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Abstract1

Systems as diverse as mechanical structures and photonic metamaterials enjoy2

a common geometrical feature: a sublattice or chiral symmetry first introduced3

to characterize electronic insulators. We show how a real-space observable, the4

chiral polarization, distinguishes chiral insulators from one another and resolve5

long-standing ambiguities in the very concept of their bulk-boundary corre-6

spondence. We use it to lay out generic geometrical rules to engineer topo-7

logically distinct phases, and design zero-energy topological boundary modes8

in both crystalline and amorphous metamaterials.9
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1 Introduction46

A century after the foundations of band theory in solids by Félix Bloch [1], physicists have47

discovered new states of electronic matter ranging from insulators to superconductors by48

exploiting the topological structure of Bloch theory [2–7]. This topological revolution49

has built on two cornerstones: an abstract classification based on symmetries [8–15], and50

the practical correspondence between bulk topology and the boundary states measurable51

in experiments [2–6, 16–19]. During the past decade, these two generic principles spread52

frantically across fields as diverse as photonics, acoustics, or mechanics, leading to design53

principles and practical realizations of maximally robust waveguides [20,21].54

Among the number of symmetries constraining wave topology, chiral symmetry has55

a special status. Out of the three fundamental symmetries of the overarching ten-fold56

classification [8–10], it is the only one naturally realized with both quantum and classical57

waves. It generically takes the form of a sub-lattice symmetry when waves propagate58

in frames composed of two connected lattices A and B, with couplings only between, A59

and B sites, see e.g. Fig. 1a. In electronic systems, the archetypal example of a chiral60

insulator is provided by the polyacetylene molecule described by the Su-Schrieffer-Hegger61

(SSH) model [22]. In mechanics, the Hamiltonian description of bead-and-spring networks62

is intrinsically chiral [23–26]: the A sites correspond to the beads, and the B sites to63

the springs. In topological photonics and cold atoms chiral wave guides are among the64

simplest realizations of topological phases. Over the past decade, the modern theory65

of electronic polarization based on Zak phases and non-Abelian Wilson loops [27–30] has66

illuminated the intimate relation between crystalline symmetries and the topology of band67

structures [11–15]. By contrast, the role of chiral symmetry has been overlooked.68

In this article, by introducing the concept of chiral polarization we determine the zero-69

mode content of interfaces between topologically incompatible crystalline and amorphous70

chiral meta(materials)71

In the bulk, the chiral charge, which measures the imbalance between the number72

of sites on the sub-frames A and B, predicts the number of zero-energy modes of all73

Hamiltonians defined on a given chiral frame. To characterize chiral insulators we define74
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their chiral polarization Π as the spatial imbalance of the bulk waves on the two sub-75

frames. This material property does not rely on any crystalline symmetry and can therefore76

be defined locally on disordered and amorphous frames. In crystals, although akin to the77

time-reversal polarization of Z2 insulators [31], we show that Π is not merely set by the78

Bloch-Hamiltonian topology but also by the underlying frame geometry. At boundaries,79

we show how Π prescribes the surface chiral charge, and therefore the full zero-energy80

edge content of crystalline and amorphous chiral matter. Finally, we propose a series of81

practical protocols to experimentally measure the chiral polarization of mechanical, and82

photonic chiral metamaterials.83

2 From chiral charge to chiral polarization and Zak phases84

Introducing the concepts of chiral charge and polarization, we demonstrate that bulk prop-85

erties of chiral matter are determined by an intimate interplay between the frame topology,86

the frame geometry and the chiral Zak phases of Bloch Hamiltonians.87

88

2.1 Chiral charge and chiral polarization.89

We consider the propagation of waves in chiral material associated to d-dimensional frames90

including two sub-frames A and B. The wave dynamics is defined by a Hamiltonian H.91

By definition, the chiral symmetry translates in the anti-commutation of H with the chiral92

unitary operator C = PA − PB, where PA and PB are the two orthogonal projectors on93

the sub-frames A and B. Simply put, in the chiral basis where C is diagonal, H is block94

off-diagonal.95

In order to determine the relative weight of the wave functions of H on the two sub-96

frames, we introduce the chiral charge97

M = 〈C〉, (1)

where the average is taken over the complete Hilbert space. Using the basis of fully98

localized states, we readily find thatM is fully prescribed by the frame topology: the chiral99

charge counts the imbalance between the number of A and B sites: M = NA −NB . We100

can however also evaluate Eq. (1) in the eigenbasis of H. Indexing by n the eigenenergies101

of H, the eigenstates of the chiral Hamiltonian come by pairs of opposite energies related102

by |−n〉 = C |n〉. Chirality therefore implies that the chiral charge is solely determined103

by the zero modes of H as M =
∑

n 〈n|C |n〉 = 〈0|C |0〉. Noting that the |0〉 states are104

eigenstates of the chiral operator with eigenvalue +1 when localized on the A sites and105

−1 when localized on the B sites, it follows that M also is an algebraic count the zero106

modes of H:107

M = NA −NB = νA − νB. (2)

This equality is the classical result established by Maxwell and Calladine in the context of108

structural mechanics [33,34] and independently discussed by Sutherland in the context of109

electron localization [35]. Eq. (2) implies that the spectral properties of H are constrained110

by the frame topology. In particular, frames with a non-vanishing chiral charge impose111

all chiral Hamiltonian to possess flat bands. This simple prediction is illustrated in Fig. 1112

where we show the Lieb and the dice lattices, which are both characterized by a unit113

chiral charge per unit cell. All Hamiltonians defined on these lattices are therefore bound114

to support at least one flat band, Fig. 1b. No chiral insulators exist on the Lieb and dice115

lattices.116
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a.

b.

Figure 1: Lattices with a finite chiral charge. a. The Lieb (left) and dice (right)
frames are both characterized by an imbalance between the number NA and NB of sites.
In both cases the chiral charge per unit cell equals 1. Any Hamiltonian defined on these
frames possesses a flat energy band. b. Illustration of two band spectra associated to
chiral Hamiltonians defined on the Lieb (left) and dice (right) frames. The two band
spectra are computed for tight-binding Hamiltonians with nearest neighbour coupling and
a hopping parameter set to 1, see e.g. [32].

By contrast, in chiral insulators, no zero-energy bulk modes exist andM must vanish.117

To probe the relative weight of the wave functions on the two sub-frames, we therefore118

introduce the chiral polarization vector Πj = 〈Cxj〉E 6=0. As the |±n〉 states contribute119

equally to Π in chiral systems, we henceforth use the definition120

Πj = 2〈Cxj〉E<0, (3)

with j = 1, . . . , d are the indices of the d crystallographic directions and where E < 0121

indicates that the average is taken over the occupied states. Although seemingly identical122

to the the skew polarization introduced in [36, 37] for topological insulators, and the123

mean chiral displacement of quantum walks [38], we emphasize that Πj does not rely on124
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any Bloch representation and is therefore defined also in amorphous phases. We stress125

that, even in the crystalline case, Πj includes content beyond the skew polarization, as it126

resolves the weighted positions with a sub-unit-cell resolution. These differences are not127

mere technicalities, and will prove crucial in the next sections.128

To gain more physical insight, it may be worth noting that in electronic systems, Πj129

corresponds to the algebraic distance between the charge centers associated to the A and130

B atoms. While in mechanical networks, Πj is the vector connecting the stress-weighted131

and displacement-weighted positions. A vanishing polarization indicates that the average132

locations of the stress and displacement coincide. Conversely, a finite chiral polarization133

reveals an asymmetric mechanical response discussed in [39, 40]. For the sake of clarity,134

before revealing topologically protected zero modes in amorphous phases, we first explore135

the consequences of a finite chiral polarization in periodic systems such as in the paradig-136

matic example of the SSH model illustrated Fig. 2.137

138

2.2 Chiral polarization: an interplay between Zak phases and frame139

geometry.140

We begin with a thorough discussion of crystalline materials, defined by periodic frames141

and Bloch Hamiltonians. Building on previous works on the electronic polarization [27–142

