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We investigate the two-dimensional motion of relativistic cold electrons in the presence of ‘strictly’
spatially varying magnetic fields satisfying, however, no magnetic monopole condition. We find that
the degeneracy of Landau levels, which arises in the case of the constant magnetic field, lifts out
when the field is variable and the energy levels of spin-up and spin-down electrons align in an
interesting way depending on the nature of change of field. Also the varying magnetic field splits
Landau levels of electrons with zero angular momentum from positive angular momentum, unlike
the constant field which only can split the levels between positive and negative angular momenta.
Exploring Landau quantization in non-uniform magnetic fields is a unique venture on its own and
has interdisciplinary implications in the fields ranging from condensed matter to astrophysics to
quantum information. As examples, we show magnetized white dwarfs, with realistic non-uniform
magnetic fields involved simultaneously with Lorentz force and Landau quantization affecting the
underlying degenerate electron gas, exhibiting a significant violation of the Chandrasekhar mass-
limit; and an increase in quantum speed of electrons in the presence of a spatially growing magnetic
field.

1. INTRODUCTION

The role of magnetic fields in controlling the natural –
Earth based to astrophysical – systems from the micro-
scopic to macroscopic scales is well established. From the
formation of stars to stellar winds, cosmic rays, accretion
disks and jets in X-ray binaries and active galactic nuclei,
the magnetic field plays an indispensable role in all the
astrophysical systems. In the Earth based systems and
laboratory, quantum Hall effect, de Haas Van Alphen
effect, vortices, superconductivity, high-resolution NMR
and EPR spectroscopies are some of the landmark con-
tributions of high magnetic field physics to the solid state
and condensed matter sciences, analytical chemistry and
structural biology.

The interaction of strong magnetic field with Fermi gas
gives rise to many interesting effects. Two of the main
effects are Landau Quantization (hereinafter LQ) [1] and
Geometric Phase [2]. Most of the other applications ap-
pear to be advanced manifestations of these two. LQ
has been well established and discussed in detail for uni-
form magnetic fields in both non-relativistic [3] as well as
relativistic [4] cases. In one hand, non-relativistic Lan-
dau effect has been extremely useful in explaining many
condensed matter experiments through, e.g., quantum
Hall effect, de Haas Van Alphen effect and Shubnikov-de
Haas oscillations (see, e.g., [5–8]). On the other hand,
relativistic LQ is helpful in resolving many astrophysi-
cal mysteries and quantum speed limit of fermions (e.g.
[9]). Effect of high magnetic field in neutron stars, par-
ticularly in the surface with magnitude ∼ 1015 G as is
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proposed in the premise of magnetar based model, is in-
volved with LQ (even if involved with many levels). Fur-
ther, Das & Mukhopadhyay by taking the stoke of LQ
explained the possible existence of super-Chandrasekhar
mass white dwarfs [10] and their new mass-limit [11],
assuming magnetic fields to be uniform in such white
dwarfs. It was also shown that LQ leads to softening
the equation of state for neutron stars in the presence
of strong magnetic field, though the stiffening effect due
to anomalous magnetic moment may overwhelm it [12].
In addition, it was shown by one of the present authors
that strong magnetic field induced LQ influences the neu-
tronization threshold and the onset of neutron drip by
increasing the density for the former and increasing or
decreasing for the latter depending on the magnetic field
[13]. It was further confirmed by others [14] showing that
the neutron drip line in the crust of highly magnetized
star shifts to either higher or lower densities depending
on the magnetic field strength. Interestingly, synthetic
Landau levels for photons has also been explored [15].
As photons experiencing a Lorentz force develop handed-
ness, they provide opportunities to study quantum Hall
physics and topological quantum science.

However, most of the LQ effects mentioned above are
probed maintaining the field uniform. In reality, partic-
ularly, in the astrophysical cases pointed out above, the
magnetic field is never uniform. Note that LQ effects
become important only when the gyromagnetic radius is
comparable or less than the Compton wavelength of the
underlying particles. Moreover, LQ theory based on uni-
form magnetic field does not suit for non-uniform mag-
netic fields, if the magnetic field varies in a length scale
comparable or shorter than the Compton wavelength of
the particles.

Altshuler & Ioffe [16] were the first to discuss the mo-
tion of fast particles in the strongly fluctuating magnetic
field and showed analytically how fluctuations result in
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phase incoherence. Following their work, others (see, e.g.,
[17, 18]) discussed multiple aspects of the motion of parti-
cles in magnetic fields, taking into considerations strong
as well as weak but random fluctuations over uniform
field, spatially modulated magnetic fields lifting degener-
acy in the nonrelativistic regime, etc. There are other ex-
plorations of the effects of random magnetic fields to the
electron gas and LQ, and their implications to, e.g., com-
posite fermions and the quantum critical point [19, 20].

What if, the field is completely non-uniform like in as-
trophysical systems and plasma? In white dwarfs, neu-
tron stars, as well as main sequence stars, e.g. in Sun,
it is almost certain that field varies from the center to
surface. If the magnetar is a highly magnetized neutron
star, while its surface field is observationally inferred to
be∼ 1015 G, its central field could be orders of magnitude
higher. Similarly, highly magnetized white dwarfs (B-
WDs) violating Chandrasekhar-limit significantly with a
new mass-limit [11] are argued to have central and surface
fields & 1015 G and . 1012 G respectively [21–24], hence
LQ clearly can not be avoided therein. Note that at high
densities in B-WDs, the Coulomb interactions turn out to
be negligible compared to Fermi energy [10]. Therefore
electric fields are negligible compared to the magnetic
fields therein, particularly if the field is not time varying.
Hence, one can ignore the QED induced effect of pair
creation in B-WDs [10, 25, 26], which can not happen
in magnetic fields alone. Such systems with magnetic
field having variation over spatial region as an explicit
function of distance has not gained direct attention till
date.

We aim here to explore the change in LQ effect on
the energy levels of relativistic electrons in the presence
of mainly a decaying magnetic field, but also a growing
magnetic field. The chosen field profiles, as demonstrated
below, are in accordance with Maxwell’s equations of
electromagnetism. Since LQ is a quantum phenomenon,
it is expected to be affected only if the variation in mag-
netic field takes place at the quantum scale. Therefore,
we probe the variation of magnetic field at scales of the
order of gyromagnetic radius which is less than or of the
order of Compton wavelength of electron, determined by
the chosen magnetic fields.

