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We generalize the eigenstate thermalization hypothesis to systems with global symmetries. We
present two versions, one with microscopic charge conservation and one with exponentially sup-
pressed violations. They agree for correlation functions of simple operators, but differ in the vari-
ance of charged one-point functions at finite temperature. We then apply these ideas to holography
and to gravitational low-energy effective theories with a global symmetry. We show that Euclidean
wormholes predict a non-zero variance for charged one-point functions, which is incompatible with
microscopic charge conservation. This implies that global symmetries in quantum gravity must
either be gauged or explicitly broken by non-perturbative effects.

INTRODUCTION

The thermal behavior of quantum many-body systems
is well understood in terms of statistical mechanics. How-
ever, developing a microscopic understanding of ther-
malization is a difficult problem of sustained interest.
The eigenstate thermalization hypothesis (ETH) [1, 2] is
a powerful framework to understand how a pure state
can give rise to thermal behavior after sufficiently long
times. The crux lies in the fact that individual eigen-
states behave like a statistical ensemble for a large class
of observables, with pseudo-random corrections that are
exponentially small in the entropy. The ETH states that
for simple (few-qubit) operators Oa, we have

〈Ei|Oa |Ej〉 = fa(Ē)δi,j + ga(Ē, ω)e−S(Ē)/2Rij , (1)

where Ē and ω are the mean energy and energy differ-
ence of the states i and j, respectively. The matrix Rij
is comprised of erratic order one numbers which statis-
tically have zero mean and unit variance. In any given
quantum system with fixed Hamiltonian, they are def-
inite numbers that could be obtained by diagonalizing
the Hamiltonian. However, for the purpose of comput-
ing few-point correlation functions of simple operators
in high energy states, these microscopic details are ir-
relevant and it suffices to treat the Rij as true random
variables. This randomness is tightly linked to the con-
nection between quantum chaotic systems and random
matrix theory (see [3] for a review).

New insights into the randomness of chaotic quan-
tum systems have emerged from gravitational physics,
through holographic duality [4]. If the chaotic quantum
system at hand is a large N , strongly coupled confor-
mal field theory (i.e. a holographic CFT), thermalization
of the boundary quantum system is connected to black

hole formation in the gravitational dual [5–8]. In fact,
the apparent loss of unitarity in both these processes is
closely related and understanding one will help in the
understanding of the other. Indeed quantum thermaliza-
tion has been discussed in the context of holography for
precisely this reason (see for example [9–20]).

Randomness in Holography

It has recently become clear that the low energy ef-
fective theory on the gravity side (i.e. semi-classical
general relativity and its Euclidean path integral) has
the potential to know quite a lot about the structure
of eigenstates of the CFT Hamiltonian, perhaps much
more than we had hoped for. While it has long been
known that the Bekenstein-Hawking formula computes
the (coarse-grained) entropy of black hole micro-states,
recent progress has established that the low energy ef-
fective theory also knows something about fine structure
of the microstates and their discrete nature, for example
the level-repulsion of nearby eigenvalues of the Hamilto-
nian [21]. New field configurations known as Euclidean
wormholes contributing to the gravitational path integral
play a crucial role in these developments. These may or
may not be saddle-points [22–24].

Precisely quantifying the amount of CFT information
that the gravitational path integral has access to has
become one of the most pressing questions in hologra-
phy. Interestingly, it has given a new perspective on the
ETH: rather than viewing semi-classical general relativ-
ity as a traditional low energy effective theory that com-
putes scattering amplitudes around the vacuum, it can be
viewed as an effective theory in the sense of ETH, namely
a framework for computing the correlators of simple op-
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erators on black hole microstates. In this context, simple
operators should be understood as operators dual to su-
pergravity fields. Multi-trace operators are also simple as
long as ∆O � N . While there are many erratic signals in
such observables that cannot be accessed through the ef-
fective theory, the moments of these signals can. This led
[25] to propose a framework to describe these moments
in terms of the statistics of OPE coefficients. The OPE
randomness hypothesis is a generalization of ETH that
states that any index of an OPE coefficient labelling a
black-hole microstate can effectively be treated as a ran-
dom variable. A similar approach for Haar-typical states
was studied in [26].

