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Abstract

We investigate how entanglement can enhance two-photon absorption in a
three-level system. First, we employ the Schmidt decomposition to determine
the entanglement properties of the optimal two-photon state to drive such a
transition, and the maximum enhancement which can be achieved in comparison
to the optimal classical pulse. We then adapt the optimization problem to
realistic experimental constraints, where photon pairs from a down-conversion
source are manipulated by local operations such as spatial light modulators.
We derive optimal pulse shaping functions to enhance the absorption efficiency,
and compare the maximal enhancement achievable by entanglement to the yield
of optimally shaped, separable pulses.
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1 Introduction

Coherent control generally refers to the manipulation of quantum dynamical processes by
suitably shaped control fields or interactions [1–3]. It has found widespread application in
the control of chemical reactions [4–9], in spectroscopy [10,11], in laser cooling [12–14] or
even in quantum information and computing [15,16]. In these well-established scenarios,
the control is built on the manipulation of interfering pathways to maximize a desired
outcome or speed up a process using classical laser pulses [17]. Optimal control theory
then consists in finding the optimal laser pulse shapes and sequences, and the quantum
character of light can be safely neglected.

In recent years, the possible use of quantum light sources for quantum-enhanced appli-
cations in microscopy or spectroscopy has gathered a lot of attention [18–23]. Of particular
interest is the use of entangled photon pairs for applications which involve two-photon
transitions. Such pairs can induce two-photon transitions more efficiently than laser pulses,
and promise the use at low photon flux, thus preventing damage in photosensitive sam-
ples [24–27]. In addition, quantum correlations may help to further manipulate optical
signals [28–30]. Yet, a key problem in the practical application, currently, is the low absorp-
tion cross section of many samples [31–34]. One possible remedy to address this issue and
further this field is the shaping of entangled photonic wave functions [35–37], to enhance the
absorption probability. This strategy was explored in a number of recent theoretical papers,
where the crucial role of quantum correlations between different travelling modes [38–40],
or of the quantum statistics of a cavity mode [41], was highlighted. In contrast to classical
control described by optimal control theory, the light fields have to be treated quantum
mechanically, and, due to the small photon number per mode, perturbation theory can be
employed.

Here we present a detailed study of how entanglement shared between two photons can
enhance the probability to induce a two-photon excitation, in a sample which we describe
by a simple three-level toy model, with finite excited state lifetimes, as depicted in Fig. 1(a).
We carefully examine the optimal pulse shapes, as well as the relation between quantum
correlations and the achievable enhancement. In a second part, we then demonstrate
how this formalism can be applied to derive optimal states under realistic experimental
conditions. In particular, we ask how a given entangled two-photon state can be optimized
by only local operations on the individual photons, in order to induce the desired two-photon
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Figure 1: (a) A two-photon transition from ground state |g⟩ to target state |f⟩, via
intermediate state |e⟩, is driven by two incoming, near-resonant single-photon pulses with
carrier frequencies ω1 and ω2, respectively. The excitation efficiency is subject to finite
decay rates of |e⟩ and |f⟩, the characteristic scale ωe of the level spacing, the detuning ∆ of
the individual nearest neighbour level spacings from degeneracy (in units of the intermediate
state’s lifetime γe), the deviation of the excited state decay rates’ ratio from two (again in
units of γe), see (17), and, here of central interest, the frequency correlations (see panel
(b)) inscribed into the incoming pulses. (b) Density |Tt(ω1, ω2)|2 ∝ |Φ(ω1, ω2)|2 of the
optimal two-photon wave function (31) in the space of rescaled frequencies (ωj − ωe)/γe,
and parametrised by detuning ∆ = 5 and deviation δ = −1.9 as specified in panel (a) and
(17). (c) Single-photon density (33) derived from (31) upon tracing over the frequency of
the partner photon in |Φ(ω1, ω2)|2, for the same parameter values as in panel (b). The
double-peaked distributions in (b,c) feature maxima in the vicinity of the first (|g⟩ → |e⟩)
and second (|e⟩ → |f⟩) bare transition’s (see panel (a)) rescaled frequencies 0 and ∆,
respectively, with distinct widths determined by ∆ and δ, see (32,33). The widths of the
local maxima give a qualitative impression of the nonclassical frequency correlation between
both incoming photons.
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transition most efficiently. We find that, depending on the initial two-photon state and the
sample, substantial enhancements of the absorption probability can be achieved.

The paper is organized as follows: In Sec. 2, we formulate the coherent control problem.
We derive and solve functionals for the optimal quantum states of light to excite a simple
three-level quantum system. In Sec. 3, we describe properties of ideal pulses, and analyze
the relation between the entanglement they encode and the possible quantum advantage
they offer (over optimal separable quantum states of light). Subsequently, in Sec. 4, we
turn to the question of how entangled photons can be optimized for two-photon absorption
(TPA) in experimentally realistic scenarios, before we conclude in Sec. 5.

2 Theoretical framework

2.1 The Hamiltonian

We consider the interaction between two (propagating) pulses of the quantized radiation
field (the “field” degrees of freedom) and three electronic energy levels of an atom or
molecule (the “matter” degrees of freedom). These systems are modelled, respectively, by
Hamiltonians Hf and Hm, and are coupled by an interaction term W . We describe all of
these terms in the following paragraphs.

The incoming light pulses impinge on the three-level target located at the origin of our
reference frame. Each field is quantized within a (cylindrical) quantization volume, of cross
section A, along a distinct propagation direction, giving rise to modes labelled by a one-
dimensional continuous variable, either the wave vector k or the frequency ω [42]. Choosing
the latter, for each beam j we obtain annihilation aj(ω) and creation a†j(ω) operators
satisfying the commutation relation [aj(ω), a

†
l (ω

′)] = δjlδ(ω − ω′). In this framework
the photon number operator for beam j reads nj =

∫∞
0 dω a†j(ω)aj(ω), while the total

Hamiltonian for both fields is Hf =
∑

j

∫∞
0 dω ℏωa†j(ω)aj(ω). At the origin, where it

interacts with the sample, the positive-frequency part of the electric field operator for the
Hilbert space of photon j (in the interaction picture starting at t0 with respect to Hf) reads

E+
j (t) = i

∫ ∞

0
dω

(
ℏω

4πϵ0cA

)1/2

aj(ω)e
−iω(t−t0), (1)

where ϵ0 is the dielectric constant and c the vacuum speed of light. We assume the fields
have parallel polarization, but are distinguished by their propagation directions.

In the following we consider incoming photon pulses of bandwidth ∆ω much smaller
than their central frequency ω0, i.e. ∆ω ≪ ω0. We can then employ the narrow bandwidth
approximation, where we extend the range of all above frequency integrals to (−∞,∞),
substitute ω with ω0 within the square root in the integrand of (1), pull the resulting
constant factor out of the integral, and define the Fourier-transformed annihilation operator

aj(t) =
1√
2π

∫ ∞

−∞
dω aj(ω)e

−iω(t−t0). (2)

Together with its adjoint a†j(t), it satisfies the commutation relation [aj(t), a
†
l (t

′)] = δjlδ(t−
t′). The electric field operator (1) for beam j is finally re-expressed as

E+
j (t) = iE0aj(t) , with E0 =

√
ℏω0/(2ϵ0cA) , (3)

so that the total (positive-frequency) electric field seen by the atomic target reads (we
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neglect any geometry dependence in the coupling factors [23])

E+(t) = E+
1 (t) + E+

2 (t) = iE0 [a1(t) + a2(t)] . (4)

As shown in Fig. 1(a), the three non-degenerate electronic energy eigenstates of our
target are |g⟩, |e⟩, and |f⟩, with increasing energy. We define the origin of the energy
axis to coincide with the energy of |g⟩, hence the excited state energies are ℏωe and ℏωf ,
respectively. With these labels, the matter Hamiltonian is Hm = ℏωe |e⟩ ⟨e|+ ℏωf |f⟩ ⟨f |.

