψt = −1
2ηkϕ, as in the standard scheme where607

we apply a single renormalisation condition, we can instead choose ψt = γ1(t)ϕ + γ2(t)ϕ3
608

and then impose two renormalisation conditions which fixes the values of two inessential609

couplings. Solving the flow equation under these conditions, the gamma functions will610

then be determined as functions of the remaining running couplings. In general, we can611

write612

ψt[ϕ] = ∑
α

γα(t)Φα[ϕ] , (84)
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where the {Φα[ϕ]} are a set of linearly independent local operators, one for each renor-613

malisation condition which we impose. In essential schemes we include all possible local614

operators in the set {Φα[ϕ]}. Applying a renormalisation condition for each Φα would615

then fix the value of all inessential couplings. For this purpose, we wish to find a practical616

set of renormalisation conditions that generalise the one applied in the standard scheme.617

Following the logic of the last Section, we therefore choose the renormalisation conditions618

such that we fix the values of the inessential couplings at the Gaussian fixed point. In-619

serting Γt = K into (69), the redundant operators at the Gaussian fixed point are given620

by621

T (K)Φα = Φα ⋅∆ϕ −Tr
R

∆ +R ⋅ δ
δϕ

Φα[ϕ] . (85)

Then, in the minimal essential scheme we write the action such that it depends only on622

the essential couplings λ by specifying the ansatz5
623

Γt[ϕ] = K +∑
a

λa(t)ea[ϕ] , (86)

where {ea[ϕ]} are a set of operators which are linearly independent of the redundant op-624

erators (85) and together with the latter form a complete basis. Without loss of generality625

we can assume that the couplings behave as λa(t) = e−θGtλa(0) + . . . in the vicinity of the626

Gaussian fixed point, in which case ea[ϕ] are the scaling operators at the Gaussian fixed627

point, θG the corresponding Gaussian critical exponents and the essential couplings λa(t)628

are called the scaling fields in the literature [15].629

The task of distinguishing the scaling operators from redundant operators at the Gaus-630

sian fixed point is made simpler by the following observation: if Φα is a homogeneous631

function of the field of degree n, then the first term in (85) is a homogeneous function of632

degree n + 1, while the second term is a homogeneous function of degree n − 1. It follows633

from this structure that if {ea[ϕ]} are a set of operators which are linearly independent634

of Φα ⋅∆ϕ, they will also be linearly independent of T (K)Φα. In other words, when iden-635

tifying the scaling operators at the Gaussian fixed point, we can neglect the second term636

in (85) which is understood as a loop correction. To see this clearly, let us first assume637

that the scaling operators ea[ϕ] are linearly independent of Φα ⋅∆ϕ such that638

∑
α

cαΦα ⋅∆ϕ +∑
a

caea[ϕ] = 0 , (87)

if and only if cα = 0 and ca = 0. Then we can expand the redundant operator as639

T (K)Φα = ∑
β

Υ̃αβΦβ[ϕ] ⋅∆ϕ +∑
a

υ̃αaea[ϕ] , (88)

where Υ̃αβ and υ̃αa are numerical coefficients. Then one can show that the eigenvalues640

of the matrix with components Υ̃αβ will all be equal to one and thus Υ̃ is an invertible641

matrix. To see that the eigenvalues of Υ̃ are all equal to one, let’s first consider the simple642

example where {Φα} = {Φ1,Φ2} = {ϕ,ϕ3} for which Υ has the form643

Υ = ( 1 0

Υ̃21 1
) , (89)

where Υ21 is in general non-zero. The zero component follows from the fact that T (K)ϕ is644

linear in the field and therefore involves no term of the form ϕ3 ⋅∆ϕ. The form of the matrix645

5Here we neglect the vacuum energy term since it is independent of ϕ.
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Υ̃ is preserved in the general case by working in the basis where {Φα} = {Φα0 ,Φα1 , . . .},646

with αn labelling each linearly independent local operator with n powers of the field. For647

n = 1 we have Φα1 = {ϕ,∆ϕ, . . .}, while for n = 2 we have Φα2 = {ϕ2, ϕ∆ϕ, (∂µϕ)2, . . .},648

with the ellipses denoting terms involving four or more derivatives. Then the matrix Υ649

has the form650

Υ̃ =
⎛
⎜⎜⎜⎜
⎝

1 0 0 ⋯
Υ̃21 1 0 ⋯
Υ̃31 Υ̃32 1 ⋯
⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟
⎠
, (90)

which has all eigenvalues equal to one.651

Having set the renormalisation conditions at the Gaussian fixed point, we know that652

the couplings λa will be the essential couplings in the vicinity of the Gaussian fixed point.653

However, away from the Gaussian fixed point, the form of the redundant operators will654

change. Expanding the redundant operators for a general action of the form (86) we will655

obtain656

T (Γt)Φα[ϕ] = ∑
β

Υαβ(λ)Φβ[ϕ] ⋅∆ϕ +∑
b

υαb(λ)eb[ϕ] , (91)

where Υαβ(λ) and υαb(λ) are functions of the essential couplings and reduce to Υαβ(0) =657

Υ̃αβ and υαb(0) = υ̃αb at the Gaussian fixed point. At any point where Υαβ(λ) is invertible,658

the operators R(Γt)Φα[ϕ] and eb[ϕ] will be linearly independent. The points for which Υ659

is not invertible form a disconnected hyper-surface consisting of all points in the essential660

theory space (i.e. the space spanned by the essential couplings λa), where661

det Υ(λ) = 0 . (92)

On the hyper-surface (92), the flow will typically be singular. Therefore, adopting the662

minimal essential scheme puts a restriction on which physical theories we can have access663

to. However, it is intuitively clear that this restriction has a physical meaning since664

the theories in question are those that share the kinematics of the Gaussian fixed point.665

Indeed, a remarkable consequence of the minimal essential scheme is that the propagator666

evaluated at any constant value of the parameterised field ϕ(x) = ϕ̃ will be given by667

Gt[ϕ̃] =
1

q2 + v(2)t (ϕ̃) +R(q2)
, (93)

where v
(2)
t (ϕ̃) is the second derivative of a dimensionless potential. This simple form668

follows since by integration by parts ∫x(ϕ − ϕ̃)∆s/2(ϕ − ϕ̃) = ∫xϕ∆s/2ϕ for even integers669

s ≥ 2. Let us hasten to point out that this does not imply that the propagator for the670

physical field χ̂ is of this form, but only that the propagator can be brought into this form671

by a frame transformation. In particular, the form (93) does not exclude the possibility672

that χ̂ develops an anomalous dimension η, namely that the connected two-point function673

of χ̂ scales as ∼ p−2+η.674

6 Fixed points675

In the vicinity of fixed points one can obtain universal scaling exponents which are inde-676

pendent of the renormalisation conditions which define different schemes. However, there677

are also critical exponents associated with redundant operators which are entirely scheme678

dependent. In this Section we will contrast features of essential schemes with those of the679

standard scheme in these respects.680
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6.1 Fixed points and scaling exponents681

Fixed points of the exact RG are uncovered by looking at t-independent solutions of (65)682

such that the fixed point action Γ⋆ obeys683

(ψtot
⋆ [ϕ] ⋅ δ

δϕ
)Γ⋆[ϕ] = Tr

1

Γ
(2)
⋆ [ϕ] +R

⋅ δ
δϕ
ψtot
⋆ [ϕ] ⋅R , (94)

which in general defines a relationship between ψ⋆ and Γ⋆.684

The critical exponents associated with the fixed point are then found by perturbing685

the fixed point solution Γ⋆ by adding a small perturbation δΓt = Γt − Γ⋆ and similarly686

perturbing ψ⋆ by687

δψt =
δψt
δΓt

∣
Γt=Γ∗

δΓt , (95)

and studying the linearised flow equation for δΓt which is given by688

−∂tδΓt = (δT (Γ⋆)
δΓt

ψtot
⋆ )δΓt + T (Γ⋆)δψt . (96)

The critical exponents θ are then defined by looking for eigenperturbations which are of689

the form690

δΓt = ε e−tθO[ϕ] , δψt = ε e−tθΩ[ϕ] , (97)

where O[ϕ] and Ω[ϕ] are t-independent. Depending on the sign of θ, one refers to the691

operator O[ϕ] as relevant (θ > 0), irrelevant (θ < 0) or marginal (θ = 0). We note that the692

functional form of O[ϕ] will depend on the frame and hence on the scheme. Physically, we693

know however that they must be the expectation value of the same observable Ô. Wegner694

[15] has shown that eigenperturbations fall into two classes: redundant eigenperturbations695

where O[ϕ] is a redundant operator, and therefore multiplied by an inessential coupling,696

and scaling operators which are linearly independent of the former (i.e. the analogs of697

ea[ϕ]). At the Gaussian fixed point, the redundant operators are some linear combination698

of the redundant operators (85). More generally, the redundant operators at any fixed699

point, which have the form700

OΦ[ϕ] = T (Γ⋆)Φ[ϕ] , (98)

have critical exponents θ which are entirely scheme dependent. Redundant eigenpertur-701

bations carry no physics and should be disregarded. Conversely, the scaling operators702

have scheme independent universal scaling exponents and are physical perturbations of703

the fixed point.704

In the standard scheme, one removes only a single inessential coupling and thus one will705

have an infinite number of redundant eigenperturbations which must be disregarded. In706

essential schemes instead, all inessential couplings are removed and thus we automatically707

disregard all redundant eigenperturbations.708

6.2 The redundant perturbation due to shifts709

Actually, there remains one redundant operator which is not automatically disregarded in710

the minimal essential scheme, namely the one for which Φ[ϕ] = 1. The reason for this is711

that the Gaussian action is invariant under constant shifts of the field ϕ → ϕ + constant.712

Happily, this redundant operator can be treated exactly and hence it is nonetheless simple713

to disregard it. In fact, it is straightforward to show that Oshift[ϕ] ∶= OΦ=1[ϕ] is always714
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an eigenperturbation independently of the scheme, where715

Oshift[ϕ] = 1 ⋅ δ
δϕ

Γ⋆[ϕ] , (99a)

Ωshift[ϕ] = 1 ⋅ δ
δϕ
ψ⋆[ϕ] + θ −

d − 2

2
. (99b)