30],143

we relate the chiral polarization of a crystalline material to the two Zak phases of waves144

projected on sub-lattices A and B when transported across the Brillouin zone. To do so, we145

first choose a unit cell and consider the basis of Bloch states |k, α〉 =
∑

R e
ik·R |R+ rα〉,146

where R is a Bravais lattice vector, α labels the atoms in the unit cell and k is the147

momentum in the Brillouin Zone (BZ). We henceforth use a convention where the Bloch148

Hamiltonian H(k) is periodic in the BZ, see [28, 41] and Methods. More quantitatively,149

considering first Hamiltonians with no band crossing 1, we define the A sub-lattice Zak150

phase of the nth energy band along the crystallographic direction j as151

γAj (n) = i

∫
Cj
dk 〈un|PA∂kPA|un〉 , (4)

where the |un(k)〉 are the eigenstates of H(k), and Cj the non-contractible loops over the152

Brillouin zone defined along the d crystallographic axes. γBj (n) is defined analogously153

on the B sublattice. The (intercellular) Zak phase is given by the sum of γAj (n) and154

γBj (n) [43]. In Methods, we show how to decompose the chiral polarization into a spectral155

and a frame contribution:156

Πj =
a

π
(γAj − γBj ) + pj , (5)

where a is the lattice spacing (assumed identical in all directions), γAj and γBj are the157

sublattice Zak phases defined by158

γAj =
∑
n<0

γAj (n). (6)

In Eq. (5) the pj are the components of the geometrical-polarization vector connecting the159

centers of mass of the A and B sites in the unit-cell:160

p =
∑
α∈A

rα −
∑
α∈B

rα. (7)

1In the situation where bands cross, our results should be generalized resorting to the Wilson loops of
the non-commutative Berry connexion instead of the abelian Zak phase connection [42].
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Figure 2: Chiral polarization and Wannier functions. a. Square of the Wannier
amplitude projected into the A (red) and B (blue) sublattices for the ground state config-
uration of the two-band SSH model with hopping ratio t1/t2 = 0.79. a denotes the period
of the 1D frame. The chiral polarization Π =

〈
xA
〉
−
〈
xB
〉

is negative: the chain is left
polarized regardless of the choice of unit cell. b. The winding number of the Bloch Hamil-
tonian encodes the chiral polarization relative to a given unit cell. The chiral polarization
being a material property, the winding number w can therefore take any integer value
when redefining the geometry of the unit cell as illustrated in the last column. Whatever
the choice of the unit cell, the difference between the geometrical polarization and aw has
a constant value given by the chiral polarization Π.

In crystals, Eqs. 5 quantifies the difference between the polarity of the ground-state wave161

function Π and the geometric polarization of the frame p. This difference is finite only162

when the two sublattice Zak phases differ.163

3 Topology of chiral insulators164

We now elucidate the intimate relation between the chiral polarization and the band topol-165

ogy of chiral gapped phases defined on periodic lattices. We outline the demonstrations166

of our central results below and detail them in Methods.167

168

3.1 Sublattice Zak phases and winding numbers.169

Computing the Wilson loop of the non-Abelian connection An,m(k) = 〈un(k)| ∂k |um(k)〉170

along Cj , we show that chirality relates the d Zak phases γAj + γBj to the windings of the171

Bloch Hamiltonian as172

γAj + γBj = πwj + 2πZ, (8)
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a. b.

Figure 3: Inferring the band topology from frame geometry. a. The two-sites
Wigner-Seitz cell on a 1D chiral frame have different geometrical polarizations; their dif-
ference is given by one Bravais vector. Consequently, we can always define the unit cell
so that the Bloch Hamiltonian has a finite winding. b. All the Wigner-Seitz unit cells on
the checkerboard lattice share the same (vanishing) chiral polarization. Therefore a single
winding number w characterizes the Hamiltonians on this frame in virtue of Eq. (11).
Evaluating the winding using the Wigner-Seitz cell compatible with the atomic limit of H
yields w = 0, by definition.

where wj = i/(4π)
∫
Cj dk · Tr

[
∂kHCH−1

]
∈ Z. The total Zak phase is quantized but the173

arbitrary choice of the origin of space implies that both γA and γB are only defined up174

to an integer. As a matter of fact, a mere U(1) gauge transformation |un〉 → eiαn(k) |un〉175

arbitrarily modifies γAj (n) and γBj (n) by the same quantized value: γAj (n) → γAj (n) +176

πm, γBj (n) → γBj (n) + πm, with m ∈ Z. By contrast, the difference between the two177

sublattice Zak phases is left unchanged by the same gauge transformation which echoes178

its independence from the space origin. Evaluating the winding of H(k) using the Bloch179

eigenstates (see Methods), we readily establish the essential relation2
180

γBj − γAj = πwj ∈ πZ. (9)

Chirality quantizes the sublattice Zak phases of chiral insulators, even in the absence of181

inversion or any other specific crystal symmetry. γAj and γBj are however not independent.182

Combining Eqs. (8) and (9) we can always define the origin of space so that γAj = 0 and183

γBj = πwj .184

The d winding numbers of Eq. (9) characterize the topology of H(k). In particular,185

if for a given Wigner-Seitz cell the corresponding H(k) is associated to a finite winding186

(wj 6= 0), then it cannot be smoothly deformed into the atomic limit defined over the187

same unit cell. The set of winding numbers is however poorly informative about the spa-188

tial distribution of the charges in electronic systems, or about the stress and displacement189

distributions in mechanical structures. The values of wj are defined only up to the arbi-190

trary choice of unit cell required to construct the Bloch theory. A well known example191

of this limitation is given by the SSH model, where the winding of Hk can either take192

the values 0 or ±1 depending on whether the unit cell’s leftmost site belongs to the A193

or B sublattice, see Fig. 2a and Methods. We show in the next section, how the chiral194

polarization alleviates this limitation.195

196

2Note that this difference of Zak phases was recently denoted as a chiral phase index in [45].
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3.2 Disentangling Hamiltonian topology from frame geometry.197

Equations (5) and (9) provide a clear geometrical interpretation of the winding number198

wj as the quantized difference between the geometrical and the chiral polarization:199

Πj = (pj − ajwj) . (10)

We can now use this relation to illuminate the very definition of a chiral topological200

insulator. The chiral polarization Πj = 2〈Cxj〉E<0 is a physical quantity that does not201

depend on the specifics of the Bloch representation. Therefore computing Πj for two unit202

cells (1) and (2), we find that the windings of the two corresponding Bloch Hamiltonians203

H(1)(k) and H(2)(k) are related via Eq. (10) as204

w
(2)
j − w

(1)
j =

1

aj

(
p

(2)
j − p

(1)
j

)
. (11)

This essential relation implies that one can always construct a Bloch representation of H205

where H(k) is topologically trivial, at the expense of a suitable choice of a unit cell. As206

a matter of fact, a redefinition of the unit cell can increase, or reduce the geometrical207

polarization, and therefore the winding numbers, by an arbitrary large multiple of aj as208

illustrated in Fig. 2b.209

For instance in the case of Hamiltonians with nearest neighbor couplings, applying210