The light-matter coupling is mediated by an electric dipole Hamiltonian, switched on
at t0, which – in the interaction picture with respect to Hf +Hm, and for near-resonant
perturbative driving of the atomic transitions – reads

WI(t) = −V (t)E−(t)− V †(t)E+(t), (5)

with E− the adjoint of E+. For the specific level structure here considered (including the
assumption that the atomic eigenstates have well-defined parity), the dipole operator, along
the fields’ polarization, has the explicit form

V (t) = µgee
−iωe(t−t0) |g⟩ ⟨e|+ µefe

−i(ωf−ωe)(t−t0) |e⟩ ⟨f | . (6)

where the dipole matrix transition elements µge and µef between |g⟩ and |e⟩, and between
|e⟩ and |f⟩, respectively, can be chosen real-valued.

2.2 Two-photon absorption amplitude

Our objective is to identify the optimal two-photon field state |Φ⟩ that drives the matter
degrees of freedom from its initial (at time t0) state |g⟩ into the target state |f⟩ (at time t),
by TPA via |e⟩. This is tantamount of maximizing the transition probability

pf (t) = | ⟨f(t), 0|UI(t)|g,Φ⟩ |2, (7)

where |0⟩ indicates the vacuum state of both injected fields, |f(t)⟩ = eiωf (t−t0) |f⟩ exhibits
the explicit time dependence of the interaction picture with respect to Hm (whereas |g⟩, at
energy zero, remains unaffected), and UI(t) is the time evolution operator in the interaction
picture of Hf +Hm, given by the Dyson series

UI(t) = I+
∞∑
n=1

(
1

iℏ

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1WI(τn) . . .WI(τ1). (8)

Since |Φ⟩ is to be optimized in (7), while the initial atomic and field, as well as the final
atomic state are fixed, we can extract the transition amplitude operator

Tfg(t) = ⟨f(t)|UI(t)|g⟩ . (9)

acting solely on the field degrees of freedom.1

1Note that (7,9) imply a strictly unitary dynamics, and that rigorous account of incoherent processes
beyond the purely phenomenological level adopted below would require a treatment in terms of the
matter-field density matrix [43].
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2.3 Matter response function

Given the faint incoming field implied by (7) upon fixing the impinging two-photon state
|Φ⟩, we can expand UI(t) in powers of WI , such that the leading perturbative contribution
to the desired two-photon transition reads, with (5,6,9),

Tfg(t) =

(
1

iℏ

)2 ∫ t

t0

dτ2

∫ τ2

t0

dτ1 ⟨f(t)|WI(τ2)WI(τ1)|g⟩ . (10)

Using (4) and (5), the integrand becomes

⟨f(t)|WI(τ2)WI(τ1)|g⟩ = −E2
0µgeµefe

−iωf tei(ωf−ωe)τ2eiωeτ1 [a1(τ1)a2(τ2) + a1(τ2)a2(τ1)] ,
(11)

where we dropped the terms ai(τ1)ai(τ2) which result from E+(τ2)E
+(τ1) by (4), since the

sought-after pulse |Φ⟩ has only one photon in each mode. Equation (2) and an exchange of
the frequency and time integrations gives

Tfg(t) =

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 Tt;t0(ω1, ω2)a2(ω2)a1(ω1), (12)

where Tt;t0(ω1, ω2) is the matter response function under weak field driving and for a finite
interaction time starting at t0, as made explicit by the index. Note that Tt;t0(ω1, ω2) must
also encode the symmetry of (11) under exchange of the photon from the first or the second
pulse being absorbed first. This will become explicit in (14).

To compactify the explicit expressions for Tt;t0(ω1, ω2), we introduce the line shape
functions

Ls(ω) =
iE0√
2πℏ

µs−1 s

ω − ωs + iγs
, (13)

where the dipole matrix element µs−1 s connects the state s to the next energetically lower
lying state s− 1 (e.g., |e⟩ to |g⟩), and γs phenomenologically accounts for finite decay rates
of |f⟩ and |e⟩ (|g⟩, being the ground state, cannot decay). With (10,11,13) we can thus
extract from (12)

Tt;t0(ω1, ω2) =
E2
0

2πℏ2
µgeµefe

−i(ωf−iγf )tei(ω1+ω2)t0

×
∫ t

t0

dτ2

∫ τ2

t0

dτ1 e
−i[ω2−(ωf−ωe)+i(γf−γe)]τ2e−i(ω1−ωe+iγe)τ1 +

(
ω1 ↔ ω2

)
= Le(ω1)

{[
e−i(ω1+ω2)(t−t0) − e−i(ωf−iγf )(t−t0)

]
Lf (ω1 + ω2) (14)

−
[
e−i(ω2+ωe−iγe)(t−t0) − e−i(ωf−iγf )(t−t0)

]
Lf (ω2 + ωe)

}
+
(
ω1 ↔ ω2

)
,

where (ω1 ↔ ω2) in the last line indicates identical terms with the frequencies ω1 and ω2 of
the two photons exchanged.

2.4 Infinitely extended pulses

Equation (14) describes the matter response at time t to a pulse switched on at t0, and
thus vanishes for t = t0. In the following, we will consider a scenario where the light-matter
interaction is always switched on, while the case of finite t− t0 will be discussed elsewhere.
We theqrefore take the limit t− t0 → ∞, and, as a consequence, the real exponential factors
in (14) vanish due to the excited state lifetimes, and we obtain the simpler expression [40]

Tt(ω1, ω2) = e−i(ω1+ω2)(t−t0) [Le(ω1) + Le(ω2)]Lf (ω1 + ω2), (15)
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which we will focus on hereafter. The remaining, global phase factor expresses the time
dependences of a1,2(t) from (2) in the interaction picture of Hf ; it theqrefore carries no
physical significance – it drops out in the calculation of the probability (7) – and can be
ignored in all our subsequent calculations.

Let us also observe that (15) can be easily adapted to a more intricate level structure of
the target, with several intermediate states, as presented in [40]. All is needed is a

∑
e in

(6), which, by linearity, can be carried directly throughout all derivations above, to obtain:

Tt(ω1, ω2) = e−i(ω1+ω2)(t−t0)
∑
e

[Le(ω1) + Le(ω2)]Lf (ω1 + ω2). (16)

The structure of the matter response function in (15) directly reflects the absorption
process in the matter: while the term Le(ω1) + Le(ω2) describes the transition |g⟩ → |e⟩
induced by either one of the two photons, the term Lf (ω1 + ω2) correlates the two photons’
frequencies by requiring that their sum be resonant with the two-photon transition |g⟩ → |f⟩.
For this reason, the analysis presented in the next section rather depends on the detuning
between the constituent one photon transitions of the two photon process under study. To
quantify the departure from the spectrum of two non-interacting two-level systems (where
ωf = 2ωe and γf = 2γe), which can be independently driven by one single-photon pulse
each, we introduce the (dimensionless) detuning ∆ and the deviation δ as

∆ = (ωf − 2ωe) /γe,

δ = γf/γe − 2, (17)

as indicated in Fig. 1(a).

2.5 On notation

Let us conclude this theoretical introduction by clarifying, in one single place, the notation
that we use throughout the next sections.