To see that this will always be an eigenoperator, we can replace the field in the fixed point716

equation by ϕ→ ϕ+ ε and expand to first order in ε. This gives an identity obeyed by the717

fixed point action from which the solution (99) to the linearised flow follows immediately.718

In the standard scheme where ψt[ϕ] = −ηk 1
2ϕ it follows directly from (99b) that θ = d−2+η⋆

2 .719

In the minimal essential scheme, in order to fully determine ψt[ϕ], we can impose that720

ψt[0] = 0 , (100)

and then determine θ by setting ϕ = 0 in (99b). One then obtains721

θ = −1 ⋅ δ
δϕ
ψ⋆[ϕ] +

d − 2

2
∣
ϕ=0

. (101)

However (100) is only one choice and it is clear that by imposing a different condition, θ722

can take any value.723

6.3 The anomalous dimension724

Let us now discuss a scaling operator associated with the anomalous dimension. In the725

standard scheme, one introduces the parameter ηk via the choice of the RG kernel. At726

a fixed point ηk = η⋆ = η is the anomalous dimension where we use η to represent the727

universal critical exponent rather than η⋆ which is a parameter introduced in the RG728

kernel only in the standard scheme. The fact that η = η⋆ is the value of the universal729

exponent comes about because in the standard scheme there is a scaling relation between730

η⋆ and the scaling exponent for the operator O = ∫xϕ. To see this, we note that given731

a solution Γk[φ] to the flow equation (78), the EAA defined as Γk[φ] + Z−1/2
k ∫x hφ is732

still a solution to (78), provided h is independent of k and φ. It is then evident that h is733

nothing but a physical external field that couples to χ̂ in the microscopic action. At a fixed734

point, this means that there is always an eigenperturbation of this form. In dimensionless735

variables, the eigenperturbation is given by736

δΓt = ε e−t
d+2−η⋆

2 ∫
y
ϕ , (102)

and thus we see there is a scaling exponent given by θ = d+2−η⋆
2 . Thus, along with the737

other scaling exponents, θ = d+2−η⋆
2 will be a universal quantity. However the simple form738

O[ϕ] = ∫xϕ originates from the simple linear relation between φ̂ and χ̂ typical of the739

standard scheme and from the fact that in any frame a physical source must couple to740

one and the same field χ̂[φ̂]. In a general scheme, the relation between φ̂ and χ̂ will be741

non-linear and hence to compute η we must instead look for an eigenperturbation of the742

form743

δΓt = ε∫
y
⟨cdil ⋅ χ̂⟩ϕ,t ≡ ε e−t

d+2−η
2 ∫

y
χ[ϕ] , (103)

where χ[ϕ] = ϕ only in the frame associated with the standard scheme. If we impose a744

symmetry on the fixed point action under ϕ → −ϕ then we will have that χ[−ϕ] = −χ[ϕ].745

Apart from this characteristic, there is nothing that distinguishes d+2−η
2 from any other746
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scaling exponent. Thus to compute η we must look at odd eigenperturbations of an even747

fixed point action. A related point, that has been recognised in [44], is that while ηk748

approaches the particular value η at a fixed point, independently of the renormalisation749

condition, this is not true of the gamma functions appearing in ψt whenever ψt is non-750

linear.751

7 The minimal essential scheme at order ∂2
752

We will now derive the flow equation in the minimal essential scheme at order ∂2 in the753

derivative expansion. This is achieved by expanding the action as in (79) and neglecting754

the higher derivative terms. However, in the minimal essential scheme the renormalisation755

condition (80) is generalised such that756

zk(φ) = 1 , (104)

for all values of the field and all scales k. Thus, we go from fixing a single coupling in the757

standard scheme to fixing a whole function of the field in the essential one. To close the758

flow equations under this renormalisation condition, we set the RG kernel to759

Ψk[φ] = Fk(φ(x)) , (105)

where Fk(φ(x)) is a function of the fields (without derivatives) constrained such that we760

can solve the flow equation under the renormalisation condition (104). Therefore, working761

at order ∂2 the ansatz for the EAA is simply given by762

Γk[φ] = ∫
x
[Vk(φ) +

1

2
(∂µφ)(∂µφ)] . (106)

Inserting (106) and (105) into (56) the l.h.s. is given by763

∂tΓk[φ] + ∫
x

δΓk[ϕ]
δφ(x) Fk(φ(x)) =∫x [∂tVk(φ) + Fk(φ)V

(1)
k (φ) + F (1)

k (φ) (∂µφ) (∂µφ)] ,
(107)

where the super-script (n) on functions of the field denotes their n-th derivative. These764

terms depend on Fk(φ) and thus, instead of solving for ∂tVk(φ) and ∂tzk(φ), we will instead765

solve for ∂tVk(φ) and Fk(φ). To find the equations for ∂tVk and Fk, in Appendix D we766

expand the trace on the r.h.s. of the flow equation (56) with the action given by (106)767

and field renormalisation (105) up to order ∂2. The result is given by768

∂tVk = −Fk V (1)
k + 1

2(4π)d/2
Qd/2 [Gk (∂tRk + 2F

(1)
k Rk)] , (108a)

F
(1)
k =

(V (3)
k )

2

2(4π)d/2
Qd/2 [G2

kG
′
k (∂tRk + 2F

(1)
k Rk)]

+
(V (3)

k )
2

2(4π)d/2
Qd/2+1 [G2

kG
′′
k (∂tRk + 2F

(1)
k Rk)]

−
V

(3)
k F

(2)
k

(4π)d/2
(Qd/2 [GkG′

kRk] +Qd/2+1 [GkG′′
kRk]) , (108b)

23



SciPost Physics Submission

where we introduced the following quantities769

Pk(z) = z +Rk(z) , (109)

Gk = (Pk + V (2)
k )

−1
, (110)

Qn [W ] = 1

Γ(n) ∫
∞

0
dz zn−1W (z) . (111)

The primes on Gk indicate derivatives with respect to the momentum squared z.770

8 Wilson-Fisher Fixed point771

Let us now exemplify the minimal essential scheme at order ∂2 by studying the 3D Ising772

model in the vicinity of the Wilson-Fisher fixed point.773

8.1 Flow equations in d = 3774

To this end, we specialise the study of Eqs. (108) to the case d = 3. In the following, we775

make use of the cutoff function [45]776

Rk(z) = (k2 − z)Θ(k2 − z) , (112)

where Θ(k2−z) is the Heaviside theta function. This choice of the cutoff function leads to a777

particularly simple closed form of Eqs. (108). Being interested in critical scaling solutions778

of the RG flow, we transition to dimensionless variables such that the dimensionless field is779

given by ϕ = k− 1
2φ and the dimensionless functions are defined by v = k−3V and f = k− 1

2F .780

The equations (108) then read781

∂tvt(ϕ) + 3vt(ϕ) −
1

2
[ϕ − 2ft(ϕ)]v(1)t (ϕ) = b

1 + 2
5f

(1)
t (ϕ)

1 + v(2)t (ϕ)
, (113a)

− f (1)
t (ϕ) = b

2

[v(3)t (ϕ)]
2

[1 + v(2)t (ϕ)]
4
. (113b)

The constant b takes the value b = 1/(6π2), however we note that b can also be set to782

any positive real value b → κ2b since this is equivalent to performing the redefinitions783

vt(ϕ) → vt(κϕ)/κ2, ft(ϕ) → ft(κϕ)/κ and then rescaling the field by ϕ → ϕ/κ. Choosing784

b to take other values can be useful for numerical purposes, however, all our results are785

presented for b = 1/(6π2). Let us stress at this point that equations (113) have a simpler786

form as compared to the analogous equations [46] in the standard scheme using (112). In787

particular, in the minimal essential scheme, the Q-functionals (111) are simple rational788

functions of v(2) and v(3), whereas in the standard scheme they involve transcendental789

functions.790

8.2 Scaling solutions791

In the minimal essential scheme, scaling solutions are given by k-independent solutions792

v(ϕ) and f(ϕ) to Eqs. (113), which therefore solve the following system of ordinary dif-793
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ferential equations794

3v(ϕ) − 1

2
ϕv(1)(ϕ) + f(ϕ)v(1)(ϕ) = b

1 + 2
5f

(1)(ϕ)
1 + v(2)(ϕ)

, (114a)

− f (1)(ϕ) = b
2

[v(3)(ϕ)]2

[1 + v(2)(ϕ)]4
. (114b)

We notice that differentiating the first equation w.r.t. ϕ, yields an equation for v(3)795

which is expressed in terms of lower derivatives of v and f . Once this expression for v(3) is796

substituted into the second equation, the system reduces to a second-order differential one.797

The so-obtained equation for f turns out to be quadratic in f (2). Solving algebraically798

for f (2) we therefore have two roots. We thus conclude that any solution of (114) can be799

characterised by a set of four initial conditions along with the choice of one of the roots.800

We are interested in globally-defined solutions v(ϕ) = v⋆(ϕ) and f(ϕ) = f⋆(ϕ) to (114)801

which are well-defined for all values of ϕ ∈ R. These solutions correspond to fixed points of802

the RG. Furthermore the Z2 symmetry of the Ising model demands that v⋆(ϕ) and f⋆(ϕ)803

should be even and odd functions respectively. Looking at the behaviour of any putative804

fixed-point solution in the large-field limit one realises that if a globally-defined solution805

exists, then for ϕ→ ±∞ it must behave as806

v(ϕ) = AV ϕ6 +O(ϕ5) , (115)

f(ϕ) = ±AF +O(ϕ−9) , (116)

with all the higher-order terms being determined as functions of AV and AF . On the other807

hand, to ensure the correct parity of the corresponding scaling solution, one finds that, by808

studying the equations (114), it is necessary and sufficient to impose the conditions6
809

{v(1)(0) = 0, f (1)(0) = 0} , (117)

which are obtained by expanding (114) around ϕ = 0. In particular, we notice that (117)810

and (114) imply that f(0) = 0. Thus, the expansion at infinity gives us two free parameters811

which must be chosen such that at ϕ = 0 the conditions (117) are met. We thus expect at812

most a countable number of acceptable fixed point solutions to Eqs. (114). As expected813

we have found only two, namely the Gaussian and the Wilson-Fisher fixed points.814

In order to show this result, we can numerically solve the equations (114) for different815

initial conditions at ϕ = 0. This is convenient since, by imposing (117), we are left with816

only one boundary condition which we can take to be the dimensionless mass squared817