Eq. (11) to Wigner Seitz unit cells (|wj | ≤ 1), we find that there exist as many topological211

classes of H, as different geometrical polarizations in the Wigner-Seitz cells. This number212

provides a direct count of the chiral ’atomic limits’ of H.213

Defining the topology of a chiral material therefore requires characterizing both the214

winding of its Bloch Hamiltonian, and the frame geometry. Remarkably, this interplay215

provides an insight on topological band properties from the sole inspection of the frame216

structure.217

218

3.3 Inferring band topology from frame geometry.219

There exists no trivial chiral phase in one dimension: one can always choose a Wigner-Seitz220

cell such that the Bloch representation of H has a non-vanishing winding. As a matter of221

fact, the geometrical polarization of the Wigner-Seitz cells can only take two finite values222

of opposite sign depending on whether the leftmost site in a unit cell is of the A or B type,223

see Fig. 3a. Equation (11) therefore implies that, in 1D, there always exists, at least, two224

topologically distinct gapped phases smoothly connected to two atomic limits. The two225

gapped phases are characterized by two distinct pairs of winding numbers defined by two226

inequivalent choices of unit cells. In other words all SSH Hamiltonians are topological.227

Similarly, in d > 1 only frames having a geometrical polarization invariant upon re-228

definition of the Wigner-Seitz cell can support topologically trivial Hamiltonians. Equa-229

tion (11) indeed implies that a topologically trivial Hamiltonian H constrains the frame230

geometry to obey p
(1)
j = p

(2)
j for all pairs of unit cells and in all directions j. We show a231

concrete example of such a frame in Fig. 3b.232

Before discussing the crucial role of the frame topology and geometry on the bulk-233

boundary correspondence of chiral phases, we extend these two notions to chiral insulators234

with a flat band.235

236
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a. b.

e.d.

c.

Figure 4: Bulk-boundary correspondance. a. A chiral crystal defined on a hon-
eycomb frame is terminated by a clean zigzag edge incompatible with the atomic-limit
Hamiltonian defined by keeping only the dominant couplings represented by thick solid
lines. The dashed rectangles indicate the Wigner-Seitz cells allowing a tessellation com-
patible with the edge geometry. The arrow indicates the geometrical polarization p. b.
Same physical system. The crystalline bulk is now tiled using the unit cell compatible
with the atomic limit. This requires a redefinition of the crystal boundary B (shaded
region). The arrows indicate the geometrical polarization of the new unit cell (pAL). The
difference p − pAL is a Bravais lattice vector (a2). c. Same material as in (a.) and (b.)
including a disordered interface B bearing a non-zero chiral chargeMB. d. Two connected
SSH chains. The Wigner-Seitz cell in the two materials are compatible with their atomic
limits. The interface B1 separating the two materials is one-site wide. e. Redefining the
Wigner-Seitz cell on the right hand side of the interface requires widening the boundary
region. This redefinition makes the unit cell incompatible with the atomic limit. The
winding of the Bloch Hamiltonian in IR takes a finite value and consequently modifies the
zero-mode content of the boundary region.
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3.4 Chiral polarization in the presence of a net chiral charge.237

It is worth noting that the chiral polarization can also be defined and computed in the238

presence of an additional zero-energy flat band in the gap. As detailed in the Methods239

section, it then takes the form240

Πj = (pj − pZM
j ) + a

(
γAj − γBj

)
/π. (12)

In this case, we loose the clear decomposition Π into geometrical and topological con-241

tributions. The geometrical polarization is corrected by pZM which originates from a242

spectral contribution associated to the zero-energy band. Furthermore the second term243

on the r.h.s., the difference between two geometrical Zak phases, is not a topological wind-244

ing number anymore. Despite the seemingly complex form of Eq. (12), we show in the245

next section that the chiral polarization remains an effective tool to relate spectral bulk246

properties to the number of zero-energy states localized at boundaries.247

4 Bulk-boundary correspondence248

We now establish a bulk-boundary correspondence relating the chiral polarization to the249

number of zero modes supported by the free surface of a chiral insulator. For the sake of250

clarity, we discuss the two-dimensional case without loss of generality. We consider first a251

crystalline insulator I terminated by a clean edge ∂I oriented along a Bravais vector, say252

a1 as illustrated in Fig. 4a.253

The bulk of the insulator can be described by different types of unit cells. As illustrated254

in Fig. 4a, in the presence of a clean edge, it is natural to choose a unit cell which allows255

a tessellation of the whole system. However, this unit cell is generically incompatible with256

the atomic limit of the Hamiltonian, and therefore does not allow a direct count of the zero257

energy boundary states using the simple Maxwell-Calladine count. An obvious strategy258

hence consist in redefining the unit cell, as in Fig. 4b to match the constraints of the259

atomic limit. This redefinition comes at the expense of leaving sites outside of the bulk260

tessellation. We define this ensemble of sites as the boundary region B. Keeping in mind261

that we can smoothly deform the Hamiltonian into its atomic limit without closing the262

gap, we use Eq. (2) to count the number of zero energy states hosted by B. It is given by263

V = MB. An essential geometrical observation is that the net chiral charge in B can be264

expressed as N ∂I(pAL
2 −p2), where N ∂I is the edge length expressed in number of unit cells265

and p2 is the geometrical polarization of the initial unit cell. We can now make use of the266

invariance of the chiral polarization formalized by Eq. (11) to relate the geometrical count267

of zeromodes to the winding of the Bloch Hamiltonian: V = N ∂I(pAL
2 −p2) = N ∂IwI2 . To268

arrive at a bulk boundary correspondence generic to all chiral insulators, we include the269

possibility of dealing with irregular interfaces featuring a net chiral chargeMB as sketched270

in Fig. 4c. We then find271

V =MB +N ∂I wI2 . (13)

Three comments are in order. Firstly, the bulk boundary correspondence defined by272

Eq. (13) illuminates the geometrical implication of a nonzero winding: a finite wIj echoes273

the impossibility to tile a periodic frame with unit cells compatible with the Hamiltonian’s274

atomic limit. Secondly, Eq. (13) is readily generalized to interfaces separating two chiral275

insulators IL and IR, where we simply have to apply the same reasoning on each side of276

the interface: V =MB +N ∂I(wIL +wIR), see e.g. Figs. 4d and 4e. Thirdly, the formula277

given by Eq. (13) generalizes the Kane-Lubensky index introduced in their seminal work to278

count the zero-energy modes localized within isostatic mechanical networks [25]. We show279
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that this index defines a bulk-boundary correspondence generic to all chiral insulators280

and even to flat band insulators such as hyperstatic lattices as further discussed in the281

Methods section.282

5 Amorphous Chiral Insulators283
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Pencil matrix method Orientation distribution

Figure 5: Pencil matrix versus maximally localized Wannier functions a. Single
domain configuration with geometrical and spectral disorder. The chiral polarization field
obtained from the maximally localized wannier functions is superposed. b. Chiral polar-
ization field obtained from one realization of the pencil matrix procedure. c. Orientation
distribution obtained from 50 values of α (bar chart), and from the maximally localized
wannier functions (red solid line). d., e., f. correspond to the same information, this time
for two crystalline domains.