We deal with one-photon and two-photon states: the former are indicated with small,
the latter with capital Greek letters. Consider a one-photon state, for a beam whose index
we momentarily ignore. To refer to its Hilbert space element we use the common ket
notation: |ψ⟩. The frequency representation ψ(ω), or wave function, of the one-photon
state |ψ⟩ is its amplitude in the mode ω:

ψ(ω) = ⟨ω|ψ⟩ ⇐⇒ |ψ⟩ =
∫

dω ψ(ω)a†(ω) |0⟩ , (18)

where we introduced the continuous-mode single-photon state [42]

|ω⟩ = |1ω⟩ = a†(ω) |0⟩ , (19)

and the continuous-mode creation operator a†(ω) as presented in Sec. 2.1. For a two-photon
state the notation and its interpretation are completely analogous, except for the indices of
the two fields:

Ψ(ω1, ω2) = ⟨ω1, ω2|Ψ⟩ ⇐⇒ |Ψ⟩ =
∫∫

dω1dω2Ψ(ω1, ω2)a
†(ω1)a

†(ω2) |0⟩ . (20)

Across Sec. 3 and Sec. 4 we switch between these two notations. The frequency
representation eases the physical interpretation and makes some derivations mathematically
more transparent. However, we switch to the Hilbert space when the derivations benefit
from a more compact notation. We spell out, to exemplify the change of notation, the
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functional derivative [44] of the overlap of two one-photon wave functions. In the frequency
representation we write

F [ϕ, ψ∗] =

∫
dω ϕ(ω)ψ∗(ω) ⇐⇒ δF

δψ∗ = ϕ(ω), (21)

which is equivalent to writing, in the Hilbert space,

F [|ϕ⟩ , ⟨ψ|] = ⟨ψ|ϕ⟩ ⇐⇒ δF
δ ⟨ψ|

= |ϕ⟩ . (22)

3 Ideal pulses

3.1 Fluctuation-constrained optimization

Our goal is to maximize the population pf (t) in state |f⟩ at the time t, by appropriate
choice of the two-photon state |Φ⟩. The latter is determined [40] by the extrema of the
functional

J [|Φ⟩] = pf (t)− λ (⟨Φ|n1n2|Φ⟩ − 1) , (23)

where the dependence of pf (t) on the state |Φ⟩ can be unveiled by inserting (9) into (7), to
obtain

pf (t) = | ⟨0|Tfg(t)|Φ⟩ |2 = ⟨Φ|T †
fg(t)|0⟩ ⟨0|Tfg(t)|Φ⟩ . (24)

The second term in (23) constrains the distribution of the injected two photons over the
incoming fields via the Lagrange multiplier λ: the expectation value ⟨n1n2⟩ limits the
search to two-photon states where each beam is populated by one photon2. Rather than by
saturating the number of photons in either beam [19], then, we allow the maximization of
pf (t) via quantum correlations [45], the potential of which we want to scrutinize here.

At an extremum of J [|Φ⟩], its functional derivative, (21,22), must vanish,

δJ

δ ⟨Φ|
= 0. (25)

With (24) in (23), this requirement results in the eigenvalue problem

T †
fg(t) |0⟩ ⟨0|Tfg(t)|Φ⟩ = λ |Φ⟩ , (26)

which, with the definition
|T ⟩ = T †

fg(t) |0⟩ , (27)

turns into
|T ⟩ ⟨T |Φ⟩ = λ |Φ⟩ . (28)

In addition, requiring the variation of the functional (23) with respect to the Lagrange
multiplier to vanish, i.e. δJ/δλ = 0, enforces the normalization of the two-photon state,
such that we arrive at

|Φ⟩ = N−1/2T †
fg(t) |0⟩ (29)

as the only solution3. The maximal population can thus be expressed directly in terms of
N , by (29) in (24), together with ⟨Φ|Φ⟩ = 1 as imposed by the constraint in (23), or in

2The expectation value is non-vanishing only for this configuration. Furthermore, (20) implies
⟨Φ|n1n2|Φ⟩ = ⟨Φ|Φ⟩, such that the Lagrange multiplier also enforces the normalization of the state.

3Since |T ⟩ ⟨T | is a one-dimensional projector, it has only one non-trivial eigenstate.
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frequency space, with (12,13,15) in (29) in (24), to obtain an explicit expression for N in
terms of the system parameters [40]:

pf (t) = N =

∫∫
|Tt(ω1, ω2)|2 dω1 dω2 =

2π2(µgeE0)2(µefE0)2

ℏ4γeγf
. (30)

We remark here that the maximal population does not depend on time, yet it is attained
at t given the initial time t0. This is due to the time dependence carried by the matter
response function (15) in the interaction picture. As long as t− t0 ≫ γ−1

e , the optimization
problem will yield the optimal population (30) for arbitrary choice of t0 and t.

3.2 Optimal two-photon states

To discuss the properties of the optimal two-photon state, we move to the frequency
representation, following the prescriptions illustrated in Sec. 2.5. With (12) in (29), the
optimal two-photon wave function (20) is given by

Φ(ω1, ω2) = ⟨ω1, ω2|Φ⟩ =
T ∗
t (ω1, ω2)√

N
, (31)

which determines all the statistical properties of the two injected photons. Up to normal-
ization, the optimal two-photon wave function in frequency space is the complex conjugate
of the matter response function (15). This means that the state which maximizes the
population in |f⟩ at time t is given by the time-reversed two-photon state emitted by the
three-level system initially (at t) prepared in |f⟩. This is the direct two-photon analogue of
the well-known result of the optimal, “exponentially rising” single-photon state to excite
a two-level atom [46, 47], which is simply the time reversed version of the single photon
wavepacket emitted by an excited two-level atom.

Figure 1(b) shows the properties of the optimal two-photon state as defined by (31),
and parametrised by detuning ∆ and deviation δ. The concentration of |Tt(ω1, ω2)|2 ∝
|Φ(ω1, ω2)|2 around the anti-diagonal ω1 + ω2 = ωf reflects the constraint, introduced by
Lf (ω1 + ω2) in (15), and discussed in 2.4, that the total frequency of the injected photons
be resonant with the two-photon transition |g⟩ → |f⟩. The frequency sum distribution is
readily extracted from |Φ(ω1, ω2)|2, by changing variables to ω± = ω1 ± ω2 and integrating
over ω−:

psum(ω+) =
1

π

γf
(ω+ − ωf )2 + γ2f

, (32)

i.e. a Lorentzian of width γf = (2 + δ)γe, centred at ωf = 2ωe +∆γe.
In Fig. 1(c), instead, we plot the single-photon distribution, i.e. the marginal distribution

of |Φ(ω1, ω2)|2 with respect to either frequency (here the first), since the optimal two-photon
wave function (31) is symmetric:

p1(ω) =
γe(γe + γf )(4γe + γf ) + γe(ωf − 2ωe)

2 + γf (ω − ωe)
2

2π [(ω − ωe)2 + γ2e ] [(ω − ωf + ωe)2 + (γe + γf )2]
, (33)

where we can identify two distinct peaks near4 the transitions |g⟩ → |e⟩ (frequency ωe and
line width γe) and |e⟩ → |f⟩ (frequency ωf−ωe = ωe+∆γe and line width γf+γe = (3+δ)γe).
Notice that, since Φt(ω1, ω2) is symmetric under exchange of variables, the single-photon
frequency distribution is the same for both fields: each photon has the same probability to
induce the transition to |e⟩, and the second completes it to |f⟩.

4The peaks do not exactly match the transition frequencies because |Le(ω1) + Le(ω2)|2 ̸= |Le(ω1)|2 +
|Le(ω2)|2, and interference terms contribute to p1(ω).
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When δ → −2, that is in the limit of a final state with vanishing linewidth γf → 0,
psum(ω+) tends to δ(ω+ − ωf ). This describes the situation where the frequency of one
“emitted” photon strictly determines that of the other, which means that each photon has
the same probability of exciting either the |g⟩ → |e⟩ or the |e⟩ → |f⟩ transition. In this
limit, p1(ω) exhibits two peaks of equal (unit) width at ωe and ωf − ωe, as discussed above.