While ensemble-averaging over quantum systems has
played a prominent role in two-dimensional gravity, for
example in [21], this effective description is also applica-
ble in individual quantum systems with a fixed Hamil-
tonian (at least for self-averaging quantities), which will
be the focus of this work. A general framework explain-
ing this mechanism and connecting it to random matrix
theory was developed in [27] (see also [28, 29]). This
framework leads to random fluctuations in OPE coeffi-
cients [30].

Summary of results

In this Letter, we will discuss how global symmetries
interact with the ETH, wormholes and erratic signals of
quantum chaos. We start by generalizing the ETH in the
presence of global symmetries. For neutral operators,
we can simply apply the ETH charge sector by charge
sector. This is expected from a Hamiltonian decomposed
into blocks corresponding to the different charge sectors,
and each individual block approximates an independent
random matrix [31].

Charged operators on the other hand make different
charge sectors talk to one another. We discuss two pos-
sible variants of a charged ETH, one that preserves the
symmetry microscopically, the other that allows for ex-
ponentially small violations of charge conservation in the
random variables.1 This second version of ETH is more
relevant when viewing the ansatz as an effective theory
for the simple operators, where one is agnostic about
whether or not the symmetry is realized microscopically.
Viewed statistically, these two ansätze give equivalent an-
swers for low-point correlators of the simple operators in
any given background. However, they differ for products
of correlation functions. Most notably, we have

〈Oq〉β 〈O
†
q〉β
∣∣
c.p. ETH

= 0

〈Oq〉β 〈O
†
q〉β
∣∣
c.v. ETH

∝ e−S , (2)

1 While inessential in what follows, note that these violations affect
neutral operators as well.

where c.p. and c.v. denote the charge preserving and
charge violating versions of ETH, respectively.

We will show that this resonates strongly with the
gravitational perspective. In the bulk, multi-boundary
Euclidean wormholes can give non-zero answers for the
product of charged one-point functions. Whether the an-
swer is non-zero depends on whether the symmetry is
gauged in the bulk or not. If the symmetry is gauged,
then we find a vanishing answer compatible with a charge
preserving ETH, where the symmetry is realized micro-
scopically. If on the contrary the symmetry is only a
global symmetry of the bulk theory, the wormhole yields
a non-zero answer. This implies that charged one-point
functions have a non-zero variance and thus that OPE co-
efficients Cīiq are not exactly zero, but rather fluctuate
with exponentially small variance. We show that pro-
vided that the wormhole accurately captures the vari-
ance of observables, this is inconsistent with exact global
symmetries in quantum gravity. To summarize, either
the symmetry is gauged in the bulk, or it is broken by
non-perturbative effects in GN . This provides more ev-
idence that global symmetries cannot exist in quantum
gravity [32, 33], and offers a different perspective for AdS
than that of entanglement wedge reconstruction [34, 35].

We will start by describing the charged versions of
ETH, before turning to gravitational computations.

Note added: while this paper was in preparation,
[36, 37] appeared which contain related results in the
context of replica wormholes.

THE ETH WITH GLOBAL SYMMETRIES

In this section, we will present the form of the ETH
which holds in the presence of global symmetries. For
concreteness, we will take the global symmetry group to
be U(1), but it is straightforward to generalize to other
groups. In the presence of a symmetry, the charge com-
mutes with the Hamiltonian and we can simultaneously
diagonalize both operators. It is thus natural to organize
the Hilbert space in different charge sectors labelled by
the eigenvalue Q of the charge operator. Consider now
a simple operator which is neutral under the global sym-
metry. For such operators, the generalization of the ETH
is straightforward and we have

〈Ei, Qi|Oaq=0 |Ej , Qj〉 = (3)