σ ∶= v(2)(0). In addition to σ we also have to choose the root for f (2). The two roots can818

be distinguished by noticing that in the limit σ → 0, one root displays the Gaussian fixed819

point while the other does not. By setting the initial conditions at ϕ = 0 we are therefore820

left with two one-parameter families of solutions.821

As the above reasoning dictates, one immediately realises that only a countable number822

of solutions exist globally for all values of ϕ ∈ R. Generic solutions which starts at ϕ = 0823

end at a singularity located at a finite value of the field ϕ = ϕs(σ). We can therefore plot824

the function ϕs(σ) to find those values σ⋆ for which ϕs(σ) diverges: these are the values825

for which the corresponding solution of Eqs. (114) is globally-defined. In Fig. 1 (top-left826

panel) we show the result of this search for well-defined scaling solutions selecting the root827

which possesses the Gaussian fixed point and scanning σ in the range −1 < σ < 0. This828

technique is sometimes referred to as spike-plot because globally well-defined solutions,829

6Equivalently, the conditions {f(0) = 0, f (1)(0) = 0} imply that v(1)(0) = 0.
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Figure 1: In the top-left panel, we show the singular values ϕs(σ) as a function of σ. The
spike located at σ⋆ = −0.13967 represents the Wilson-Fisher universality class. The value

of σ⋆ = v(2)⋆ (0) obtained from the expansion around ρ = 0 (red) and the expansion around
the minimum ρ̄⋆ (blue) as a function of the truncation order N is showed in the top-right
panel where the dashed line represents the corresponding functional value obtained from
the spike-plot. The globally-defined fixed-point effective potential v⋆(ϕ) and RG kernel
f⋆(ϕ) corresponding to the Wilson-Fisher fixed point solution are given in the bottom-left
and bottom-right panels respectively.

namely divergences in ϕs(σ), appear as spikes [25, 46–48]. The Wilson-Fisher fixed point830

solution is found at831

σ⋆ = −0.13967 . (118)

In passing, we observe that the family of solutions which include the Gaussian fixed point832

also displays Wilson-Fisher fixed point, while we have detected no spike in the other family.833

In order to corroborate the spike-plot analysis, we searched for scaling solutions by834

expanding v⋆(ϕ) and f⋆(ϕ) in powers of the fields up to a finite order N . For this purpose835

it is convenient to re-express v⋆ and f⋆ in terms of the manifest Z2 invariant ρ(ϕ) ≡ 1
2ϕ

2.836

Expanding around ρ = 0 to order N we can write v and f as837

v⋆(ϕ) =
N

∑
n=0

λ⋆2nρ
n , (119a)

f⋆(ϕ) = ϕ
N−1

∑
n=1

γ⋆2n+1ρ
n , (119b)

(such that v⋆(ϕ) is even and f⋆(ϕ) is odd), while expanding around the minimum ρ̄⋆ =838
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1
2ϕ

2
min⋆ of the fixed-point potential, our truncations are given by839

v⋆(ϕ) = λ̄⋆0 +
N

∑
n=2

λ̄⋆2n (ρ − ρ̄⋆)n , (120a)

f⋆(ϕ) = ϕ
N−1

∑
n=0

γ̄⋆2n+1 (ρ − ρ̄⋆)
n
. (120b)

840

The equations (114), expanded in ρ around ρ = 0 (ρ = ρ̄⋆) reduce to algebraic equations841

for the couplings λ2n⋆ (λ̄2n⋆ and ρ̄⋆) and the fixed point values γ2n⋆ (γ̄). Solving these842

algebraic solutions we find approximate scaling solutions at each order N which converge,843

as N is increased, to the corresponding scaling solution we obtained numerically from844

the spike-plot. In particular the values of σ⋆ = v(2)⋆ (0) found at each order N in the two845

expansions is plotted in Fig. 1 (top-right panel) and are seen to converge to the functional846

value (118). We thus conclude that the approximate solutions at order N converge to the847

globally-defined numerical solutions as N →∞.848

We close this Section by a remark: in the spike-plot approach, the task of integrating849

the scaling equations to find a globally defined solution involves fine tuning σ. In practice,850

to obtain the global functions v⋆(ϕ) and f⋆(ϕ), we have taken advantage of the asymptotic851

solutions (115) and (116) and of the expansion around the minimum (120). Specifically,852

in order to determine values for AF and AV we can match the v(ϕ) and
∂v(ϕ)
∂ρ for values of853

the field where the expansion around the minimum and the large field one overlap. This854

determines855

AV ≈ 1.35 , (121)

AF ≈ −0.018 . (122)

Although the expansions of f(ϕ) do not perfectly overlap, a suitable Padé approximant856

to the large field expansion eventually matches the expansion around the minimum. The857

corresponding globally-defined functions v⋆(ϕ) and f⋆(ϕ) at the Wilson-Fisher fixed point858

are plotted in the bottom panels of Fig. 1. An in-depth analysis of global fixed points and859

their relation to local expansions has been given in [49,50].860

8.3 Eigenperturbations861

To obtain the critical exponents for the Wilson-Fisher fixed point we solve the flow equa-862

tions (113) in the vicinity of the scaling solution. Functionally, perturbations of the scaling863

solution864

δvt(ϕ) = vt(ϕ) − v⋆(ϕ) , (123a)

δft(ϕ) = ft(ϕ) − f⋆(ϕ) (123b)

obey the linearised flow equation865

∂tδvt(ϕ) =
1

2
[ϕ − 2f⋆(ϕ)]δv(1)t (ϕ) − 3δvt(ϕ) − v(1)⋆ (ϕ)δft(ϕ) +

2bδf
(1)
t (ϕ)

5 [1 + v(2)⋆ (ϕ)]
+

−
b [5 + 2f

(1)
⋆ (ϕ)]δv(2)t (ϕ)

5 [1 + v(2)⋆ (ϕ)]
2

, (124a)

−δf (1)
t (ϕ) = b v

(3)
⋆ (ϕ)δv(3)t (ϕ)

[1 + v(2)⋆ (ϕ)]
4

−
2b [v(3)⋆ (ϕ)]

2
δv

(2)
t (ϕ)

[1 + v(2)⋆ (ϕ)]
5

. (124b)
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Similarly to the fixed point equations (114), these can be converted into second order866

differential equations. We note that, since v⋆(ϕ) is an even function, and f⋆(ϕ) is an odd867

function, one can consider even and odd perturbations δvt(ϕ) separately. In order to find868

the spectrum of scaling exponents θn we can express a general perturbation as a sum of869

its eigenperturbations7
870

δvt(ϕ) = ∑
n

Cne−θntOn(ϕ) , (125a)

δft(ϕ) = ∑
n

Cne−θntΩn(ϕ) , (125b)

where Cn are undetermined constants that parameterise the perturbations of the fixed871

point and n runs over the spectrum of eigenperturbations. For each n the functions Ψn872

and Ωn obey a pair of coupled second order differential equations which depend on θn.873

The sum is justified by the fact that the spectrum θn is quantised. To show this, first we874

consider the large field limit ϕ→∞ where we determine that875

On = Anϕ6−2θn + 6(θn −
1

2
)
−1

AVBnϕ
5 . . . , (126)

Ωn = Bn + . . . (127)

up to subleading terms. This introduces two parameters An and Bn for each eigenpertur-876

bation. Considering the behaviour around ϕ = 0, for even and odd perturbations we have877

that O(1)
n (0) = 0 and On(0) = 0 respectively. Furthermore the linearity of the equations878

allows us to normalise even and odd perturbations by On(0) = 1 and O(1)
n (0) = 1. Im-879

posing that the RG kernel vanishes at vanishing field (100) then enforces that Ωn(0) = 0880

for either parity. On the other hand Ω
(1)
n (0) = 0 follows automatically from (124b) since881

v⋆(ϕ) is even (and hence v
(3)
⋆ (0) = 0). Therefore we need to satisfy three independent882

boundary conditions at ϕ = 0 to ensure the correct parity, while we only have two free883

parameters An and Bn. As a result, the allowed values of θn must be quantised to satisfy884

all three boundary conditions.885

8.4 Scaling exponents886

In order to compute the scaling exponents ν and ω we look at even eigenperturbations.887

Here we shall use t-dependent generalisations of the expansions (119) and (120) to compute888

the exponents at order N in both expansions. The couplings λ2n, λ̄2n and ρ̄ are now k-889

dependent with beta functions890

∂tλ2n = β2n(λ) , (128a)

∂tλ̄2n = β̄2n(λ̄, ρ̄) , (128b)

∂tρ̄ = βρ̄(λ̄, ρ̄) , (128c)

and similarly γ2n = γ2n(λ) and γ̄2n = γ̄2n(λ̄, ρ̄) are also determined as functions of the891

couplings. The critical exponents obtained from the expansion around ϕ = 0 are obtained892

from eigenvalues of the stability matrix893

M even
nm = ∂β2n

∂λ2m
∣
λ=λ⋆

, (129)

7This is a slight abuse of notation since earlier we denoted eigenperturbations of the fixed point action
as O while On are perturbations of the fixed point potential.
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where λ⋆ denotes the values of the couplings at the Wilson-Fisher fixed point. Similarly, by894

defining λ̄2 ∶= ρ̄ and β̄2 ∶= βρ̄, the stability matrix for the expansion around the minimum895

is defined by896

M̄ even
nm = ∂β̄2n

∂λ̄2m
∣
λ̄=λ̄⋆

. (130)

The critical exponents are equal to minus the eigenvalues of the stability matrix. In partic-897

ular, the critical exponent −1/ν is identified with the sole relevant eigenvalue (ignoring the898

vacuum energy), which has a negative real part, while the correction-to-scaling exponent899

ω is identified with the irrelevant eigenvalue with the smallest positive real part. The900

values of these exponents at different orders N up to N = 11 are shown in Fig 2 (top-right901

and bottom-left panels). We observe that the critical exponents converge towards as the902

order N is increased and in general the expansion around the minimum converges faster903

w.r.t. the one around zero. At order N = 11 in the expansion around the minimum we904

find that905

ν = 0.6271 , (131)

ω = 0.8350 . (132)