In condensed matter, chiral symmetry is a low energy feature of electronic Hamilto-284

nians, which is unlikely to survive to strong structural disorder. Conversely, in photonic,285

accoustic or mechanical metamaterials chirality is built in by design and can therefore be286

present both in ordered or amorphous structures [20, 46]. In mechanical metamaterials287

chirality is even more robust as it is inherent to any system assembled from elastically288

coupled degrees of freedoms [21]. In this section, we show how to generalize our physical289

characterization of zero energy modes to disordered chiral metamaterials.290

Over the past two years a number of experimental, numerical and theoretical works291

showed that crystalline symmetries are not required to define topological insulators, see292

e.g. [47–50]. Unlike these pionneering studies where topologically inequivalent disordered293

phases are distinguished by abstract indices defined in real space and related to the quan-294

tification of edge currents, our framework solely based on the chiral polarization applies295

to chiral systems regardless of the presence or not of time reversal symmetry.296

Our strategy follows from the fundamental relation: Πj = pj − ajwj of Eq. (10). This297

11
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relation implies a one-to-one correspondence between the chiral polarization and a topo-298

logical spectral property quantized by the winding vector. The basic idea hence consists299

in probing the existence of topologically protected zero modes by local discontinuities in300

the chiral polarization field, even when no winding number or Zak phase can be defined.301

Relating topologically protected excitations to real-space singularities requires defining a302

local chiral polarization field Π(x). By definition, Π(x) measures the local imbalance of303

the wave function carried by the A and B sites. To express Π(x), it would be natural to304

consider eigenstates of the position operator PxP projected onto the occupied states of H.305

However, in dimension d > 1, the different components of the projected position operator306

do not commute [PxjP, PxkP ] 6= 0 for j 6= k, and do not possess common eigenstates.307

Instead, we express the polarisation in terms of the maximally localized states W̃m [28],308

which are centered on the position xm ≡
〈
W̃m

∣∣∣X̂∣∣∣W̃m

〉
. These states generalize the Wan-309

nier functions in the absence of translational symmetry, see Methods for more details. We310

can then define the local chiral polarization as the weighted chiral position evaluated over311

W̃m:312

Π(xm) = 2
〈
W̃m

∣∣∣CX̂∣∣∣W̃m

〉
. (14)

In practice, we can bypass the time consuming numerical determination of the W̃m313

by taking advantge of the so-called pencil-matrix method [51]. In short, the method314

consists in replacing in (14) the W̃m by eigenstates of a linear combination of the projected315

position components R =
∑

j αjPxjP ;
∑
αj = 1. The dependence on αi of the resulting316

chiral polarization is a measure of the non-commutativity of the Pxj typically associated317

to a nonvanishing Berry curvature. In practice, as illustrated in Fig. 5, the difference318

between the actual polarization, computed from the W̃m, and its approximation based on319

the R-matrix eigenstates is smaller than the distance between neighboring sites. Given320

the excellent agreement found both in mono and polycrystals, we henceforth use the321

pencil matrix method to locally measure the chiral polarization fields in disordered and322

amorphous structures out of reach of conventional chiral displacement characterizations323

[52].324

To make the discussion as clear as possible we consider separately the two possible325

sources of randomness in a disordered chiral insulator: (i) geometrical disorder, which326

affects the frame geometry leaving the interaction between the A and B sites unchanged327

and (ii) Spectral disorder, which alters the interactions while living the frame geometry328

unchanged.329

330

5.1 Topological zero modes on amorphous chiral frames.331

The reasoning is easily explained starting from a concrete example. Fig. 6 shows the332

interface between two topologically distinct insulators, IT and IB, living on a honeycomb333

frame. They correspond to distinct atomic limits of a nearest-neighbor tight binding334

Hamiltonians including two different hopping coefficients, see e.g. [53]. For the choice of335

unit cell sketched in Fig. 6, the winding vectors are wIT = (0, 1) and wIB = (1, 0). As336

a result the boundary region B hosts one zero mode per unit cell located on the A sites.337

As expected from Eq. (10), on a homogeneous periodic frame, Π(x) takes two distinct338

values in the two regions, and is discontinuous across B. Correspondingly, the distribution339

of the chiral polarization in the sample consists of two peaks centered on the two values340

associated to two topologically inequivalent phases, see Fig. 6 (left column).341

We now disorder the frame by shifting all site positions by random displacements of342

maximal amplitude |δx| while preserving the magnitude of the interactions in the corre-343
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Figure 6: Topological zero energy states on amorphous frames First row: Sketch of
the frame geometry for increasing positional disorder quantified by the maximal amplitude
of the random displacements |δx|/a. All panels show the vicinity of a boundary between
two different insulators defined on the same frame but with different positions of the
stronger couplings. The lines’ width indicates the magnitude of the coupling strength.
In all panels t′/t = 20. In the lefmost panel, we indicate the choice of the unit cell and
of the crystallographic axes. Second row: Corresponding chiral polarization fields. The
color indicates the orientation of Π(x) Third row: Magnitude of the zero-mode wave
function. The zero mode is located at the boundary between topologically inequivalent
states even on amorphous frames. Fourth row: Probability density function of the θ, the
local orientation of the chiral polarization field. The distributions are peaked on the same
two directions (vertical lines) regardless of the magnitude of disorder. This reveals the
coexistence of two distinct topological phases robust to positional disorder.

sponding Hamiltonian HD. For sufficiently large displacements, it is impossible to keep344

track of the original periodic lattice, see Fig. 6 (first row). Nonetheless, we clearly see345

in the third row of Fig. 6 that the topologically protected zero modes located in B are346

preserved, despite the lack of crystalline symmetry and the impossibility to define a Bloch347

Hamiltonian and its topological winding numbers. Note that unlike in [54] both the bulk348

and the boundary region are homogeneously disordered. Again, the existence and location349

of a line of zero modes is revealed by variations of the chiral polarization field. The vari-350

ations of the orientation of Π(x) occurs over the penetration length-scale `G set by the351

energy gap. The coexistence of two topologically distinct amorphous phases is signalled352

by a (wider) bimodal distribution of Π(x) peaked on the same values as in the pure case,353

see Fig. 6 (last row). This robust phenomenology is further illustrated in Supplementary354

Video 1, showing the evolution of the polarization field and zero-mode location as the355

magnitude of disorder is increased.356

This observation reflects a generic feature of chiral matter. Randomizing the frame ge-357

ometry cannot alter the energy gap provided that the graph defined by the coupling terms358

of H has a fixed chiral connectivity. This observation implies that the concept of topolog-359

ical phase naturally applies to amorphous frames that can be continuously deformed into360
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periodic lattices. In fact, the coexistence of different chiral insulators is effectively probed361

by the spatial distribution of the polarization field Π(x). Each peak of the distribution362

signals topologically inequivalent regions in amorphous chiral matter. The phase bound-363

aries are then readily detected by jumps of the chiral-polarization vector field over `G.364

365

5.2 Topological zero modes of disordered chiral Hamiltonians.366
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Figure 7: Topological zero-energy states in the bulk of disordered chiral insula-
tors First row Sketch of the honeycomb frame and of the coupling strengths for increasing
spectral disorder. The strengths of the couplings are represented by the width of the
dark lines. Their randomness is quantified by the variance of the Gaussian couplings εD.
The correlation length for all the examples is ξ = 12a. Second row Corresponding chiral
polarization fields. The color indicates the orientation θ of Π(x). Third Row: Magnitude
of the zero-energy modes on the A (red) and B (blue) sites. Fourth row: Probability
density function of the orientation θ. Remarkably, even in the disordered cases, the distri-
bution peaks only at values characteristic of the three phases of the homogeneous chiral
Hamiltonian.