δQi,Qj

(
fa(Ē,Qi)δEi,Ej + ga(Ē, ω,Qi)e

−S(Ē,Qi)/2Rij

)
,

where fa
2 and ga are smooth functions of Ē ≡ (Ei +

Ej)/2, ω ≡ Ei−Ej and Qi; Rij are random numbers with

2 An expression for f in two-dimesional CFTs is given in [38].
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zero mean and unit variance; and, S(Ē,Qi) is the micro-
canonical entropy in a definite charge sector Qi. Note
that this is just the usual form of the ETH charge sec-
tor by charge sector. This is intuitively consistent with
expectations from random matrix theory and quantum
chaos, where one treats the different blocks of the Hamil-
tonian corresponding to each charge sector as indepen-
dent random matrices [31] (see also [39]).

The story becomes more interesting when we dis-
cuss (simple) charged operators, since they automatically
make different charge sectors talk to one another. In this
case, the following ansatz should hold:

〈Ei, Qi|Oaq |Ej , Qj〉 = δEi,EjδQi,Qjδq,0f
a(Ē, Q̄) +

δQi,q+Qjg
a(Ē, ω,Qi, Qj)e

−(S(Ē,Qi)+S(Ē,Qj))/4Rij . (4)

It is worthwhile to note that unlike the case of neutral
operators, there is no diagonal term for operators that
carry charge. This is in fact expected: the one-point
function of a charged operator vanishes in the thermal
(or grand-canonical) ensemble, which only leaves room
for small off-diagonal contributions in the ETH ansatz.
The function ga is related to the (Fourier transform of
the) two-point function for the operator Oq, as we now
show.

Let us consider the expectation value of O†qOq in an
energy eigenstate and we would like to show that this
quantity has a diagonal part compatible with ETH, using
only (4). To do so, we insert a resolution of the identity

〈Ei, Qi|O†qOq |Ei, Qi〉 (5)

=
∑
Ej ,Qj

〈Ei, Qi|O†q |Ej , Qj〉 〈Ej , Qj |Oq |Ei, Qi〉

=
∑
Ej

e−(S(Ei+
ω
2 ,Qi)+S(Ei+

ω
2 ,Qi+q))/2

× |g(Ei +
ω

2
, ω,Qi + q,Qi)|2|Rij |2 .

The random variables Rij will average out to unity upon
taking the sum over j since they have unit variance.
Moreover, we can replace the dense sum over Ej by an
integral, namely

∑
Ej
→
∫
dωeS(Ei+ω,Qi+q), which gives

〈Ei, Qi|O†qOq |Ei, Qi〉 =∫
dωeS(Ei+ω,Qi+q)−(S(Ei+

ω
2 ,Qi)+S(Ei+

ω
2 ,Qi+q))/2

×|g(Ei +
ω

2
, ω,Qi + q,Qi)|2 . (6)

All remaining functions are smooth and rapidly decaying
functions of ω and q, so we can Taylor expand them to
obtain to leading order

〈Ei, Qi|O†qOq |Ei, Qi〉 ≈
∫
dωe

β
2 (ω−µq)|g(Ei, ω,Qi, Qi)|2 ,

(7)

where we defined β ≡ ∂S
∂E and µ ≡ − 1

β
∂S
∂Q . The result

(7) should be given by the microcanonical average for
the operator O†qOq if it is to satisfy ETH, which fixes the
function g and its relation to the microcanonical expec-
tation value of O†qOq.

Before moving on to discuss the implications for grav-
itational theories, we would like to discuss another type
of charged ETH ansatz, which will mildly break charge
conservation. Instead of (4), consider the ansatz

〈Ei, Qi|Oaq |Ej , Qj〉 = δEi,EjδQi,Qjδq,0f
a(Ē, Q̄)

+ g̃a(Ē, ω, Q̄, δQ, q)e−S(Ē,Q̄)/2Rij . (8)

The main difference between (4) and (8) is that this sec-
ond version replaces the exact charge conservation by a
smooth function of δQ = Qi−Qj which is rapidly decay-
ing as a function of δQ− q. From this ansatz, one could
also relate the function g̃ to the microcanonical two-point
function as in (7) (see the supplemental material for de-
tails). We would like to emphasize that the two ansätze
only differ up to exponentially small corrections and are
therefore indistinguishable for simple operators.