In order to compute the scaling exponent η we look at odd perturbations δvt(ϕ) and906

even perturbations δft(ϕ). This introduces a set of beta functions for couplings that907

multiply odd functions of the field and which, though vanishing at the Wilson-Fisher fixed908

point, exhibit non-zero scaling exponents. These exponents have been computed in using909

the exact RG in [51].910

These odd perturbations also include the redundant perturbation due to shifts (99).911

Imposing (100), which implies Ωshift(0) = 0, we then have that the critical exponent (101) is912

given by θshift = 1/2 since 1 ⋅ δδϕψ⋆[0] = f
(1)
⋆ (0) = 0. Thus (99) reduces to Oshift = ∫x v

(1)
⋆ (ϕ)913

and Ωshift = f (1)
⋆ (ϕ). Of course there is nothing physical about the value 1/2 since we can914

obtain any value for the scaling exponent θshift by instead considering the perturbation915

of f⋆ where Ωshift = f (1)
∗ (ϕ) + c for any value of c which leads to θshift = 1/2 + c. This916

is equivalent to choosing a condition other than ft(0) = 0. In any case, this redundant917

perturbation is easily identified and discarded.918

To calculate the anomalous dimension η, we again use expansions around vanishing919

field and around the minimum of the potential v⋆(ϕ). At order N in the expansion around920

ϕ = 0, we expand δvt(ϕ) and δft(ϕ) as921

δvt(ϕ) = ϕ
N−1

∑
n=0

λ2n+1ρ
n , (133a)

δft(ϕ) = ϕ2
N−1

∑
n=0

γ2n+2ρ
n , (133b)

while the expansion around the minimum is written as922

δvt(ϕ) = ϕ
N−1

∑
n=0

λ̄2n+1 (
1

2
ϕ2 − ρ̄⋆)

n

, (134a)

δft(ϕ) = ϕ2
N−1

∑
n=0

γ̄2n+2 (
1

2
ϕ2 − ρ̄⋆)

n

, (134b)

and we notice that these expansions ensure that the boundary condition (100) is satisfied.923

With these forms of the perturbations, the linearised equations (124) are odd. One can924

then factor out a power of ϕ to obtain even equations which can be expanded in the Z2925

29



SciPost Physics Submission

2 3 4 5 6 7 8 9 10 11

0.00

0.02

0.04

0.06

0.08

0.10

0.12

2 3 4 5 6 7 8 9 10 11

0.52

0.54

0.56

0.58

0.60

0.62

0.64

2 3 4 5 6 7 8 9 10 11

0.6

0.7

0.8

0.9

1.0

1.1

1.2

3 4 5 6 7 8 9 10 11

0

2

4

6

8

Figure 2: Critical exponents η (top-left), ν (top-right), ω (bottom-left), ωodd (bottom-
right), as a function of the truncation order N for the expansions around ρ = 0 (red) and
the expansion around the minimum of the potential ρ̄ (blue). Dashed lines represent the
numerical values given in the main text.

invariant ρ around ρ = 0 and ρ̄⋆. The linearised equations expanded around ρ = 0 (ρ = ρ̄⋆)926

can then be solved for β2n+1 and γ2n+2 which are both linear in λ2n+1. We then obtain the927

critical exponents from the stability matrices928

Modd
nm = ∂β2n+1

∂λ2m+1
∣
λ=λ⋆

, (135a)

M̄odd
nm = ∂β̄2n+1

∂λ̄2m+1
∣
λ=λ⋆

, (135b)

at each order N in the two expansions. In the spectrum of odd eigenperturbations we929

find a single relevant positive critical exponents (disregarding θshift) which we identify as930

(5 − η)/2 in accordance with (103). As with ν and ω we find that the numerical value of931

η converges N →∞. The values of η at orders N = 2 to N = 11 are plotted in the top-left932

panel of Fig. 2. At order N = 11 we find933

η = 0.0470 . (136)

We have also confirmed that this value η is independent of the boundary condition (100).934

The convergence of the least irrelevant eigenvalue ωodd = −θ associated to an odd pertur-935

bation shows a slower convergence than η. At order N = 11 in the expansion around the936

minimum the first three digits have converged to937

ωodd = 2.22 . (137)

As a remark, we notice here that at the specific values of N = 3 (N = 4), the exponents ω938

(ωodd) are complex. One can also consider solving the linearised equations for perturba-939

tions with both even and odd parts obtaining a stability matrix from which ν, ω, η and940

ωodd can all be obtained with the same values obtained from treating the perturbations941

separately.942
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9 Higher orders of derivative expansion943

Having demonstrated the minimal essential scheme at order ∂2, let us now discuss how944

it can be generalised to higher orders in the derivative expansion. Within the standard945

scheme, the EAA Γk at order ∂4 in the derivative expansion can be expressed as [30–32]946

Γk = ∫
x
{Vk(ρ) +

1

2
zk(ρ) (∂µφ∂µφ)+

+W a
k (ρ) (∆φ)

2 +W b
k(ρ)φ∆φ (∂µφ∂µφ) +W c

k(ρ) (∂µφ∂µφ)
2} , (138)

where the three functions W i
k(ρ), with i = a, b, c are linearly independent with respect to947

integration by parts.948

We notice that both W a
k (ρ) and W b

k(ρ) are in the form of Φ ⋅ ∆φ, and hence in the949

minimal essential scheme the EAA reduces to950

Γk = ∫
x
{Vk(ρ) +

1

2
(∂µφ∂µφ) +Wk(ρ) (∂µφ∂µφ)2} , (139)

which involves only two functions, namely the effective potential Vk(ρ) and Wk(ρ) ≡951

W c
k(ρ). In order to cope with the essential program, we generalise the RG kernel (105) to952

allow for terms involving up to two derivatives, namely953

Ψk(x) = F0(φ) + F2,a(φ)∆φ + φF2,b(φ) (∂µφ∂µφ) . (140)

Inserting the ansatz (139) into the l.h.s. of the flow equation (56), we note that this954

produces all of the terms at fourth order in the derivative expansion, namely955

∂tΓk + ∫
x

δΓk
δφ

Ψk = ∫
x
{∂tVk + F0V

(1)
k + [F (1)

0 + V (1)
k φF2,b + (V (1)

k F2,a)
(1)

] (∂µφ∂µφ)+

+F2,a (∆φ)2 + φF2,b∆φ (∂µφ∂µφ) + [∂tWk + F0W
(1)
k + 4WkF

(1)
0 ] (∂µφ∂µφ)2} +O(∂6) .

(141)

It is easy to generalise this procedure to higher orders in derivative expansion. For956

example, at order ∂6 we have to include all possible terms up to four derivatives in the957

RG kernel958

Ψk(x) = F0 + F2,a∆φ + φF2,b (∂µφ∂µφ) + F4,a∆
2φ + F4,b (∆φ)2 + F4,c∆φ (∂µφ∂µφ)

+ F4,d (∂µφ∂µφ)2 + F4,e (∂µ∆φ) (∂µφ) . (142)

In this way, we reduce the number of operators in the ansatz for the EAA from 13 to 5.959

In the following table we show the comparison between the number of operators for Γk in960

the standard and essential schemes.961

standard essential

LPA 1 1

∂2 2 1

∂4 5 2

∂6 13 5

⋮ ⋮ ⋮

962
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While at order s = 0 (i.e. in the LPA) the minimal essential scheme coincides with963

the standard scheme, the essential one can be carried out at any order in the derivative964

expansion, reducing its complexity order by order. At a given order ∂s, the procedure of965

minimal essential scheme can be summarised as follows966

◇ Apart from the canonical kinetic term with coefficient 1/2, eliminate all operators967

of the form Φ ⋅∆φ from the ansatz of Γk;968

◇ insert all the possible terms up to order ∂(s−2) into the RG kernel Ψk(x);969

◇ use equation (56) to find a set of beta functions for the essential operators which970

remain in the EAA, plus a set of equations which determine the functions appearing971

in the RG kernel Ψk.972

Note that the final number of equations which one must solve at each order of the derivative973

expansion is the same as in the standard scheme. However, in the minimal essential scheme974

we obtain beta functions only for the essential couplings. Moreover, since the ansatz for975

EAA becomes simpler in the minimal essential scheme, the complexity in the calculation976

of the fluctuation contribution is reduced. In particular, the simple form of the propagator977

(93) evaluated at a constant field configuration is guaranteed.978

10 Discussion979

As we have both elucidated and demonstrated, the fact that the values of the inessential980

couplings are arbitrary can be used to one’s advantage in practical QFT computations.981

This is made possible within the exact RG by the exact flow equation (56), derived by982

allowing the field variables φ̂k to themselves depend on the renormalisation scale k. This983

then allows us to solve the flow equation in a scheme where we provide a renormalisation984

condition for every inessential coupling. In these essential schemes, one only has to com-985

pute the flow of essential couplings. This has the advantage that the flow of inessential986

couplings, which cannot carry any physical information and therefore can only distract us987

from the physics, is automatically disregarded. The focus of this paper has been on the988

minimal essential scheme applied to a single scalar field and we have explicitly worked out989

the details for the derivative expansion. It is clear that these advantages are not restricted990

to this narrow scope. As such, here we take the opportunity to adopt a broader view of991

essential schemes and discuss their possible applications.992

10.1 Non-minimal essential schemes and extended PMS studies993

In the minimal essential scheme which we have presented, one sets all inessential couplings994

to zero apart from the coefficient of the kinetic term, which is fixed to be equal to one995

half. The motivation of this particular essential scheme is to minimise the complexity of996

calculations. It is in this sense that the minimal essential scheme is minimal, with the most997

striking simplification being the minimal form of the propagator (93). However, this choice998

of scheme is just one possibility and it can be that there are other useful schemes where999

the inessential couplings take non-trivial values. One possibility is instead to look for1000

optimised schemes by applying the principle of minimal sensitivity to a given observable1001

computed in a given approximation. In general terms, the PMS states that optimised1002

schemes are those for which the inessential couplings take the values ζ = ζPMS for which1003

∂

∂ζ
(observable)∣

ζ=ζPMS

= 0 . (143)
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This being the case for all values of ζ only if the observable is computed without making1004

an approximation. In practice, however, there will be a discrete set of values of ζPMS for1005

which (143) is satisfied.1006

It is natural to look for optimised schemes by considering non-minimal variants of1007

the minimal essential scheme, where we continue to specify the values of all inessential1008

couplings but relax the requirement that they take trivial values. In particular, we are1009

free to write the general ansatz1010

Γt[ϕ] = ∑
a

λa(t)ea[ϕ] +Φt[ϕ] ⋅∆ϕ , (144)

where1011

Φt[ϕ] = ∑
α

ζαΦα[ϕ] =
1

2
zt(ϕ) +O(∂2) . (145)