The case of spectral disorder is more subtle as it can trigger topological transitions.367

Again, we start with a concrete example. We use the same model of insulator as in the368

previous section. Considering the even simpler case of a perfect monocrystal, there is no369

zero mode in the sample. Keeping the frame unchanged we add disorder to the interactions370

in the form of random perturbations to the coupling parameters. We note εD the width371

of the Gaussian disorder distribution, ξ its correlation length and ∆E the energy gap in372

the pure case. When εD/∆E− � 1 no zero mode exists in this finite system see Fig. 7373

first column. Consistently, the local chiral polarization hardly fluctuates in space and its374

distribution remains peaked around the same constant value.375

By contrast as εD/∆E ∼ 1, zero energy modes emerge in the bulk. Their presence376

signals local the emergence of topologically inequivalent regions in the material triggered377

by local gap inversions. The distinct phases are revealed by the orientational distribution of378

Π(x): as disorder increases additional peaks grow at values of θ characteristic of the other379
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two homogeneous topological insulators, Fig. 7 (last row). In the limit of strong disorder,380

the spatial extent of the coexisting phases is set by the disorder correlation length ξ as381

exemplified in Supplementary Movie 2. Gap closings also have a local signature in the382

polarization field. As Π(xm) is only defined at the generalized Wannier centers (Eq. (14)),383

Π(xm) cannot be computed at the center of a zero mode, which by definition does not384

support any Wannier mode. The proliferation of zero modes in the bulk is therefore385

signaled by an increasing number of holes in the polarization field.386

The above observations do not rely on the specific model we use in Figs. 6 and 7.387

Generically, adding spectral disorder to a chiral Hamiltonian results in the nucleation of388

additional topological phases decorated by zero modes at their boundaries. Even in the389

absence of a Bloch theory, we can distinguish the topological nature of the coexisting390

phases by measuring their average chiral polarization. For spatially correlated disorder391

the spatial extent of each phase is set by the disorder correlation length ξ.392

393

Figure 8: Disordered chiral metamaterial Macroscopic view and close ups on an
amorphous frame supporting a disordered chiral insulator. The frame is defined adding a
strong positional disorder to a Honeycomb lattice |δx| = a. Using the same Hamiltonian
as in Figs.6 and 7, we add spectral disorder corresponds to εD = 2. Cutting the sample to
form the word ”chiral” reveals a continuous distribution of zero modes along the edge.

5.3 Designing topologically protected zero modes in amorphous chiral394

matter.395

It is worth stressing that disordered chiral insulators generically support topologically396

protected zero-energy modes at their boundaries. Unlike crystaline topological insulators,397

the lower the bulk and edge symmetries the more robust the edge states.398

Cutting an amorphous sample into two parts without inducing the proliferation of399

boundary zero modes is virtually impossible. It would require cutting bonds while pre-400

serving the connectivity between all pairs of A and B site connected by the local polar-401

ization vectors Π(xm); only this type of configurations can be continuously deformed into402

crystals having edges matching that of tilings generated by the unit cell of an atomic limit.403

These cuts require extreme fine tuning in macroscopic samples and are therefore virtually404

impossible to achieve. This property makes the design of zero energy wave guides very405

robust in amorphous chiral matter. As illustrated in Fig. 8.406

407
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5.4 Measuring the chiral polarization.408

In this section we show that the chiral polarization is not only a powerful theoretical409

concept, but an actual material property readily accessible to experiments. Two scenarios410

are possible: when the (low energy) eigenfunctions can be measured, the chiral polarization411

can be directly evaluated using its definition, Eq. (3). This technique is straightforward412

e.g. in mechanical metamaterials [55], where the vibrational eigenmodes can be imaged in413

real space in response to mechanical actuation.414

Alternatively, when spectral properties are out of reach of quantitative measurements,415

we can infer the value of the chiral polarization from the dynamic spreading of localized416

chiral excitations. This approach builds and generalizes the technique pioneered in the417

context of periodically driven photonic quantum walk [56, 57]. For the sake of clarity we418

henceforth limit our discussion to 1D, two-band insulators although the reasonning applies419

in higher dimensions.420

We introduce the dynamical chiral polarization ΠΨ(t) = 〈Ψ(t)|CX̂|Ψ(t)〉 defined over421

the time-evolved states Ψ(t) = exp(−iHt)Ψ(0), where Ψ(0) is a localized chiral state.422

Should one be able to initalize an experiment in a Wannier State Ψ(0) = Wn,R, the wave423

function would spread as in Fig. 9a, but remarkably the dynamical chiral polarization424

ΠΨ(t) would be stationnary and equal to Π in a homogeneous system as illustrated in425

Fig. 9a, and demonstrated in the Method section. In practice, it would be always eas-426

ier to approximate the Wannier state by excitations ΨAB (resp. ΨBA) localized on two427

neighboring A and B sites (resp. B and A). The result of this procedure is shown in428

Fig. 9b and reveals that the long-time dynamics of ΠΨ(t) converges towards the chiral429

polarization Π. However, we stress that the essential information about the orientation430

of Π is already accessible at very short times and would not suffer from possible damping431

issues. When ΠΨ(t = 0) and Π have opposite signs, we observe very large amplitude oscil-432

lations reflecting the dynamic reversal of the chirality of the wave packet at short times.433

Conversely when ΠΨ(t = 0) and Π are parallel the convergence is very fast and devoid of434

large amplitude fluctuations.435

It is worth noting that the chiral initial state Ψ(t = 0) = ΨAB is an atomic-limit436

eigenstate. The dynamics can then be seen as the result of a quench at t = 0 starting437

from the atomic-limit Hamiltonian. The amplitude of the fluctuations in Fig. 9b then438

reveals the topological nature of the quench. As a last comment we stress that although439

our protocol is close to the chiral displacement method introduced and used in [56–59], it440

is not tight to a Bloch Hamiltonian model, but characterizes an intrinsic (meta)material441

property.442

6 Conclusion443

We have established a generic framework to characterize, elucidate and design the topo-444

logical phases of chiral insulators. In crystals, we show that the frame topology and the445

frame geometry conspire with Bloch Hamiltonian topology to determine the zero-mode446

content of the bulk and interfaces. In the bulk, the frame topology fully determines the447

algebraic number of zero-energy modes counted by the chiral charge M. Chiral insula-448

tors, however, are distinguished one another via their chiral polarization Π set both by449

the frame geometry and Bloch-Hamiltonian topology. At their surface, the number of450

zero-energy states is prescribed by the interplay between the Bloch Hamiltonian topology451

and the frame geometry in the bulk on one hand, and by the frame topology of the bound-452

ary on the other hand. This subtle tango goes beyond the bulk-boundary-correspondence453

principles solely based on Hamiltonian topology.454
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Figure 9: Measuring the chiral polarization in time. a. Left: Dynamical evolution
of a Wannier state in the ground state of a two-band SSH model, with hopping ratio
t1/t2 = 0.1. The state is localized in the middle of a finite system of 60 unit cells. Center:
Time evolution of the wave-function amplitude. Right: The amplitude of the final state
at time t = 250 is represented on the A (red) and B (blue) sites of the lattice. b.
The dynamical chiral polarization Πψ(t) = 〈Ψ(t)|CX̂|Ψ(t)〉 corresponding to the protocol
described in a is constant in time (black solid line). By comparison, the dynamical chiral
polarization starting from a state ΨAB(t = 0) (resp. ΨBA(t = 0)), localized on two
neighboring sites A and B (resp. B and A) shows fluctuations around the static chiral
polarization whose amplitude depends on the initial state. The sign Πψ(t) is reversed at
short time when the chiral polarization of the initial state is opposite to the static chiral
polarization of the SSH chain. This results in large amplitude oscillations. The short time
dynamics of Πψ therefore provides a direct access to the orientation of the material chiral
polarization.
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We have shown that chiral symmetry alone translates real-space properties into spec-455

tral phases without relying on any crystalline symmetry and translational invariance when456

expressed as a sublattice symmetry. Chiral symmetry does not merely complement the457

classification of topological quantum chemistry [60–63] but also makes it possible to dis-458

tinguish topological phases in amorphous matter. In disordered system, introducing the459

concept of chiral polarization field, we provide a practical platform to detect topological460

phases coexisting in disordered samples, an to design robust zero-mode wave guides at461

their boundaries.462

We expect our framework to extend beyond Hamiltonian dynamics when dissipative463

processes obey the chiral symmetry [64]. We therefore conjecture that real-space topol-464

ogy, geometry and non-Hermitian operator topology should cooperate in chiral dissipative465

materials as diverse as cold atoms to photonics, robotic devices and active matter.466
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A Bloch theory convention and Wannier states.472