A reason to consider such a charge-breaking ansatz
is the following: if we have a set of simple operators
that preserve some global symmetry but we are unsure
whether the microscopic Hamiltonian truly preserves this
symmetry, it is perhaps more cautious to only enforce an
approximate global symmetry. This would be useful for
example if one wanted to formulate an effective theory
for the simple operators in high energy states.

EUCLIDEAN WORMHOLES

In this section, we compute correlation functions of
charged operators in gravitational theories. We are in-
terested in the simplest possible setup with a wormhole
solution connecting two asymptotic boundaries. The sim-
plest solution of this type arises in AdS3 when the two
boundaries have negative constant curvature, hence we
consider two genus-2 surfaces at the boundary.3

The relevant gravitational low energy effective theory
is given by the Euclidean action

S = − 1

16πGN

∫
d3x
√
g

(
R+

2

`2AdS

)
+ Smatter

Smatter =
1

2

∫
d3x
√
g(|∂φ|2 +m2|φ|2) . (9)

3 Note that because we are considering genus-2 boundaries, we are
not computing thermal one-point functions and their variance
but rather genus-2 one-point functions. Instead of probing the
variance of Cīiq , we instead probe Cl̄qkCijlCijk. This does not
affect our conclusion for global symmetries.
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Note that this action has a global U(1) symmetry. The
metric of this genus-2 wormhole reads

ds2 = `2AdS(dτ2 + cosh2 τ dΣ2
2) , (10)

where dΣ2 is a constant curvature metric on the genus-
2 surface. This geometry is locally AdS3 and can be
obtained from the hyperbolic ball H3 by taking a quotient
with respect to a Fuchsian group Γ which is a discrete
subgroup of the AdS isometries.

Because the scalar theory is a free field theory and the
geometry (10) is a quotient of AdS3, the two-point func-
tion on the wormhole is obtained by the sum over images.
For two operators inserted on opposite boundaries (see
Fig. 1), the correlation function reads [22]

〈Oq〉g=2 〈O
†
q〉g=2

∣∣∣
gravity

∼
∑
h∈Γ

1

[cosh(h(s))]
2∆

, (11)

where s is the distance between the 2 points on the
boundary Riemann surface and ∆ is the conformal di-
mension of the CFT operator dual to φ. For sufficiently
large ∆, this sum converges which is related to the worm-
hole being (perturbatively) stable. The fact that this cor-
relation function doesn’t vanish has an interpretation in
terms of the variance of the genus-2 one-point function of
the operator O, which carries global charge. As we will
discuss in the next section, this has drastic consequences
for global symmetries in quantum gravity.

FIG. 1. A genus-2 wormhole on which we compute correlation
functions. On the left, the situation where the symmetry in
the bulk is not gauged. This yields a non-zero correlation
function. On the right, the situation where the symmetry is
gauged in the bulk. The two operators must be connected
by a Wilson line for the configuration to be gauge invariant.
This correlation function vanishes.

Before moving on to the consequences of such non-
vanishing correlation functions for quantum gravity, we
will first discuss the situation where the U(1) global sym-
metry of the field φ is gauged. In this case, the boundary-
to-boundary correlation function in the bulk is not gauge-
invariant unless the two operators are connected by a

Wilson line that propagates through the wormhole. This
is depicted on the right hand side of Fig. 1. In this
case, the correlation function vanishes, as already noted
in [22].

