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Abstract

Periodically driven quantum many-body systems play a central role for our
understanding of nonequilibrium phenomena. For studies of quantum chaos,
thermalization, many-body localization and time crystals, the properties of
eigenvectors and eigenvalues of the unitary evolution operator, and their scal-
ing with physical system size L are of interest. While for static systems, power-
ful methods for the partial diagonalization of the Hamiltonian were developed,
the unitary eigenproblem remains daunting.

In this paper, we introduce a Krylov space diagonalization method to ob-
tain exact eigenpairs of the unitary Floquet operator with eigenvalue closest
to a target on the unit circle. Our method is based on a complex polyno-
mial spectral transformation given by the geometric sum, leading to rapid
convergence of the Arnoldi algorithm. We demonstrate that our method is
much more efficient than the shift invert method in terms of both runtime
and memory requirements, pushing the accessible system sizes to the realm of
20 qubits, with Hilbert space dimensions ≥ 106.
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1 Introduction

Periodically driven, Floquet quantum many-body systems host fascinating nonequilibrium
phenomena [1, 2]. While they generically relax to a featureless state [3, 4] independent of
the initial state, they can undergo nonequilibrium phase transitions, such as the many-
body localization transition [5–10]. In this context, Floquet systems are often cleaner
counterparts of Hamiltonian systems, capturing the essence of these phenomenona, due
to the absence of an energy structure and a uniform density of states. This is for example
useful for high quality tests of the eigenstate thermalization hypothesis [4, 11–17].

Interestingly, Floquet quantum many-body systems can exhibit altogether new physics,
absent in Hamiltonian systems [18], such as robust [19–24] or fine tuned [25, 26] time
crystals or prethermal states [27–32].

Many questions, in particular in the context of the many-body localization transition,
rely on studying the scaling of the properties of eigenvectors of the unitary one period
evolution operator U with system size. While in static systems powerful methods like shift-
invert diagonalization [33,34] and polynomial filter diagonalization [35–38] were developed
for finding interior eigenpairs of a large hermitian and sparse Hamiltonian up to Hilbert
space dimensions of 107, the case of the dense unitary eigenproblem remains daunting.

Although progress was made for the special case deep in the many-body localized phase
based on matrix product state variants of the shift invert technique [39,40] for the Floquet
operator [41], a general purpose method which can go beyond full diagonalization of the
unitary matrix U , limited to system sizes of about L = 14 . . . 16 qubits is yet missing.

In this paper, we introduce a new method using a spectral transformation given by
the geometric sum gk(U) of order k. The spectral transformation is a complex polynomial
of U and an efficient matrix vector product gk(U)|ψ〉 can be defined, provided there is an
efficient matrix vector product U |ψ〉. This is the case in local Floquet systems (e.g. in a
matrix product operator formulation). The spectral transformation is designed to enhance
the absolute value of eigenvalues of U close to an arbitrary target on the unit circle, and
to reduce the absolute value of all other eigenvalues, thus allowing rapid convergence of
the Arnoldi algorithm to the requested eigenpairs of gk(U).

We show that this procedure is effective and can be carried out with a low memory
footprint, compared to dense shift-invert or full diagonalization. Effectively, it gives access
to system sizes up to L ≥ 20 qubits, while full diagonalization is limited to L ≈ 15.

This computational advantage makes extensive finite size scaling studies of Floquet
MBL systems possible, and can help to make progress on the recent debate on the sta-
bility of many-body localization in the thermodynamic limit [42–49], which highlights the
importance of finite size effects.

2 Model

To investigate the performance of our method, we consider a simple generic model for a
time periodic one dimensional quantum many-body system of L qubits, with a Hilbert
space of dimension d = 2L. The model is designed such that it is ergodic, with highly
entangled eigenstates, and is not tractable by alternative methods, e.g. tensor network
techniques [41].

The evolution operator U over one driving period is given by a two layer brickwork
circuit, composed of two site unitaries.
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U = (1)

Each of the boxes in Eq. (1) represents a unitary ui,i+1 ∈ C4×4, acting on qubit i and
its right neighbor (i+ 1). At the boundaries, we fill in single qubit unitaries u1, uL ∈ C2×2

if needed. We sample all unitaries randomly from the uniform measure on the unitary
group [50]. Our construction ensures that each link in the chain of qubits is represented
by a 4× 4 unitary, corresponding to generic 2-qubit interactions.

We can express U in terms of the two layers Ua and Ub (for even L):

U = UaUb,

Ua = u1,2 × u3,4 × · · · × uL−1,L
Ub = u1 × u2,3 × · · · × uL−2,L−1 × uL.