3.3 Entanglement entropy

When ∆ = δ = 0, i.e., by (17), ωf = 2ωe and γf = 2γe, the optimal two-photon wave
function given by (31) is separable: either photon independently excites one of two non-
interacting two-level systems, see Sec. 2.4. Otherwise, the frequency degrees of freedom
of the two optimally prepared incoming pulses are, in general, entangled [40], with non-
trivial (i.e., L > 1) Schmidt decomposition into Schmidt modes φ∗

k(ω1), ψ
∗
k(ω2) and their

non-increasingly ordered, non-negative Schmidt coefficients rk,

Φ(ω1, ω2) =
L∑

k=1

rkφ
∗
k(ω1)ψ

∗
k(ω2), (34)

where normalization via N in (31) implies
∑

k r
2
k = 1 (0 ≤ rk ≤ 1), and complex conjugation

is inherited from that of Tt(ω1, ω2), also in (31). The entanglement encoded in Φ(ω1, ω2)
can be quantified by the entanglement entropy [45],

S = −
L∑

k=1

r2k log2 r
2
k. (35)

We now inspect how the degree of frequency entanglement of the incoming pulses correlates
with enhanced absorption probabilities.

3.4 Quantum enhancement

By (30), the maximal population of the state |f⟩ is N . To capture the genuine advantage
due to entanglement, an entangled fields’ yield is to be compared with that of the optimal
separable two-photon state

Φsep(ω1, ω2) = φ∗
1(ω1)ψ

∗
1(ω2), (36)

given by the modes pertaining to the largest Schmidt coefficient r1 in (35) [40]. Such
an optimal classical state yields an excited state population r21N ≤ N , where equality is
achieved only for ∆ = δ = 0. The quantum enhancement of TPA achievable by an entangled
two-photon state, through the quantum correlations between the incoming fields, is thus
given by the ratio

Eq = r−2
1 ≥ 1 (37)

of those two excitation probabilities.
According to (35), strong entanglement S requires L ≫ 1 and thus small r1, which

implies strong quantum enhancement Eq, by (37). We test this mutual relationship in Fig.
2, where we evaluate (36) and (37) with the optimal two-photon wave function (31), for
variable deviation δ (panel (a)) and detuning ∆ (panel (b)), respectively, as well as the
maximally achievable values of entanglement and enhancement, S∞ and E∞, respectively, in
the limit of very large ∆ (panel (c)), which we discuss separately in Sec. 3.5.5 In panels (a,b),

5All results here displayed are based on the Schmidt decomposition (34) of the two-photon wave function
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Figure 2: Entanglement entropy S as defined in (35), and quantum enhancement Eq given
in (37), of the excited state population pf (t) (24) achieved by the optimal two photon state
(31) for (a) fixed detuning ∆ = 5 with variable deviation δ ∈ (−2; 2] (note the colour code,
and specific values indicated by labels), and (b) fixed deviation δ = −1.9 with variable
detuning ∆ ∈ [0.1; 100] (colour coded and labeled). The dashed lines indicate the maximally
achievable entanglement and quantum enhancement, respectively, in the limit ∆ → ∞. (c)
Maximally achievable enhancement E∞, see (42) and Sec. 3.5, and associated entanglement
entropy S∞, given by (43), as a function of δ, in the limit ∆ → ∞ (achieved by γe → 0).

we observe a monotonic increase of Eq with S, and a plateau of the achievable entanglement
and quantum enhancement emerges for large values of the detuning ∆, which we address
in the next subsection. The increase of S with ∆ and as δ → −2 can be attributed to a
narrowing of the frequency-sum distribution (32), in unison with a broad single frequency
distribution (33) (due to its composition by two distant peaks). This distribution signifies
strong frequency anti-correlations, and indeed, since we are here considering pure quantum
states of light, correspond to a strongly entangled wavefunction [19].

3.5 Maximal quantum enhancement

Let us now discuss the quantum enhancement Eq in the limit ∆ ≫ 1 (or, more physically,
ωf − 2ωe ≫ γe), which Fig. 2(b) suggests to be finite. As discussed in Sec. 2.4, the matter
response function (15) is symmetric in the two photon frequencies, which implies that its
Schmidt modes φk, ψk in (34) are equal for each k, possibly up to a phase. For ∆ ≫ 1, as in
Fig. 3, said modes appear as orthogonal superpositions of non-overlapping, complex-valued
line shapes αk (centred at ωe) and βk (centred at ωf −ωe = ωe+∆γe). Moreover, mutually
orthogonal linear combinations of the same modes, e.g. φ1,2 = (α1 ± β1)/

√
2 in Fig. 3, are

associated with Schmidt coefficients r1 ≈ r2, at least for finite ∆.
Let us now understand the connection between the Schmidt modes φk, ψk and the line

shapes αk, βk. The latter can be considered the Schmidt modes of a response function
where the first photon is resonant with the |g⟩ → |e⟩ transition, while the second completes
the two-photon transition by inducing |e⟩ → |f⟩. The construction of such a response
function yields

Qt(ω1, ω2) = e−i(ω1+ω2)(t−t0)Le(ω1)Lf (ω1 + ω2). (38)

Φ(ω1, ω2) discretized in frequency space, i.e., we used a linear algebra package (Wolfram Mathematica)
to calculate the singular values of a matrix. Frequencies were discretized on a grid of size ±200γf and
resolution γe/5. This choice of grid size and resolution was validated by a normalization of the discretized
state which was systematically bounded from below by 0.99.
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Figure 3: First two pairs φk(ω), ψk(ω) of Schmidt modes computed for a response function
(15) with ∆ = 100 and δ = −1.5, discretized on a grid [−500; 500] with a resolution (2+δ)/2.
These pairs correspond to the Schmidt coefficients r1 = 0.272557 and r2 = 0.272348. Because
of the large value of ∆, the Schmidt modes are linear combinations of modes αk and βk
centred, respectively, at rescaled frequencies (ω − ωe)/γe 0 and ∆.
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The analogy to (15) becomes clear by noticing that

Tt(ω1, ω2) = Qt(ω1, ω2) +Qt(ω2, ω1), (39)

that is, Tt is the symmetrized6 version of Qt. For visualization, Qt(ω1, ω2) and Qt(ω2, ω1)
describe, respectively, the top-left and bottom-right peaks of Tt(ω1, ω2) in Fig. 1(b).

Let us now write the Schmidt decomposition of the asymmetric response function (38)
as

Qt(ω1, ω2) =

√
N
2

L′∑
k=1

skαk(ω1)βk(ω2), (40)

where the prefactor ensures
∑

k s
2
k = 1. The Schmidt coefficients must be independent

of ∆, since this parameter translates the top-left peak in Fig. 1(b) without changing its
anti-diagonal structure. This cannot be true for Tt in (15), where a change in ∆ implies both
a vertical and a horizontal translation of, respectively, the top-left and bottom-right peaks.
In this case, then, the structure on the anti-diagonal changes and so do the correlations
between the two photon frequencies.

Substituting (34) (on the left-hand side, via (31)) and (40) (on the right-hand side) in
the identity (39) we obtain

Tt(ω1, ω2)√
N

=

L∑
k=1

rkφk(ω1)ψk(ω1) =

L′∑
l=1

sl√
2
[αl(ω1)βl(ω2) + βl(ω1)αl(ω2)] .

Going back to the example of Fig. 3, if we assume r1 = r2 and multiply out the combinations
proposed for φk(ω1) and ψk(ω2), for k = 1, 2, we obtain precisely the products of α1 and
β1 on the right-hand side of (41). Notice that these combinations are not arbitrary: as
discussed earlier, because Tt is a symmetric complex function, the modes φk and ψk might
differ by a phase that ensures the positivity of the singular values. All in all, we must
satisfy φ1(ω1)ψ1(ω2) + φ2(ω1)ψ2(ω2) = α1(ω1)β1(ω2) + β1(ω1)α1(ω2).