It is generally expected that the magnetic field and
density vary in a star as decreasing functions of its radial
coordinate. Therefore, the magnetic field is expected to
be varying with the density. As the density is expected
to be highest at the center and lowest at the surface, it
is a reasonable assumption that the magnetic field too
follows the same trend, as proposed earlier [27]. Such a
field profile has been extensively used for neutron stars
and white dwarfs with appropriate parameters (see, e.g.,
[24, 28]), which induces a sharp variation of the field in a
short spatial scale, even at a quantum scale, depending
upon the parameters. If the variation of field is close to
the surface, it practically does not bring in any quantum
effect, i.e. modified LQ due to varying field is not impor-
tant on the structure of, e.g., B-WDs. However, if the

magnetic field varies close to the center or sufficiently
away from the surface, where density is high, LQ with
varying field plays an important role to determine the
stellar structure. Without prior knowledge of the vari-
ation of magnetic field within a white dwarf, in general
star, it is worth exploring the effect of sharp variation of
field closer to the center of B-WDs.

As an application of non-uniform and growing mag-
netic field, we show its role in attaining higher quantum
speed of electrons as compared to uniform magnetic field.
This could help in achieving faster processing speed of
quantum computers along with other applications.

For relativistic electrons, the splitting of levels due to
spin has significant contribution in determining the en-
ergy spacing and overall structure of energy levels and,
hence, cannot be treated perturbatively. For uniform
magnetic field, it, in fact, leads to doubly degenerate
levels [3]. We show and investigate, how the degener-
acy due to spin arising in constant magnetic field breaks
down when the field is variable.

In the next section (Sec.2), we establish the formal-
ism of the problem of variable magnetic field. Subse-
quently, we review the solution for uniform magnetic
field in Sec.2 2.1 and explore the effect of the non-uniform
magnetic field in detail including the effective potential
observed by the electron in Sec.2 2.2. The computational
methods to determine the eigenvalue spectrum are also
outlined in Sec.2 2.2. The solutions of established equa-
tions are shown in Sec.3 3.1 and Sec.3 3.2. The underly-
ing thermodynamics and equation of state (EoS) are ex-
plored in Sec.4 and its implications, in an astrophysical
context and a quantum information, have been enlight-
ened in Sec.5. We conclude in Sec.6 by highlighting the
key points of this work and its various implications.

2. DIRAC EQUATION FOR ELECTRONS AND
ITS SOLUTION IN THE PRESENCE OF

MAGNETIC FIELDS

For electron of mass me and charge q (−e), the Dirac
equation in the presence of magnetic field is given by

i~
∂Ψ

∂t
=

[
cα ·

(
−i~∇− qA

c

)
+ βmec

2

]
Ψ, (2.1)

where α and β are Dirac matrices, A is the vector po-
tential, ~ = h/2π with h being Planck’s constant and c
is the speed of light. For stationary states, we can write

Ψ = e−i
Et
~

[
χ
φ

]
, (2.2)

where Φ and χ are 2-component objects/spinors. We
consider the Pauli-Dirac representation in which

α =

[
0 σ
σ 0

]
, β =

[
I 0
0 −I

]
, (2.3)
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where each block represents a 2× 2 matrix and σ repre-
sents three components of the Pauli matrices together in
a vector. Hence Eq. (2.1) reduces to

(E −mec
2)χ = cσ ·

(
−i~∇− qA

c

)
φ, (2.4)

(E +mec
2)φ = cσ ·

(
−i~∇− qA

c

)
χ. (2.5)

Decoupling them for χ, we obtain

(E2 −m2
ec

4)χ =

[
cσ ·

(
−i~∇− qA

c

)]2
χ. (2.6)

Defining π = −i~∇ − qA/c and using the identity (σ ·
π)(σ · π) = π2 − q~σ ·B/c, Eq. (2.6) reduces to

(E2 −m2
ec

4)χ =

[
c2
(
π2 − q~

c
σ ·B

)]
χ, (2.7)

such that the antiparticle wavefunction φ = −χ [4]. We
solve Eq. (2.7) for a variable magnetic field in cylindrical
coordinates. As there is no fixed law for the variation
of magnetic field in nature, except that it should sat-
isfy Maxwell’s equations, we choose a simple power law
variation of the magnetic field, given by

B = B0ρ
nẑ, (2.8)

in cylindrical coordinates (ρ, φ, z). Such a field profile
satisfies no monopole condition (∇ ·B = 0) and accord-
ing to Ampére’s law produces current. See appendix for
total Lagrangian and from Lagrangian equation of mo-
tion how to obtain the Dirac and Maxwell’s equations.
For the present purpose of underlying quantum physics,
our interest is in the Dirac equation. However, in cer-
tain applications, e.g. in stellar physics, the underlying
Maxwell’s equation needs to be paid attention in order
to include classical Lorentz force. The chosen magnetic
field profile also assures the decaying nature of the field
away from the source if n < 0 which is a common feature,
particularly in stellar physics. Also, the same profile with
n > 0 can be applicable for a system with spatially grow-
ing field satisfying other physics intact. Using a gauge
freedom for the vector potential A, we choose

A = B0
ρn+1

n+ 2
φ̂ = Aφ̂. (2.9)

Hence,

π2χ =

[
p̂2ρ +

(
p̂φ −

qA

c

)2

+ p̂2z

]
χ, (2.10)

where p̂ρ,φ,z denote operators. Noticing that φ and z are
ignorable coordinates, the solution of Eq. (2.7) can be
written as

χ = ei(mφ+
pz
~ z)R(ρ), (2.11)

where R(ρ) is a two-component matrix, ‘m~’ is the an-
gular momentum of the electron and pz is the eigenvalue
of momentum in the z−direction. Therefore, Eq. (2.10)
becomes

π2R = −~2
[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2

]
R(ρ)

+

[
q2A2

c2
+

2q~mA
cρ

+ p2z

]
R(ρ). (2.12)

From Eqs. (2.7), (2.10) and (2.12) and substituting q =
−e, we obtain(
E2 −m2

ec
4

c2
− p2z

)
R(ρ) = −~2

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2

]
R(ρ)

+

[
e2A2

c2
− 2e~mA

cρ
+
e~
c

(σzB)

]
R(ρ). (2.13)