We thus reintroduce the inessential couplings ζα which parameterise Φt[ϕ].8 To close the1012

flow equation without introducing independent beta functions for the inessential couplings1013

one can set1014

ζα = ζα(λ) , (146)

where the functions ζα(λ) are prescribed functions of the essential couplings. With the1015

restriction that Φt[ϕ] = K when λ = 0, such that we still have the Gaussian fixed point in1016

the canonical form9, we are otherwise largely free to pick the functions ζα(λ). Different1017

prescriptions which specify every inessential coupling are non-minimal essential schemes.1018

At order ∂2 in the derivative expansion non-minimal essential schemes correspond to1019

solving two flow equations which depend on three functions vt(ϕ), zt(ϕ), and ft(ϕ) by1020

choosing zt(ϕ) to be completely determined by the potential vt(ϕ).1021

Although the complexity of calculations is increased with respect to the minimal es-1022

sential scheme one can look for optimised schemes by applying the PMS. For example, one1023

can study the dependence of the universal scaling exponents at a non-trivial fixed point1024

to determine values ζα(λ⋆) = ζPMS
α which satisfy the PMS criteria1025

∂

∂ζα(λ⋆)
θ(ζPMS) = 0 . (147)

Since there is an infinite number of inessential couplings, we can in principle attempt to1026

locate an extremum (147) in an infinite-dimensional space. In practice we can vary a finite1027

number of the inessential couplings for example by letting zt(ϕ) = z⋆(ϕ)+O((λ−λ⋆)2) and1028

choosing z⋆(ϕ) to be a finite order polynomial. It is therefore possible to make extended1029

field-dependent PMS studies which are not possible in the standard scheme. This may1030

lead to a better determination of physical quantities at a fixed order in the derivative1031

expansion than those obtained in the standard scheme [30]. Thus a natural next step in1032

the application of essential schemes is to perform an extended PMS study of the Ising1033

critical exponents at order ∂2.1034

10.2 Redundancies and symmetries1035

As well as arriving at a practical scheme for the exact RG our work also clarifies some im-1036

portant conceptual points. In particular, regarding the existence of redundant operators,1037

it is abundantly clear that there is one redundant operator for each inessential coupling.1038

8Here we are making a slight abuse of notation since we have not properly identified λa and ζα as essential
and inessential couplings respectively. We ignore these subtleties for the purpose of this discussion.

9One can, of course, choose a non-canonical form of the Gaussian fixed point but there would seem no
particular practical advantage in doing so.
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F. Wegner has proved by linearising the flow equations around a given fixed point, the1039

inessential couplings do not appear in the linearised beta functions of the essential cou-1040

plings [15]. Physically, we know it must be true since it is this property that ensures1041

that universal scaling exponents are independent of the unphysical inessential couplings.1042

The underlying mathematical reason is that there is a symmetry associated with each1043

inessential coupling which together form a group (the group of frame transformations)1044

that has closed Lie algebra. However, when making approximations, this property may be1045

lost if the symmetries are broken and therefore a spurious dependence on the inessential1046

couplings may arise. In particular, if this property does not hold, the criteria that an1047

operator be an eigenperturbation and a redundant operator will seemingly overconstrain1048

the eigenvalue problem [52]. To see this clearly, imagine we have one essential coupling1049

λ and one inessential coupling ζ obeying the following system of linearised beta functions1050

∂tλ = Mλλλ +Mλζζ and ∂tζ = Mζλλ +Mζζζ. Then if Mλζ = 0, it is clear that the re-1051

dundant operator conjugate to ζ is an eigenperturbation since letting ζ be non-zero does1052

not cause λ to run. On the other hand, if in an approximation Mλζ ≠ 0, then the re-1053

dundant operator will not be an eigenperturbation. This can then lead one to conclude1054

that redundant eigenperturbations are rare since there must be a symmetry in order to1055

satisfy both criteria. However, this apparent rareness is an artefact of making approxi-1056

mations, since it is the closed nature of the Lie algebra associated with frame invariance1057

that provides the required infinite number of symmetries independently of the scheme. In1058

an essential scheme, this problem is avoided by fiat since the redundant perturbations are1059

disregarded. It may be fruitful nonetheless to find approximation schemes that preserve1060

frame covariance, such that physical quantities are scheme independent at each order of1061

the approximation scheme. Some progress in this direction has been made at second order1062

of the derivative expansion for a variant of the Wilsonian effective action [53,54].1063

10.3 Generalisability1064

The minimal essential scheme and the non-minimal variants can be straightforwardly gen-1065

eralised to theories with different field content, symmetries and the inclusion of fermionic1066

fields. Given the many applications of the exact RG to a wide array of physical systems,1067

we can expect that essential schemes can be useful both in reducing complexity and in1068

order to find optimised schemes to compute observables. In particular, the application1069

of essential schemes to gauge theories could reduce spurious dependence on gauge fixing1070

parameters and background fields, since these are both examples of inessential couplings.1071

Moreover, we mention here that essential schemes can possibly shed light on the issue1072

of generalising the exact RG to problems involving boundaries. In particular, removing1073

inessential coupling from the boundary action may help to preserve general boundary1074

conditions along the RG flow.1075

10.4 Vertex expansion1076

Our focus in this paper has been on the simplifications that arise at each order in the1077

derivative expansion, however, essential schemes can also be applied in other systematic1078

approximation schemes. One such scheme is the vertex expansion where the EAA is1079

expanded in terms of the n-point functions Γ
(n)
k [0] to some finite order. If we approximate1080

Γk as depending on up to N powers of the field then we should include up to N −1 powers1081

of the field in Ψk in order to solve the flow equation in an essential scheme. This can allow1082

us to account for the full momentum dependence while keeping N finite. For example, to1083

ensure that the two-point function takes the simple form −∂2 +m2 we should include a1084

term −1
2ηk(∆)φ in Ψk which accounts for the general linear field reparameterisation. In1085
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fact, a scheme that removes all redundant operators from the two-point function in this1086

manner has been put forward in [55]. The minimal essential scheme, applied consistently1087

to a vertex expansion, would generalise this scheme by removing all redundant operators1088

from the higher n-point functions include in the approximation.1089

10.5 Asymptotic Safety1090

Applying the minimal essential scheme to quantum gravity for example reduces the prob-1091

lem of finding a non-trivial fixed point underlying the asymptotic safety scenario [56].1092

Indeed this is the context in which Weinberg has suggested that such a scheme should1093

be used [2]. Furthermore, a concrete proposal for a minimal scheme for quantum gravity1094

has been put forward in [57]. While some works do utilise field redefinitions [58, 59], this1095

has not been pursued at one-loop and at first order in the ε = d − 2 expansion. For this1096

purpose, essential schemes could be combined with the recently developed background in-1097

dependent and diffeomorphism invariant flow equation [60]. The fact that the propagator1098

will take the simple form (93) is of special importance since this may guarantee that the1099

theory is unitary and thus offer an answer to recent criticisms of the current asymptotic1100

program [61]. More generally, by adopting the minimal essential scheme we are specifying1101

a priori that the theory space that we are flowing is that of interacting particles whose1102

kinematics are those of the Gaussian fixed point with two derivatives. This is a restriction1103

on which fixed points we can find since, for example, we will not uncover fixed points1104

associated with higher-derivative theories. However, we can expect that any fixed points1105

that we do find will be unitary when we Wick rotate back to Lorentzian signature and1106

reconstruct the propagator of the graviton [62].1107

10.6 Cosmology1108

In the context of scalar-tensor theories essential schemes could be used to resolve the1109

cosmological frame equivalence question, building on recent progress [63–65]. In particular,1110

adopting the principle of frame invariance ensures the physical equivalence of theories1111

expressed in the Jordan and Einstein frames. Furthermore, one can apply renormalisation1112

conditions to remain in the Einstein frame along the RG flow, where computations are1113

typically easier, by generalising the minimal essential scheme.1114

11 Conclusion1115

Any description of Nature that we write down as a mathematical model will always depend1116

on how we choose to parameterise or label physical objects (whether we make this decision1117

consciously or not). On the other hand, Nature does not depend on how we label things;1118

a rose by any other name would smell as sweet. However, taking the attitude that “any1119

parameterisation will do” is not practical since solving a model is typically simpler by1120

parameterising the physics in a particular way. A better attitude is to first identify which1121

parameters of the model are inessential and tune them to simplify the task of solving1122

the model. K. Wilson’s exact renormalisation group embodies a complementary attitude1123

to physics in which one does not write down a model but rather computes the model1124

by solving a flow equation. In essential schemes, we adopt both attitudes such that we1125

are not solving for the inessential couplings but only the for essential ones. In this way,1126

what we solve for is not the mathematical model but only those physical quantities we are1127

ultimately interested in. This distinction is very clear when we compute critical exponents1128

at a critical point. In both the standard scheme and in essential schemes we will get a1129
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spectrum of critical exponents. However, it is the spectrum of the latter that will only1130

contain critical exponents which characterise a physical scaling law realised in Nature. As1131

such, one should bear in mind that in the standard scheme not all critical exponents will1132

be physical and that if we assume that they are, we can come to incorrect conclusions. In1133

particular, there is nothing to prevent an inessential coupling to appear relevant in some1134

schemes and therefore to give an incorrect counting of the number of relevant couplings1135

at a non-trivial fixed point.1136
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A Flow equation with general frame transformations1143

In this Appendix, we present a derivation of Eq. (56), which generalises the demonstration1144

of the flow for the EAA presented in [13], and its development is strictly related to the1145

classical derivation of the flow equation in the standard scheme (78).1146

Our scheme for the ERG is based on the idea that the basic degrees of freedom could1147

flow along the RG trajectory. For this purpose, let us consider the generator of the1148

connected correlation functions1149

Wχ̂[J] ∶= log∫ (dχ̂) e−Sχ̂[χ̂] + ∫x J(x)χ̂(x) , (148)

where J is an external source. We now introduce a scale dependent generalisation of Eq.1150