The right-hand side of (41) is a valid Schmidt decomposition only in the limit ∆ → ∞,
where the function bases {αk}k and {βk}k are also mutually orthogonal7, since – to
reconstruct the symmetry of Tt – they both have to appear as Schmidt modes for each
photon frequency. Under this condition, then, the Schmidt coefficients rk of the response
function Tt must come in pairs. In summary, in the limit ∆ → ∞, (41) is a valid Schmidt
decomposition and we can identify

r2k = r2k−1 =
sk√
2
, φ2k−1 = ψ2k = αk, φ2k = ψ2k−1 = βk, k = 1, . . . , L′. (41)

The pairwise appearance of Schmidt coefficients r1 = s1/
√
2, by (41), implies that

the enhancement E∞, when ∆ ≫ 1, is twice the enhancement Ea obtainable with the
asymmetric matter response function (38):

E∞ = 2Ea. (42)

For the entropy, instead, we can write

S∞ = −
L∑

k=1

r2k log2 r
2
k = −2

L′∑
l=1

s2l
2
log2

(
s2l
2

)
= 1 + Sa, (43)

6It hence allows each photon to begin the two-photon transition, and the other to complete it.
7The overlap of these line shapes goes to zero in the limit ∆ → ∞.
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Figure 4: Exemplary experimental scenarios discussed in (a) Sec. 4.3 and (b) Sec. 4.4.
In (a) two photons of frequencies ω1 and ω2 are produced via spontaneous parametric
down-conversion (SPDC) from a pump photon of frequency ωp. Both photons are then
frequency-modulated by the same pulse shaping operator M . In (b), instead, it is the pump
photon that is shaped by an optimal operator M , before being split into two photons by
SPDC. (c) recalls, for convenience, the parameters describing the matter degrees of freedom
as in Fig. 1(a).

where Sa is the entanglement entropy of (40). For any value of δ, then, the quantum
enhancement induced by the optimal pulse (31), and the entanglement between the two
photons’ frequencies must be bounded, respectively, by E∞ and S∞, which are plotted in
Fig. 2(c). For δ → −2 we observe the same steep increase in enhancement due to the “strict”
correlation between the photon frequencies discussed in Secs. 3.2 and 3.4.

4 Realistic pulses

So far, our investigation targeted the optimal two-photon quantum state which can be
constructed theoretically. However, the experimental manipulation of the two-photon state
is subject to further constraints, and it is theqrefore necessary to reformulate the above
theory for experimentally implementable transformations. This is the purpose of the present
section. We consider an experiment in which a two-photon state |Σ⟩ can be generated. The
frequency components of this state will then be manipulated, e.g. using a spatial light
modulator [35–37], to enhance the propensity of the state to excite a two-photon transition
in the three-level sample it impinges on, as in Fig. 4(c). First we analyze a general class
of transformations, and then consider two realistic examples (see figures 4(a) and (b)),
where the two-photon state generated e.g. by spontaneous parametric down-conversion
is spectrally shaped (a), or where the (classical) pump pulse that creates the entangled
photon pair by down-conversion is transformed (b). As we will see, both situations can be
analyzed in terms of unitary transformations acting on the two-photon state |Σ⟩.

4.1 Optimization procedure

We want to find unitary operations, M1 and M2, which act on the Hilbert spaces of the
first and of the second photon, respectively, and maximize the TPA probability induced by
the manipulated state M1M2 |Σ⟩. If we continue to denote with |Φ⟩ the optimal state (29)
analyzed in Sec. 3, we intuitively want M1M2 |Σ⟩ to most closely resemble |Φ⟩.

In the frequency representation of Sec. 2.5, we write a pulse shaping function as

⟨ωj |Mj |νj⟩ =Mj(νj , ωj). (44)

14
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In Sec. 4.3, the arguments in the above equation refers to the frequency components of
the photon wavepacket in beam j. As we will see in Sec. 4.4, the same formalism can be
applied to the shaping of the pump pulse in type-I parametric down-conversion, where,
however, the frequency arguments represent the components of the sum frequency ω1 + ω2.

While in sections 4.2–4.4 we assume M to be diagonal in frequency space, here we
include operations that change the spectral shape of the photon wavepacket, as described,
e.g., in Sec. V of [48]. We do, however, assume that the photon number is conserved, i.e.
squeezing or displacement operations are not considered. As in Sec. 3, we want to maximize
the final state population (7), but with the shaped two-photon state M1M2 |Σ⟩:

pf (t) = | ⟨0|Tfg(t)M1M2|Σ⟩ |2 = N| ⟨Φ|M1M2|Σ⟩ |2. (45)

The factor N stems from (29), and clarifies the meaning of this equation: if N is the
maximal population achievable by using the optimal state |Φ⟩, then the population in the
case of a shaped realistic state M1M2 |Σ⟩ is reduced by the overlap between these two
initial states.

The new functional to optimize – instead of (23) – is then

J [M1,M2] = pf (t)−
2∑

i=1

[
⟨ψj |M †

jMj |ψj⟩ − ⟨ψj |ψj⟩
]
. (46)

We remark here that (23) was maximized over the space of two-photon states, whereas
now we are optimizing in the space of operators on the Hilbert spaces of the individual
photons. In (46) we constrain the search to local operators that do not change the number
of photons of undetermined, and potentially unnormalized, single-photon states |ψj⟩ as per
(18). The summation term in (46) theqrefore limits our search to unitary local operators:

M †
jMj = I. (47)

The single-photon states |ψj⟩ do not carry further relevance beyond imposing the constraint
(47), and effectively play the same role of the Lagrange multiplier of (23).

Due to the higher dimensionality of the search space, we cannot find an explicit general
expression of the optimal pulse shaping operators Mj . These are solutions of coupled
integral equations (86), whose derivation we defer to Appendix A.

4.2 Diagonal pulse shaping operators

We now collect the theoretical underpinning of our subsequent discussion of examples in
sections 4.3 and 4.4. We focus on diagonal pulse shaping operators, i.e. of the form

⟨ωj |Mj |νj⟩ =Mj(ωj)δ(ωj − νj). (48)

This means that we restrict ourselves to linear optical elements that do not change the
photon energies, such as the aforementioned manipulation by a spatial light modulator.
Substituting (48) in the derivation of Appendix A, we obtain, in place of (86),

Mj(ωj) =

√
NA[M1,M2]

|ψj(ωj)|2

∫
W∗

t (ωj , ωk)M
∗
k (ωk) dωk. (49)

The functional A[M1,M2] is defined in (80), and we have also introduced the effective
response function Wt as the product of the matter response function (15, 31) with the
(frequency representation of the) input state |Σ⟩:

Wt(ω1, ω2) = Σ(ω1, ω2)Tt(ω1, ω2) =
√
NΣ(ω1, ω2)Φ

∗(ω1, ω2). (50)
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Using the effective response function, the final state population (45) achievable via the
diagonal pulse shaping functions M1 and M2 of (48) reads

pf (t) =

∣∣∣∣∫∫ Wt(ω1, ω2)M1(ω1)M2(ω2) dω1 dω2

∣∣∣∣2 . (51)

Given the fact that Mj is a unitary diagonal operator, see (47), we can write

Mj(ωj) = e−iFj(ωj), (52)

with Fj(ωj) a real function. Substitution of this ansatz in (49) yields

|ψj(ωj)|2e−iFj(ωj) =
√
N

∫∫
Wt(ω1, ω2)e

−i[F1(ω1)+F2(ω2)]dω1dω2

∫
W∗

t (ωj , ωk)e
iFk(ωk)dωk.