There will be two independent solutions for R(ρ), which
can be taken, without loss of generality, to be the eigen-
states of σz, with eigenvalues ±1. Thus if we choose two
independent solutions of the form

R+(ρ) =

[
R̃+(ρ)

0

]
, R−(ρ) =

[
0

R̃−(ρ)

]
such that σzR± = ±R±, Eq. (2.13) becomes

P̃ R̃± = −~2
[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2

]
R̃±

+

[
e2A2

c2
− 2e~mA

cρ
± e~

c
B

]
R̃± (2.14)

where

P̃ =

(
E2 −m2

ec
4

c2
− p2z

)
. (2.15)

Dividing Eq. (2.14) by m2
ec

2, we have an eigenvalue equa-
tion as

αR̃± = −
(

~
mec

)2 [
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2

]
R̃±

+

[
e2A2

m2
ec

4
+

e~
m2
ec

3

(
−2mA

ρ
±B

)]
R̃± (2.16)

= −λ2e
[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2

]
R̃±

+

[(
kB0ρ

n+1

n+ 2

)2

+ kλe

(
− 2m

n+ 2
± 1

)
B0ρ

n

]
R̃±,

(2.17)

where α = P̃
m2
ec

2 = (ε2−1−x2z) which is, in fact, square of

dimensionless momentum and acting as an eigenvalue of
the problem, ε = E

mec2
(dimensionless energy), xz = pz

mec

(dimensionless momentum along z−direction), λe = ~
mec

(Compton wavelength of electrons), k = e
mec2

. Note that
this α should not be confused with Dirac α matrix.



4

2.1. Uniform Magnetic Field (n = 0)

For constant magnetic field, Eq. (2.17) becomes

αR̃± = −λ2e
[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2

]
R̃±

+

[(
kB0ρ

2

)2

+ kλe (−m± 1)B0

]
R̃±. (2.18)

The above equation can be solved analytically similar
to its non-relativistic counterpart [3]. Now defining ξ =(
kB0

2λe

)
ρ2, Eq. (2.18) can be written as

ξR̃′′± + R̃′± +

(
−1

4
ξ + β∓ −

m2

4ξ

)
R̃± = 0, (2.19)

where

β∓ =
α

2λekB0
+

(
m

2
∓ 1

2

)
and double-prime (′′) and prime (′) respectively denote
double and single derivatives with respect to ρ. At ξ →
∞, the solution of Eq. (2.19) gives as R̃± ∼ e−

ξ
2 , and for

ξ → 0 as R̃± ∼ ξ
|m|
2 . Accordingly, we seek a solution of

the form

R̃± = e−
ξ
2 ξ
|m|
2 w(ξ). (2.20)

Thence equation for w(ξ) satisfies the confluent hyperge-
ometric function so that

w = F

[
−
(
β∓ −

|m|
2
− 1

2

)
, |m|+ 1, ξ

]
. (2.21)

For the wavefunction to be finite everywhere, the quan-

tity
(
β∓ − |m|2 −

1
2

)
must be a non-negative integer ν.

Hence, the values of α are given by

αν = 2kλeB0

(
ν +
|m|
2
− m

2
+

1

2
± 1

2

)
, (2.22)

where m is the azimuthal quantum number. One can
easily see from Eq. (2.22) that ground state energy (cor-
responding to α0) is 0 and all the other energy levels are
doubly degenerate. Also, energies are same form = 0 and
> 0. Finally P̃ in Eq. (2.15) turns out to be 2νB0/Bc,
where Bc = m2

ec
3/e~, the Schwinger limit of pair pro-

duction, so that

E2 = p2zc
2 +m2

ec
4

(
1 + 2ν

B0

Bc

)
. (2.23)

2.2. Non-Uniform Magnetic Field (n 6= 0)

We know that analytic solutions exist for some spe-
cial potentials only, which include harmonic oscillator,

hydrogen-atom and Morse-oscillator. For the presently
chosen potential, however, we are not able to find so-
lutions analytically. Therefore, we use computational
methods to find eigenvalues αν at different levels ν for
different n. Let us first explore the asymptotic behaviour
of R̃± (the asymptotic behaviour is same for R̃+ and R̃−).

As ρ→ 0, Eq. (2.17) becomes

−λ2e
[
∂2

∂ρ2
+

1

ρ

∂

∂ρ

]
R̃± = 0. (2.24)

Hence, R̃± → C1+C2 log(ρ), C1 and C2 being constants.
Since log(ρ) blows up at ρ→ 0, to seek for a finite solu-
tion throughout, we set C2 = 0. Hence, as ρ→ 0

R̃± → C1, R̃′± → 0. (2.25)

For ρ → ∞, however, for n 6 0, Eq. (2.17) turns out
to be [

−λ2e
∂2

∂ρ2
+

(
kB0ρ

n+1

n+ 2

)2
]
R̃± = 0. (2.26)

Thus,

R̃± → e−[ kB0
λe(n+2) ]

ρn+2

n+2 as ρ→∞. (2.27)

FIG. 1: The variation of effective potential for
different n for B0 = 1015 G pm−n. Here, the black

horizontal line represents Veff = 0. Various potentials
at ρ = 1 pm from bottom to top successively are for

n = 1, 0,−0.3,−0.5,−0.7,−1,−1.1.

There are many different methods to solve Eq. (2.17)
including ‘Finite Difference’ method and ‘Shooting and
Matching’ method. We obtain most accurate solutions
with the ‘Shooting and Matching’ method [29], where the
relative error between results in exact theory and compu-
tation is below 0.0004 for lower Landau levels and it never
exceeds 0.002 even in higher levels for the constant field
case (see Table 1). The differential equation is solved us-
ing “ode rk” command in scilab [30] which is traditional
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adaptive Ranga-Kutta method. In order to obtain the
initial conditions, we use our knowledge for the behavior
of R̃± at ρ → 0 and then set C1 = 1. Thus, we have

initial conditions as R̃±(ρ → 0) = 1, R̃′±(ρ → 0) = 0.
Ideally, initial conditions should be defined at ρ = 0, but
many terms in Eq. (2.18) blows up at ρ = 0. Hence,
we define the initial conditions at ρ = 10−10 picometer
(pm) which is equivalent to 0 compared to even the min-
imum gyromagnetic radius for our field of interest, which
is of the order of pm. We express magnetic fields in units
of G and length in pm for solving Eq. (2.17). Thus,
B0 = |B| = B at 1 pm.