(148) which depends on an IR cutoff scale k by making two modifications. First we couple1151

a source J to a k-dependent field φ̂k[χ̂] which is a functional of the fundamental field χ̂.1152

The new field φ̂k[χ̂] satisfies the following relations1153

⟨φ̂k[χ̂]⟩φ,k = φ , (149)

⟨∂tφ̂k[χ̂]⟩φ,k = Ψk[φ] . (150)

In a second step, we introduce an IR cutoff by adding the following term to the action1154

∆Sk[φ̂k] =
1

2
∫
x1,x2

φ̂k(x1)Rk(x1, x2)φ̂k(x2) , (151)

where Rk(x1, x2) is an IR cutoff function which can be chosen arbitrarily, provided it1155

meets few constraints to ensure that the RG flow interpolates between the microscopic1156

theory in the UV and the full effective theory in the IR. These modifications define the1157

k-dependent generating functional1158

eWφ̂
[J] ∶= ∫ (dχ̂) e

−Sχ̂[χ̂] + ∫x J(x)φ̂k(x)−
1
2 ∫x1,x2

φ̂k(x1)Rk(x1,x2)φ̂k(x2) , (152)
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in terms of which the expectation values of arbitrary operators O can be obtained by1159

differentiating the Wφ̂[J] as1160

⟨Ô[φ̂k]⟩ = e−Wφ̂
[J]Ô [δ/δJ] eWφ̂

[J]

= e−Wφ̂
[J]∫ (dχ̂) Ô[φ̂k] e

−Sχ̂[χ̂] + ∫x J(x)φ̂k(x)−
1
2 ∫x1,x2

φ̂k(x1)Rk(x1,x2)φ̂k(x2) . (153)

In particular, let’s denote the k-dependent average (classical) field by1161

φ(x) = δ

δJ(x)Wφ̂[J] , (154)

so that higher-order derivatives of Wφ̂ are naturally related to correlation functions of φ̂k.1162

In this respect, the k-dependent connected two-point function can be defined as1163

Gk(x1, x2) ≡
δ2Wφ̂

δJ(x1)δJ(x2)
= ⟨φ̂k(x1)φ̂k(x2)⟩ − φ(x1)φ(x2) . (155)

We now seek a closed RG equation for Wφ̂[J]. For a given choice of Ψk[φ], by differ-1164

entiating Eq. (152) with respect to the RG time t we obtain1165

∂tWφ̂[J] = ∫xΨk[φ(x)]J(x) −
1

2
∫
x1,x2

⟨φ̂k(x1)φ̂k(x2)⟩∂tRk(x1, x2)

− ∫
x1,x2

⟨∂tφ̂k(x1)φ̂k(x2)⟩Rk(x1, x2) . (156)

Using (154), differentiating Eq. (150) with respect to J(x2)1166

−φ(x2)Ψk[φ(x1)] + ⟨∂tφ̂k(x1)φ̂k(x2)⟩ = ∫
x3

δφ(x3)
δJ(x2)

δΨk[φ(x1)]
δφ(x3)

= ∫
x3

δ2Wφ̂[J]
δJ(x2)δJ(x3)

δΨk[φ(x1)]
δφ(x3)

. (157)

Then we note that by taking advantage of the previous identity and using Eq. (155) we1167

finally obtain the following closed flow equation1168

∂tWφ̂[J] = ∫x Ψk[φ(x)]J(x) −
1

2
∫
x1,x2

⎡⎢⎢⎢⎢⎣

δ2Wφ̂

δJ(x1)δJ(x2)
+ φ(x1)φ(x2)

⎤⎥⎥⎥⎥⎦
∂tRk(x1, x2)

− ∫
x1,x2

⎡⎢⎢⎢⎢⎣
φ(x2)Ψk[φk(x1)] + ∫

x3

δ2Wφ̂[J]
δJ(x2)δJ(x3)

δΨk[φ(x1)]
δφ(x3)

⎤⎥⎥⎥⎥⎦
Rk(x1, x2) . (158)

Let us now introduce the effective average action Γk[φ] by the following modified Legendre1169

transformation1170

Γk[φ] = −Wφ̂[J] + ∫x J(x)φ(x) −
1

2
∫
x1,x2

φ(x1)Rk(x1, x2)φ(x2) , (159)

which is intended to be a functional of the average field such that1171

δΓk[φ]
δφ(x1)

= J(x1) − ∫
x
Rk(x1, x)φ(x) . (160)

Differentiating Eq. (160) w.r.t. φ(x2) and Eq. (154) w.r.t J(x1) yields the following1172

identity1173

∫
x
Gk(x1, x)(Γ(2) +Rk)(x,x2) = δ(x1 − x2) . (161)
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Taking advantage of Eqs. (160-161) and differentiating Eq. (159) with respect to t, the1174

desired flow of Γk[φ] can be finally expressed as in Eq. (56), namely1175

∂tΓk[φ] + ∫
x

δΓk[φ]
δφ(x) Ψk[φ(x)] =

1

2
∫
x1,x2

1

Γ
(2)
k +Rk

(x1, x2)∂tRk(x2, x1)

+ ∫
x1,x2,x3

1

Γ
(2)
k +Rk

(x1, x2)
δΨk[φ(x3)]
δφ(x2)

Rk(x3, x1) . (162)

One can also express Γk[φ] directly as the solution to integro-differential equation1176

e−Γk[φ] = ∫ (dχ̂) e
−Sχ̂[χ̂] + ∫x

δΓk[φ]
δφ

(φ̂k(x)−φ(x))− 1
2 ∫x1,x2

(φ̂k(x1)−φ(x1))Rk(x1,x2)(φ̂k(x2)−φ(x2)) .

(163)
In the paper we focus on the derivative expansion: this means that Ψk[φ] is given1177

by Eq. (105) at order O(∂2) , by Eq. (140) at order O(∂4) and by Eq. (142) at order1178

O(∂6). Another possibility is to consider the vertex expansion, where Ψk[φ] is expressed1179

in powers of the field with coefficients depending on the momenta1180

Ψk[φ(x)] = ∑
n
∫
p1,...,pn

Ψk(p1, . . . , pn)φ(p1) . . . φ(pn) e−ix(p1+⋅⋅⋅+pn) . (164)

B Properties of the dilatation operator1181

In this Appendix we present the main passages in order to demonstrate Eq. (63), which1182

is related to ψdil, and identity (66), needed to find the dimensionless version of the flow1183

equation for EAA given in Eq. (70). Let us show that the term −yµ∂µ in ψdil, given in1184

(62), counts the number of derivatives. Denoting1185

∂r = ∂µ1 ...∂µr , (165)

then if1186

Φ[ϕ] = Φ(ϕ(y), ∂µ1ϕ(y), ...) = O(∂s) , (166)

such that1187

Ξ[ϕ] = ∫
y

Φ[ϕ] , (167)

we have that1188

∑
r

r
∂Φ

∂ ∂rϕ(x)
∂rϕ(x) = sΦ(x) . (168)

Additionally we have that1189

[∂r, yµ∂µ] = r∂r , (169)

which can be proved by induction. Then using the above identities and integrating by1190

parts we have that1191

yµ∂µϕ ⋅
δ

δϕ
∫
y

Φ(y) = ∫
y
∑
r

∂Φ

∂ ∂rϕ(y)
∂ry

µ∂µϕ(x)

= s∫
y

Φ + ∫
y
∑
r

∂Φ

∂ ∂rϕ(y)
yµ∂µ∂rϕ(y)

= s∫
y

Φ + ∫
y
yµ∂µΦ

= (s − d)∫
y

Φ . (170)
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Finally adding this contribution to the multiplicative contribution of ψdil we obtain Eq.1192

(63) . Let us now prove the identity (66)1193

Tr
1

Γ
(2)
t [ϕ] +R

⋅ δ
δϕ
ψdil[ϕ] ⋅R = 1

2
Tr

1

Γ
(2)
t [ϕ] +R

⋅ Ṙ . (171)

In order to lighten the notation we drop the spacetime indexes, but it is clear that ∂y y =1194

∂q q = d . Starting from the r.h.s. of identity (66) we have1195

Tr
1

Γ
(2)
t [ϕ] +R

⋅ δ
δϕ
ψdil[ϕ] ⋅R = ∫

y1,y2,y3

G(y1, y2)
δψdil(y3)
δφ(y2)

R(y3, y1)

= ∫
y1,y2

G(y1, y2)R(y3, y1) (−y3 ∂y3 −
d − 2

2
) δ(y3 − y2)

= ∫
y1,y2

G(y1, y2) (y2 ∂y2 + d −
d − 2

2
) R(y2, y1)

= ∫
y1,y2
∫
q
G(y1, y2) (−iy2 q +

d

2
+ 1) R(q2)e−iq(y2−y1) . (172)

Then we can rewrite the non trivial part of the previous expression as1196

∫
y1,y2,q

G(y1, y2) (iy2 q)R(q2)e−iq(y2−y1) = 1

2
∫
y1,y2,q

G(y1, y2) i (y2 − y1) q R(q2)e−iq(y2−y1)

(173)

= 1

2
∫
y1,y2,q

G(y1, y2) q R(q2) (−∂qe−iq(y2−y1))

(174)

= 1

2
∫
y1,y2,q

G(y1, y2)∂q (q R(q2)) e−iq(y2−y1) (175)

= 1

2
∫
y1,y2,q

G(y1, y2) [dR(q2) + q ∂qR(q2)] e−iq(y2−y1) ,

(176)

where in the first passage we just write y2 as (y2 + y2)/2 and then in the second term we1197

exchange y1 and y2 using the symmetry of the propagator and send q → −q. So putting1198

everything together1199

∫
y1,y2,q

G(y1, y2) (iy2 q −
d

2
+ 1)R(q2)e−iq(y2−y1) = ∫

y1,y2,q
G(y1, y2) (1 − q2∂q2)R(q2)e−iq(y2−y1)

(177)

= 1

2
Tr

1

Γ
(2)
t [ϕ] +R

⋅ Ṙ , (178)

where Ṙ(∆) ∶= 2[R(∆) −∆R′(∆)], given in Eq. (67).1200

C Renormalisation conditions in the standard scheme1201

In this Appendix, we discuss renormalisation conditions for the inessential coupling present1202

in free theories. We have seen that in the standard case we impose Eq. (80) to fix the1203

wave function renormalization but one can ask what happens for the high temperature1204
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fixed point or higher-derivatives theories. Indeed, another renormalisation condition could1205

be to fix one of the couplings appearing in the potential Vk(φ). For example we could fix1206