(2)

It is important to note that the unitary matrix U is dense in the computational basis.
To construct an efficient matrix vector product |ψ′〉 ← U |ψ〉, we split the circuit in a left
part UL ∈ CdL×dL (red tensors in Eq. (1)) and a right part UR ∈ CdR×dR (blue tensors in
Eq. (1)). It is advisable to chose dL, dR ≈

√
2L.

The Floquet operator is then decomposed into U = (UL × 1)(1 × UR), and we can
calculate U |ψ〉 by two matrix products, first calculating

ψdL×d/dL ← ULψdL×d/dL and then

ψd/dR×dR ← ψd/dR×dRU
T
R .

(3)

Note, that here ψdL×d/dL and ψd/dR×dR are two different reshapings of the vector |ψ〉 into
matrices of dimensions indicated in the subscript.

The advantage of this procedure is that instead of the very large matrix U ∈ Cd×d,
we only need to store two much smaller matrices UL and UTR , and we have expressed the
matrix vector product in terms of two matrix products, with efficient memory access per
floating point operation.

This decomposition is specific to brickwork circuits, but for general one dimensional
local Floquet problems efficient matrix free matrix vector products can be formulated, for
example based on a matrix product operator formulation of U [41]. The matrix product
operator is guaranteed by locality to have a constant bond dimension due to the area law
of the operator entanglement entropy of U [51, 52].

3 Method

Our goal is to calculate a subset of the eigenpairs {ωn, |n〉} of the large unitary matrix
U in such a way that we obtain all nev eigenpairs with eigenvalue ωn closest to a target
ztgt ∈ C. The eigenvalues ωn of U lie on the complex unit circle, |ωn| = 1 and can therefore
not be separated by magnitude, which is necessary for the convergence of Krylov space
diagonalization techniques.

To achieve this, spectral transformations f(U) can be used to transform the eigenvalues
ωn → f(ωn), while leaving the the eigenvectors |n〉 invariant. If the magnitude |f(ωn)| is
large for eigenvalues ωn close to the target and small otherwise, e.g. the Arnoldi algorithm
can be used to calculate the eigenpairs of interest of f(U), while only the matrix vector
product |ψ′〉 ← f(U)|ψ〉 is needed.
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Figure 1: Left: Mapping of the complex unit circle |z| = 1 (inset) by the geometric sum
gk(z) with polynomial order k = 30. The “target” arc of the unit circle highlighted in
red is mapped to the red line in the main panel by gk(z). Right: Absolute value of the
mapped values as a function of phase angle φ. The part of the curve marked in red is the
mapped “target” arc of the unit circle, given by the target phase φtgt.

One of the most effective spectral transformations is the “shift and invert” transfor-
mation

fsinvert(U) = (U − ztgt1)−1 (4)

which provides excellent convergence of the Arnoldi algorithm if the target is chosen on
or close to the unit circle. The downside of fsinvert is that for the matrix vector product
(U − ztgt1)−1 |ψ〉, an inversion is involved. Due to the dense spectrum of U , the condition
number of U − ztgt1 is exponentially large in system size and therefore only a direct
solution using a LU decomposition of the dense matrix U − ztgt1 can be used, with a
memory complexity O(d2) and runtime complexity O(d3). We provide benchmark results
of this technique in Tab. 1 for comparison.

Polynomial spectral transformations are useful, because they do not suffer from large
memory requirements since any power of U can be applied to a vector |ψ〉 by repeated
matrix vector products Uk|ψ〉 = U(U . . . (U |ψ〉)). Generally, the polynomial of degree k

pk(U) =
k∑

m=0

amU
m (5)

can be efficiently multiplied onto a vector to obtain pk(U)|ψ〉.
We argue here that an effective complex polynomial spectral transformation to single

out eigenpairs with eigenvalue closest to ztgt = eiφtgt is given by the geometric sum

gk(U) =

k∑
m=0

e−imφtgtUm. (6)

This polynomial maximizes the absolute value of eigenvalues close to the target and has
minimal modulus outside the target region. We conjecture here, that it is in fact the
optimal choice, although we have checked this only numerically. The phase factor can be
understood by noticing that multiplication by e−iφtgt rotates the eigenvalues of U closest
to eiφtgt to the proximity of 1.
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The geometric sum gk(U) has the closed form (if ωn 6= 1)

gk(U) =
[
1− e−i(k+1)φtgtUk+1

] [
1− e−iφtgtU

]−1
, (7)

and has some similarity with fsinvert.
Fig. 1 illustrates the mapping of the unit circle by gk(z). A number eiφ on the unit

circle is mapped onto

gk(e
iφ) =

1− ei(k+1)(φ−φtgt)