(53)
If we also cast the effective response function in polar form,

Wt(ω1, ω2) = |Wt(ω1, ω2)|eiS(ω1,ω2), (54)

the identity (53) is satisfied by functions F1 and F2 such that

F1(ω1) + F2(ω2) = S(ω1, ω2), (55)

and by a Lagrange multiplier ψj with

|ψj(ωj)|2 =
√
N

∫∫
|Wt(ω1, ω2)|dω1dω2

∫
|Wt(ωj , ωk)|dωk. (56)

Substituting (52) and (54) in (51), and assuming (55) is satisfied, we find the final state
population achievable upon manipulating (“s” for “shaped”) the input state |Σ⟩:

p
(s)
f (t) =

(∫∫
|Wt(ω1, ω2)|dω1 dω2

)2

. (57)

On the other hand, in the absence of shaping operators, that is with M1 =M2 ≡ 1, (51)
yields

p
(u)
f (t) =

∣∣∣∣∫∫ Wt(ω1, ω2)dω1dω2

∣∣∣∣2 . (58)

This quantity is the “unshaped” or “unoptimized” population achievable when we do not
manipulate the incoming realistic pulse. Its value is determined by the sign taken by
the effective response function Wt, i.e. by the phase difference between the optimal |Φ⟩
and the realistic state |Σ⟩. These phase differences are precisely what the optimal8 pulse
shaping functions compensate, by transforming Wt(ω1, ω2) into |Wt(ω1, ω2)| via (52) with
(55). To capture the enhancement obtained by pulse shaping we theqrefore introduce the
optimization ratio as the ratio between optimized and unoptimized populations:

Eopt =
p
(s)
f (t)

p
(u)
f (t)

. (60)

To conclude, in the following examples we will identify the effective response function
Wt. If we can determine, via its phase, the argument Fj(ωj) of the pulse shaping operators,
such that (55) is satisfied, then the optimal final state population is directly given by (57).

8Applying the Hölder inequality [49] to (51), and using the unitarity of the shaper functions (47), we
can write the inequality

pf (t) =

∣∣∣∣∫∫ Wt(ω1, ω2)M1(ω1)M2(ω2) dω1 dω2

∣∣∣∣2 ≤ p
(s)
f (t) (59)

Because equality holds for the shaper functions satisfying (55), these must define the optimal solution.
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4.3 Example I: shaping down-converted photons

The first example we consider is depicted in Fig. 4(a): a pump photon of frequency ωp is
split via SPDC into two photons of frequencies ω1 and ω2, which are modulated by the
same pulse shaping operator M . This setup describes the experiment carried out by the
Silberberg group in 2005 [25]. We consider a frequency representation (20) of |Σ⟩ given by

Σ(ω1, ω2) = δ(ω1 + ω2 − ωp)G(ω1 − ωp/2), (61)

where ωp is the frequency of the pump photon creating the entangled pair, which we assume
to be on resonance with the two-photon transition (ωp = ωf ) in the matter, see Fig. 4(c).
The delta function stems from a narrowband continuous-wave (cw) pump laser and replaces
the Lorentzian distribution of the sum frequencies we encountered in (32). The cw nature
of the pump pulse implies that the arrival time of the entangled photon pair is completely
undetermined. Consequently, a targeted excitation at a particular time t, as considered in
the previous section, is impossible. Rather, within this approximation we describe a steady
state experiment where a constant stream of entangled photon pairs gives rise to a finite
f -state population [50]. Our goal is to optimise this steady state population by shaping the
two-photon state (61).

We consider frequency-degenerate down-converted photons, i.e. the individual photon
wave packets are described by a real function G symmetric around ωf/2 [51]. The two
photons are theqrefore equally detuned from either transitions |g⟩ → |e⟩ and |e⟩ → |f⟩,
since ωf/2 = ωe + (∆/2)γe = (ωf − ωe) − (∆/2)γe. For compactness of notation, then,
we shift the frequencies as Ωj = ωj − ωf/2. The effective response function (50) for this
example then reads

Wt(Ω1,Ω2) = δ(Ω1 +Ω2)G(Ω1)Tt(Ω1 + ωf/2,Ω2 + ωf/2)

∝ δ(Ω1 +Ω2)G(Ω1)

[
1

Ω1 +
(
∆
2 + i

)
γe

+
1

Ω2 +
(
∆
2 + i

)
γe

]
. (62)

In this expression we dropped all prefactors, because the optimal pulse shaping operator
M is determined by the phase of Wt(Ω1,Ω2), as defined in (54,55), and theqrefore only9

depends on the detuning ∆ (see (17)). It is worth anticipating here that the time dependence
of Tt from (15) becomes a trivial phase factor e−iωf (t−t0), once the Dirac delta is integrated
over, as we do later; for this reason, we do not spell it out explicitly in (62).

In the shifted frequencies Ωj above, and for identical SLMs, i.e. M1 =M2 =M , Eq. (49)
becomes

|ψ(Ω)|2M(Ω) =
√
NW∗

t (Ω,−Ω)M∗(−Ω)

∫
Wt(Ω

′,−Ω′)M(Ω′)M(−Ω′) dΩ′, (63)

where we integrated over the variables involved in the Dirac deltas of (62). Mirroring
equations (54)–(56), then, the optimal pulse shaping function reads

M(Ω) = e−iS(Ω,−Ω)/2, (64)

with S given in (54), while

|ψ(Ω)|2 =
√
N|Wt(Ω,−Ω)|

∫
|Wt(Ω,−Ω)|dΩ. (65)

9The deviation δ, which determines the width of the frequency-sum distribution (32), is implicitly
contained in the normalization of |Σ⟩, but for sharply correlated frequencies via the Dirac delta in (61) it
does not affect the optimization.
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These expressions presuppose that the effective response function (62) is symmetric in Ω,
and that G(Ω) is real, as assumed above.

In this example, the optimization ratio (60) reads

Eopt =

(∫
|Wt(Ω,−Ω)| dΩ

)2∣∣∫ Wt(Ω,−Ω) dΩ
∣∣2 , (66)

and we plot its values in Fig. 5(a) for the individual photons described by the Gaussian
profile

G(Ω) =
1

(πσ2)1/4
e−Ω2/(2σ2), (67)

where σ denotes the bandwidth of the photon wave packet.
Let us remind the reader of the physical quantities we are comparing here. For the

matter degrees of freedom, we want to drive the two transitions |g⟩ → |e⟩ and |e⟩ → |f⟩, of
frequencies, respectively, ωe and ωe +∆γe, see Fig. 4(c). We excite the transitions with two
photons with frequency profiles centred on ωf/2 = ωe +(∆/2)γe and width σ. As discussed
above, the two photons are always detuned by (∆/2)γe from the electronic transitions. The
probability of exciting the individual transitions depends, theqrefore, on the width σ of the
single-photon frequency distributions.

If ∆ = 0, i.e. in the case of no detuning, each photon can resonantly drive either
transition |g⟩ → |e⟩ or |e⟩ → |f⟩. In this case, then, there is nothing to optimize. This
can be shown formally with little algebraic manipulation: Wt(Ω,−Ω) from (62) becomes a
real function, and hence carries no phase to compensate via (55). When σ ≪ ∆, instead,
the photon frequencies are so narrowly distributed around ωf/2 that they are always off
resonant (by ∆/2) with respect to the two electronic transitions; shaping the incoming
entangled wave function barely affects the excitation probability in this case. Between these
two extreme cases, for fixed detuning ∆, Eopt reaches a maximum and then saturates for
σ ≳ ∆, when the individual photon pulses are so broad to be resonant with any transition in
the matter. In Fig. 5(b) we thus consider the case where we can freely tune the bandwidth σ
of the photon pulses to match the detuning ∆, and plot the maximal final state population
pf achievable by both unshaped (61) and shaped (64) Gaussian wave packets. Remarkably,
the latter departs rather slowly from the maximal value N (30) achievable by the optimal
state (29). Hence, in this case, shaping can almost saturate the optimal bound Eq allowed
by quantum mechanics.