Also, to remove the diverging nature of magnetic field
near the origin with n < 0, we choose

B = B0 (ρ+ ρ0)n, (2.28)

where ρ0 could be chosen to be a very small number as
compared to the scale of wavefunction. We choose it to
be equal to 10−5 pm. As long as ρ0 is very small, this
choice does not effect the solutions.

To determine the effective potential experienced by

electrons, let R̃±(ρ) = u±(ρ)√
ρ . Then, Eq. (2.17) becomes

αu± =

(
−λ2e

∂2

∂ρ2
+ Veff

)
u± (2.29)

where

Veff = −λ2e
[

1

4ρ2
− m2

ρ2

]
+

(
kB0ρ

n+1

n+ 2

)2

+ kλe

(
− 2m

n+ 2
± 1

)
B0ρ

n.

We show the variation of Veff for different n in Figure
1. It is seen that for n ≤ −1, potential is completely
repulsive whose solution will depend on the distance from
the source (origin of the system) upto which a particle
can move. Therefore, the energy eigenvalues for such
cases depend upon where we put a hard wall making
the system equivalent to confining the electron in a box.
However we do not want to apply any such restrictions
on the electron. Moreover, this nature of variation is
not realistic, particularly in astrophysical scenarios. We
therefore restrict our analysis to cases for n > −1.

3. DISPERSION RELATIONS

3.1. Excluding Zeeman effect

First, we investigate the effect of variation of magnetic
fields on the energy levels αν excluding Zeeman splitting
for m = 0. Thus, Eq. (2.17) becomes

α′νR̃ = −λ2e
[
∂2

∂ρ2
+

1

ρ

∂

∂ρ

]
R̃+

(
kB0ρ

n+1

n+ 2

)2

R̃, (3.1)

ν αcomp αth relative error
0 22.200623 22.2094 0.0003952
1 66.616364 66.6282 0.0001776
2 111.03531 111.047 0.0001053
3 155.4541 155.4658 0.0000752
4 199.87289 199.8846 0.0000586
5 244.29169 244.3034 0.0000479
6 288.7104 288.7222 0.0000409
7 333.12916 333.141 0.0000355
8 377.54795 377.5598 0.0000314
9 421.96673 421.9786 0.0000281

TABLE 1 Comparison of the eigenvalues obtained
from numerical computation (column two) and theory
(column three) for constant magnetic fields (n = 0) with
B0 = 1015 G pm−n.

FIG. 2: The variation of eigenvalue with eigen-index
for B0 = 1015 G pm−n, when n = 0 (black solid circles),

-0.3 (blue dashed asterisks), -0.5 (green dot-dashed
triangles) and -0.7 (red dotted diamonds). The lines

represent the curves fitted with constants of Eq. (3.2).

where α′ν is the energy level excluding Zeeman effect.
Figure 2 shows how the spacing of energy levels modifies
for different n : −1 < n ≤ 0. As seen in the figure, as
n decreases, energy levels rise up. It is seen from Figure
1 that with the decrease of n (but for > −1), potential
with increasing ρ crosses the 0 at a smaller distance and
thereby becoming repulsive closer to the origin, compared
to that of a larger n. We know that a particle is more
stable if it is in an attractive potential regime and has
lower energy. If a particle feels a repulsive potential, it re-
quires more energy to stay in that region, thus explaining
the behavior of eigenvalues seen in Figure 2. In simpler
words, this increase in energy eigenvalues can be under-
stood as follows. These variations of eigenvalues are for a
fixed B0, which is B at 1 pm, when B keeps increasing to
a much higher value near the source for lower n, thereby,
increasing the average magnetic field and, hence, raising
the energy levels.
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n C3 C4 C5 C6

0 44.4188 1 0.5 1
-0.1 56 1.0519 0.50 0.9467
-0.2 72.5 1.111 0.4934 0.8878
-0.3 97 1.18 0.488 0.8224
-0.4 134.63 1.25 0.486 0.749
-0.5 195.66 1.33 0.484 0.665
-0.6 301 1.43 0.482 0.5702
-0.7 494 1.54 0.476 0.4609
-0.8 878.9 1.667 0.475 0.33
-0.9 1706 1.818 0.48 0.191

TABLE 2 The values of the constants of Eq. (3.2) for
various n. Here B0 in Eq. (3.2) is chosen in the units of
1015 G pm−n to obtain C2.

Also, with the decrease of n, dispersion energies be-
come highly non-linear, i.e. the difference between two
successive levels, while initially is very large, then de-
creases much faster for smaller n, which is physically re-
lated to the chosen profile of magnetic field. Due to the
faster decaying nature of field, electrons observe a very
strong magnetic field near the center, thereby, having sig-
nificant discretion of energies, for a fixed B0. As it moves
little away from the center, magnetic field weakens and,
hence, the spacing of levels decreases. One can expect
a larger change in the energy level gaps, if field decays
more rapidly, what is seen in Figure 2.

Since an analytical solution is not easy to obtain, we
try to figure out the possible expression for the energy
dispersion relation using a suitable ansatz and data fit-
ting. Based on the analogy of constant field case, we
suggest the ansatz of the form

α′ν = C3 B
C4
0 (ν + C5)C6 , (3.2)

where C3, C4, C5 and C6 are constants whose values de-
pend on n. Table 2 shows the values of these constants
that we obtain by fitting numerical data for lower levels
when −0.9 ≤ n ≤ 0. It is interesting to note that

C4 + C6 = 2. (3.3)

3.2. Including Zeeman Effect

Now let us obtain the eigenvalues for the entire Eq.
(2.17). Figure 3 shows the eigenvalues for m = 0 with
(a) B0 = 1015 G pm−n, and (b) B0 = 5× 1014 G pm−n,
where different markers distinctly indicate the levels for
−σ ·B (−B0) and +σ ·B (+B0). To give a better idea
about the variation of eigenvalues and the splitting of
levels, we fix ε to the Fermi energy εF = 20 and then
obtain B0 and corresponding eigenvalues for one-level,
two-level and three-level systems, enlisted in Table 3.
There are many interesting results what can be inferred
from Figure 3 and Table 3.