1− ei(φ−φtgt)
. (8)

The left panel shows the transformed unit circle under gk(z) on the complex plane, while
the right panel depicts |gk(eiφ)| as a function of the phase angle φ. In the limit φ→ φtgt,
gk(e

iφ) is on the real axis and given by k+ 1. This is the place with maximal modulus. If
we tune φ away from φtgt, gk(e

iφ) moves away from this point, and the modulus decreases,
until we reach gk(e

iφ) = 0 for φ−φtgt = ± 2π
k+1 . If φtgt− 2π

k+1 ≤ φ ≤ φtgt+ 2π
k+1 , we therefore

get the “apple” shaped outer line in the left panel of Fig. 1, while the rest of the circle is
compressed into the inner spirals. The target arc satisfying this condition is shown in red
in Fig. 1. It is noteworthy that the target arc is not only strongly enhanced in magnitude
by gk, but also shows the largest separation of eigenvalues on the complex plane. These
features are important for a rapid convergence of the Arnoldi algorithm.

Quantum many-body Floquet systems typically have a uniform eigenvalue density
on the unit cirle. Therefore, on average for a fixed polynomial order k, the 2d/(k + 1)
eigenvalues closest to ztgt will be mapped to the outer “apple” line by gk.

4 Arnoldi algorithm for gk(U)

The Arnoldi algorithm [53] is a generalization of the Lanczos method [54] to nonhermitian
matrices. It is a numerically stable variant of the power iteration, and iteratively builds
an orthonormal basis {vj} of the Krylov space span

(
|ψ〉, gk(U)|ψ〉, g2k(U)|ψ〉 . . . gncv−1

k |ψ〉
)

of dimension ncv, starting from a random initial vector |ψ〉. Raising gk to high powers in
this process filters out components of eigenvectors of gk which are in the target space (i.e.
whose eigenvalues of gk have a large magnitude and are therefore enhanced). At the same
time, gk(U) is projected into the Krylov space by the matrix V ∈ Cd×ncv with columns
given by vj , yielding the upper Hessenberg matrix

Hm = V †gk(U)V. (9)

The eigenvalues λi and eigenvectors xi of Hm yield the Ritz pairs (λi, V xi), which are
approximations of the eigenpairs of gk(U). If the dimension of the Krylov space ncv
is sufficiently large, the Ritz pairs will converge with the number of Arnoldi iterations.
Typically, λi with the largest magnitude converge first, and therefore an effective spectral
transformation is important. One should not expect to converge all ncv Ritz pairs, but
rather chose a maximal size of the Krylov space ncv > nev, if nev eigenvalues are required.

Once nev Ritz pairs are converged, we obtain excellent approximations for eigenpairs
of gk(U). The eigenvectors |n〉 of gk(U) are also eigenvectors of U . The eigenvalues λn
of gk(U) are related to the corresponding eigenvalues ωn via gk(ωn) = λn. Rather than
solving this equation by root finding, we calculate them from ωn = 〈n|U |n〉. This has the
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advantage that we can at the same time check the residuals 1

rn = ‖U |n〉 − ωn|n〉‖2 (10)

as a measure of eigenpair quality.
We pursue here the following strategy: Since the eigenvalues on the outer “apple” line

of gk(z) are well separated from the rest of the spectrum, it is advisable to use a Krylov
space dimension ncv = 2d/(k + 1) (in practice, one can take it about 80% smaller as we
will see below). If we want to calculate nev eigenpairs, we furthermore use ncv > 2nev. We
use the reference implementation of the implicitly restarted Arnoldi method as provided
by arpack [55].

For large system sizes, the runtime of the algorithm is dominated by matrix vector
products gk(U)|ψ〉. We can therefore estimate the computational cost for the matrix
vector product proposed in Eq. (3). A single matrix vector product, rephrased as two
matrix matrix products of matrices of dimension 2L/2 has a cost of O(23L/2). For a
fixed number of required eigenpairs nev, we use an exponentially large polynomial order
k = 0.8 · 2L+1/ncv, and therefore a single matrix vector product gk(U)|ψ〉, requiring k
matrix vector products involving U , has an asymptotic cost of O(25L/2/ncv). In the
Arnoldi algorithm, we need at least ncv of these matrix vector products, and hence the
overall asymptotic runtime complexity is O(22.5L). We note that in the benchmarks in
Sec. 5 this asymptotic complexity is only approximately visible, since even for the largest
system sizes, CPU specific effects like cache sizes play a role.