A.1 Conventions for the Bloch decomposition.473

For the sake of clarity, we first introduce the main quantities used throughout all the474

manuscript to describe waves in periodic lattices. We note |Ψn,k〉 the Bloch eigenstates.475

They correspond to wavefunctions 〈x|Ψn,k〉 = ϕn,k(x)eik·x, where k is the momentum in476

the Brillouin Zone (BZ), and where the normalized function ϕn,k has a periodicity of one477

unit cell [28]. In this article, we use the following convention to express the Bloch states478

as a superposition of plane waves:479

|Ψn,k〉 =
∑
α

un,α(k) |k, α〉 , (15)

where α labels the different atoms in the crystal, and |k, α〉 represents the Fourier trans-480

form of the real-space position basis: |k, α〉 =
∑

R exp(ik ·R) |R+ rα〉, R being a Bravais481

lattice vector and rα a site position within the unit cell. We stress that here the compo-482

nents un,α(k) are periodic functions of k over the BZ. It is worth noting, however, that483

there exists multiple conventions to decompose the Bloch states as discussed e.g in the484

context of graphene-like systems in [65–67]. A common alternative uses nonperiodic com-485

ponents over the BZ which carry an additional phase encoding the position of each atom486

within the unit cell: |Ψn,k〉 =
∑

α ũn,k,αe
ik·rα |k, α〉. We will comment on the translation487

of our results from one convention to the other in the following.488
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A.2 Wannier functions.489

By definition the Wannier function associated to a Bloch eigenstate is given by the inverse490

Fourier transform (up to a phase):491

|Wn,R〉 =

∫
k
e−ik·R |Ψn,k〉 , (16)

where
∫
k · ≡ Ω−1

∫
BZddk ·, Ω being the volume of the BZ. Note that for sake of clarity, we492

here and henceforth assume that the spectrum does not include band crossings. The tech-493

nical generalization of our results to degenerated spectra is straightforward but involves494

some rather heavy algebra, see e.g. [28].495

496

A.3 Projected position operator and sublattice Zak phases.497

Ignoring the distinction between the A and B sites, we can first compute the action of the498

position operator on the Wannier states following [28]:499

〈x| X̂ |Wn,R〉 =

∫
k
x eik·(x−R)ϕn,k(x)

=

∫
k

(
−i∂keik·(x−R) +Reik·(x−R)

)
ϕn,k(x)

=

∫
k
e−ik·R

[
eik·x (R+ i∂k)

]
ϕn,k(x), (17)

where in the last step we applied an integration by parts, using that |Ψn,k〉 = |Ψn,k+G〉 with500

G a primitive reciprocal vector. The generalization of Eq. (17) to the position operator501

projected on the sublattice a = A,B is straightforward:502

〈x| X̂Pa |Wn,R〉 =

∫
k
e−ik·R

[
eik·x (R+ i∂k)

]
Paϕn,k(x), (18)

which allows us to define the average positions 〈xa〉n,R restricted to the site a = A,B and503

to the nth band excitations:504

〈xa〉n,R ≡〈Wn,R|PaX̂Pa|Wn,R〉

=R

∫
k
〈ϕn,k|Pa|ϕn,k〉+

1

Ω
ΓaZak(n), (19)

where Ω is the volume of the BZ, |ϕn,k〉 = e−ik·X̂ |Ψn,k〉, and ΓaZak(n) is the vector com-505

posed of the d sublattice Zak phases associated to the n-th band:506

ΓaZak(n) = iΩ

∫
k
〈ϕn,k|Pa∂kPa|ϕn,k〉 . (20)

We can further simplify Eq. (19) noting that the orthonormality of the |ϕn,k〉 implies507

〈ϕn,k|PA + PB|ϕn,k〉 = 1 and 〈ϕn,k|PA − PB|ϕn,k〉 = 0, which yields 〈ϕn,k|Pa|ϕn,k〉 =508

1/2. All in all, we find a simple relation between the average of the position operator and509

the Zak phase of the Bloch eigenstates over the BZ:510

〈xa〉n,R =
R

2
+

1

Ω
ΓaZak(n). (21)
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B Chiral polarization, Zak phases and winding.511

B.1 Chiral polarization and sublattice Zak phases.512

We are now equipped to compute the chiral polarization, defined as the difference between513

the expected value of the projected position operators over the occupied eigenstates (n <514

0). It readily follows from Eq. (21) that Π corresponds to the difference of the sublattice515

Zak phases:516

Π ≡2
∑
n<0

〈
xA
〉
n,R
−
〈
xB
〉
n,R

=
2

Ω

∑
n<0

ΓAZak(n)− ΓBZak(n). (22)

Two comments are in order. Firstly, the sum could have been also taken over the unoc-517

cupied states (n > 0). As C2 = I, the sublattice phase picked up by |ϕn,k〉 is indeed the518

same as that of its chiral partner |ϕ−n,k〉 = C |ϕn,k〉. Secondly, we stress that Eq. (22)519

does not depend on the specific convention of the Bloch representation. This relation,520

however does not disentangle the respective contributions of the frame geometry and of521

the Hamiltonian on the chiral polarization. To single out the two contributions, we now522

use the specific Bloch representation (15). Given this choice, the sublattice Zak phase is523

naturally divided into two contributions leading to524

ΓaZak(n) =Ω

∫
k

∑
α∈a

(
u∗n,αun,αrα + iu∗n,α∂kun,α

)
. (23)

The first term on the r.h.s. is the intracellular contribution to the Zak phase while the525

second is proportional to the sublattice intercellular Zak phase following to the definitions526

of [43]527

γaj (n) ≡ i
∫

dkj
∑
α∈a

u∗n,α(k)∂kjun,α(k). (24)

Summing Eq.(23) over all occupied bands, and using the orthogonality of the chiral com-528

ponent un,α we then recover our central result:529

Π = p+
2

Ω1/d

(
γA − γB

)
, (25)

where p =
∑

α∈A rα−
∑

α∈B rα is the geometrical polarization of the corresponding unit-530

cell and γa =
∑

n<0 γ
a(n). The chiral polarization is the sum of one contribution coming531

only from the frame geometry and one contribution characterizating the geometrical phase532

of the Bloch eigenstates.533

534

B.2 Chiral polarization in different Bloch conventions.535

Although the physical content of the chiral polarization does not depend on the choice of536

the Bloch convention, it is worth explaining how to derive its functional form for the other537

usual representation where |Ψn,k〉 =
∑

α ũn,α(k)eik·rα |k, α〉. Within this convention the538

total Zak phase takes the form539

ΓaZak(n) = i

∫
BZ

ddk
∑
α∈a

ũ∗n,α∂kũn,α, (26)
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which does not allow the distinction between the geometrical and the Hamiltonian con-540

tributions to Π when performing the sum over the occupied band in Eq. (22). This541

observation further justifies our choice for the Bloch representation.542

543

B.3 Quantization of the intercellular Zak-phase in chiral insulators.544

To demonstrate the quantization of γj = γAj +γBj , we resort to the Wilson loop formalism545

reviewed e.g. in Ref. [42].546

Let us first recall the definition of the non-Abelian Berry-Wilczek-Zee connection along547

the Brillouin zone for a set of smooth vectors |un(k)〉 , n = 1, ...M :548

Anm(k) = 〈un(k)| ∂k |um(k)〉 . (27)

The associated Wilson loop operator defined along the path Cj through the Brillouin zone549

is given by the ordered exponential550

Wj = exp

(
−
∫
Cj
dk ·A(k).