The levels which are doubly degenerate in the pres-
ence of a constant magnetic field turn out to be non-
degenerate when the field varies. A diagram correspond-
ing to the solution of Eq. (2.17) for the splitting energy
and lifting degeneracy with varying field as compared to
the constant field case is shown in Figure 4. The trend of
splitting is really a nice site for observation. The energy
level corresponding to +σ ·B of ground level, which over-
laps with the energy level corresponding to −σ ·B of first
excited level for n = 0, becomes a little higher than the
energy level for −σ ·B of first excited level for n = −0.3,
and lies nearly in the middle of −σ ·B of first and second
excited energy levels for n = −0.5. This further falls in
closer to the energy level for −σ · B of second excited
state for n = −0.7 In fact, for n = −0.9 the eigenvalue
for the +σ · B of ground level is even larger than the
−σ ·B of third excited level, as shown in Figure 5.

Note that, ground level always lies at 0 for all n. Thus,
the physical effects arisen due to the electrons being in
ground level only will remain unaltered if a constant field
is replaced by a variable field or if there are little inhomo-
geneities within the constant field background. However,
other phenomena that involve with multiple Landau lev-
els are ought to get modified due to unequal spacing and
change of degeneracy of levels in non-uniform fields.

Figure 6 shows a sample set of wavefunctions in first
few levels. It is clear that wavefunctions fully decay in
the region used to determine the eigenvalues. This en-
sures the correctness of eigenvalues obtained from our
computation.

1. Dispersion relation and non-linearity

In order to obtain the dispersion relation, we propose
the ansatz for the shift of eigenvalues from the previous
case, given by

αν = α′ν ±D1 B0
D2 (ν +D3)D4 , (3.4)

where D1, D2, D3 and D4 are constants. With many tri-
als and tribulations, we are able to obtain these constants
till n = −0.5. However, the eigenvalues of very low levels
(ground to third) for +σ ·B do not satisfy these relations
exactly, which show that the effect of ±σ ·B is not equal
near the origin. This confirms that the effect of change in
potential on the particle is non-linear and hence supports
the power-law ansatz of our proposed dispersion relation.
To make it lucid, there is an equal change in the potential
due to −σ · B and +σ · B, but when we compute the
differences for the same with respect to α′ν , they follow
slightly different trends, which imply that the equal de-
crease and increase in potential does not have same effect
proving the net non-linear dispersion relation for variable
magnetic field.

We try to refine the constants in Eq. (3.4) by assuming
that they must have some particular relation with the
constants of Eq. (3.2). The relations for n ≥ −0.5 come
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n νm B0 (1015 G pm−n) α0 α1 α2 α3

0 1 8.98 0.00976 398.866 797.397 1196.62
2 4.49 0.0152 199.461 398.879 598.311
3 2.994 0.00976 133.0327 266.0217 398.98

-0.3 1 3.546 0.0468 399.237 (+)468.26 729.245
2 3.095 0.00312 340.2 (+)399.06 621.398
3 2.125 0.002 218.28 (+)256.37 399.255

-0.5 1 1.876 0.0428 399.15 (+)532.63 669.2
2 1.533 0.006 304.718 (+)399.19 511.24
3 1.275 0.0498 238.348 (+)312.29 399.897

-0.7 1 0.979 0.000 399.44 (+)573.177 595.61
2 0.744 0.00217 278.27 (+)399.3 413.934
3 0.755 0.0003 267.83 (+)384.34 399.345

TABLE 3 The variation of B0 for different n for one-level, two-level and three-level systems at ε = 20. For n = 0,
all the levels are doubly degenerate. For n 6= 0 all eigenvalues are different independent of energy levels and splits
+σ ·B and −σ.B. Here ‘(+)’ denotes αν with +σ ·B and the rest is for −σ ·B.

𝝂 𝝂

𝛼
𝜈

𝛼
𝜈

(a) (b)

FIG. 3: The variation of eigenvalue with the eigen-index for n = 0 (black solid line), -0.3 (blue dashed line), -0.5
(green dot-dashed line) and -0.7 (red dotted line) for (a) B0 = 1015 G pm−n, and (b) B0 = 5× 1014 G pm−n, and
m = 0. Here the levels for −σ ·B (−B0) and +σ ·B (+B0) are marked by the solid circles and triangles respectively.

out to be

D1 = C3 × C5;
D2 = C4;
D3 = C5;

D4 = C6 − 1

. (3.5)

As n lowers further below −0.5, the non-linearity in
potential increases so much that the eigenvalues show
large deviation from these relations till higher levels
(νm = 10 − 50). Hence, the net dispersion relation for

m = 0 and n ≥ −0.5 is

αν = C3 B
C4
0

[
(ν + C5)C6 ± C5 (ν + C5)C6−1

]
. (3.6)

2. m 6= 0

When we probe the eigenvalues taking non-zero m,
they show enthralling trends. We compare the eigen-
values between m = 1 and m = −1 along with m = 0
for n = −0.3, −0.5 and −0.7. As understood from Eq.
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FIG. 4: Schematic diagram showing splitting of energy levels with constant and varying magnetic fields for
n = 0,−0.3,−0.5,−0.7.

FIG. 5: Schematic diagram showing splitting of energy
levels with n = −0.9.

(2.22) for the case of constant field and discussed be-
low Eq. (2.22), positive m does not have any impact on
eigenvalues with respect to m = 0. Figure 7 shows how
with decreasing n (with more non-uniform field) eigen-
values for m = 0 and m = 1 along with m = −1 become
distinct at a given eigen-index. It is clearly seen that as
n decreases, the difference between the eigenvalues for
m = 0 and m = 1 increases.

Above behavior may be inferred to be an effect stem-
ming from the rotation of particles and field behavior.
Generally, rotation in the direction to the magnetic field
is easier and to the opposite direction difficult. The case
with of m 6= 0 implies that the electron has some angu-
lar momentum, which further implies its rotational mo-
tion. A positive m means rotation in the direction to the
magnetic field and negative implies opposite. When the
magnetic field is homogeneous, a rotation in the direc-
tion to the magnetic field is not expected to require any
extra force when there is no change of field magnitude
(no force due to magnetic pressure), hence no change in
energy. However, to rotate a particle opposite to its nat-
ural direction, extra force is required, hence raising of
energy. For an inhomogeneous field, as the magnitude of
field changes (here decreases with distance), the particle
has to overcome the force due to magnetic pressure, even
if the direction is same as of the magnetic field. Hence,
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FIG. 6: Wavefunctions for B0 = 1015 G pm−n, n = −0.3 and m = 0 for ν = 0 to 4 from the top to bottom panels
respectively, for (a) −σ ·B, and (b) +σ ·B.

its own energy dissipates, leading to the less energy to
align with the magnetic field.