V
(2)
k (φ0) = Ck2 . (179)

However these choices are not inconsequential since they can limit which fixed points can1207

be found. In general terms a given fixed point solution Γ⋆[ϕ] can be found only for a1208

subset of all renormalisation conditions. In order to be able to find all fixed points one1209

can instead choose to keep η⋆ arbitrary. A simple example is to look for free fixed points1210

which can be treated exactly. In this case we can write (ignoring the vacuum term)1211

Γk[φ] =
1

2
φ ⋅ k2Hk(−∂2/k2) ⋅ φ , (180)

where fixed points are solutions where Hk(q2) =H⋆(q2) is independent of k. We arrive at1212

the fixed point equation1213

q2 ∂

∂q2
H⋆(q2) = (1 − 1

2
η⋆)H⋆(q2) . (181)

If we impose that H⋆(q2) should be analytic around q2 = 0 then the only solutions are1214

H⋆(q2) = C (q2)
1
2
s

where 1
2s is a non-negative integer given by s = 2 − η⋆ and thus the1215

values that η⋆ can take is quantised and C is an underdetermined number. In particular,1216

for s = 2 the action is given by (79) with Vk = 0 and zk = C, while for s = 0, which1217

corresponds to the high temperature fixed point, we have Vk = 1
2k

2φ2 and zk = 0, with all1218

higher derivative terms zero in both cases. This is of course a convoluted way to arrive at1219

the conclusion that at free fixed points with s derivatives the canonical dimension is given1220

by (d − s)/2.1221

Now suppose we had chosen (80), then the only free fixed point that we could have1222

found would be the one where s = 2. On the other hand if instead we had imposed (179),1223

then we could only have found the high temperature fixed point where s = 0. Since the1224

number C is underdetermined, if we leave C unspecified in (80) (or (179)), we see that1225

there are in fact lines of free fixed points parameterised by C. The critical exponents along1226

a given line do not vary, therefore we understand that all fixed points appearing on the1227

same line belong to a single universality class.1228

Let us now relate this to a frame transformation. If we are at a free fixed point of the1229

form1230

Γ⋆ = C
1

2
ϕ ⋅ (−∂2)

1
2
s ⋅ ϕ , (182)

then making the transformation (39) with1231

ε ξ̂[χ̂] = 1

2
φ̂[χ̂]δC (183)

and using (47), we see that (182) transforms as1232

Γ⋆ → C
1

2
ϕ ⋅ (−∂2)

1
2
s ⋅ ϕ + 1

2
δCϕ ⋅ (−∂2)

1
2
s ⋅ ϕ + const , (184)

where the second term comes from the piece proportional to the equation of motion in1233

equation (47), while the constant from the trace term. Thus we obtain a new fixed point1234

where the factor C → C +δC and the vacuum energy is shifted. A change in an inessential1235

coupling at the fixed point is therefore equivalent to a frame transformation that merely1236

moves us along the line of fixed points corresponding to the same universality class.1237
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D Calculations1238

In this Appendix, we specialise the general flow Eq. (56) to the second order in the1239

derivative expansion, explicitly performing the computations needed to retrieve Eqs. (108).1240

In Subsection D.1 we choose to work in momentum space: this part is more suitable to1241

problems characterised by translational invariance for which the calculations are made1242

easier by the availability of the Fourier transform. In Subsection D.2 instead, by taking1243

advantage of the heat kernel formalism, we perform the same computations in position1244

space, as this provides an alternative framework for problems where the translational1245

invariance is lost, like curved spaces and/or boundaries.1246

D.1 Momentum space1247

Hereafter, we adopt the local potential approximation scheme (106). Let’s consider the1248

following functional derivatives of the EAA Γk, namely1249

Γ
(2)
k (x1, x2) ≡

δ2Γk
δφ(x1)δφ(x2)

= ∫
x

[∂µδx,x1∂µδx,x2 + V
(2)
k (φ(x)) δx,x1δx,x1] ,

δΓ
(2)
k (x1, x2)
δφ(x3)

= ∫
x
V

(3)
k (φ(x)) δx,x1δx,x2δx,x3 ,

δ2Γ
(2)
k (x1, x2)

δφ(x3)δφ(x4)
= ∫

x
V

(4)
k (φ(x)) δx,x1δx,x2δx,x3δx,x4 ,

(185)

where by δx1,x2 we indicate the d-dimensional Dirac delta, i.e. δ(x1−x2). We now consider1250

the Fourier transform of Eq. (185) for a constant field configuration which can be expressed1251

as1252

∫
x1,x2

Γ
(2)
k (x1, x2)ei(p1x1+p2x2) = (p2

1 + V
(2)
k ) (2π)dδ(p1 + p2) ,

∫
x1,x2,x3

δΓ
(2)
k (x1, x2)
δφ(x3)

ei(p1x1+p2x2+p3x3) = V (3)
k (2π)dδ(p1 + p2 + p3) ,

∫
x1,x2,x3,x4

δ2Γ
(2)
k (x1, x2)

δφ(x3)δφ(x4)
ei(p1x1+p2x2+p3x3+p4x4) = V (4)

k (2π)dδ(p1 + p2 + p3 + p4) ,

(186)

where we have suppressed the spacetime indices in order to lighten the notation. In the1253

same way, we can write1254

Rk(x1, x2) = ∫
p
Rk(p)e−ip(x1−x2) , (187)

Gk(x1, x2) = (Γ
(2)
k +Rk)

−1
(x1, x2) = ∫

p
Gk(p)e−ip(x1−x2) , (188)

Gk(p) = (p2 +Rk(p) + V (2)
k )

−1
, (189)

δ

δφ(x2)
Ψk(x1) = F (1)

k (φ(x1))δx1,x2 = ∫
p
F

(1)
k (φ(x1)) e−ip(x1−x2) . (190)

We notice here that while Gk and Ψk are functions of the field, the cutoff function Rk is1255

not. The l.h.s. of Eq. (56) then reads1256

∂tΓk +∫
x

δΓk[φ]
δφ(x) Fk(φ(x)) = ∫x [∂tVk + F (1)

k (φ) (∂µφ) (∂µφ) + Fk(φ)V (1)
k (φ)] , (191)
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while the r.h.s. of Eq. (56) is composed by two terms, namely1257

1

2
∫
x1,x2

Gk(x1, x2)∂tRk(x2, x1) =
1

2
∫
x1,x2

∫
p1,p2

Gk(p1)∂tRk(p2)e−ip1(x1−x2)−ip2(x2−x1)

= 1

2
∫
x
∫
p
Gk(p)∂tRk(p) , (192)

1258

∫
x1,x2,x3

Gk(x1, x2)
δ

δφ(x2)
Ψk(x3)Rk(x3, x1) = ∫

x1,x2
∫
p1,p2

Gk(p1)F (1)
k Rk(p2)e−ip1(x1−x2)−ip2(x2−x1)

= ∫
x
∫
p
Gk(p)F (1)

k Rk(p) . (193)

Changing then variables in the remaining momentum integrals as p→ z = p2, the r.h.s. of1259

Eq. (56) can be written as1260

1

2
Tr

1

Γ
(2)
k +Rk

⋅ (∂tRk + 2
δ

δφ
Ψk ⋅ Rk) =

1

2(4π)d/2 ∫x
Qd/2 [Gk (∂tRk + 2F

(1)
k Rk)] , (194)

where the Q-functionals are defined in Eq. (111). Considering a constant field configura-1261

tion and equating (191) and (194) yields the flow equation (108a) for the effective potential1262

Vk.1263

1264

We now take the second derivative of Eq. (56) with respect to φ(x) and φ(x̄), we1265

impose a constant field configuration and then we Fourier transform, so that the l.h.s.1266

reads1267

∫
x,x̄,x1

{δx,x1δx̄,x1 [∂tV
(2)
k (φ(x1)) + (Fk (φ(x1)) V (1)k (φ(x1)))

(2)
] + 2F

(1)
k (φ(x1))∂µδx,x1∂µδx̄,x1} eip1x+ip2x̄

= (2π)dδ(p1 + p2) [
δ2

δφ(p1)δφ(−p1)
(∂tVk + Fk V (1)k ) + 2F

(1)
k p2

1] . (195)

Let’s now call T the trace on the r.h.s. of Eq. (56). Then differentiating w.r.t. φ(x) and1268

φ(x̄) yields1269

Txx̄ = −
1

2

4

∏
i=1
∫
xi

Gk(x1, x2)
δ2Γ

(2)
k (x2, x3)

δφ(x)δφ(x̄) Gk(x3, x4)∂tRk(x4, x1)

−
5

∏
i=1
∫
xi

Gk(x1, x2)
δ2Γ

(2)
k (x2, x3)

δφ(x)δφ(x̄) Gk(x3, x4)
δΨk(x5)
δφ(x4)

Rk(x5, x1)

+ 1

2

6

∏
i=1
∫
xi

Gk(x1, x2)
δΓ
(2)
k (x2, x3)
δφ(x) Gk(x3, x4)

δΓ
(2)
k (x4, x5)
δφ(x̄) Gk(x5, x6)∂tRk(x6, x1)

+
7

∏
i=1
∫
xi

Gk(x1, x2)
δΓ
(2)
k (x2, x3)
δφ(x) Gk(x3, x4)

δΓ
(2)
k (x4, x5)
δφ(x̄) Gk(x5, x6)

δΨk(x7)
δφ(x6)

Rk(x7, x1)

+ 1

2

6

∏
i=1
∫
xi

Gk(x1, x2)
δΓ
(2)
k (x2, x3)
δφ(x̄) Gk(x3, x4)

δΓ
(2)
k (x4, x5)
δφ(x) Gk(x5, x6)∂tRk(x6, x1)

+
7

∏
i=1
∫
xi

Gk(x1, x2)
δΓ
(2)
k (x2, x3)
δφ(x̄) Gk(x3, x4)

δΓ
(2)
k (x4, x5)
δφ(x) Gk(x5, x6)

δΨk(x7)
δφ(x6)

Rk(x7, x1)

+
3

∏
i=1
∫
xi

Gk(x1, x2)
δ3Ψk(x3)