Finally, the remaining open question is how optimal pulse shaping (64) of the realistic
entangled state |Σ⟩ compares to the classical limit set by optimal separable pulses (36). As
in Fig. 5(b), in Fig. 6 we match the width σ of the Gaussian pulse (67) to the detuning
∆, to cover both transition frequencies. As discussed for (62), the deviation δ (see (17))
does not affect Wt(Ω,−Ω); the dependence on δ visible in Fig. 6(b) and (c) stems from
the optimal population achieved by the corresponding separable pulse. Our analysis finds
large areas of parameter space, i.e. the entire upper right part of Fig. 6(b), for which only
shaped Gaussian pulses can violate the classical limit (compare the areas in (b) and (c)
which lie on the right/below the dashed line – these are the areas where an enhancement
Eq ≤ 1 with respect to the optimal separable pulse (36) is achieved).

4.4 Example II: shaping the pump

As sketched in Fig. 4(b), in this example we consider shaping a pump pulse that is
subsequently down-converted. Hence, in contrast to our previous example, we will not
approximate the pump laser by a spectral delta function and consider down-conversion
driven by a finite-bandwidth pulse instead. The effect of pulse shaping on the entanglement
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Figure 5: (a) Optimization ratio Eopt (60) as a function of ∆ (50), obtained by optimally
shaping a realistic the two-photon wave function (61), given the single-photon Gaussian
profile (67), for three different values of the latter’s width σ. (b) Maximum achievable
population, in units of N (30), for optimally shaped [(64), solid line] and unshaped [(61),
dashed line], realistic two-photon wave functions, with Gaussian single-photon profiles (67)
of width σ = ∆, with ∆ ≥ 0.1.

of down-converted photon pairs was recently studied in [52] for a spectrally chirped pump
pulse. Spectral chirp is a common effect in experiments that manifests as a quadratic phase
in the pulse shape of the pump photon. Here we discuss how this phase can be counteracted
via pulse shaping as described in Sec. 4.2.

We consider a two-photon state of the form

Σ(ω1, ω2) = α(ω1 + ω2)β(ω1 − ω2). (68)

This is an appropriate model, for instance, for photon pairs created by type-I down-
conversion [53–55]. Here, α(ω) is proportional to the amplitude of the pump laser driving the
down-conversion, and β(ω) denotes the phase-matching function. To apply the optimization
procedure of Sec. 4.2, we change variables to ω± = ω1 ± ω2 and write the effective response
function (50) as

Wt(ω+, ω−) =
1

2
α(ω+)β(ω−)Tt

(
ω+ + ω−

2
,
ω+ − ω−

2

)
, (69)

where the factor 1/2 ensures the correct change of variables under integration. Since the
pump frequency determines the sum of the down-converted photons’ frequencies, we want
to shape the distribution of ω+ = ω1+ω2, which, in contrast to the previous example, is not
a LOCC (local operation with classical communication, [56]) and can change the amount of
entanglement in the final two-photon state. When we spectrally shape the pump pulse, we
carry out a unitary transformation on α(ω+), i.e. α(ω+) →M1(ω+)α(ω+). Consequently,
in this example we consider M1(ω+) =M(ω+) and M2(ω−) ≡ 1, to write (49) as

|ψ(ω+)|2M(ω+) =
√
N ξ∗(ω+)

∫
ξ(ω+)M(ω+)dω+, (70)

with
ξ(ω+) =

∫
Wt(ω+, ω−) dω−. (71)

We can now apply our previous results: Adopting the ansatz (52), and mirroring equations
(54)–(56), we write ξ(ω+) = |ξ(ω+)|eiϑ(ω+). The optimal pulse shaping function is then

M(ω+) = e−iϑ(ω+), (72)
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Figure 6: Comparison of the quantum enhancement Eq, with respect to the optimal
separable pulses (36), achievable (a) via the optimal entangled two-photon wave function
(31), (b) by optimal shaping (64) of a realistic pulse (61) with Gaussian single-photon
distribution (67), and (c) by an unshaped realistic pulse (61), with Gaussian profile (67).
In all panels we explore the ranges ∆ ∈ [0.1; 5] and δ ∈ [−1.9; 0]. In panels (b) and (c)
the width of the Gaussian distribution is set to σ = ∆ for each pair (δ,∆), to enable the
comparison with the optimal separable pulses. The dashed line in (b) and (c) traces the
pairs (δ,∆) where the realistic two-photon wave functions [shaped by (64) and unoptimized
(61), respectively] yield Eq = 1, i.e. it demarcates the region (above/to the left of the
dashed line) where the optimized states can outperform optimal separable states. Panel (a)
reproduces the numerical results of [40].

with the Lagrange multiplier

|ψ(ω+)|2 =
√
N|ξ(ω+)|

∫
|ξ(ω+)|dω+. (73)

Finally, the optimization ratio (60) becomes

Eopt =

(∫
|ξ(ω)|dω

)2∣∣∫ ξ(ω) dω∣∣2 . (74)

As in Sec. 4.3, to assess the usefulness of this shaping procedure we have to make α(ω+)
and β(ω−) in (68) explicit. Following [52], we describe the pump with a Gaussian wave
packet with spectral chirp:

α(ω+) =
e−(ω+−ωf )

2/(2σ2)

(πσ2)1/4
ei

ϕ
2
(ω+−ωf )

2
, (75)

where ωf is the |g⟩ → |f⟩ transition frequency, σ the pulse width, and ϕ the quadratic
phase determining the chirp. To compare these parameters to the detuning ∆ and deviation
δ characterizing the matter spectrum, see (17), we first consider an “infinitely” broad
phase-matching function, to avoid adding further parameters. Once this context has been
analyzed, we introduce a finite width ζ also for β(ω−).

Infinitely broad phase matching The phase-matching function describes the probability
that the frequencies of the two down-converted photons differ by ω− = ω1 − ω2. In the
limit of infinite phase matching, then, any detuning between the two photons is equally
probable. Taking the pulse structure of Fig. 1(b) as an example, we are here considering
a pulse of infinite extension along the anti-diagonal. If any difference between photon
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Figure 7: Left: Optimization ratio Eopt (74), as a function of the deviation δ, obtained by
shaping via (72) a pump pulse with a profile (75) of bandwidth σ. Panel (a) shows Eopt

for a quadratic phase ϕ = 0, while (b) for ϕ = 1. Right: Comparison of the one-photon
distributions α (75), the integrated matter response function η∞ (77), and their product
ξ∞ (76). Here ∆ = δ = 0, ϕ = 1 and, respectively, (c) σ = 0.5 and (d) σ = 5. Continuous
(dashed) lines indicate the real (imaginary) parts of the functions.

frequencies is equally probable, ∆ (see (17)), the detuning between the electronic transitions
|g⟩ → |e⟩ and |e⟩ → |f⟩, only determines ωf . The incoming two-photon wave function can
be approximated by α(ω+), which we can take out of the integral in (71), to write

ξ∞(ω+) = α(ω+)η
∞(ω+), (76)

where we have integrated the matter response function (15) as

η∞(ω+) =
1

2

∫
Tt

(
ω+ + ω−

2
,
ω+ − ω−

2

)
dω− =

−2i
√
γeγfe

−iω+t

ω+ − ωf + iγf
. (77)

In Fig. 7(a) and (b) we plot the enhancement Eopt in this limit, calculated using ξ∞ in
(74). In the absence of the chirp, panel (a), we are comparing the bandwidth of the pulse σ
to the linewidth γf = (2 + δ)γe of the two-photon transition. Following the remarks closing
Sec. 4.2, the pulse shaping imposes the correct phase structure, entirely encoded in η∞(ω+),
to the state |Σ⟩, maximizing its overlap with the optimal state |Φ⟩. The enhancement
theqrefore increases when we move to negative δ, i.e. when the phase of η∞ rapidly changes
with ω+ within the bandwidth σ of the wave packet α.