4. MODIFICATION TO THERMODYNAMIC
PROPERTIES AND EQUATION OF STATE OF

COLD DEGENERATE ELECTRON GAS

The main impact of the variation of LQ in the pres-
ence of varying magnetic field established above is to
the systems where field varies drastically over the spa-
tial scale. Since there is a huge difference between cen-
tral and surface magnetic fields in the astrophysical bod-
ies like white dwarfs and neutron stars, their realistic
properties should be determined in the presence of vari-
able magnetic fields, in place of an approximate constant
field. Therefore, primary application of preceding discus-
sion appeared in mind is in stellar astrophysics, where the
variation of strong fields in the length scale of gyromag-
netic radius cannot be ruled out, at least in a certain re-
gion of the star. In high densities, matter in white dwarfs
and neutron stars turns out to be degenerate and their
EoSs play indispensable role to determine the underly-
ing stellar properties. In the presence of strong magnetic
field, such a highly dense matter may get influenced by
LQ, depending on the field strength, composition and
density. However, so far, all the underlying EoSs are ob-
tained assuming the field to be constant or at adiabatic
approximation. Therefore, their EoSs must be, realisti-
cally, determined considering field variation in mind, as
applicable. The variation of magnetic field can be cho-

sen appropriately by considering suitable n in our chosen
field ansatz, once central and surface magnetic fields are
known. We consider the magnetic field to be same from
the center to at least a distance of 10−2 pm from the cen-
ter of the decaying magnetic profile. Using this condition
and appropriate n, one can obtain the surface magnetic
field keeping in mind the approximate size of these ob-
jects. For example, if we assume the typical radius of
magnetized white dwarfs to be 1000 km, taking the cen-
tral magnetic field to be ∼ 1015 G and n = −0.3, the
surface magnetic field comes out to be ∼ 1010 G.

The main effect of magnetic field via LQ is to modify
the available density of states for electrons. For a con-
stant field, the difference in energy levels is constant, but
for a variable magnetic field case, the energy difference
between levels no longer remains constant, as shown in
Figure 4. Also there are separate sets of energy levels
for spin-up and spin-down electrons. The modified EoS
based on modified LQ due to variable fields is expected
to change the neutron drip line and mass-radius relations
of white dwarfs, neutron stars, strange stars etc. Since
the energy levels are not equally spaced and also the dou-
ble degeneracy is broken for variable magnetic fields, EoS
based on constant magnetic fields discussed by previous
authors (e.g. [10, 31]) for relativistic electrons in the
presence of strong magnetic field at zero temperature no
longer strictly holds for above applications. In the pres-
ence of variable magnetic field EoS can be found out as
follows.

Considering only one kind of electrons at a time, say
spin-down, the number of states per unit volume in a
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FIG. 7: The variation of eigenvalue with the eigen-index for m = 0 with −σ.B (black solid circles) and +σ.B (black
asterisks); m = +1 with −σ.B (blue upward triangles) and +σ.B (blue downward triangles); m = −1 with −σ.B
(magenta diamonds) and +σ.B (magenta squares) for (a) n = 0, (b) n = −0.3, (c) n = −0.5, and (d) n = −0.7.

momentum interval ∆pz for a Landau level ν for non-
uniform energy levels is given by (generalized from [10])

π

h3

(
P̃ν+1 − P̃ν

)
∆pz. (4.1)

For a constant magnetic field and all electrons, the above
expression is amended with a degeneracy factor gν of
Landau levels, where gν = 1 for the ground state and
gν = 2 for other states. However the situation is different
for a non-uniform field.

Let us define
(
P̃ν+1 − P̃ν

)
±

= D(ν)±. Therefore, the

electron density of states in the absence of magnetic field
2
h3

∫
d3p is replaced by

2π

h3
D(ν)±

∫
dpz (4.2)

in the case of a non-zero magnetic field.
In order to calculate the electron number density ne

at zero temperature, we have to evaluate the integral in

Eq. (4.2) from pz = 0 to pF (ν), which is the Fermi
momentum of the Landau level ν, and obtain

ne± =

νm∑
ν=0

2π

h3
D(ν)±pF (ν). (4.3)

The Fermi energy EF of the electrons for the Landau
level ν is given by

E2
F = m2

ec
4 + pF (ν)2c2 + P̃ (ν)c2. (4.4)

The upper limit νm of the summation, corresponding to
the upper limit of levels, in Eq. (4.3) is derived from the
condition that p2F (ν) ≥ 0, which implies

P̃ (ν)c2 ≤ E2
F −m2

ec
4 (4.5)

or

ανm = ε2F max − 1. (4.6)

Hence, total electron density taking into account both
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the spins of electron is

ne = ne+ + ne−

=
1

(2π)2λ3e

(
ν=νm−∑
ν=0

β−(ν)xF−(ν) +

ν=νm+∑
ν=0

β+(ν)xF+(ν)

)
,

(4.7)

where + sign indicates spin-up and − sign spin-down,
xF = pF /mec,

xF±(ν) =
[
ε2F − (1 + α±(ν)

] 1
2 (4.8)

and

β± = (α±(ν + 1)− α±(ν − 1)) /2. (4.9)

The electron energy density at zero temperature is

εe =
1

(2π)2λ3e

(
ν=νm−∑
ν=0

β−(ν)

∫ xF−(ν)

0

Eν,pzdxz

+

ν=νm+∑
ν=0

β+(ν)

∫ xF+(ν)

0

Eν,pzdxz

)

=
mec

2

(2π)2λ3e

(
ν=νm−∑
ν=0

β−(ν)(1 + α−(ν))f1

[
xF−(ν)

(1 + α−(ν))1/2

]

+

ν=νm+∑
ν=0

β+(ν)(1 + α+(ν))f1

[
xF+(ν)

(1 + α+(ν))1/2

])
, (4.10)

where

f1(z) =
1

2

(
z
√

1 + z2 + ln(z +
√

1 + z2)
)

(4.11)

and Eν,pz is the quantized energy levels defined in, e.g.,
Eq. (2.15). The pressure of an electron gas is given by

Pe = n2e
d

dne

(
εe
ne

)
= −εe + neEF

=
mec

2

(2π)2λ3e

(
ν=νm−∑
ν=0

β−(ν)(1 + α−(ν))f2

[
xF−(ν)