The simplest way to see this is to note that in the
presence of multiple boundaries, the asymptotic symme-
try due to the bulk gauge field becomes one copy of the
global symmetry per disconnected Euclidean boundary.
In the case of our genus-2 wormhole, the boundary global
symmetry is U(1) × U(1) and the correlation function
〈Oq〉g=2 〈O

†
q〉g=2

is charged under it (even if it is neutral

under the diagonal subgroup). It must hence vanish. We
therefore have4

〈Oq〉g=2 〈O
†
q〉g=2

∣∣∣
gauged

= 0 . (12)

It is worthwhile to note that this does not imply that the
correlation function 〈φ(x)†W (x, y)φ(y)〉 vanishes for bulk
points that do not reach the boundary. Such correlation
functions are perfectly fine gauge-invariant objects of the
bulk theory, even if they are separated in Euclidean time
(in particular, they are neutral under the U(1) × U(1)
global symmetry of the boundary). Therefore, charge
can propagate through the wormhole, but it is forbidden
to reach the boundaries. We now turn to the discussion
of global symmetries in quantum gravity.

NO GLOBAL SYMMETRIES IN QUANTUM
GRAVITY

We will now show that the existence of multi-boundary
Euclidean wormholes prevents the existence of exact
global symmetries in quantum gravity. First, we need
to discuss the difference between an exact global symme-
try of quantum gravity and one that is gauged. From the
CFT standpoint, both involve a graded operator algebra
and exact selection rules for correlation functions: a cor-
relation function is non-zero only if the sum of the charges
of all operators vanishes. In particular, this applies to all
OPE coefficient which must satisfy charge conservation

COq1Oq2Oq3 ∝ δq1+q2+q3,0 . (13)

The difference between a situation where the symmetry
is gauged in the bulk involves the dual of the bulk gauge

4 The same argument applies to other types of symmetries,
even spacetime ones. For example, a finite temperature one-
point function is independent of Euclidean time. Therefore
〈O(τ1)〉β 〈O(τ2)〉β must be independent of τ1 and τ2. A given
wormhole solution may naively look like it gives a non-trivial
τ1 − τ2 dependence, but this will be destroyed by integrating
over a family of wormhole solutions that restore time translation
symmetry on both boundaries. In our situation, this integral is
over the gauge field.
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field: a CFT current which implements the action of the
global symmetry.

It is currently unknown whether a consistent CFT with
a local stress-tensor can have an exact symmetry for all
its correlation functions without having a current (see
[34] for a detailed discussion on such issues).5 Here, we
will show that the low-energy gravitational effective the-
ory is smart enough to know that exact global symmetries
are not allowed. Note that independently of whether the
symmetry is gauged in the bulk, the one-point function
of a charged operator must vanish on any compact Eu-
clidean surface. In particular, we have

〈Oq〉g=2 = 0 . (14)

This is an exact statement, and follows from the selection
rule (13). We will now see that this is in conflict with
the wormhole answer.

The existence of wormhole solutions in the bulk and
the correlations they imply may seem puzzling at first
sight, but such wormhole correlation functions have been
interpreted as encoding the variance of microscopic CFT
observables as the result of some coarse-graining. For
one-point functions, we have

〈O〉 〈O〉
∣∣∣
gravity

= | 〈O〉CFT |2 , (15)

where the · notation refers to some coarse-graining in-
volving averaging over an energy band which we will not
aim to make precise here. In general, when quantities like
OPE coefficients or spectral phases are erratically vary-
ing, wormhole contributions can give us the mean and
variance of such signals. The central assumption that
we will make is that the wormhole contribution in grav-
ity accurately captures the CFT variance for this type of
signal.

Here, this leads to a paradox. The wormhole corre-
lation function (11) is non-vanishing, implying that the
charged one-point function has some variance. But this
is in direct contradiction with (14) which asserts that
charged one-point functions are exactly zero. What this
is showing us is that if we try to enforce an exact global
symmetry in quantum gravity, the existence of Euclidean
wormholes tells us that this symmetry cannot be exact,
and must necessarily be broken by non-perturbative ef-
fects. It is remarkable that the low-energy gravitational
effective theory and its Euclidean path integral are smart
enough to know this. On the other hand, if the symme-
try is gauged in the bulk, the exact microscopic selection
rule is enforced by the gauge symmetry and the variance
(i.e. wormhole contribution) exactly vanishes.