)
(28)

The topological properties of a generic gapped chiral Hamiltonian are conveniently cap-551

tured by smooth deformations yielding a flat spectrum E = ±1. The corresponding Bloch552

Hamiltonian is then given by553

H =

(
0 Q(k)

Q†(k) 0

)
(29)

where Q(k) is a nonsingular unitary matrix. Without loss of generality, we write the554

corresponding eigenstates as555

|u±n(k)〉 =
1√
2

(
±Q(k)

∣∣eBn 〉∣∣eBn 〉
)

(30)

where the sign ± identifies the sign of the eigenvalue E = ±1 and the normalized vectors556 ∣∣eBn 〉 form a basis of the Hilbert space of Q†. The non-Abelian connection (27) for the557

negative (resp. positive) energy states then takes the simple form558

A−nm(k) =
1

2

〈
eBn
∣∣Q†(k)∂kQ(k)

∣∣eBm〉 = A+
nm(k) (31)

It follows from the definition of the Wilson-loop operator (Eq. (28)) that the intercellular559

Zak phase for the negative energy bands γ = γA + γB is defined in terms of the Wilson560

loops for the non-Abelian connection A−(k) as561

γj = −i ln detW−j (32)

The quantization of all d intercellular Zakk phases then follows from Eqs (28) and (31):562

γj = −i tr ln

[
exp

(
−1

2

∫
Cj
dk · ∂k lnQ(k)

)]
(33)

= πwj mod (2π) (34)
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where the mod (2π) indetermination stems from the choice of the branch cut of the563

complex ln function, and where wj is the standard winding of the chiral Hamiltonian (29):564

wj =
i

4π

∫
Cj

dk · tr
[
∂kHCH−1

]
∈ Z, (35)

=
1

2πi

∫
Cj

dk · tr
[
Q−1∂kQ

]
. (36)

We therefore conclude that the d Zak phases are topological phases defined modulo 2π.565

566

B.4 Relating the sublattice Zak phases to the winding of the Bloch567

Hamiltonian.568

We here demonstrate the essential relation given by Eq. (9). To do so, we relate the569

winding wj to the sublattice Zak phases by evaluating the trace in Eq. (35) using the570

eigenstate basis. Noting that 〈un|∂kH(k)CH−1(k)|un〉 = −2 〈un|C∂k|un〉, the winding571

takes the simple form572

wj = − i

2π

∫
Cj

dk
∑
n

〈un|C∂k|un〉 . (37)

Decomposing the chiral operator on the two sublattice projectors C = PA − PB, yields573

πwj =
(
γBj − γAj

)
∈ πZ. (38)

B.5 Quantization of the sublattice Zak phases.574

Eqs. (34) and (38) shows that both the sum and the difference of the sublattice Zak575

phases are quantized:576

γAj + γBj = πwj + 2πm, m ∈ πZ,
γBj − γAj = πwj . (39)

It then follows that both sublattice phases γAj and γBj are integer multiples of π.577

578

B.6 How does the winding number of a chiral Bloch Hamiltonian change579

upon unit cell redefinition?580

Starting from a chiral Hamiltonian H, we demonstrate below the relation between the581

winding numbers associated to the Bloch Hamiltonians constructed from different choices582

of unit cells, Eq. (11).583

The definition of Bloch waves and Bloch Hamiltonians require prescribing a unit cell.584

Starting with a first choice of a unit cell geometry, say unit cell (1), we can write H(1)(k)585

in the chiral basis as586

H(1)(k) =

(
0 Q(1)

Q†
(1)

0

)
, (40)

Let us now opt for a second choice of unit cell, say choice (2). The Bloch Hamiltonians587

H(1) and H(2) are then related by a unitary transformation588

H(2) = U †H(1)U, (41)
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Figure 10: Unit cell transformation. We illustrate the definition of the Rα vectors
using the simple example of a SSH chain. For the first atom (empty symbol) R1 = ax̂
while R2 = 0 for the second atom (solid symbol).

where the components of the unitary matrix are given by589

Uαβ = exp
(
ik ·R(12)

α

)
δαβ, (42)

where theR12
α are the Bravais vectors connecting the position of the atoms in the two unit-590

cell conventions, see Fig. 10 for a simple illustration. We note that, we have implicitly591

ignored the trivial redefinitions of the unit cell that reduce to permutations of the site592

indices. We can then express the winding of H(2) using Eq. (41) in the definition of593

Eq. (35), which yields594

w
(2)
j =

i

4π

∫
Cj
dk tr

[
∂k(UH(1)U †)C(UH(1)U †)−1

]
. (43)

Expanding the gradient, using the trace cyclic property and noting that [C, U ] = 0, we595

find596

w
(2)
j = w

(1)
j −

i

2π

∫
Cj
dk tr

[
∂kUCU−1

]
. (44)

This equation relates the winding numbers of the two Bloch Hamiltonians to the winding597

number of the transformation matrix U , which is by definition a geometrical quantity598

independent of H. Using Eq. (42) leads to the remarkable relation which relates the599

spectral properties of the Hamiltonian to the unit-cell geometry600

w
(1)
j − w

(2)
j =

i

2π

∫
Cj
dk tr

[
∂kUCU−1

]
=

1

aj

(∑
α∈A

Rα −
∑
α∈B

Rα

)
. (45)

C Zero energy flat-band insulators.601

We consider a flat-band chiral insulator, defined on a lattice with an non-vanishing chiral602

charge. In mechanics this situation is readily achieved adding extra bonds to further603

rigidify an otherwise isostatic lattice. It is characterized by a finite gap separating positive604
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and negative energy states and by an additional flat band at E = 0. In such a phase, there605

may exist additional zero energy edge states in addition to the bulk zero-energy modes.606

These edge states are analogous to to the topological edge modes of insulators. Our goal is607

here to derive a bulk-boundary correspondence for these materials and provide a count of608

their zero-energy edge states. We will show that this correspondence involves the specific609

geometry of the eigenstates as opposed to their topology in the case of genuine insulators.610

To show this we first derive the expression of the chiral polarization in the presence611

of a finite bulk chiral charge. Our starting point is Eq. (22), which relates to the chiral612

polarization of a crystal to the sublattice Zak phases given by Eq. (20):613

Π ≡ 2
∑
n<0

〈
xA
〉
n,R
−
〈
xB
〉
n,R

=
2

Ω

∑
n<0

ΓAZak(n)− ΓBZak(n). (46)

The sum over all the negative energy bands n < 0 is half the sum over the non-zero energy614

states n 6= 0 given by615 ∑
n 6=0

Γa(n) = Ω

∫
k

∑
α∈a

∑
n

u∗n,αun,αrα +
2

Ω1/d
γa

= Ω

∫
k

∑
α∈a

(
1−

∑
n0

u∗n0,αun0,α

)
rα +

2

Ω1/d
γa. (47)

In the last line, we single out the role of the bulk zero-energy modes indexed by n0. Using616

the above expression to evaluate the r.h.s. of Eq. (46), we find an expression similar to617

Eq. (25) in the main text:618

Π = (p− pZM) +
2

Ω1/d

(
γA − γB

)
. (48)

A first noticeable difference with Eq. (25) is a spectral correction to the geometrical polar-619

ization stemming from the localized zero-energy bulk modes. This zero-mode polarization620

is given by621

pZM = −Ω

∫
k

∑
n0

(∑
α∈A
−
∑
α∈B

)
u∗n0,αun0,αrα. (49)