The same reasoning can be applied when the chirp is present and induces a non-
monotonic increase of Eopt with σ and δ, see Fig. 7(b). For large σ, the chirp introduces
significant oscillations in ξ∞(ω+): compare panels (c) and (d). When γf is also large, for
δ > 0 in panel (b), these oscillations also affect ξ∞. In this case, then, shaping via (72) adds
exactly the right frequency dependence to the phase of |Σ⟩ to counteract these oscillations.

Gaussian phase matching To discuss the case of a phase-matching function with a
finite width ζ, we consider the Gaussian distribution

β(ω−) =
e−ω2

−/(2ζ2)

(πζ2)1/4
. (78)

With the definition χ = ω+ − 2(ωe − iγe) we can then write

η(ω+) =

∫
β(ω−)Tt

(
ω+ + ω−

2
,
ω+ − ω−

2

)
dω− = 2η∞(ω+)β(χ)G(iχ/ζ), (79)

21



SciPost Physics Submission

(a)	Optimal	entangled

Δ

0

1

2

3

4

5

δ
−1.5 −1 −0.5 0

Eq

0

2.5

5

7.5

(b)	Shaped	Gaussian

δ
−1.5 −1 −0.5 0

(c)	Gaussian

δ
−1.5 −1 −0.5 0

Figure 8: Comparison of the quantum enhancement Eq, with respect to the optimal
separable pulses (36), achievable via (a) the optimal entangled two-photon wave function
(15), (b) the unshaped Gaussian pulse of (68), and (c) the optimized Gaussian via the pulse
shaping function of (72). For each (δ,∆) defining the matter response function (15), we
attune the Gaussian pulse by setting its widths as σ = 3γe(2 + δ) and ζ = γe(2 + ∆) (see
text). The quadratic phase in (75) is ϕ = 1. On the left of the dashed line the various
two-photon wave functions perform better (Eq ≥ 1) than the optimal separable pulses (36).
Panel (a) reproduces the numerical results of [40].

where G denotes the cumulative function of the standard normal distribution [49].
In Fig. 8(b,c) we fix the quadratic phase at ϕ = 1, and tune the parameters σ and ζ

characterizing the incoming pulse (68) via, respectively, α(ω+) and β(ω−). The former
determines the width of the pump pulse, and hence should be compared to the deviation δ,
which sets the width of the optimal two-photon wave function (31), see Fig. 1(b) and (32).
The latter determines the frequency difference between the two down-converted photons,
and thus should be compared to the deviation ∆ between the transition frequencies |g⟩ → |e⟩
and |e⟩ → |f⟩, see Fig. 1(c) and (33).

As in Sec. 4.3, we adjust the pulse parameters (σ, ζ) to the matter characteristics (δ,∆)
by setting10 σ = 3γf = 3γe(2 + δ) and ζ = γe(2 + ∆). This allows us to explore in Fig.
8 the same parameter space (δ,∆) that was considered in Sec. 3. In panel (a) we show
the enhancement Eq in final-state population achieved by the optimal state (31) over the
classical limit given by (36), which was already presented in [40] and discussed in Sec. 3.4.
In panels (b) and (c) we analogously compare the enhancement attained by, respectively,
the Gaussian pulse (68) upon shaping the pump with (72), and without shaping. As shown
in Sec. 3.4, the ideal two-photon state (15) maximally populates the state |f⟩, and hence
yields the largest Eq for any fixed value of ∆ and δ. In panels (b) and (c) we also observe
Eq ≥ 1 in portions (on the left) of the parameter space that we demarcate with a dashed
lines. There, also Gaussian pulses are able to enhance the TPA with respect to the yield of
the optimal classical pulses. We recall what we concluded in Sec. 4.2: the shaped pulses
can yield larger enhancement than the unoptimized pulses because the pulse shaper (72)
perfectly counteracts the chirp.

10To choose the specific functional dependence of σ and ζ we initially set σ = Aγf and ζ = Bγe(2 + ∆),
and computed the enhancement for several choices of A and B. This coarse numerical analysis showed
that A = 3 and B = 1 are convenient values, yielding an enhancement close to the maximal, and perfectly
sufficient for the remarks we intend to make in this example.
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5 Conclusions

To conclude, we analyzed optimal two-photon states to drive a two-photon transition. We
first investigated the optimal state, quantified its quantum correlations via the entanglement
entropy, and discussed the relation of the latter to the quantum enhancement in TPA such
a state can achieve. We then drew a comparison to the optimal separable pulse, computed
from the Schmidt decomposition of the response function, such that the enhancement really
stems from the entanglement in the state. For the maximally achievable enhancement we
also provided bounds that depend on how strongly anticorrelated the joint distribution of
the frequencies is.

We then considered more realistic scenarios where a given initial two-photon state is
manipulated in order to enhance the two-photon transition. We defined a new optimization
problem, this time for unitary operators representing local transformations of the individual
photons. We derived a self-consistent equation that can be solved analytically when we
consider two photons created in spontaneous parametric down-conversion. In particular,
we inspected the case of spatial light modulators to shape two photons converted from
a monochromatic pump laser, and then considered shaping the pump pulse directly. We
found that initial two-photon states with sufficiently strong entanglement can sustain a
substantial enhancement of the TPA probability, of the same order of magnitude as what is
ideally achievable.

Acknowledgements

Funding information This work is supported by the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013) Grant Agreement
No. 319286 Q-MAC. E.G.C. acknowledges support from the Georg H. Endress foundation.
F.S. acknowledges support from the Cluster of Excellence ’Advanced Imaging of Matter’ of
the Deutsche Forschungsgemeinschaft (DFG) - EXC 2056 - project ID 390715994.

A Maximization of (46)

Let us write all the terms appearing in (46) in the frequency representation, by resolving
the identity in the appropriate one- or two-photon frequency space, see Sec. 2.5. If we call
A[M1,M2] = ⟨Φ|M1M2|Σ⟩, we then have

A[M1,M2] =

∫∫
R2

dω1dω2

∫∫
R2

dν1dν2Φ
∗(ω1, ω2)M1(ν1, ω1)M2(ν2, ω2)Σ(ν1, ν2). (80)

Similarly, we define

Bj [Mj ] = ⟨ψj |M †
jMj |ψj⟩ =

∫∫∫
R3

dωjdνjdµj ψ
∗
j (ωj)M

∗
j (νj , ωj)Mj(µj , νj)ψj(µj) (81)

and
Cj =

∫
R
dωjψ

∗
j (ωj)ψj(ωj). (82)

We remind the reader that Bj and Cj are also functionals of ψj(ωj) and ψ∗
j (ωj), the wave

function (and corresponding conjugate) representing |ψj⟩. Since the latter play the role of
Lagrange multipliers, however, we do not write them as arguments on the left-hand side of
(81,82).
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We can then rewrite (46) in the frequency representation as

J [M1,M2] = NA[M1,M2]A∗[M∗
1 ,M

∗
2 ]−

2∑
j=1

{Bj [Mj ]− Cj}, (83)

where the normalization Cj of the |ψj⟩ states, being a number, does not carry any dependence
on the pulse shaping functions, over which we are optimizing.

To find the solution to (83), we require its functional derivatives with respect to the
pulse shaping function M∗

j (to obtain an expression for Mj) and to the Lagrange multipliers,
respectively, to vanish:

δJ

δM∗
j

= 0, (84)

and

δJ

δψ∗
j

= 0. (85)

Equation (85) enforces the unitarity (47), while (84) yields the general integral equation

ψ∗
j (ωj)

∫
R
dµj Mj(µj , νj)ψj(µj) = NA[M1,M2]

δA∗

δM∗
j

(νj , ωj), (86)

where j, k ∈ {1, 2}, j ̸= k, and

δA∗

δM∗
j

(νj , ωj) =

∫∫
R2

dωkdνk Σ
∗(ωj , ωk)M

∗
k (νk, ωk)Φ(νj , νk). (87)
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