δφ(x)δφ(x̄)δφ(x2)
Rk(x3, x1)

−
5

∏
i=1
∫
xi

Gk(x1, x2)
δΓ
(2)
k (x2, x3)
δφ(x) Gk(x3, x4)

δ2Ψk(x5)
δφ(x̄)δφ(x4)

Rk(x5, x1)

−
5

∏
i=1
∫
xi

Gk(x1, x2)
δΓ
(2)
k (x2, x3)
δφ(x̄) Gk(x3, x4)

δ2Ψk(x5)
δφ(x)δφ(x4)

Rk(x5, x1) . (196)
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Using equations (185) and (190) and imposing a constant field configuration we have1270

Txx̄ = −
1

2
V

(4)
k δx,x̄∫

x1,x2

Gk(x1, x) Gk(x,x2) [∂tRk(x2, x1) + 2F
(1)
k Rk(x2, x1)]

+ 1

2
(V (3)

k )
2

∫
x1,x2

Gk(x1, x)Gk(x, x̄)Gk(x̄, x2) [∂tRk(x2, x1) + 2F
(1)
k Rk(x2, x1)]

+ 1

2
(V (3)

k )
2

∫
x1,x2

Gk(x1, x̄)Gk(x̄, x)Gk(x,x2) [∂tRk(x2, x1) + 2F
(1)
k Rk(x2, x1)]

+ F (3)
k δx,x̄∫

x1

Gk(x1, x)Rk(x,x1)

− V (3)
k F

(2)
k ∫

x1

Gk(x1, x)Gk(x, x̄)Rk(x̄, x1)

− V (3)
k F

(2)
k ∫

x1

Gk(x1, x̄)Gk(x̄, x)Rk(x,x1) . (197)

Using then equations (188) and (187)1271

Txx̄ = −
1

2
V

(4)
k δx,x̄∫

p1

Gk(p1)2 [∂tRk(p1) + 2F
(1)
k Rk(p1)]

+ 1

2
(V (3)

k )
2

∫
p1,p2

Gk(p1)Gk(p2)Gk(p1) [∂tRk(p1) + 2F
(1)
k Rk(p1)] eix(p1−p2)−ix̄(p1−p2)

+ 1

2
(V (3)

k )
2

∫
p1,p2

Gk(p1)Gk(p2)Gk(p1) [∂tRk(p1) + 2F
(1)
k Rk(p1)] e−ix(p1−p2)+ix̄(p1−p2)

+ F (3)
k δx,x̄∫

p1

Gk(p1)Rk(p1)

− V (3)
k F

(2)
k ∫

p1,p2

Gk(p1)Gk(p2)Rk(p1)eix(p1−p2)−ix̄(p1−p2)

− V (3)
k F

(2)
k ∫

p1,p2

Gk(p1)Gk(p2)Rk(p1)e−ix(p1−p2)+ix̄(p1−p2) , (198)

and expressing the previous equation in momentum space we obtain1272

Tp1p2 = −
1

2
V

(4)
k (2π)dδ(p1 + p2)∫

p
Gk(p)2 [∂tRk(p) + 2F

(1)
k Rk(p)]

+ (V (3)
k )

2
(2π)dδ(p1 + p2)∫

p
Gk(p)Gk(p + p1)Gk(p) [∂tRk(p) + 2F

(1)
k Rk(p)]

+ F (3)
k (2π)dδ(p1 + p2)∫

p
Gk(p)Rk(p)

− 2V
(3)
k F

(2)
k (2π)dδ(p1 + p2)∫

p
Gk(p)Gk(p + p1)Rk(p) . (199)

We then need to expand the previous equation for small p1; for this purpose, we make use1273

of the following expression1274

f ((p + p1)2) = f(p2) + (p2
1 + 2p1 ⋅ p)f ′(p2) + 2 (p1 ⋅ p)2 f ′′(p2) +O(p3

1) , (200)

in which primes denote derivatives with respect to p2. Equating then (195) and (199),1275

simplifying a common factor (2π)dδ(p1 + p2) on both sides and changing variables as1276
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p→ z = p2 we obtain1277

δ2

δφ(p1)δφ(−p1)
(∂tV (2)

k + Fk V (1)
k ) + 2F

(1)
k p2

1 = −V
(4)
k

1

2(4π)d/2
Qd/2 [G2

k (∂tRk + 2F
(1)
k Rk)]+

+ F (3)
k

1

(4π)d/2
Qd/2 [GkRk] +

(V (3)
k )

2

(4π)d/2
{Qd/2 [G3

k (∂tRk + 2F
(1)
k Rk)]+

+p2
1Qd/2 [G′

kG
2
k (∂tRk + 2F

(1)
k Rk)] + p

2
1Qd/2+1 [G′′

k G
2
k (∂tRk + 2F

(1)
k Rk)]}+

− V (3)
k F

(2)
k

2

(4π)d/2
{Qd/2 [G2

kRk] + p2
1Qd/2 [G′

kGkRk] + p2
1Qd/2+1 [G′′

k GkRk]} +O(p4
1) .

(201)

By finally taking the derivative with respect to p2
1 and then the limit p1 → 0, we obtain1278

Eq. (108b) .1279

D.2 Position space1280

We revisit the derivation of Eqs. (108), but now working in position space. In order to1281

lighten the notation, we drop the k subscript and leave it intended throughout the whole1282

section. Let’s commence by writing the field as1283

φ(x) → φ + δφ(x) , (202)

where φ is now understood as constant and if no argument is shown it means that a1284

function of the field is evaluated at φ. Then we write1285

Γ(2) +R = G−1 +X , (203)

where G−1 = −∂2 +R+ V (2) and we define the following quantities1286

X = V (3)δφ + 1

2
V (4)δφ2 + . . . , (204)

Ψ(1) = F (1) + Y , (205)

Y = F (2)δφ + 1

2
F (3)δφ2 + . . . . (206)

The idea now is to expand in δφ and then put the traces into the form Tr[Of(∆)] and1287

Tr[Oµν∂µ∂νf(∆)], where O are non-derivative operators that might depend on δφ and its1288

derivatives and f(∆) is expressed as1289

f(∆) = ∫
∞

0
dsf̃(s)H(s,∆) , (207)

where H(s,∆)(x1, x2) = e−s∆(x1, x2) is the heat kernel1290

H(s,∆)(x1, x2) =
1

(4πs) 1
2

e−
1
4s

(x1−x2)⋅(x1−x2) . (208)

By taking advantage of the fact that at x1 = x2, we have1291

H(s, x, x) = 1

(4πs)d/2
,

∂µ∂νH(s, x, x) = − δµν

2(4π)d/2sd/2+1
,

(209)
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where the derivatives act on the first argument, and therefore one can express the following1292

traces as1293

Tr[Of(∆)] = 1

(4π)d/2 ∫x
OQd/2[f] , (210)

Tr[Oµν∂µ∂νf(∆)] = −1

2

1

(4π)d/2 ∫x
OµµQd/2+1[f] , (211)

where1294

Qn[f] = ∫
∞

0
ds s−nf̃(s) (212)

are the equal to the Q-functionals (111). In order to get the flow of the potential V , we1295

then want to set X = 0 and Y = 0. The l.h.s. of the flow equation (56) at constant field is1296

given by1297

∫
x
[∂tV (φ) + F (φ)V (1)(φ)] , (213)

while the trace appearing on the r.h.s. of equation (56) is given by1298

1

2
Tr[(∂tR+ 2F (1)R)G] = ∫

∞

0
ds W̃ [(∂tR+ 2F (1)R)G,s]Tr[H(s)]

= ∫
x

1

2(4π)d/2
Qd/2[(∂tR+ 2F (1)R)G] ,

(214)

where we use the heat kernel expansion to calculate the trace. We therefore retrieve Eq.1299

(108a). By expanding in δφ, one we can find the term which involves δφ∆δφ on both the1300

l.h.s. and on the r.h.s. of the flow equation (56). On the l.h.s. this yields1301

F (1)(φ) δφ∆δφ , (215)

while on the r.h.s. of the flow equation we obtain1302

T = 1

2
Tr[(∂tR+ 2F (1)R+ 2YR)(G −GXG +GXGXG + ...]

= 1

2
Tr[(∂tR+ 2F (1)R)G] − 1

2
Tr[XG2(∂tR+ 2F (1)R)] +Tr[YRG]

+ 1

2
Tr[XGXG2(∂tR+ 2F (1)R)] −Tr[XGYRG] + . . . . (216)

The terms linear in X and Y do not involve derivatives of δφ so we can ignore them. In1303

order to obtain derivatives of δφ we commute G with X and Y which gives the two terms1304

T ⊃ 1

2
Tr[X[G,X]G2(∂tR+ 2F (1)R)] −Tr[X[G,Y ]RG] . (217)

Then we use G = G(∆) where ∆ = −∂2 to compute the commutators1305

[G,X] ⊃ −[X,∆]G′(∆) + 1

2
[[X,∆],∆]G′′(∆) , (218)

[X,∆] =X,µµ + 2X,µ∂µ , (219)

[[X,∆],∆] =X,µµνν + 4X,µµν∂ν + 4X,µν∂µ∂ν (220)

and similarly for Y where the indices after the comma denote derivatives of X with respect1306

to xµ. The interesting terms are the ones where two derivatives act on X or Y . So the1307
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traces we need are1308

T ⊃1

2
Tr[X(−X,µµG

′(∆) + 2X,µν∂µ∂νG
′′(∆))G2(∂tR+ 2F (1)R)]+

−Tr[X(−Y,µµG′(∆) + 2Y,µν∂µ∂νG
′′(∆))RG]

= 1

(4π)d/2 ∫x
( − 1

2
XX,µµ (Qd/2[G′G2(∂tR+ 2F (1)R)] +Qd/2+1[G′′(∂tR+ 2F (1)R)])

+XY,µµ (Qd/2[G′RG] +Qd/2+1[G′′RG]) )

= −∫
x
δφ∂2δφ(1

2
(V (3))

2
(Qd/2[G′G2(∂tR+ 2F (1)R)] +Qd/2+1[G′′(∂tR+ 2F (1)R)])

− V (3)F (2) (Qd/2[G′RG] +Qd/2+1[G′′RG]) ) +O(δφ3) , (221)

which upon equating with Eq. (215) completes the derivation of equation (108b).1309
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