Three comments are in order. Firstly, we stress that while the geometrical polarization p622

depends on the choice of origin in the presence of an excess of chiral charge, the difference623

p−pZM, and Π, are both independent of the frame’s origin. Secondly, unlike in insulators,624

the difference between the intercellular sublattice Zak phases, γA−γB is does not identify625

with the winding number of the Bloch Hamiltonian. In fact it is not a topological quantity:626

it continuously depends on the specific couplings of the Hamiltonian. Finally, we point627

that, by definition, the chiral polarization does not depend on the Bloch convention.628

A change in the Bloch convention changes the geometrical polarization, the zero-mode629

polarization, and the intercellular zak phases in such a way that all corrections cancel one630

another.631

Equiped with Eq. (48), we now now turn to the generalization of the bulk boundary632

correspondence for flat-band insulators. We consider a crystalline material S terminated633

by a clean edge ∂S oriented along the Bravais vector a1. This edge may host VNT non-634

trivial zero-energy modes, in addition to the (trivial) bulk zero modes associated to the635

flat band. The edge defines a unit cell that may not be compatible with that of the636

atomic limit.We can nonetheless extend the edge region such that it matches the unit-cell637

compatible with the atomic limit (AL). The idea being that VNT is fully determined by638

the additional chiral charge of the edge with respect to that provided by the bulk chiral639
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charge density. Following the same reasoning as in the main text, this extra chiral charge640

is given by the difference of geometrical polarization and zero-mode polarization:641

VNT = NB [(p2 − pZM2)AL − (p2 − pZM2)] , (50)

where NB is the boundary length expressed in units of unit-cell length. The first term642

is computed in the unit cell compatible with the atomic limit, and the second term is643

computed in the original unit cell defined by the edge ∂S.644

The invariance of the chiral polarization with respect to unit cell transformations allows645

the connection with the intercellular sublattice Zak phase:646 (
p2 − pZM2 +

2

Ω1/d

(
γA2 − γB2

))
AL

= p2 − pZM2 +
2

Ω1/d

(
γA2 − γB2

)
, (51)

where AL denotes the terms evaluated in the unit-cell compatible with the atomic limit.647

All in all, the non-trivial zero-energy content of flat band insulators is given by a formula648

whhich generalizes Eq. (13):649

VNT = NB 2

Ω1/d

[
(γA2 − γB2 )− (γA2 − γB2 )AL

]
. (52)

It is worth noting that in the case of genuine insulator, (γA2 − γB2 )AL = −wAL = 0 since it650

corresponds to the winding number in the unit cell compatible with the AL. Once again651

the chiral polarization field and its relation with the geometric phases allow us to predict652

the existence of non-trivial zero-energy modes by observing the local discontinuities of the653

chiral polarization field at any interface.654

D Chiral polarization in amorphous materials.655

We have seen that the chiral polarization does not depend on the specifics of the unit cell:656

it is an intrinsic property of the material. In fact, as we show below, this framework is far657

more general and we can define the chiral polarization in amorphous solids.658

We start by revisiting the definition of the chiral polarization in a crystal given by659

eq. (22):660

Π ≡ 2
∑
n<0

〈
xA
〉
n,R
−
〈
xB
〉
n,R

. (53)

Strictly speaking this polarization is defined at the position R. However, the discrete661

translational invariance of the crystal and by consequence, of the Wannier functions, makes662

the polarization field homogeneous. We can thus we drop the R indices.663

The definition of the Wannier function as the inverse Fourier transform of the Bloch664

eigenstate cannot be used when dealing with a disordered configuration. Instead, we work665

with a another set of fully localized functions: the eigenstates of the projected position666

operator onto the occupied bands [42]. The projected position operator is given by PX̂P ,667

where668

P =
∑
E<0

|ΨE(r)〉 〈ΨE(r)| , (54)

is the projector onto the occupied energy states (not to be confused with the projectors669

Pa), and the |ΨE〉 are the eigenstates of the real space hamiltonian H. Let us denote670

the mth eigenstate of the projected position operator as W̃m (notice that there are as671
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many eigenstates as occupied energy states of the Hamiltonian). This is a localized func-672

tion around the center given by xm =
〈
W̃m

∣∣∣X̂∣∣∣W̃m

〉
, similarly to the Wannier centers.673

Moreover, using each localized function, we can compute the difference of the weighted674

positions on both sublattices, in other words, the local chiral polarization:675

Π(xm) = 2
〈
W̃m

∣∣∣CX̂∣∣∣W̃m

〉
(55)

In a periodic frame, the eigenstates of the projected position operator reduce to a linear676

combination of the Wannier functions Wn:
∣∣∣W̃m

〉
=
∑

n Vmn |Wn〉, with n < 0, indicating677

the occupied energy bands, V a unitary matrix in the energy space, and Vmn a diagonal678

matrix in the position space. We can then rewrite the chiral polarization in eq. (55) as679

Π(xm) = 2
∑
n,l

〈Wn|V †mnCVml |Wl〉

= 2
∑
n<0

〈Wn|CX̂|Wn〉 , (56)

where in the last line we used the fact that the Vml commutes with CX̂ and the unitarity680

of V . As a result, we recover the first expression defined in crystals using the Bloch681

formalism as given by Eq. (22).682

E Chiral polarization of time evolved Wannier states.683

In Ref. [57], the mean chiral displacement under Hamiltonian dynamics was introduced as a684

measure of the Zak phase of periodic Hamiltonians in d = 1. This quantity characterizes a685

representation of a Hamiltonian associated to a given unit cell definition, and corresponds686

to the long-time displacement of an initially fully localized state, measured in units of687

the unit-cell size. As a consequence, several choices of unit cells were necessary to fully688

characterize the dynamics of a given (meta)material [56]. Although seemingly similar in689

its formal definition, the chiral polarization which we extensively use in this article is an690

intrinsic (meta)material property, defined in real space, and which does not rely on any691

underlying frame periodicity, Eq. (5). In the specific case of periodic frames Π crucially692

resolves the chiral imbalance of wave packets with a sub-unit-cell resolution.693

In this method section, we show how Π relates to the dynamics of a maximaly localized694

Wannier state spreading in the bulk of a chiral crystal. To do so we consider the time695

evolution of a wave function |ψn(t)〉 = U(t) |Wn,R〉 starting from a of a Wannier state in696

band n, initially localized at R, with an evolution operator U(t) = exp(−iHt). Using the697

notations introduced in Eq. (16), the position at time t is given by698

〈x| X̂ |ψn(t)〉

=

∫
k
x eik·(x−R)e−iEn(k)tϕn,k(x) (57)

=

∫
k
e−ik·R

[
eik·x (R+ vn(k)t+ i∂k)

]
ϕn,k(x), (58)

where vn(k) = ∂kEn(k) is the group velocity in the energy band n. We can also generalize699

Eq. (21) to define the instantaneous average positions restricted to the a = A,B sublattices700
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which read701

〈xa(t)〉n,R ≡〈ψn(t)|PaX̂Pa|ψn(t)〉 (59)

=

∮
k

1

2
(R+ vn(k)t) +

1

Ω
ΓaZak(n) (60)

=
1

2
R+

1

Ω
ΓaZak(n) (61)

= 〈xa(t = 0)〉n,R . (62)

This result indicates that the chiral polarization of each Wannier state is a stationary702

quantity although they all evolve in time . When summed over (half of) the spectrum, we703

recover the static definition of the chiral polarization704

Π(t) = Tr(U−1(t)CX̂U(t)) (63)

=
∑
n

〈ψn(t)|CX̂|ψn(t)〉 (64)

= 2
∑
n<0

〈
xA(t)

〉
n,R
−
〈
xB(t)

〉
n,R

=
2

Ω

∑
n<0

ΓAZak(n)− ΓBZak(n). (65)

We note that the trace operation in Eq. (63) can be evaluated using any basis of the705

Hilbert space, such as the ensemble of states fully localized on the A and B sites.706
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