(1 + α−(ν))1/2

]

+

ν=νm+∑
ν=0

β+(ν)(1 + α+(ν))f2

[
xF+(ν)

(1 + α+(ν))1/2

])
, (4.12)

where

f2(z) =
1

2

(
z
√

1 + z2 − ln(z +
√

1 + z2)
)
. (4.13)

We know that with the change in allowed number of
levels in a system for a given εFmax, EoS changes sig-
nificantly. As the number of level increases, the pres-
sure decreases and increases for a given density, which
are respectively called softer and harder/stiffer EoS, at
a high and low densities respectively (see [10] for the
example of constant field). Figure 8(a) shows EoS for
various n. With the decrease in n, EoS becomes stiffer
at a high density and softer at a low density, indicating

lesser number of allowed levels in the system for low n.
Figure 8(b) shows how EoS becomes stiffer, at the high
density regime, with increasing B0 for a fixed n. This is
as per the expectation as stronger field leads to the more
LQ effect with less number of levels populated, deviating
the results more from the nonmagnetic case.

5. IMPLICATIONS

5.1. Mass–Radius Relation of Magnetized White
Dwarfs

An immediate astrophysical implication of above re-
sults is to the mass–radius relation of (highly) magne-
tized white dwarfs. As mentioned in the Introduction
(e.g., [11, 24]), strong magnetic field can significantly
modify the mass-radius relation due to LQ as well as
classical Lorentz force effects. However, the former effect
was only considered for a constant magnetic field which
is not realistic. Moreover, it has been argued sometime
[32] that LQ effect is not important in controlling stellar
structure of white dwarfs and only Lorentz force would
suffice the same. Here we plan to check if the modified
LQ with varying magnetic field has any impact on the
white dwarf stellar structure.

For the present purpose, we consider a sample field
profile in cylindrical polar coordinates as

B = B0 0.1nẑ, for ρ < 100 + 10−11 cm, (5.1)

B = B0

(
ρ− 100 cm

10−10 cm

)n
ẑ, for ρ ≥ 100 + 10−11 cm,

with n < 0,

so that (B·∇)B = 0 and ∇·B = 0. Therefore, the nonro-
tating white dwarfs will be spherical in shape. Hence, in
spherical polar coordinates with θ = π/2, the field profile
is given by

B = −B0 0.1nθ̂, for r < 100 + 10−11 cm, (5.2)

B = −B0

(
r − 100 cm

10−10 cm

)n
θ̂, for r ≥ 100 + 10−11 cm.

Therefore, the mass and radius of a white dwarf can be
obtained by solving

d

dr

(
Pe +

B2

8π

)
= −GM(r)(ρe + ρB)

r2
, (5.3)

dM(r)

dr
= 4πr2(ρe + ρB), (5.4)

where ρB is the magnetic density, B2 = B · B, ρe =
nempµe, mp is the mass of proton, µe is the mean molec-
ular weight per electron and G is Newton’s gravitation
constant. Here EoS can be supplied following the proce-
dure described in §4.
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(a) (b)

FIG. 8: (a) Equation of state for n = 0 with εFmax = 17 (long-dashed blue line), n = −0.3 with εFmax = 17
(dashed red line), n = −0.5 with εFmax = 18 (dot-dashed green line) and n = −0.7 with εFmax = 15 (dotted violate
line), for B0 = 1015 G pm−n, along with Chandrasekhar’s result with εFmax = 17 (solid black line), (b) Equation of

state for B0 = 1015 G pm−n (dashed green line), 2× 1015 G pm−n (dot-dashed red line) and 3× 1015 G pm−n

(dotted blue line) along with Chandrasekhar’s result (solid black line) for n = −0.3 with εFmax = 25, when pressure
is in units of 2.668× 1027 erg cm−3 and mass density in units of 2× 109 gm cm−3.

Figure 9(a) shows a typical EoS used for obtaining a
mass–radius relation. Figures 9(b) and 10 show that as
the central density increases, the mass and radius both
increase for the chosen EoS. This trend is similar to what
obtained earlier [10] for a high constant magnetic field.
It is very clear that the mass turns out to be significantly
super-Chandrasekhar for the present field profile and the
mass-limit may arise from the upper limit of density, e.g.,
arisen due to pycnonuclear reactions, neutron drip etc.
We plan to explore this in detail in a future work, partic-
ularly the deviation from the mass-radius trend of Chan-
drasekhar with increasing B0.

In Figure 10 we assess how important the LQ effect
over the Lorentz force is, at least for the chosen profile.
We find that a hypothetical case with Lorentz force but
without LQ, i.e. with Chandrasekhar’s EoS, leads the
mass to restrict around the Chandrasekhar-limit. This is
understood as the Lorentz force at high densities, when
the magnetic field changes at smaller radii, not significant
compared to the effect due to electron degenerate pres-
sure therein. Hence, there is no practical effect of Lorentz
force for this field profile in order to control white dwarf
mass-limit.

Of course, the chosen field profile is just a test sample,
in particular to facilitate the exploration of LQ with vary-
ing magnetic field, keeping other physics intact. How-

ever, whenever the magnetic field decays at the high den-
sity regime, i.e. close to the center of the star, this result
is expected, and it is not odd to assume that the field
will start decaying from the vicinity of the center. This
establishes that for a realistic case, the LQ effect should
not be neglected.

5.2. Quantum Speed Limit

Quantum speed of particle determines how fast it tran-
sits from one energy level to another. It has direct in-
fluence on the processing speed of quantum information.
It was shown by Villamizar and Duzzoini [9] that for an
electron in ground state with the up spin, the maximum
quantum speed, also known as quantum speed limit, irre-
spective of the magnitude of magnetic field is 0.2407c, if
the magnetic field is uniform. We apply the same idea in
the regime of non-uniform magnetic field.

The wavefunction of an electron with the up spin in
state ν is given by

Ψ = e
−iEνt

~ ψν , (5.5)
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(a) (b)

FIG. 9: (a) Equation of state for constant magnetic field (dashed blue line) describing the central region of white
dwarfs and varying magnetic field (solid red line) describing otherwise for B0 = 1015 G pm−n and n = −0.3, (b)

corresponding mass–radius relation.