5 Benchmarks

To find the optimal algorithmic parameters k and ncv, we perform benchmark calculations
to obtain nev = 50 eigenpairs closest to ztgt = 1 of Floquet random circuits from Eq. (1) of
length L = 12, 14, 16 for a range of Krylov space dimensions ncv and polynomial orders k.
The results are shown in Fig. 2. The black dashed line corresponds to the ncv = 2L+1/k,
where the Krylov space dimension is equal to the number of eigenvalues on the outer
apple line in Fig. 1. The colormap shows the obtained runtimes in seconds. There is
a distinct minimum visible in the runtime, when the Krylov space dimension is about
0.8 · 2L+1/k (red dashed) for large ncv. This corresponds to the number of eigenvalues
with larger modulus than the rest of the spectrum and is therefore the optimal size of the
Krylov space for each k. We observe a tendency that for larger sizes, larger Krylov space
dimensions are better. And we are therfore using ncv = b2L/2+1c, k = 0.8 · 2L+1/ncv in
the following benchmarks for larger sizes.

For an assessment of the performance of our method in comparison with the state
of the art, we carry out a calculation of 50 eigenpairs of U with eigenvalues closest to 1
using (i) full diagonalization of U using the zgeev Routine from MKL, (ii) shift invert
diagonalization based on the LU decomposition of U − 1 using the zgetrf Routine from
MKL in combination with arpack’s Arnoldi algorithm (iii) our new geometric sum filtered
diagonalization using arpack’s Arnoldi algorithm.

We measure the total runtime of the calculation as well as the memory footprint
and show the results in Tab. 1 and Fig. 3. We also calculate the maximal residue
max50

n=1‖U |n〉 − ωn|n〉‖2 to check the quality of the obtained eigenpairs. Fig. 3 reveals

1We note here in passing that for very high orders of filtering polynomials the numerical precision of
applying gk(U) may be insufficient. In this case, one can perform one iteration of the Ritz method by
diagonalizing Anm = 〈ñ|U |m̃〉 with approximate eigenvectors |ñ〉 of gk(U) to improve the precision of Ritz
pairs of U . We did however not observe such problems in practice.
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Figure 2: Benchmark calculation of nev = 50 eigenpairs closest to ztgt = 1 using 4 cores
of an AMD EPYC 7H12 2.6 GHz CPU. The colormap shows the measure runtimes in
seconds, the black dashed line indicates Krylov space dimensions equal to the number of
eigenvalues on the outer apple line in Fig. 1. The red dashed line shows the Krylov space
dimension 80% smaller than this value. Red crosses show the position of absolute minimal
runtime. Scanning algorithmic parameters ncv and k disabled core boost and therefore
numbers can differ from Tab. 1.

that the scaling of all techniques is exponential in system size L due to the nature of
the problem. However, with a fixed runtime, geometric sum filter diagonalization yields
eigenpairs of systems about 4 sites larger, i.e. for Hilbert spaces about 16 times larger.
Due to the very small memory footprint, system sizes up to about L = 20 are therefore
reachable, which would require about 50 TiB of memory with shift-invert. Despite the use
of quite large polynomial orders, the algorithm is stable and yields eigenpairs of excellent
quality with residuals about one order of magnitude smaller than obtained from full di-
agonalization. As an example of how the obtained eigenstates of the unitary U can be
investigated, we show in Fig. 4 the entanglement entropy as a function of the subsystem
size LA. For this, we cut the system into a left half (subsystem A) consisting of LA qubits,
and a right half (subsystem B) with L − LA qubits. Due to the open boundaries we use
in this system, there is only one cut between the two subsystems. For each eigenstate |ψ〉,
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method L time [s] mem. [GiB] max res.
geom. sum 10 0.3 0.167 4.2× 10−15