5 In the absence of a local stress-tensor, such CFTs clearly exist:
the canonical example is generalized free fields. In fact any QFT
in AdS with a global symmetry will generate such a CFT.

Let us now make contact with the ETH ansatz in the
presence of a global symmetry. We proposed two ansätze
for ETH, one that exactly preserves the global symmetry
and one that only approximately does. Recall that for
one-boundary correlators, charged was not violated by
large amounts for either ansatz and the two agreed up
to exponentially small corrections. We can now see what
type of theories the two different ETH describe, and when
they give different answers: for multi-boundary correla-
tion functions.

DISCUSSION

In this paper, we have presented the generalization
of the ETH when there are additional global symme-
tries, and discussed two possible version of the ansatz:
one that manifestly preserves the symmetry microscop-
ically, and another that only preserves it for simple
operators, but allows exponentially small violations of
charge conservation. We then discussed a manifestation
of these two scenarios for CFTs with a holographic dual
in terms of Euclidean wormholes. Assuming that Eu-
clidean wormhole computations done with the low-energy
gravitational theory accurately captures moments of cer-
tain pseudo-random signals of quantum chaos in the dual
CFT, we have shown that global symmetries cannot ex-
ist in quantum gravity (at least for quantum gravity in
Anti-de Sitter space).

There are two possible outcomes for the fate of a global
symmetry present in the low energy effective theory: it
can be explicitly broken by non-perturbative effects, and
we can give a lower bound on the scale of such a break-
ing from the gravitational action of the wormhole, namely
e−`AdS/GN [25]. This is compatible with previous findings
(see for example [40]). Alternatively, it can be gauged
in which case the Euclidean wormhole computation van-
ishes and the symmetry is exact in the microscopic CFT
description. In such a case, we cannot bound the magni-
tude of the gauge coupling.

It is interesting to observe that the absence of global
symmetries in quantum gravity is tightly connected to
the fact that low-energy observers can accurately resolve
charges, in contrast with energy levels which are expo-
nentially dense.

We conclude with some open questions. The exis-
tence of Euclidean wormholes prevents the factorization
of products of CFTs on disconnected manifolds, which
is inconsistent with any microscopic CFT computation.
While this can sometimes originate from taking ensem-
ble averages over microscopic theories, one would also
like to understand the role of wormholes in definite uni-
tary CFTs, and how factorization is restored. There is
evidence that factorization can be restored by consider-
ing certain UV ingredients like branes, which account for
“non-diagonal” elements of the quasi-random variables
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[41–43]. One may wonder if UV ingredients could re-
solve the wormhole contribution (11) and the associated
tension with global symmetries in quantum gravity. The
point we are making here is that in the presence of an
exact global symmetry, all moments of charged one-point
functions must vanish, which is not what we observe for
the variance. This is irrespective of how factorization is
restored.

Another avenue to consider is to understand the inter-
play between our results concerning energy eigenstates
and typical states obtained from Haar averaging in the
microcanonical window [26]. It is worth pointing out
that the charge violating version of ETH is very similar
to formulas one would obtain when Haar-averaging over
an ensemble of states that contain several different charge
sectors. It would thus naturally arise in such a context.

Taking a step back, we are proposing that a CFT
framework that can encode all observables the low energy
gravitational theory has access to, is a theory of OPE
coefficients treated statistically. Gravitational computa-
tions give us access to (arbitrary) moments of the statis-
tical distribution of microscopic data.6 In this work, we
have shown that this line of thought leads to a novel ar-
gument against global symmetries in theories of quantum
gravity. It would be very interesting to connect our rea-
soning to the standard arguments against global symme-
tries coming from black hole physics. We hope to return
to these questions in the future.
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