FIG. 10: Comparison of M − ρec relation (solid blue
line) with that of the hypothetical case with

Chandrasekhar’s EoS but Lorentz force intact (dashed
green line).

such that

ψν = ei(mφ+
pz
~ z)

[
Rν+(ρ)
−Rν+(ρ)

]
. (5.6)

Let the initial state of the spin-up electron be the su-
perposition of two consecutive states, ground and first

excited states, with m = 0 and pz = 0, given by

Ψ(ρ, 0) =
1√
2

[ψ0(ρ) + ψ1(ρ)] , (5.7)

where the respective energies are E0 and E1.
Consider the evolution of wavefunction from ground

state to first excited state. The minimum time of evolu-
tion is given by the Mandelstam-Tamm (MT) bound [33]

Tmin =
π~

2∆H
, (5.8)

where

∆H =
E1 − E0

2
(5.9)

in this case.
The radial displacement of particle in time Tmin is

ρdisp = |〈ρ〉Tmin − 〈ρ〉0| (5.10)

= 2

∣∣∣∣∫ ∞
0

ρDS(ρ)dρ

∣∣∣∣ , (5.11)

where

Ds(ρ) = ψ+
0 ρ ψ1. (5.12)

Thus, quantum speed of electron is given by

ṽ =
ρdisp
Tmin

. (5.13)
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FIG. 11: Variation of quantum speed of spin-up
electron for transition from ground state to first excited

state with different n at B0 = 1016 G pm−n.

In order to determine quantum speed limit, we choose
large B0 (= 1016 G pm−n) such that on changing B0

further, there is not much change in quantum speed for
a given n.

As it can be seen from Figure 11, quantum speed of
electron increases with increasing n, reaches maximum
and then begins to decrease. The quantum speed limit
increases compared to its value in a uniform magnetic
field (n = 0) for n > 0. This is related to different re-
arrangements of energy levels lifting degeneracy between
the fields with n < 0 and n > 0, shown in Figure 12.
Thus, if we could trap an electron in a magnetic field
which is spatially increasing in magnitude even linearly
(n = 1) within a small scale, then we can achieve a higher
speed of transition of electron. This can be extremely
useful in faster processing of quantum information in the
presence of variable magnetic field as compared to the
uniform field. We plan to investigate this application of
variable magnetic field in detail in a future work.

6. CONCLUSION

The LQ and the underlying dispersion relation with
varying magnetic fields is a unique problem on its own.
When the field is constant, the problem is nothing but a
harmonic oscillator, whose analytical solution for energy
is well-known. However for a varying field, the situation
is quite different and difficult. Unless the magnetic field
or more precisely the underlying vector potential follows
a specific profile, e.g. a power-law variation, even a semi-
analytical solution seems to be very difficult. We have
chosen a simple power-law variation of the magnetic field
and the corresponding vector potential, so that its satis-
fies no magnetic monopole condition and also magnetic
tension vanishes. The latter helps applying this result in
stellar physics easily.

For the ease of comparing with the constant field case,

FIG. 12: Comparison of schematic representation of
the energy level splitting between the magnetic field
with n < 0 and that with n > 0, along with a case of

uniform magnetic field (n = 0).

we develop the underlying quantum mechanics in the
cylindrical coordinate system, which however can easily
be recast for spherical coordinates. We have obtained a
very important result. Due to the variation of magnetic
field, the degeneracy in energy levels, as known for the
constant field, is lifted and there is unique alignment of
levels of spin-up and spin-down electrons depending on
the nature of change of magnetic field. The result is not
difficult to understand. As the field magnitude changes
at each point, the LQ effect keeps varying at each point
as well, which leads to non-overlapping energy levels as
they are for constant field, hence lifting the degeneracy.

The non-uniform magnetic field has a wide range of
applications in the both decaying as well as in rising
regimes. If we consider the decaying magnetic field pro-
file, the above result importantly has a significant con-
sequence to the EoS of the magnetized degenerate elec-
tron gas. For a similar Fermi energy, at the low density
regime, pressure decreases compared to the constant field
case, while it is opposite in the high density regime, for
a given density. Such modification to the EoS further
leads to the increase of white dwarf mass significantly
compared to the mass without field. While an effect of
constant field on to the white dwarf mass arises solely
due to the LQ, the varying field also add to the Lorentz
force. However, if the field decays from the close to the
center of the star, which is quite a possible case, the LQ
effect plays an indispensable role to determine the stellar
structure and the mass of white dwarfs. Thus, it estab-
lishes that in a realistic situation, the LQ in a white dwarf
with a strong magnetic field is an important effect. On
the other hand, the spatially growing magnetic field could
be proven useful in quantum information where we can
achieve higher quantum speed of particle in the presence
of variable magnetic field.
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In general, LQ effects in variable magnetic field can be
applied to a variety of physical systems ranging from as-
trophysics to quantum information to high energy physics
to condensed matter. Suitable modifications to the ef-
fects such as quantum Hall effect in the presence of non-
uniform magnetic field could give rise to unexplored but
interesting experimental consequences.
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Appendix A: Obtaining Dirac and Maxwell’s
equations from Lagrangian

The total Lagrangian density of the system of electrons
of wave-function ψ in the presence of electro-magnetic
field is

L = ψ̄ (iγµDµ −m)ψ − 1

16π
FµνF

µν , (A.1)

where

Dµ = ∂µ − ieAµ, Fµν = ∂µAν − ∂νAµ, (A.2)

in the units ~ = c = 1, where µ runs from 0 to 3. Using
Lagrangian equations of motion

∂ν

(
∂L

∂(∂νψ̄)

)
− ∂L
∂ψ̄

= 0, (A.3)

we obtain

(iγµDµ −m)ψ = 0, (A.4)

which is the Dirac equation. Further using

∂ν

(
∂L

∂(∂νAµ)

)
− ∂L
∂Aµ

= 0, (A.5)

we obtain

∂νF
νµ − 4πjµ = 0, (A.6)

which is the inhomogeneous Maxwell’s equation, where
jµ is the current density, given by

jµ = eψ̄γµψ. (A.7)

For the time-independent magnetic field with vanishing
electric field, Eq. (A.6) reduces to

∇×B = 4πJ. (A.8)

For the present purpose of Landau quantization in the
presence of varying magnetic fields, we have solved the
Eq. (A.4) above and obtained eigenvalues. On the other
hand, for stellar structure, we have considered Eq. (A.8)
in order to introduce Lorentz force proportional to J×B.
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