geom. sum 11 0.7 0.224 2.3× 10−15

geom. sum 12 2.3 0.265 1.9× 10−15

geom. sum 13 6.6 0.288 2.8× 10−15

geom. sum 14 26.0 0.369 2.5× 10−15

geom. sum 15 46.8 0.434 2.5× 10−15

geom. sum 16 193.3 0.861 2.5× 10−15

geom. sum 17 903.6 1.802 2.8× 10−15

geom. sum 18 4965.2 4.601 3.4× 10−15

geom. sum 19 16 579.0 12.081 3.7× 10−15

geom. sum 20 97 706.9 33.323 4.3× 10−15

full diag. 10 3.0 0.289 1.9× 10−14

full diag. 11 17.2 0.556 1.9× 10−14

full diag. 12 102.8 1.341 2.8× 10−14

full diag. 13 687.2 4.476 4.1× 10−14

full diag. 14 3622.3 16.622 4.0× 10−14

full diag. 15 23 025.9 64.581 5.2× 10−14

full diag. 16 198 568.0 192.614 6.8× 10−14

shift invert 10 0.6 0.264 5.7× 10−15

shift invert 11 1.8 0.454 6.2× 10−15

shift invert 12 5.5 0.996 9.0× 10−15

shift invert 13 18.6 3.25 1.7× 10−14

shift invert 14 78.3 12.263 1.4× 10−14

shift invert 15 352.9 48.19 2.7× 10−14

shift invert 16 2197.3 192.248 3.6× 10−14

shift invert 17 11 433.5 768.247 3.8× 10−14

Table 1: Average runtime and memory consumption for the calculation of nev = 50
eigenpairs close to ztgt = 1 of our proposed geometric sum polynomial filter method with
ncv = b2L/2+1c and the optimal polynomial order k = 0.8 · 2L+1/ncv (cf. Fig. 2) in
comparison with full diagonalization using MKL’s zgeev, as well as a custom shift invert
implementation using MKL’s zgetrf. Runtimes were measured using 16 cores of an AMD
EPYC 7H12 2.6 GHz CPU. Memory usage is estimated from the maximum resident set
size (max RSS). Memory footprints are only indicative since our simple benchmark codes
were not optimized for memory usage.

we can then calculate the entanglement entropy between the two subsystems, given by

SA = −TrρA ln ρA = −
∑
i

s2i ln s2i , ρA = TrB|ψ〉〈ψ|. (11)

Here, s2i are the eigenvalues of the reduced density matrix ρA of subsystem A, which can
be calculated also by determining the singular values si of the wave function reshaped as a
matrix ψ2LA×2L−LA , where the number of rows and columns reflect the dimensions of the
Hilbert spaces of the respective subsystems. It is clear in Fig. 4 that the entanglement
entropy follow a volume law, it is extensive as a function of subsystem size, almost up
LA = L, at which point the entropy decreases due to the symmetry SA = SB. This clean
scaling is expected, since our circuit (1) is designed to be ergodic. Since we are dealing
with a Floquet system, all eigenstates are “infinite temperature” states, with volume law
entanglement. This is why this system is not amenable to tensor network techniques for
calculating exact eigenstates, since the required bond dimension would scale exponentially
with system size. We can go one step further and compare these results quantitatively to
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Figure 3: Scaling of total runtime for the calculation of nev = 50 eigenpairs close to ztgt = 1
for different methods. The data is the same as in Tab. 1. The dotted line indicates the
expected theoretical scaling O(22.5L) of the method.

the expected entanglement entropy for a cut of the system into two parts of size LA and
LB (LA + LB = L) for random pure states. Page [56] conjectured this entropy to be for
LA ≤ LB

SA =

2L∑
k=2LB+1

1

k
− 2LA − 1

2LB+1
, (12)

and this was later proven to be correct [57,58].
The red dashed lines in Fig. 4 show the expected entropy (12), revealing a perfect

match. This confirms the expectation, that in the random circuit model (1), the eigenstates
are maximally chaotic.

6 Conclusion

We have shown that the geometric sum is an effective polynomial filter to obtain interior
eigenpairs of local Floquet unitary operators. Due to the locality, an efficient matrix vector
product U |ψ〉 can be defined and the geometric sum can be efficiently applied to any wave
function. This allows the application of the implicitly restarted Arnoldi algorithm for
finding eigenpairs closest to an arbitrary target on the complex unit circle.

Although the overall exponential scaling of the problem remains, the method has
a moderate memory footprint compared to full diagonalization and shift-invert, and is
roughly one order of magnitude faster than shift-invert, making systems of L ≥ 20 qubits
accessible.

We note that a large fraction of the runtime of the algorithm is spent in the matrix
vector product due to the high order of the polynomial, and that runtimes can be reduced
significantly by optimizing it.
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Figure 4: Entanglement entropy as a function of subsystem size LA for eigenstates of the
unitary (1) for different system sizes L = 10 . . . 20. For each curve, a different realization
of the random circuit was generated and the mean over 50 eigenstates was taken. The
variance over eigenstates is very small (of the order of 10−4 and smaller). The dashed red
lines show the expected entanglement entropy for infinite temperature pure states [56].
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